WO2012133230A1 - ガラス板製造方法 - Google Patents

ガラス板製造方法 Download PDF

Info

Publication number
WO2012133230A1
WO2012133230A1 PCT/JP2012/057606 JP2012057606W WO2012133230A1 WO 2012133230 A1 WO2012133230 A1 WO 2012133230A1 JP 2012057606 W JP2012057606 W JP 2012057606W WO 2012133230 A1 WO2012133230 A1 WO 2012133230A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
platinum
temperature
mass
Prior art date
Application number
PCT/JP2012/057606
Other languages
English (en)
French (fr)
Inventor
次伸 村上
慎吾 藤本
Original Assignee
AvanStrate株式会社
安瀚視特股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社, 安瀚視特股▲分▼有限公司 filed Critical AvanStrate株式会社
Priority to CN2012900001634U priority Critical patent/CN203333457U/zh
Priority to KR1020137022004A priority patent/KR101522198B1/ko
Publication of WO2012133230A1 publication Critical patent/WO2012133230A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/425Preventing corrosion or erosion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/435Heating arrangements for furnace walls

Definitions

  • the present invention relates to a method for producing a glass plate.
  • a device made of a refractory metal such as platinum or a platinum alloy is often used.
  • glass substrates for liquid crystal displays (LCDs) and glass substrates for organic EL displays have a very low alkali content and the melting and melting temperatures of glass materials are higher than other glass products.
  • the tank is mostly a manufacturing apparatus made of platinum or a platinum alloy.
  • the temperature of the molten glass is set to 1500 ° C. or higher in a process called “clarification process”, and bubbles in the molten glass are removed. It has been removed.
  • the manufacturing apparatus of the glass plate for LCD glass substrates the manufacturing apparatus which consists of platinum or a platinum alloy which is the most excellent in durability at high temperature among refractory metals is used abundantly.
  • the platinum or platinum alloy manufacturing apparatus volatilizes during the oxidation, and oxidation pitting corrosion occurs in which the members constituting the manufacturing apparatus become thin.
  • the refining process of the above-mentioned LCD glass substrate or glass substrate for organic EL displays is performed by adding a refining agent to the glass raw material.
  • the fining agent is M x O y ⁇ M x1 O y1 + zO 2 (M is a metal element, x, x1, y, y1) accompanied by the valence fluctuation of the metal constituting the fining agent when the molten glass reaches a high temperature from a low temperature. , z is a real number), and the oxygen generated at this time expands entrained bubbles at the time of dissolution, and levitation defoaming is performed.
  • As glass refining agents arsenic oxide, antimony oxide, etc.
  • tin oxide that has little impact on the environment has been used in recent years. It has become.
  • tin oxide has a higher temperature that causes reactions with valence fluctuations than arsenic oxide and antimony oxide, and in a manufacturing apparatus that performs the refining process, the temperature of the molten glass and the manufacturing apparatus is about 1650 ° C. or higher. .
  • the lifetime of the apparatus made from a refractory metal is several years at most. In particular, it would be expensive if equipment made of expensive noble metals such as platinum or platinum alloys must be procured every few years.
  • Patent Document 1 Japanese Patent Publication No. 2010-502550
  • Patent Document 1 Japanese Patent Publication No. 2010-502550
  • This invention is made in view of the said subject, and provides the manufacturing method of the glass plate which can aim at the lifetime improvement of the apparatus made from a refractory metal effectively.
  • the inventor of the present invention as a result of earnest research on a method for extending the life of a refractory metal device, (I) Among refractory metal devices, the oxidation or volatilization of the refractory metal is more intense than the other parts in particular parts that are hotter than other areas, and there is a hole in the part in one to two years. (Ii) In the case where the device is a tubular refractory metal device for clarification of molten glass (clarification tank), for example, the specific portion is not only in contact with the high temperature molten glass but also the atmosphere between the glass and the inner wall of the tube May be located at the top of a part in the longitudinal direction of the tube, I found.
  • the present invention has been made from such a viewpoint, and the method for producing a glass plate according to the present invention is made of platinum or a platinum alloy, and is clarified in a clarification tank having a space for containing gas by degassing in the tank. It is a manufacturing method of the glass plate including the clarification process of performing.
  • the clarification step heats the molten glass by energizing and heating the clarification tank.
  • the clarification tank preferably has a thick portion that is thicker than other parts of the clarification tank at a part including at least a region where the molten glass has the highest temperature in the clarification tank.
  • the clarification tank has a thick portion that is thicker than other parts of the clarification tank at a part including at least the region where the molten glass has the highest temperature in the clarification tank.
  • the clarification tank is heated by passing a current between a plurality of power feeding devices provided along the flow direction of the molten glass, and the molten glass is the most in the clarification tank.
  • the region where the temperature is high is preferably a region on the upstream side of the center in the flow direction of the molten glass in the clarification tank.
  • the method for producing a glass plate according to the present invention is a method for producing a glass plate including a step of flowing molten glass through a tubular platinum or platinum alloy apparatus extending in the longitudinal direction.
  • the molten glass is heated by energizing and heating the platinum or platinum alloy device.
  • An apparatus made of platinum or a platinum alloy has a thick part that is thicker than other parts in at least a part of the part that is in contact with the molten glass at a temperature lower than the melting point of the platinum or platinum alloy and 150 ° C. lower than the melting point. It is characterized by having.
  • the platinum or platinum alloy-made device has a wall thickness that is thicker than other parts in at least a part of the part that is in contact with the molten glass at a temperature lower than the melting point of platinum or the platinum alloy and 150 ° C. lower than the melting point. It has a thick part. Therefore, it is possible to effectively extend the life of the refractory metal device.
  • the clarification tank has a thick part over the entire circumference.
  • the glass plate preferably contains at least tin oxide as a fining agent.
  • the glass plate is R ′ 2 O: more than 0.10% by mass and 2.0% by mass or less (provided that R ′ is selected from Li, Na, and K). At least one selected from the group consisting of
  • the glass plate does not substantially contain R ′ 2 O (where R ′ is at least one selected from Li, Na, and K). Alkali glass is preferred.
  • a glass plate contains the following composition.
  • the glass plate manufacturing method of the present invention it is possible to effectively extend the life of the refractory metal device.
  • Tubular refractory metal equipment (clarification tank)
  • the tubular refractory metal device made of refractory metal and extending in the longitudinal direction is a device called a refractory metal clarification tank 102 (clarification tube) used for manufacturing a glass plate.
  • the clarification tank 102 is an apparatus in which molten glass is heated and clarified at least in part.
  • the clarification tank 102 includes a tube main body 102a and at least three power supply devices 201 provided substantially at both ends of both ends of the tube main body 102a.
  • the pipe body 102a has a cylindrical shape.
  • the maximum inner diameter of the tube main body 102a is, for example, 300 to 400 mm.
  • the tube body 102a is made of a refractory metal, but is preferably made of platinum or a platinum alloy.
  • the tube body 102a generates heat by being energized by the first power supply device 201a, the second power supply device 201b, and the third power supply device 201c, and heats the molten glass with its Joule heat.
  • the 1st electric power feeder 201a, the 2nd electric power feeder 201b, and the 3rd electric power feeder 201c consist of the electrode pulled out from the flange and a flange, and an electric current is between the 1st electric power feeder 201a and the 2nd electric power feeder 201b. And it flows between the 2nd electric power feeder 201b and the 3rd electric power feeder 201c.
  • the temperature of the molten glass in the tube body 102a changes in valence. It is possible to easily control the temperature so as to be equal to or higher than the temperature at which the reaction involving the reaction occurs.
  • the temperature of the molten glass is highest in a region between the first power supply device 201a and the second power supply device 201b.
  • the temperature of the tube main body 102a is highest in a region between the first power supply device 201a and the second power supply device 201b.
  • the time which can be clarified in the state of the molten glass used as the temperature and viscosity suitable for clarification (defoaming) can be lengthened. That is, when the temperature of the molten glass is highest in the region between the first power supply device 201a and the second power supply device 201b of the tube main body 102a, the length of the tube main body 102a in the flow direction of the molten glass is not excessively increased. , And can be clarified (defoamed) effectively.
  • the region where the temperature of the tube body 102a is highest or the region where the molten glass temperature is highest is preferably a region upstream of the middle of the molten glass flow direction in the tube body 102a. That is, as shown in FIG. 3, the following thick portion 102b is preferably provided in a region upstream of the center X in the flow direction F of the molten glass in the tube main body 102a.
  • the tube main body 102a preferably has a lower electrical resistance than other portions in a portion including at least a region where the temperature of the molten glass is highest in the tube main body 102a (excluding the entire region of the tube main body 102a).
  • a portion (excluding the entire region of the tube body 102a) including at least a region where the temperature of the tube body 102a is the highest has a lower electrical resistance than other portions.
  • the tube main body 102a preferably has a thick portion 102b that is thicker than other portions.
  • the tube main body 102a preferably has a thick portion 102b in at least a part of a portion where the tube main body 102a is in contact with molten glass having a predetermined temperature range. More specifically, the tube body 102a has a thick portion where a portion (excluding the entire region of the tube body 102a) including at least a region where the temperature of the molten glass is highest in the tube body 102a is thicker than other portions. It is preferable to have 102b. Alternatively, the tube body 102a preferably has a thick portion 102b in which a portion (excluding the entire region of the tube body 102a) including at least a region where the temperature of the tube body 102a is the highest is thicker than other portions.
  • the portion of the tube main body 102a in contact with the molten glass in the predetermined temperature range the portion including at least the region where the temperature of the molten glass is highest in the tube main body 102a (excluding the entire region of the tube main body 102a), or the temperature of the tube main body 102a
  • a portion including at least the highest region (excluding the entire region of the tube main body 102a) defines the position of the thick portion 102b in the longitudinal direction of the tube main body 102a.
  • the said predetermined temperature range in this embodiment is less than melting
  • the predetermined temperature range is lower than the melting point and at least 100 ° C. lower than the melting point. More preferably, the predetermined temperature range is less than the melting point of the refractory metal and at least 80 ° C. lower than the melting point.
  • the molten glass is in a region where the melting point of the platinum is less than about 1770 ° C. of the platinum, 1620 ° C. or higher, more preferably 1670 ° C. or higher, and even more preferably 1690 ° C. or higher. It is preferable to have a thick portion 102b in a part of the portion of the tube main body 102a that comes into contact.
  • the total length of the thick portion 102b is preferably 100 mm or more, more preferably 150 mm, and even more preferably 200 mm or more.
  • the total length of the thick portion 102b is less than the total length of the clarification tank 102, preferably 1/25 to 1/2 of the total length of the clarification tank 102, and 1/10 to 1/1 of the total length of the clarification tank 102. More preferably, it is 4 or less.
  • a full length shows the full length of the flow direction through which molten glass flows.
  • the total length of the fining tank 102 in the present embodiment refers to the total length of a platinum or platinum alloy device having a space where the molten glass is in contact with the atmosphere for degassing bubbles from the molten glass to the outside of the molten glass. .
  • the overall length of the thick portion 102b becomes longer, the amount of platinum used increases and the cost increases.
  • the total thickness of the thick portion 102b is too short, the region where the temperature of the molten glass becomes the highest or the temperature of the tube body 102a becomes the highest, and the platinum or platinum alloy is most easily oxidized or volatilized in the platinum.
  • the oxidation and volatilization of the platinum alloy cannot be sufficiently suppressed, and it becomes difficult to extend the life of the clarification tank 102.
  • the thickness of platinum or platinum alloy constituting the clarification tank 102 can be increased over the entire length, it is possible to extend the life.
  • platinum or a platinum alloy is an extremely expensive material, and it is not practical from the viewpoint of cost to sufficiently increase the thickness of the platinum or the platinum alloy constituting the clarification tank 102 over the entire length. Therefore, in the present embodiment, by increasing the thickness of the clarification tank 102 where the oxidation or volatilization of platinum or the platinum alloy is more intense than the other parts, the increase in cost is suppressed. However, the life of the clarification tank 102 is extended.
  • the thick portion 102b may be provided over a part of the entire circumference of the tube main body 102a, but is preferably provided over a half circumference, and more preferably provided over the entire circumference. However, when the thick portion 102b is provided over a part of the entire circumference of the tube main body 102a, the thick portion 102b is preferably provided so as to cover the top of the tube main body 102b.
  • the thickness of the thick portion 102b is preferably adjusted in consideration of the material of the refractory metal device, the cross-sectional area of the thick portion 102b, the temperature of the molten glass, and the like. The thickness is preferably 20% or more, more preferably 50% or more, and even more preferably 100% or more.
  • the thickness of the thick portion 102b is preferably 1.1 mm or more, more preferably 1.2 mm or more, Is more preferably 1.5 mm or more, and more preferably 2 mm or more.
  • the tube main body 102a may be a tube in which a portion other than the thick portion 102b and the thick portion 102b is integrally formed, or may be a tube joined to a member that becomes the thick portion 102b. Further, the tube body 102a may be formed by joining a plurality of tubes. For example, the pipe body 102a may be formed by joining pipes having different thicknesses to form a thick pipe 102b.
  • the glass plate of this embodiment contains tin oxide as a fining agent.
  • the temperature at which tin oxide functions as a fining agent that is, the temperature at which oxygen begins to be released effectively is 1600 ° C. or higher, and oxygen is released violently as the temperature rises. That is, when tin oxide is contained as a fining agent, the temperature suitable for fining is 1620 ° C. or higher, more preferably 1650 ° C. or higher.
  • the glass plate shown in the present embodiment is an alkali-free glass plate or R ′ that does not substantially contain R ′ 2 O (where R ′ is at least one selected from Li, Na, and K).
  • 2 O is a glass plate containing a trace amount of alkali and containing only 0.10% by mass and 2.0% by mass or less.
  • the alkali-free glass or the glass containing a trace amount of alkali has a higher viscosity (high temperature viscosity) at a higher temperature than an alkali glass containing alkali in excess of 2.0% by mass.
  • the speed at which the bubbles in the molten glass rise is influenced by the viscosity of the molten glass, and the lower the speed of the molten glass, the higher the speed at which the bubbles rise.
  • the viscosity of the molten glass is preferably, for example, 200 to 800 poise. Therefore, in order to clarify the alkali-free glass or the alkali-containing glass, it is necessary to further increase the temperature of the molten glass as compared with the alkali glass in order to lower the viscosity of the molten glass.
  • the temperature of the molten glass in the clarification tank 102 needs to be, for example, 1650 ° C. or higher.
  • the clarification referred to above means that bubbles in the molten glass are discharged out of the molten glass and defoamed.
  • the clarification tank 102 it is preferable that a space is provided between the liquid surface of the molten glass and the inner wall of the tube body 102a of the clarification tank 102 in order to release a gas component from the molten glass. That is, the clarification tank 102 has a space for accommodating the gas generated by defoaming in the tube main body 102a.
  • the space is preferably sufficient for bubbles to escape from the molten glass, and the distance between the liquid level and the inner wall of the space (the distance between the liquid level and the inner wall surface facing the liquid level). Is preferably less than 50% and 1% or more of the inner diameter of the tube body 102a, and more preferably less than 15% and 5% or more of the inner diameter of the tube body 102a.
  • the top of the tube main body 102a at the portion where the temperature of the molten glass flowing through the tube main body 102a made of refractory metal reaches, for example, 1700 ° C. is in contact only with the inside atmosphere, and thus becomes higher than 1700 ° C.
  • Even the tube main body 102a made of a refractory metal is oxidized or volatilized and eventually has holes when the temperature of the tube main body reaches a predetermined temperature or higher.
  • the portion of the tube main body 102a in contact with the space is more easily promoted to oxidize platinum or the platinum alloy than the other portion of the tube main body 102a that does not contact the space and other piping that does not contact the atmosphere in the tube.
  • the thick portion 102b is provided only at the top of the tube body 102a where the refractory metal is likely to oxidize and volatilize, current concentrates on the thick portion 102b, so that the periphery of the top where the thick portion 102b is provided is changed to a high temperature. Can be. Therefore, in the above-described thickness range, when the thick portion 102b is provided over a half circumference, more preferably over the entire circumference, the portion is more than the case where the thick portion 102b is not provided due to the current concentrated on the thick portion 102b. It is possible to avoid an increase in the amount of heat generated.
  • the relationship between the thickness of the thick part 102b and the range occupying the entire circumference of the tube main body 102a and the current, resistance, and heat generation amount is calculated as follows.
  • the tube main body 102a made of platinum and having a uniform thickness of 1 mm excluding the thick portion 102b is replaced with the thick portion 102b having a thickness of 2 mm by replacing the first power supply device 201a and the second power supply device 201b of the tube main body 102a.
  • a high-temperature portion a whole length Lmm at a particularly high temperature.
  • the resistance of the portion corresponding to the same position as the high temperature portion when the tube main body 102a is assumed not to have the thick portion 102b is R ⁇ .
  • the current flowing over the entire circumference of the high temperature portion of the tube body 102a is defined as I ampere.
  • the calorific value of is halved.
  • a sufficient amount of a material containing a refractory oxide may be applied to the outer surface of a tubular refractory metal device made of platinum or a platinum alloy, for example, the clarification tank 102 by thermal spraying.
  • thermal spraying By using a combination of thermal spraying and a structure in which a thick portion is provided on platinum or a platinum alloy, volatilization of platinum or the platinum alloy can be further suppressed, and the life of the refractory metal device, for example, the clarification tank 102 is extended. can do.
  • the method of thermal spraying is not particularly limited, and plasma spraying or flame spraying can be used. However, plasma spraying is preferable from the viewpoint of improving the coating density and enhancing the bondability between platinum or a platinum alloy and a refractory oxide.
  • a material containing a refractory oxide a material containing MgO, TiO 2 , or Zr 2 O is suitable.
  • the material containing the refractory oxide preferably contains zirconia, more preferably completely stable zirconia, and is preferably stabilized with a Ca compound, Mg, and / or Y compound.
  • the tube main body 102a made of a refractory metal in the clarification tank 102 is at least a part of a portion in contact with the molten glass having a temperature lower than the melting point of the refractory metal and 150 ° C. lower than the melting point, for example, the molten glass is most in the clarification tank.
  • a simulation calculation was performed on the effect on the temperature rise of the tube main body 102a having the thick portion 102b that is thicker than other portions in a portion including at least a region where the temperature increases.
  • the tube body 102a is made of an alloy of platinum and rhodium (melting point: about 1840 ° C.), has a total length of 4000 mm, a diameter of about 350 mm, and a thickness of 1 mm.
  • the first power supply device 201a and the second power supply device 201b have a first It was assumed that the above-mentioned thick portion 102b having a thickness of 1.2 mm was provided over the entire circumference of 150 mm in length from the position of about 300 mm to the position of about 450 mm from the two power feeding devices 201b.
  • the top of the position where the thick part is provided is a tube body made of an alloy of platinum and rhodium when a glass plate is produced using a conventional clarification tank composed of a tube body having no thick part 102b. This is a region where the temperature of the metal reaches a very high temperature and the oxidation or volatilization of platinum is remarkable.
  • the first feeding device 201a, the second feeding device 201b, and the third feeding device 201c energize the clarified layer 102 to generate heat, and a current of about 6000 A is generated between the first feeding device 201a and the second feeding device 201b. It was assumed that the molten glass in the clarification tank 102 was heated and the temperature of the molten glass reached about 1700 ° C.
  • the electric field, temperature field, and flow field equations are coupled using the characteristics of the platinum alloy constituting the tube body 102a, and the finite element method, the finite volume method, the finite difference method, or the like is used.
  • the temperature distribution of the tube main body 102a can be obtained by numerical analysis using a technique. They can use customized software or commercially available software packages as tools for mathematical modeling. Commercially available software packages include, for example, 3-D CAD, AUTOCAD, SOLIDWORKS, meshing includes GAMBIT, FEMAP, KSWAD, ICEMCFD, Joule exothermic heat conduction, glass flow for calculating FIDP, FLUENT, etc., and post tools for calculation results include CFD-POST, ENSIGHT, and the like.
  • the glass plate manufacturing method according to the present invention can be applied to the manufacture of any glass plate, but particularly a liquid crystal display device, an organic EL display, It is suitable for manufacturing a glass substrate for a flat panel display such as a plasma display device or a cover glass that covers a display portion.
  • glass raw materials are first prepared so as to have a desired glass composition.
  • the raw materials when manufacturing a glass substrate for a flat panel display, it is preferable to prepare the raw materials so as to have the following composition.
  • P RO: 5 to 20% by mass (wherein R is at least one selected from Mg, Ca, Sr and Ba),
  • (q) R ′ 2 O since (q) R ′ 2 O is not essential, it may not be contained. In this case, 'becomes alkali-free glass containing no 2 O in substantially from the glass plate R' R can reduce the risk of destroying the TFT 2 O flows out.
  • (q) R ′ 2 O by deliberately containing (q) R ′ 2 O exceeding 0.10% by mass to 2.0% by mass or less to obtain a glass containing a trace amount of alkali, degradation of TFT characteristics and thermal expansion of the glass are within a certain range. It is possible to increase the basicity of the glass while facilitating the oxidation, to facilitate the oxidation of the metal whose valence fluctuates, and to improve the clarity. Furthermore, since the specific resistance of the glass can be reduced, it is suitable for performing electric melting in the melting tank 101.
  • the present invention is suitable for a glass plate for a P-Si • TFT mounted display.
  • the present invention is suitable for manufacturing a glass plate for an oxide semiconductor-mounted display.
  • a glass plate having a strain point of 675 ° C. or higher suitable for P-Si (low-temperature polysilicon) / TFT or oxide semiconductor is suitable for the present invention, and a glass plate having a strain point of 680 ° C. or higher is more preferred.
  • a glass plate having a strain point of 690 ° C. or higher is particularly suitable.
  • composition of a glass plate having a strain point of 675 ° C. or higher examples include those in which the glass plate is represented by mass% and contains the following components. SiO 2 52 to 78 mass%, Al 2 O 3 3 to 25 mass%, B 2 O 3 3 to 15 mass%, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3 to 20 mass%
  • the mass ratio (SiO 2 + Al 2 O 3 ) / RO is preferably 7.5 or more.
  • the ⁇ -OH value in order to raise the strain point, it is preferable to set the ⁇ -OH value to 0.1 to 0.3 [mm-1].
  • R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0 so that current does not flow through the melting tank 101 instead of glass during melting. It is preferable to reduce the specific resistance of the glass as .8% by mass.
  • Fe 2 O 3 is preferably 0.01 to 1% by mass in order to reduce the specific resistance of the glass.
  • CaO / RO is preferably 0.65 or more in order to prevent the devitrification temperature from increasing while realizing a high strain point. By setting the devitrification temperature to 1250 ° C. or less, the overflow downdraw method can be applied.
  • the total content of SrO and BaO is preferably 0 to less than 2% by mass from the viewpoint of weight reduction.
  • said glass substrate for flat panel displays does not contain arsenic substantially, and it is preferable not to contain arsenic and antimony substantially. That is, even if these substances are included, they are as impurities. Specifically, these substances include 0.1% by mass including oxides of As 2 O 3 and Sb 2 O 3. The following is preferable.
  • the glasses of the present invention may contain various other oxides to adjust the various physical, melting, fining, and forming characteristics of the glass.
  • examples of such other oxides include, but are not limited to, SnO 2 , TiO 2 , MnO, ZnO, Nb 2 O 5 , MoO 3 , Ta 2 O 5 , WO 3 , Y 2 O 3 , and it includes La 2 O 3.
  • the glass substrate for flat panel displays such as a liquid crystal display and an organic EL display, has a particularly severe requirement for bubbles, it is preferable to contain at least SnO 2 having a high clarification effect among the oxides.
  • Nitrate and carbonate can be used as the RO supply source in (p) in the above (a) to (r).
  • nitrate as a supply source of RO at a ratio suitable for the process.
  • the glass plate manufactured in the present embodiment is manufactured continuously unlike a system in which a certain amount of glass raw material is supplied to a melting furnace and batch processing is performed.
  • the glass plate applied in the production method of the present invention may be a glass plate having any thickness and width.
  • the glass plate manufacturing method according to an embodiment of the present invention includes a series of steps shown in the flowchart of FIG. 1 and uses the glass plate manufacturing line 100 shown in FIG.
  • the glass raw material prepared to have the above composition is first melted in the melting step (step S101).
  • the raw material is put into the melting tank 101 and heated to a predetermined temperature.
  • the predetermined temperature is preferably 1550 ° C. or higher.
  • the heated raw material melts to form molten glass.
  • the molten glass is fed into the clarification tank 102 where the next clarification step (step S102) is performed through the first transfer pipe 105a.
  • the molten glass is clarified. Specifically, when the molten glass is heated to a predetermined temperature in the clarification tank 102, the gas component contained in the molten glass forms bubbles or vaporizes and escapes out of the molten glass.
  • the predetermined temperature is preferably 1610 ° C. to 1700 ° C.
  • the clarified molten glass is sent through the second transfer pipe 105b to the agitation tank 103 where the next step, the homogenization step (step S103), is performed.
  • the molten glass is homogenized. Specifically, the molten glass is homogenized in the stirring tank 103 by being stirred by a stirring blade (not shown) provided in the stirring tank 103.
  • the molten glass fed into the stirring vessel 103 is heated so as to be in a predetermined temperature range.
  • the predetermined temperature range is preferably 1440 ° C. to 1500 ° C.
  • the homogenized molten glass is sent from the stirring tank 103 to the third transfer pipe 105c.
  • the molten glass is heated to a temperature suitable for molding in the third transfer pipe 105c, and sent to the molding apparatus 104 where the next molding process (step S105) is performed.
  • the temperature suitable for molding is preferably about 1200 ° C.
  • the temperature is preferably about 1300 to 1200 ° C. in the most downstream region of the third transfer pipe 105c.
  • the molten glass is formed into a plate-like glass.
  • the molten glass is continuously formed into a ribbon shape by the overflow downdraw method.
  • the formed ribbon-shaped glass is cut into a glass plate.
  • the overflow downdraw method is a method known per se. For example, as described in U.S. Pat. No. 3,338,696, the molten glass poured into the molded body and overflowed, It is a method of forming a ribbon-like glass by drawing down the outer surface and flowing down and joining the bottom of the molded body downward.
  • composition SiO 2: 61 wt%, B 2 O 3: 12 wt%, Al 2 O 3: 18 wt%, CaO: 5.8 wt%, SrO: 3 mass%, Fe 2 O 3: 0
  • the raw materials were mixed so that a glass of 1% by mass and SnO 2 : 0.1% by mass was produced.
  • the raw material was put into the melting tank 101, and the glass plate was manufactured by performing the series of steps of the glass plate manufacturing method according to the present invention described above using the glass plate manufacturing line 100. That is, the glass raw material is heated and melted to about 1580 ° C.
  • the molten glass is sent to the clarification tank 102 through the first transfer pipe 105a made of an alloy of platinum and rhodium,
  • the molten glass was heated to about 1700 ° C. in the clarification tank 102.
  • the tube main body 102a is made of an alloy of platinum and rhodium, has a total length of 4000 mm, a diameter of about 350 mm, and a thickness of 1 mm.
  • the second power supply device Between the first power supply device 201a and the second power supply device 201b, the second power supply device The above-mentioned thick portion 102b having a thickness of 1.2 mm was provided over the entire circumference of a total length of 150 mm from a position of about 300 mm to a position of about 450 mm from 201b.
  • the clarified molten glass was stirred in the stirring tank 103 and then supplied to the forming device 104 via the third transfer pipe 105c, and the glass was formed into a plate shape using the overflow down draw method.
  • the clarification tank is damaged in one and a half years, whereas the clarification according to the present embodiment having the thick part 102b.
  • the clarification tank 102 was not damaged even if 2 years or more passed.
  • a method for producing a glass plate according to the present invention is a method for producing a glass plate comprising a step of flowing molten glass through a tubular refractory metal device made of a refractory metal and extending in the longitudinal direction.
  • the apparatus is thicker than the other parts in at least a part of the part that is in contact with the molten glass at a temperature lower than the melting point of the refractory metal such as platinum or platinum alloy constituting the refractory metal apparatus and 150 ° C. lower than the melting point. It has the thick part 102b which is.
  • part except for the clarification tank 102 whole area
  • the temperature rise of the said thick part 102b can be suppressed.
  • the strength increases by the thickness, and even if the refractory metal is oxidized or volatilized, it becomes difficult to make a hole, and the durability of the refractory metal device is increased. Therefore, according to the manufacturing method of the glass plate which concerns on this invention, the lifetime improvement of the clarification tank 102 which is a refractory metal apparatus like the said embodiment can be achieved effectively, for example.
  • the material of the portion including at least a region where the temperature of the molten glass is highest in the clarification tank 102.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 白金又は白金合金からなり、槽内に脱泡による気体を収容する空間を有する清澄槽102において清澄を行う清澄工程を含むガラス板の製造方法。清澄工程は、清澄槽102を通電加熱することにより溶融ガラスを加熱する。清澄槽102は、清澄槽102内で溶融ガラスの温度が最も高くなる領域を少なくとも含む部位が、他の部位よりも肉厚であることを特徴とする。

Description

ガラス板製造方法
 本発明は、ガラス板の製造方法に関する。
 ガラスの製造には、高温である溶融ガラスを扱うため、白金又は白金合金等、耐火性金属からなる装置が多く用いられる。特に、液晶ディスプレイ(LCD)用のガラス基板や有機ELディスプレイ用ガラス基板においては、アルカリ分が極めて少なくガラス原料の溶解、溶融温度が他のガラス製品と比べて高いことから、溶融ガラスの移送管、槽は殆どが白金または白金合金からなる製造装置となっている。また、上記したLCD用ガラス基板や有機ELディスプレイ用ガラス基板は泡を含まない製品が求められているため、「清澄工程」と呼ばれる工程において溶融ガラス温度を1500℃以上とし溶融ガラス中の泡を除去している。このため、LCDガラス基板用のガラス板の製造装置では、耐火性金属の中でも高温下での耐久性に最も優れている、白金または白金合金からなる製造装置が多用されている。しかし、耐火金属といえどもガラスが溶ける程度の高温下では、酸化される。このとき白金又は白金合金の製造装置は酸化の際に揮発し、製造装置を構成する部材が薄くなる酸化孔食が発生してしまう。特に、LCDガラス基板用や有機ELディスプレイ用ガラス基板のガラス板の製造においては、上記した清澄工程において白金又は白金合金が高温にさらされる特定の部位があり、上記した白金の酸化孔食が著しく発生してしまう。上記したLCDガラス基板や有機ELディスプレイ用ガラス基板の清澄工程は、ガラス原料に清澄剤を添加することにより行われている。清澄剤は溶融ガラスが低温から高温に達する際に、清澄剤を構成する金属の価数変動を伴うMxy→Mx1y1+zO2(Mは金属元素、x,x1,y,y1,zは実数)という反応が生じ、この際に発生する酸素によって、溶解時の巻き込み気泡を拡大して、浮上脱泡が行われる。ガラスの清澄剤としては、酸化ヒ素や酸化アンチモン等が従前より使用されてきたが、環境への影響が懸念されることから、近年では環境への影響が殆ど無い酸化スズが使用されるようになっている。しかしながら、酸化スズは酸化ヒ素や酸化アンチモンやよりも価数変動を伴う反応を生じさせる温度が高く、清澄工程を行う製造装置では、溶融ガラスおよび製造装置の温度は約1650℃又はそれ以上になる。このため、耐火金属製の装置の寿命はせいぜい数年となる。特に白金又は白金合金のように高価な貴金属からなる装置を数年おきに調達しなければならないとなると費用がかさむ。
 そこで、例えば、特許文献1(特表2010-502550号公報)に記載されているように、表面にコーティングを施すことによりガラス製造システムの耐火金属からなる槽の酸化孔食を最少化する技術が提案されている。
 しかし、上記の方法を用いても耐火金属製装置の酸化孔食を十分に抑えられない場合があり、耐火金属製装置の長寿命化を効果的に図ることが可能な方法が依然として要請されている。
 本発明は、上記課題に鑑みなされたものであり、耐火金属製装置の長寿命化を効果的に図ることが可能なガラス板の製造方法を提供するものである。
 本発明の発明者は、耐火金属製装置の長寿命化を図る方法について鋭意研究を行った結果、
(i)耐火金属製装置のうち特に他の領域と比べて高温となる特定部位において他の部位よりも耐火金属の酸化又は揮発が激しく、1~2年で当該部位に穴があくこと、
(ii)当該特定部位は、例えば装置が溶融ガラス清澄用の管状の耐火金属製装置(清澄槽)の場合、高温の溶融ガラスと接するところのみならず、当該ガラスと管の内壁の間の雰囲気と接する部位、つまり当該管の長手方向の一部の頂部に位置することがあること、
を見出した。
 本発明は、このような観点からなされたものであり、本発明に係るガラス板の製造方法は、白金又は白金合金からなり、槽内に脱泡による気体を収容する空間を有する清澄槽において清澄を行う清澄工程を含むガラス板の製造方法である。清澄工程は、清澄槽を通電加熱することにより溶融ガラスを加熱する。清澄槽は、清澄槽内で溶融ガラスが最も温度が高くなる領域を少なくとも含む部位において、当該清澄槽の他の部位よりも肉厚である肉厚部を有することが好ましい。
 ここでは、清澄槽は、清澄槽内で溶融ガラスが最も温度が高くなる領域を少なくとも含む部位において、当該清澄槽の他の部位よりも肉厚である肉厚部を有する。これにより、耐火金属製装置の長寿命化を効果的に図ることが可能である。
 また、本発明に係るガラス板の製造方法は、清澄槽は、溶融ガラスの流れ方向に沿って設けられた複数の給電装置間に電流を流すことで加熱され、清澄槽内で溶融ガラスが最も温度が高くなる領域は、清澄槽における溶融ガラスの流れ方向の中心よりも上流側の領域であることが好ましい。
 また、本発明に係るガラス板の製造方法は、長手方向に延長する管状の白金又は白金合金製装置に溶融ガラスを流す工程を含むガラス板の製造方法である。白金又は白金合金製装置を通電加熱することにより溶融ガラスを加熱する。白金又は白金合金製装置は、白金又は白金合金の融点未満、かつ、融点よりも150℃低い温度以上の溶融ガラスに接する部位の少なくとも一部において他の部分よりも肉厚である肉厚部を有することを特徴とする。
 ここでは、白金又は白金合金製装置は、白金又は白金合金の融点未満、かつ、融点よりも150℃低い温度以上の溶融ガラスに接する部位の少なくとも一部において他の部分よりも肉厚である肉厚部を有する。したがって、耐火金属製装置の長寿命化を効果的に図ることが可能である。
 また、本発明に係るガラス板の製造方法は、清澄槽は、全周にわたって肉厚部を有することが好ましい。
 また、本発明に係るガラス板の製造方法は、ガラス板は、清澄剤として少なくとも酸化スズを含有することが好ましい。
 また、本発明に係るガラス板の製造方法は、ガラス板は、R’2O:0.10質量%を超え2.0質量%以下(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)を含むことが好ましい。
 また、本発明に係るガラス板の製造方法は、ガラス板は、R’2O(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)を実質的に含有しない無アルカリガラスであることが好ましい。
 また、本発明に係るガラス板の製造方法は、ガラス板は、logη=2.5における温度が1500~1750℃であることが好ましい。
 また、本発明に係るガラス板の製造方法は、ガラス板は、下記の組成を含有することが好ましい。
(a)SiO2:50~70質量%、
(b)B23:5~18質量%、
(c)Al23:10~25質量%、
(d)MgO:0~10質量%、
(e)CaO:0~20質量%、
(f)SrO:0~20質量%、
(o)BaO:0~10質量%、
(p)RO:5~20質量%(但し、Rは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種である)
 本発明に係るガラス板の製造方法によれば、耐火金属製装置の長寿命化を効果的に図ることが可能である。
本発明の実施形態に係るガラス板製造工程のフローチャート 本発明の実施形態に係るガラス板製造ライン 本発明の実施形態に係る清澄槽
 以下、本発明の一実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
 (1)管状の耐火金属製装置(清澄槽)
 本発明の一実施形態に係る耐火金属からなる長手方向に延長する管状の耐火金属製装置は、ガラス板の製造に用いる耐火金属製の清澄槽102(清澄管)と呼ばれる装置である。清澄槽102は、少なくともその一部において溶融ガラスが加熱され、清澄される装置である。
 清澄槽102は、図3に示すとおり、管本体102aと、管本体102aの両端と略中間に設けられた少なくとも3つの給電装置201とを備えている。
 管本体102aは、円筒状の形状を有している。管本体102aの最大内径は、例えば300~400mmである。この管本体102aは、耐火金属からなるが、白金又は白金合金からなることが好ましい。管本体102aは、第1給電装置201a、第2給電装置201b、及び、第3給電装置201cにより通電されることによって発熱し、そのジュール熱で溶融ガラスを加熱する。第1給電装置201a、第2給電装置201b、及び、第3給電装置201cは、フランジとフランジから引き出された電極とからなり、電流は、第1給電装置201aと第2給電装置201bとの間及び第2給電装置201bと第3給電装置201cとの間を流れる。このように白金又は白金合金からなる管本体102aに通電加熱することで、清澄剤として酸化スズを含有するガラス板の製造においても、管本体102a内の溶融ガラス温度を、酸化スズが価数変動を伴う反応を生じさせる温度以上になるように容易に制御することが可能となる。
 ここで、第1給電装置201aと第2給電装置201bとの間の領域において溶融ガラスの温度が最も高くなることが好ましい。あるいは、第1給電装置201aと第2給電装置201bとの間の領域において管本体102aの温度が最も高くなることが好ましい。管本体102aの第1給電装置201aと第2給電装置201bとの間の領域において溶融ガラスの温度を最も高くすると、第2給電装置201bと第3給電装置201cとの間の領域において溶融ガラスの温度を最も高くした場合と比較して、清澄(脱泡)に適した温度及び粘度となった溶融ガラスの状態で清澄を行うことができる時間を長くすることができる。つまり、管本体102aの第1給電装置201aと第2給電装置201bとの間の領域において溶融ガラスの温度を最も高くすると、管本体102aの溶融ガラスの流れ方向の長さを長くしすぎることなく、効果的に清澄(脱泡)を行うことができる。管本体102aの第1給電装置201aと第2給電装置201bとの間の領域において溶融ガラスの温度を最も高くするためには、第3給電装置201cよりも第1給電装置201aに電流を多く流すことで実現できる。また、管本体102aにおいて管本体102aの温度が最も高くなる領域あるいは溶融ガラス温度が最も高くなる領域は、管本体102aにおける溶融ガラスの流れ方向の真ん中よりも上流側の領域であることが好ましい。つまり、図3に示すように、下記肉厚部102bは、管本体102aにおける溶融ガラスの流れ方向Fの中心Xよりも上流側の領域に設けられることが好ましい。
 管本体102aは、管本体102a内で溶融ガラスの温度が最も高くなる領域を少なくとも含む部位(管本体102a全域は除く)が、他の部位よりも電気抵抗が小さいことが好ましい。あるいは、管本体102aは、管本体102aの温度が最も高くなる領域を少なくとも含む部位(管本体102a全域は除く)が、他の部位よりも電気抵抗が小さいことが好ましい。例えば、管本体102aは、他の部分よりも肉厚である肉厚部102bを有することが好ましい。管本体102aは、管本体102aが所定の温度範囲の溶融ガラスと接する部位の少なくとも一部において肉厚部102bを有することが好ましい。より詳細には、管本体102aは、管本体102a内で溶融ガラスの温度が最も高くなる領域を少なくとも含む部位(管本体102a全域は除く)が、他の部位よりも肉厚である肉厚部102bを有することが好ましい。あるいは、管本体102aは、管本体102aの温度が最も高くなる領域を少なくとも含む部位(管本体102a全域は除く)が、他の部位よりも肉厚である肉厚部102bを有することが好ましい。管本体102aの当該所定の温度範囲の溶融ガラスと接する部位、管本体102a内で溶融ガラスの温度が最も高くなる領域を少なくとも含む部位(管本体102a全域は除く)、又は管本体102aの温度が最も高くなる領域を少なくとも含む部位(管本体102a全域は除く)は、肉厚部102bの管本体102aにおける長手方向の位置を画するものである。なお、本実施形態における当該所定の温度範囲は、管本体102aを構成する耐火金属の融点未満であり、かつ、当該融点より150℃低い温度以上であることが好ましい。また、さらには、当該所定の温度範囲は、当該融点未満であり、かつ、当該融点より100℃低い温度以上であることがより好ましい。また、さらに好ましくは、当該所定の温度範囲は、当該耐火金属の融点未満であり、かつ、融点より80℃低い温度以上であることがよい。例えば、管本体102aが白金からなる場合、溶融ガラスの温度が白金の融点約1770℃未満、かつ、1620℃以上、より好ましくは、1670℃以上、さらにより好ましくは、1690℃以上となる領域に接する管本体102aの部位の一部において肉厚部102bを有することがよい。肉厚部102bの全長は、100mm以上、より好ましくは、150mm、さらにより好ましくは、200mm以上であることが好ましい。あるいは、肉厚部102bの全長は、清澄槽102の全長未満であり、清澄槽102の全長の1/25~1/2であることが好ましく、清澄槽102の全長の1/10~1/4以下であることがより好ましい。なお、全長とは、溶融ガラスが流れる流れ方向の全長を示す。また、本実施形態でいう清澄槽102の全長とは、溶融ガラス中から溶融ガラス外に気泡を脱泡させるための、溶融ガラスと雰囲気が接する空間を有する白金又は白金合金製装置の全長を示す。
 肉厚部102bの全長が長くなると、白金の使用量が増加し、コストが高くなる。他方、肉厚部102bの全長が短すぎると、溶融ガラスの温度が最も高くなる領域又は管本体102aの温度が最も高くなり、最も白金又は白金合金の酸化や揮発が進行しやすい部位において、白金又は白金合金の酸化や揮発を十分に抑制することができず、清澄槽102の長寿命化を図ることが困難となる。例えば、清澄槽102を構成する白金又は白金合金の厚さを全長にわたって厚くすることができれば、確かに長寿命化を図ることは可能となる。しかし、白金又は白金合金は極めて高価な素材であり、清澄槽102を構成する白金又は白金合金の厚さを全長にわたって十分に厚くすることは、コストの面から現実的ではない。そこで、本実施形態では、清澄槽102のうち白金又は白金合金の酸化や揮発が他の部位よりも激しい部位の厚さを、他の部位よりも肉厚とすることで、コストの高騰を抑えつつ、清澄槽102の長寿命化を図っている。
 肉厚部102bは、管本体102aの全周の一部にわたって設けられていてもよいが、半周以上にわたって設けられていることが好ましく、さらには、全周にわたって設けられていることがより好ましい。但し、管本体102aの全周の一部にわたって肉厚部102bを設ける場合は、肉厚部102bは、管本体102bの頂部を覆うように設けられることが好ましい。肉厚部102bの厚みは、耐火金属製装置の材料、肉厚部102bの断面積、溶融ガラスの温度などを考慮して調整することが好ましく、例えば、他の部分における厚みより10%以上肉厚であることが好ましく、さらには、20%以上、さらには、50%以上、さらには、100%以上肉厚であることがより好ましい。肉厚部102b以外の厚みが1mmである管本体102aが肉厚部102bを有する場合、肉厚部102bの厚みは、1.1mm以上であることが好ましく、さらには、1.2mm以上、さらには、1.5mm以上、さらには、2mm以上であることがより好ましい。
 なお、管本体102aは、肉厚部102bと肉厚部102b以外の部位が一体成形された管でもよいし、肉厚部102bとなる部材と接合された管でもよい。また、管本体102aは、複数の管を継ぎ合わせたものでもよい。例えば、管本体102aは、厚さの異なる管を継ぎ合わせ、肉厚な管を肉厚部102bとしたものでもよい。
 清澄槽102においては、ガラス板の品質及び特性を保つために管本体102aの中の溶融ガラスを所定の温度まで加熱する必要がある。例えば、ガラス板の泡数を低減するために、清澄槽102において、溶融ガラスを清澄に適した温度まで上昇させる必要がある。ここで、溶融ガラスの清澄に適した温度とは、使用する清澄剤とガラスの組成・特性によって変動する。本実施形態のガラス板は、清澄剤として酸化スズを含有していることが好ましい。酸化スズが清澄剤として機能する、つまり酸素を効果的に放出しはじめる温度は1600℃以上であり、温度が上昇するにつれて激しく酸素を放出する。つまり、清澄剤として酸化スズを含有する場合には、清澄に適した温度は1620℃以上であり、より好ましくは1650℃以上である。
 他方、本実施形態に示すガラス板は、R’2O(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)を実質的に含まない無アルカリガラス板又はR’2Oを0.10質量%を超え2.0質量%以下しか含まないアルカリ微量含有ガラス板である。このように無アルカリガラス又はアルカリ微量含有ガラスは、アルカリを2.0質量%を超えて含むアルカリガラスと比較して、高温における粘度(高温粘性)が高い。例えば、無アルカリガラス又はアルカリ微量含有ガラスがlogη=2.5となる場合の温度は、1500℃~1750℃である。
 ここで、溶融ガラス中の気泡が浮上する速度は溶融ガラスの粘度の影響を受けるものであり、溶融ガラスの粘度が低いほど気泡の浮上速度は上昇する。効率的に清澄を行うためには、溶融ガラスの粘度は、例えば、200~800poiseであることが好ましい。そのため、無アルカリガラス又はアルカリ微量含有ガラスの清澄を行うためには、溶融ガラスの粘度を低くするために、アルカリガラスと比較して溶融ガラスの温度をさらに上昇させる必要がある。より詳細には、無アルカリガラス板又はアルカリ微量含有ガラス板の製造では、清澄槽102における熔融ガラスの温度を、例えば1650℃以上にする必要がある。なお、上記でいう清澄とは、溶融ガラス中の気泡を溶融ガラス外に排出し、脱泡することを示す。
 上述したような場合に部分的に管本体102aの温度が管本体102aを構成する耐火金属、例えば白金、が酸化又は揮発しやすい温度以上になる部位が生じる。清澄槽102では、溶融ガラス中からガス成分を放出させるために溶融ガラスの液面と清澄槽102の管本体102aの内壁との間には、空間があいていることが好ましい。つまり、清澄槽102は、管本体102a内に脱泡による気体を収容する空間を有する。当該空間は、気泡が溶融ガラスから抜け出るのに十分なものであることが好ましく、当該空間となっている液面と内壁との間の距離(液面と当該液面に対向する内壁面との間の距離)は、管本体102aの内径の50%未満かつ1%以上であることが好ましく、さらには、管本体102aの内径の15%未満かつ5%以上であることが好ましい。ところで、当該空間内の雰囲気に接する管本体102aの部位は、通電による発熱が輻射電熱でガラスに伝わるのみなので、溶融ガラスに接する部位よりも高温になる。耐火金属からなる管本体102aを流れる溶融ガラスの温度が例えば1700℃になる部位の管本体102aの頂部は、中の雰囲気にのみ接するので、1700℃よりも高温になる。耐火金属からなる管本体102aであっても、管本体の温度が所定の温度以上の高温になると酸化又は揮発し、やがて穴があく。また、上記空間に接する管本体102aの部位は、管本体102aであって上記空間に接しない他の部位及び管内で雰囲気と接しない他の配管よりも白金又は白金合金の酸化が促進されやすい。したがって、耐火金属の酸化や揮発を抑えるには、所定の温度範囲となる管本体102aの部位の少なくとも一部において、管本体102aを他の部分よりも肉厚にして強化すればよい。こうすれば、肉厚な部分は、酸化や揮発により薄くなっても穴があくまで時間を要し、耐久性が増す。このほか、当該部分の電気抵抗の低下や熱容量の増加等、複数の原因により、当該部分の温度上昇の抑制も見込める。例えば、肉厚部102bは、清澄槽102全長における他の部位よりも電気抵抗が小さいため、他の部位と比較して発熱量を低減することができる。これにより、肉厚部102bの酸化や揮発自体を抑制することができ、長寿命化を図ることができる。
 一方、管本体102aを通電すると、電流は、電気抵抗の小さい部位により多く流れる。電気抵抗は、電流が流れる断面積が大きいほど小さくなるからである。抵抗値Rの抵抗に電流を流した場合の発熱量Qは、I2*Rという式で表されるから、電気抵抗が下がっても、より多くの電流が流れれば、発熱量はより大きくなる恐れがある。したがって、耐火金属が酸化及び揮発しやすい管本体102aの頂部のみにおいて肉厚部102bを設けると、肉厚部102bに電流が集中することにより肉厚部102bが設けられた頂部周辺がかえって高温となることがあり得る。よって、上述した厚みの範囲では、肉厚部102bを半周以上、さらに好ましくは、全周にわたって設けると、肉厚部102bに電流が集中することによって肉厚部102bを設けない場合よりも当該部分の発熱量が増加するのを避けることができる。
 例えば、肉厚部102bの厚み及び管本体102aの全周を占める範囲と、電流、抵抗、および、発熱量との関係を計算すると、以下のようになる。白金からなり、厚さが肉厚部102bを除いて一様に1mmである管本体102aが、厚さ2mmの肉厚部102bを、管本体102aの第1給電装置201aと第2給電装置201bとが取り付けられている位置の間であって、管本体102aの温度が特に高温になる全長Lmmの部位(以下、高温部位とする)において、全周にわたって有していると仮定する。また、管本体102aが肉厚部102bを有さないと仮定した場合の、高温部位と同じ位置にあたる部位の抵抗をRΩとする。管本体102aの高温部位の全周にわたって流れる電流をIアンペアとする。この場合に、管本体102aを通電したときの肉厚部102bの抵抗R1は、抵抗R=ρ(比抵抗)*L(長さ)/A(断面積)であるところ、肉厚部102bの断面積は、肉厚部102bを有しない場合の管本体102aの断面積Aの2倍であるから、R/2となる。肉厚部102bの発熱量Q1は、Q1[J・s]=(I)2*R/2となる。肉厚部102bが無い場合の高温部位の発熱量Q2は、Q2[J・s]=(I)2*Rとなる。したがって、高温部位の全周にわたって管本体102aにIアンペアの電流を流す場合、Q1/Q2=1/2となり、肉厚部102bがあるほうが、肉厚部102bがないよりも、通電時の発熱量が半分になる。次に、肉厚部102bの厚みが他の部分より20%厚い1.2mmであるとし、また肉厚部102bは、全長Lmmの高温部位の半周にわたって設けられているとすると、肉厚部102bである半周とその他の半周とが並列に繋がれた回路を電流が流れるとみることができる。この場合に、管本体102aの高温部位の全周にわたって流れる電流をIアンペア、肉厚部102bを流れる電流は、I1、その他の半周部分を流れる電流は、I2とすると、I=I1+I2となる。肉厚部102bの抵抗R1=2R/1.2、その他の半周部分の抵抗R2=2Rであるから、I=1.2E/2R+E/2R(Eは、電圧)、E=2RI/2.2となり、I1=E/R1=1.2I/2.2となる。肉厚部102bの発熱量Q1は、Q1[J・s]=(1.2I/2.2)2*2R/1.2となる。肉厚部102bが無い場合の高温部位における半周の発熱量Q2=(I/2)2*2Rであるから、Q1/Q2=約0.992となり、肉厚部102bがあるほうが、肉厚部102bがないよりも、通電時の発熱量は小さくなる。
 なお、白金又は白金合金からなる管状の耐火金属製装置、例えば清澄槽102の外面上に、溶射によって耐火性酸化物を含む材料を十分な量だけ施してもよい。白金又は白金合金に対して溶射と肉厚部を設ける構成とを併用することで、さらに白金又は白金合金の揮発を抑制することが可能となり、耐火金属製装置、例えば清澄槽102の寿命を長くすることができる。なお、溶射の方法は特に限定されず、プラズマ溶射やフレーム溶射を用いることができる。ただし、コーティング密度を改善し、白金又は白金合金と耐火性酸化物との結合性を高められる観点からは、プラズマ溶射が好ましい。また、耐火性酸化物を含む材料としては、MgO、TiO2、Zr2Oを含む材料が好適である。特に、耐火性酸化物を含む材料は、ジルコニア、より好ましくは完全安定ジルコニアを含有していることが好ましく、Ca化合物、Mg、及び/又はY化合物にて安定化されていることが好ましい。上述したような完全安定ジルコニアを含有した耐火性酸化物を含む材料を用いて溶射を行うことにより、清澄槽102で用いられる白金又は白金合金と近い熱膨張係数とすることができ、溶射された耐火性酸化物を含む材料が白金又は白金合金から剥離してしまうことを抑制できる。
 清澄槽102の耐火金属からなる管本体102aが、耐火金属の融点未満、かつ、融点よりも150℃低い温度以上の溶融ガラスに接する部位の少なくとも一部、例えば、清澄槽内で溶融ガラスが最も温度が高くなる領域を少なくとも含む部位において他の部分よりも肉厚である肉厚部102bを有する管本体102aの温度上昇に対する効果をシュミレーション計算した。管本体102aは、白金とロジウムとの合金(融点約1840℃)からなり、全長4000mm、直径約350mm、厚さ1mmであり、第1給電装置201aと第2給電装置201bとの間に、第2給電装置201bから約300mmの位置から約450mmの位置までの全長150mmの全周にわたって厚さ1.2mmの上述の肉厚部102bを有すると仮定した。当該肉厚部が設けられた位置の頂部は、肉厚部102bを有さない管本体からなる従来の清澄槽を用いてガラス板を製造した際に、白金とロジウムとの合金製の管本体の温度が著しく高温に達し、白金の酸化又は揮発が著しい領域である。第1給電装置201a、第2給電装置201b、及び、第3給電装置201cにより清澄層102を通電させて発熱させ、第1給電装置201aと第2給電装置201bとの間で、約6000Aの電流を流して清澄槽102内の溶融ガラスを加熱し、肉厚部102bが設けられている位置で溶融ガラスの温度が約1700℃以上に達したと仮定した。そして、このときの清澄槽102の管本体102aの肉厚部102bの頂部の温度がいくらになるかをシュミレーションした。結果は、管本体102aの肉厚部102bの頂部の温度は、肉厚部102aがない場合に約1820℃に達するのに対し、それよりも約10℃下がり、約1810℃であった。このシュミレーション結果からも、本発明を用いると耐火金属製の清澄槽102等のガラス製造装置の長寿命化を効果的に図れることが分かる。ここで、白金又は白金合金の酸化又は揮発は、高温になるに従って急激に進行する。そのため、1800℃以上における10℃は、白金又は白金合金の酸化や揮発防止という観点では、大きな差となる。
 なお、上記結果を得たシュミレーション方法については、当業者であれば下記に挙げた市販のソフトウェアを用いて行なうことが可能なので、ここで詳述することはしないが、簡単に述べておくと、清澄槽102の白金合金からなる管本体102aの温度分布をシュミレーションするのに、数学的モデリングを用いた。具体的には、管本体102aの特性としては、例えば、管本体102aを構成する白金合金の電気抵抗率および熱伝導率、溶融ガラスの電気および熱に関する特性(密度、熱伝導率、比熱、粘度、流量)、管本体102aの幾何形状が挙げられる。また、数学的モデリングでは、管本体102aを構成する白金合金の特性を用いて、電場、温度場、流れ場の方程式を連成した場を、有限要素法もしくは有限体積法もしくは有限差分法などの手法により離散化し、数値解析的に管本体102aの温度分布を得ることができる。これらは、カスタマイズされたソフトウェアあるいは、市販のソフトウェアパッケージを数学モデリングのツールとして使用できる。市販のソフトウェアパッケージとしては、例えば3-D CADとして、AUTOCAD、SOLIDWORKSが挙げられ、メッシングにはGAMBIT、FEMAP、KSWAD、ICEMCFDが挙げられ、ジュール発熱熱伝導、ガラスの流れの計算には、FIDAP、FLUENTなどが挙げられ、計算結果のポストツールとしては、CFD-POST、ENSIGHTなどが挙げられる。
 (2)ガラス板の製造方法の概要
 (2-1)ガラスの原料
 本発明に係るガラス板の製造方法は、あらゆるガラス板の製造に適用可能であるが、特に液晶表示装置や有機ELディスプレイ、プラズマディスプレイ装置などのフラットパネルディスプレイ用のガラス基板、あるいは、表示部を覆うカバーガラスの製造に好適である。
 本発明に従ってガラス板を製造するには、まず所望のガラス組成となるようにガラス原料を調合する。例えば、フラットパネルディスプレイ用のガラス基板を製造する場合は、以下の組成を有するように原料を調合するのが好適である。
(a)SiO2:50~70質量%、
(b)B23:5~18質量%、
(c)Al23:10~25質量%、
(d)MgO:0~10質量%、
(e)CaO:0~20質量%、
(f)SrO:0~20質量%、
(o)BaO:0~10質量%、
(p)RO:5~20質量%(但し、Rは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種である)、
(q)R’2O:0.10質量%を超え2.0質量%以下(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)、
(r)酸化スズ、酸化鉄、および、酸化セリウムなどから選ばれる少なくとも1種の金属酸化物を合計で0.05~1.5質量%。
 なお、(q)R’2Oは必須ではないため、含有させなくてもよい。この場合、R’2Oを実質的に含まない無アルカリガラスとなり、ガラス板からR’2Oが流出してTFTを破壊するおそれを低減することができる。他方、あえて(q)R’2Oを、0.10質量%を超え2.0質量%以下含有させてアルカリ微量含有ガラスとすることで、TFT特性の劣化やガラスの熱膨張を一定範囲内に抑制しつつ、ガラスの塩基性度を高め、価数変動する金属の酸化を容易にして、清澄性を高めることができる。さらに、ガラスの比抵抗を低下させることができるので、溶解槽101にて電気溶融を行うためには好適となる。
 例えば無アルカリガラスやアルカリ微量含有ガラスのようにlogη=2.5における温度が1500~1750℃となるガラスは、清澄槽102において十分な気泡の浮上速度とするために、例えば、溶融ガラスの温度を例えば1620℃以上と高温にする必要があり、清澄槽102を構成する白金又は白金合金の揮発量が増加する。つまり、logη=2.5における温度が1500~1750℃のガラスは、白金又は白金合金の揮発量が増大しやすいため、本発明に好適であり、logη=2.5における温度が1530℃~1750℃のガラスがより好適であり、logη=2.5における温度が1550℃~1750℃のガラスがさらに好適であり、logη=2.5における温度が1570℃~1750℃のガラスがさらに好適である。
 さらに、近年さらなる高精細化を実現するために、α-Si・TFTではなく、P-Si(低温ポリシリコン)・TFTや酸化物半導体を用いたフラットパネルディスプレイが求められている。ここで、P-Si(低温ポリシリコン)TFTや酸化物半導体の形成工程では、α-Si・TFTの形成工程よりも高温な熱処理工程が存在する。そのため、P-Si(低温ポリシリコン)TFTや酸化物半導体が形成されるガラス板には、熱収縮率が小さいことが求められている。熱収縮率を小さくするためには、ガラスの歪点を高くすることが好ましいが、歪点が高いガラスは、高温時の粘度(高温粘性)が高くなる傾向にある。そのため、清澄槽102において、溶融ガラスを清澄に適した粘性にするためには、より溶融ガラスの温度を上昇させる必要がある。そのため、清澄槽102の温度もさらに上昇させる必要があり、清澄槽102を構成する白金又は白金合金の酸化や揮発量が生じやすくなる。つまり、P-Si・TFT搭載ディスプレイ用ガラス板には、本発明が好適となる。また、酸化物半導体搭載ディスプレイ用ガラス板の製造にも、本発明が好適となる。
 つまり、例えば歪点が655℃以上であり、logη=2となる温度が1600℃以上のガラス板の製造には本発明が好適となる。特に、P-Si(低温ポリシリコン)・TFTや酸化物半導体にも好適な歪点が675℃以上のガラス板が本発明に好適であり、歪点680℃以上のガラス板がさらに好適であり、歪点690℃以上のガラス板が特に好適である。
 歪点が675℃以上のガラス板の組成としては、例えば、ガラス板が質量%表示で、以下の成分を含むものが例示される。
SiO2 52~78質量%、Al2O3 3~25質量%、B2O3 3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~20質量%、質量比(SiO2+Al2O3)/B2O3は7~20の範囲であるガラス板。さらに、歪点をより上昇させるために、質量比(SiO2+Al2O3)/ROは7.5以上であることが好ましい。さらに、歪点を上昇させるために、β-OH値を0.1~0.3[mm-1]とすることが好ましい。他方、溶解時にガラスではなく溶解槽101に電流が流れてしまわないように、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量)  0.01~0.8質量%としてガラスの比抵抗を低下させることが好ましい。あるいは、ガラスの比抵抗を低下させるためにFe2O3 0.01~1質量%とすることが好ましい。さらに、高い歪点を実現しつつ失透温度の上昇を防止するためにCaO/ROは0.65以上とすることが好ましい。失透温度を1250℃以下とすることにより、オーバーフローダウンドロー法の適用が可能となる。また、モバイル機器などに適用されることを考慮すると、軽量化の観点からはSrO及びBaOの合計含有量が0~2質量%未満であることが好ましい。
 なお、上記のフラットパネルディスプレイ用のガラス基板は、ヒ素を実質的に含まないことが好ましく、ヒ素およびアンチモンを実質的に含まないことが好ましい。すなわち、これらの物質を含むとしても、それは不純物としてであり、具体的には、これらの物質は、As23、および、Sb23という酸化物のものも含め、0.1質量%以下であることが好ましい。
 上述した成分に加え、本発明のガラスは、ガラスの様々な物理的、溶融、清澄、および、成形の特性を調節するために、様々な他の酸化物を含有しても差し支えない。そのような他の酸化物の例としては、以下に限られないが、SnO2、TiO2、MnO、ZnO、Nb25、MoO3、Ta25、WO3、Y23、および、La23が挙げられる。ここで、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ用ガラス基板は、泡に対する要求が特に厳しいので、上記酸化物の中では清澄効果が大きいSnO2を少なくとも含有することが好ましい。
 上記(a)~(r)の中の(p)におけるROの供給源には、硝酸塩や炭酸塩を用いることができる。なお、溶融ガラスの酸化性を高めるには、ROの供給源として硝酸塩を工程に適した割合で用いることがより望ましい。
 本実施形態で製造されるガラス板は、一定量のガラス原料を溶解用の炉に供給してバッチ処理を行う方式とは異なり、連続的に製造される。本発明の製造方法で適用されるガラス板は、いかなる厚さおよび幅を有するガラス板でもよい。
 (2-2)ガラス製造工程の概要
 本発明の一実施形態に係るガラス板の製造方法は、図1のフローチャートが示す一連の工程を含み、図2が示すガラス板製造ライン100を用いる。
 上記の組成となるように調合されたガラスの原料は、まず溶解工程(ステップS101)において、溶解される。原料は、溶解槽101に投入され、所定の温度まで加熱される。所定の温度は、例えば上記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、1550℃以上であることが好ましい。加熱された原料は、溶解し、溶融ガラスを形成する。溶融ガラスは、第1移送管105aを通して次の清澄工程(ステップS102)が行われる清澄槽102へ送り込まれる。
 次の清澄工程(ステップS102)では、溶融ガラスが清澄される。具体的には、清澄槽102において溶融ガラスが所定の温度まで加熱されると溶融ガラス中に含まれるガス成分は、気泡を形成し、あるいは、気化して溶融ガラスの外へ抜け出る。所定の温度は、例えば上記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、1610℃~1700℃であることが好ましい。清澄された溶融ガラスは、第2移送管105bを通して次の工程である均質化工程(ステップS103)が行われる攪拌槽103へ送り込まれる。
 次の均質化工程(ステップS103)では、溶融ガラスが均質化される。具体的には、溶融ガラスは、攪拌槽103において、攪拌槽103が備える攪拌翼(図示せず)により撹拌されることにより均質化される。攪拌槽103に送り込まれる溶融ガラスは、所定の温度範囲になるように加熱される。所定の温度範囲は、例えば上記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、1440℃~1500℃であることが好ましい。均質化された溶融ガラスは、攪拌槽103から第3移送管105cへ送り込まれる。
 次の供給工程(ステップS104)では、溶融ガラスは、第3移送管105cにおいて成形するのに適した温度になるように加熱され、次の成形工程(ステップS105)が行われる成形装置104へ送り込まれる。成形に適した温度は、例えば上記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、約1200℃であることが好ましい。特に、成形工程においてオーバーフローダウンドロー法を用いる場合、第3移送管105cの最も下流の領域では約1300~1200℃であることが好ましい。
 次の成形工程(ステップS105)では、溶融ガラスが板状のガラスに成形される。本実施形態では、溶融ガラスは、オーバーフローダウンドロー法により連続的にリボン状に成形される。成形されたリボン状のガラスは、切断され、ガラス板となる。オーバーフローダウンドロー法は、それ自体公知の方法であり、例えば米国特許第3,338,696号明細書に記載されているように、成形体に流し込まれて溢れ出た溶融ガラスが当該成形体の各外表面をつたって流れ落ち、当該成形体の底で合流したところを下方に延伸してリボン状のガラスに成形する方法である。
 (3)具体例
 以下のとおり、実際に本実施形態にかかるガラス板の製造方法を用いると効果的に、例えば、白金又は白金合金からなり長手方向に延長する管状の耐火金属製装置(例えば、清澄槽)の破損を抑制し、長寿命化することができる。
 まず、組成が、SiO2:61質量%、B23:12質量%、Al23:18質量%、CaO:5.8質量%、SrO:3質量%、Fe23:0.1質量%、SnO2:0.1質量%となるガラスが製造されるように原料を混合した。次いで、原料を溶解槽101内に投入し、上述した本発明にかかるガラス板製造方法の一連の工程をガラス板製造ライン100を用いて行なうことによりガラス板を製造した。即ち、溶解槽101にてガラス原料を約1580℃まで加熱して溶解し、溶融ガラスを形成し、当該溶融ガラスを、白金及びロジウムの合金からなる第1移送管105aを通して清澄槽102に送り込み、清澄槽102にて溶融ガラスを約1700℃になるまで加熱した。このとき、管本体102aは、白金とロジウムとの合金からなり、全長4000mm、直径約350mm、厚さ1mmであり、第1給電装置201aと第2給電装置201bとの間に、第2給電装置201bから約300mmの位置から約450mmの位置までの全長150mmの全周にわたって厚さ1.2mmの上述の肉厚部102bを有していた。清澄された溶融ガラスは、攪拌槽103にて攪拌された後、第3移送管105cを介して成形装置104へ供給され、オーバーフローダウンドロー法を用いてガラスを板状に成形された。
 肉厚部102bを有しない清澄槽を用いて上記ガラス板の製造を行う場合には清澄槽が1年半で破損してしまったのに対し、肉厚部102bを有する本実施形態に係る清澄槽102を用いて上記ガラス板の製造を行った場合には、2年以上経過しても清澄槽102は破損していなかった。
 (4)特徴
 本発明に係るガラス板の製造方法は、耐火金属からなる長手方向に延長する管状の耐火金属製装置に溶融ガラスを流す工程を含むガラス板の製造方法であって、耐火金属製装置は、耐火金属製装置を構成する白金又は白金合金等の耐火金属の融点未満、かつ、融点よりも150℃低い温度以上の溶融ガラスに接する部位の少なくとも一部において他の部分よりも肉厚である肉厚部102bを有することを特徴とする。あるいは、清澄槽内で溶融ガラスの温度が最も高くなる領域を少なくとも含む部位(清澄槽102全域は除く)が、他の部位よりも電気抵抗が小さいことを特徴とする。これにより、当該肉厚部102bの温度上昇を抑えることができる。また、肉厚な分だけ強度が増し、耐火金属が酸化又は揮発しても穴があきにくくなり、耐火金属製装置の耐久性が増す。よって、本発明に係るガラス板の製造方法によれば、例えば、上記実施形態のように耐火金属製装置である清澄槽102の長寿命化を効果的に図ることができる。なお、電気抵抗を小さくする方法としては、肉厚部102bを設けることだけでなく、清澄槽102内で溶融ガラスの温度が最も高くなる領域を少なくとも含む部位(清澄槽102全域は除く)の材料を、他の部位よりも電気抵抗が小さい材料とすることも可能である。
100            ガラス板製造ライン
101            溶解槽
102            清澄槽(耐火金属製装置)
102a           管(清澄槽)本体
102b           肉厚部
特表2010-502550号公報

Claims (9)

  1.  白金又は白金合金からなり、槽内に脱泡による気体を収容する空間を有する清澄槽において清澄を行う清澄工程を含むガラス板の製造方法であって、
     前記清澄工程は、前記清澄槽を通電加熱することにより溶融ガラスを加熱し、
     前記清澄槽は、前記清澄槽内で前記溶融ガラスの温度が最も高くなる領域を少なくとも含む部位において、他の部位よりも肉厚である肉厚部を有することを特徴とする、
    ガラス板の製造方法。
  2.  前記清澄槽は、溶融ガラスの流れ方向に沿って設けられた複数の給電装置間に電流を流すことで加熱され、
     前記清澄槽内で前記溶融ガラスの温度が最も高くなる領域は、前記清澄槽における溶融ガラスの流れ方向の中心よりも上流側の領域である、
    請求項1に記載のガラス板の製造方法。
  3.  長手方向に延長する管状の白金又は白金合金製装置に溶融ガラスを流す工程を含むガラス板の製造方法であって、
     前記白金又は白金合金製装置を通電加熱することにより前記溶融ガラスを加熱し、
     前記白金又は白金合金製装置は、前記白金又は白金合金の融点未満、かつ、前記融点よりも150℃低い温度以上の溶融ガラスに接する部位の少なくとも一部において他の部分よりも肉厚である肉厚部を有することを特徴とする、
    ガラス板の製造方法。
  4.  前記清澄槽は、全周にわたって前記肉厚部を有することを特徴とする、
    請求項1~3のいずれかに記載のガラス板の製造方法。
  5.  前記ガラス板は、清澄剤として少なくとも酸化スズを含有する、
    請求項1~4のいずれかに記載のガラス板の製造方法。
  6.  前記ガラス板は、R’2O:0.10質量%を超え2.0質量%以下(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)を含む、
    請求項1~5のいずれかに記載のガラス板の製造方法。
  7.  前記ガラス板は、R’2O(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)を実質的に含有しない無アルカリガラスである、
    請求項1~5のいずれかに記載のガラス板の製造方法。
  8. 前記ガラス板は、logη=2.5における温度が1500~1750℃である、
    請求項1~7のいずれかに記載のガラス板の製造方法。
  9.  前記ガラス板は、下記の組成を含有する、
    請求項1~8のいずれかに記載のガラス板の製造方法。
    (a)SiO2:50~70質量%、
    (b)B23:5~18質量%、
    (c)Al23:10~25質量%、
    (d)MgO:0~10質量%、
    (e)CaO:0~20質量%、
    (f)SrO:0~20質量%、
    (o)BaO:0~10質量%、
    (p)RO:5~20質量%(但し、Rは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種である)
PCT/JP2012/057606 2011-03-31 2012-03-23 ガラス板製造方法 WO2012133230A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2012900001634U CN203333457U (zh) 2011-03-31 2012-03-23 用于制造玻璃板的澄清槽,白金或铂合金制成的装置,玻璃板制造装置
KR1020137022004A KR101522198B1 (ko) 2011-03-31 2012-03-23 유리판 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011081270A JP2014037320A (ja) 2011-03-31 2011-03-31 ガラス板製造方法
JP2011-081270 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133230A1 true WO2012133230A1 (ja) 2012-10-04

Family

ID=46930952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057606 WO2012133230A1 (ja) 2011-03-31 2012-03-23 ガラス板製造方法

Country Status (4)

Country Link
JP (1) JP2014037320A (ja)
KR (1) KR101522198B1 (ja)
CN (1) CN203333457U (ja)
WO (1) WO2012133230A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205811A (ja) * 2015-04-27 2015-11-19 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
JP2016533313A (ja) * 2013-10-18 2016-10-27 コーニング インコーポレイテッド ガラス製造装置および方法
JPWO2014119709A1 (ja) * 2013-02-01 2017-01-26 AvanStrate株式会社 ガラス基板の製造方法、及びガラス基板製造装置
WO2019108995A1 (en) * 2017-12-01 2019-06-06 Corning Incorporated Apparatus and method for producing glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528984B2 (ja) * 2014-12-08 2019-06-12 日本電気硝子株式会社 強化ガラスの製造方法
JP6775338B2 (ja) * 2016-06-30 2020-10-28 AvanStrate株式会社 ガラス板の製造方法
KR20210054015A (ko) * 2018-09-28 2021-05-12 코닝 인코포레이티드 유리 제조 공정에서 귀금속 구성들의 전기화학 공격을 완화시키기 위한 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132043A1 (ja) * 2005-06-06 2006-12-14 Asahi Glass Company, Limited ガラス製造装置およびその構成要素、ならびに該構成要素を通電加熱する方法
JP2007022862A (ja) * 2005-07-19 2007-02-01 Asahi Glass Co Ltd 減圧脱泡装置の減圧脱泡槽を通電加熱する方法、減圧脱泡装置を通電加熱する方法、および減圧脱泡装置
JP2007039324A (ja) * 2005-07-06 2007-02-15 Asahi Glass Co Ltd 無アルカリガラスの製造方法および無アルカリガラス板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105571B2 (ja) * 2003-10-10 2012-12-26 日本電気硝子株式会社 無アルカリガラスの製造方法
KR101243392B1 (ko) * 2005-03-08 2013-03-13 아사히 가라스 가부시키가이샤 강화 백금제 중공관과 백금제 플랜지의 기밀 접합 방법
CN101213148B (zh) * 2005-07-06 2012-04-11 旭硝子株式会社 无碱玻璃的制造方法以及无碱玻璃板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132043A1 (ja) * 2005-06-06 2006-12-14 Asahi Glass Company, Limited ガラス製造装置およびその構成要素、ならびに該構成要素を通電加熱する方法
JP2007039324A (ja) * 2005-07-06 2007-02-15 Asahi Glass Co Ltd 無アルカリガラスの製造方法および無アルカリガラス板
JP2007022862A (ja) * 2005-07-19 2007-02-01 Asahi Glass Co Ltd 減圧脱泡装置の減圧脱泡槽を通電加熱する方法、減圧脱泡装置を通電加熱する方法、および減圧脱泡装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119709A1 (ja) * 2013-02-01 2017-01-26 AvanStrate株式会社 ガラス基板の製造方法、及びガラス基板製造装置
JP2016533313A (ja) * 2013-10-18 2016-10-27 コーニング インコーポレイテッド ガラス製造装置および方法
JP2019163205A (ja) * 2013-10-18 2019-09-26 コーニング インコーポレイテッド ガラス製造装置および方法
JP2015205811A (ja) * 2015-04-27 2015-11-19 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
WO2019108995A1 (en) * 2017-12-01 2019-06-06 Corning Incorporated Apparatus and method for producing glass

Also Published As

Publication number Publication date
KR101522198B1 (ko) 2015-05-21
JP2014037320A (ja) 2014-02-27
CN203333457U (zh) 2013-12-11
KR20130112065A (ko) 2013-10-11

Similar Documents

Publication Publication Date Title
WO2012133230A1 (ja) ガラス板製造方法
JP5827985B2 (ja) ガラス板製造方法
CN107445450B (zh) 玻璃基板的制造方法及玻璃基板制造装置
CN103508656B (zh) 玻璃基板的制造方法
WO2012133467A1 (ja) ガラス板の製造方法
WO2012132474A1 (ja) ガラス基板の製造方法
KR101487081B1 (ko) 유리판의 제조 방법
JP6722096B2 (ja) ガラス基板、及びガラス基板積層体
JP5824433B2 (ja) ガラス板の製造方法、および、ガラス板の製造装置
JP6585983B2 (ja) ガラス基板の製造方法およびガラス基板の製造装置
JP2018002539A (ja) ガラス基板の製造方法、およびガラス基板製造装置
JP6498933B2 (ja) ディスプレイ用ガラス基板の製造方法および製造装置
KR101432413B1 (ko) 유리판의 제조 방법
JP5668066B2 (ja) ガラス基板の製造方法
JP6714677B2 (ja) ガラス基板製造装置、及びガラス基板の製造方法
JP6333602B2 (ja) ガラス基板の製造方法
JP2022502335A (ja) ガラス作製プロセスにおける貴金属製部品の電気化学的侵食を緩和するための装置及び方法
JP2017066005A (ja) ガラス基板の製造方法及びガラス導管
JP2017065987A (ja) ガラス基板の製造方法及びガラス導管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000163.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137022004

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12763984

Country of ref document: EP

Kind code of ref document: A1