WO2012133016A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2012133016A1
WO2012133016A1 PCT/JP2012/057108 JP2012057108W WO2012133016A1 WO 2012133016 A1 WO2012133016 A1 WO 2012133016A1 JP 2012057108 W JP2012057108 W JP 2012057108W WO 2012133016 A1 WO2012133016 A1 WO 2012133016A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrolyte secondary
electrode plate
secondary battery
aqueous electrolyte
Prior art date
Application number
PCT/JP2012/057108
Other languages
English (en)
French (fr)
Inventor
紀子 山下
岩永 征人
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/006,119 priority Critical patent/US20140011068A1/en
Priority to CN2012800156678A priority patent/CN103477493A/zh
Priority to JP2013507415A priority patent/JP6092096B2/ja
Publication of WO2012133016A1 publication Critical patent/WO2012133016A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a non-aqueous electrolyte secondary battery excellent in high-temperature storage characteristics and cycle characteristics.
  • non-aqueous electrolyte secondary batteries typified by high-capacity lithium ion secondary batteries are widely used.
  • lithium-cobalt composite oxides and heterogeneous metal element-added lithium-cobalt composite oxides are often used because various battery characteristics are superior to others.
  • cobalt is expensive and has a small abundance as a resource. Therefore, in order to continue using these lithium cobalt composite oxides and lithium cobalt composite oxides added with different metal elements as the positive electrode active material of the non-aqueous electrolyte secondary battery, further enhancement of the performance of the non-aqueous electrolyte secondary battery Is desired.
  • Patent Document 1 and Patent Document 2 listed below disclose nonaqueous electrolyte secondary batteries in which an inorganic particle layer is provided as a coating on the surface of a positive electrode active material layer.
  • JP 2007-134279 A Japanese Patent Laid-Open No. 2007-28017 International Publication WO2006 / 038532
  • Patent Document 3 polyethylene and polypropylene are used as a separator for a lithium ion battery having both the impregnation property of a non-aqueous electrolyte, mechanical strength, permeability, and an effect of improving high-temperature storage characteristics when used in a battery.
  • a polyolefin microporous film composed of a laminate film of two or more layers, and at least one surface layer of the separator includes inorganic particles, but the inorganic particle layer is provided on the surface of the positive electrode active material layer.
  • the inventor has conducted various studies on the cause of the increase in battery thickness during high-temperature storage when an inorganic particle layer is disposed on the surface of the positive electrode active material layer, and as a result, the layer is disposed on the surface of the positive electrode active material layer. It was found that the inorganic particle layer easily holds the electrolytic solution, and therefore, the oxidative decomposition reaction of the electrolytic solution on the surface side of the positive electrode active material layer is more likely to occur.
  • the present inventors have found that by disposing inorganic particles also on the negative electrode side, excessive electrolyte solution retention on the positive electrode side can be suppressed, and specific oxidative decomposition of the electrolyte solution on the positive electrode side can be suppressed, The present invention has been completed.
  • an object of the present invention is to obtain a non-aqueous electrolyte secondary battery in which both improvement of storage characteristics in a high temperature environment and suppression of battery expansion are compatible.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode plate including a positive electrode active material capable of reversibly occluding and releasing lithium, and a negative electrode capable of reversibly occluding and releasing lithium.
  • a nonaqueous electrolyte secondary battery comprising a negative electrode plate containing an active material, a separator separating the positive electrode plate and the negative electrode plate, and a nonaqueous electrolyte solution containing a nonaqueous solvent and an electrolyte salt
  • An inorganic particle layer containing inorganic particles and a binder is formed on the surface of the positive electrode plate, and the separator is a polyolefin microporous film composed of a laminate film of two or more layers, and at least a surface layer on the negative electrode side Is characterized by containing inorganic particles.
  • an inorganic particle layer is formed on the surface of the positive electrode active material layer, and a multilayer film having two or more layers and containing inorganic particles in the surface layer.
  • the use of the microporous membrane as a separator not only improves the storage characteristics in a high-temperature environment, but also significantly suppresses the generation of gas that can be generated by the formation of an inorganic particle layer on the surface of the positive electrode active material layer.
  • the polyolefin microporous membrane used for the separator preferably contains polyethylene because of its excellent permeability and shutdown characteristics as the separator.
  • content of the inorganic particle contained in a separator surface layer is 3 mass% or more and 60 mass% or less. If the content of the inorganic particles contained in the surface layer is small, the effect of adding inorganic particles is difficult to appear. If the content is too large, the rigidity of the separator is increased, and the separator is easily entangled with the equipment during winding. Is more preferable to be 5 mass% or more and 40 mass% or less.
  • the thickness of the inorganic particle layer formed on the surface of the positive electrode plate is 0.1 ⁇ m or more, the effect of forming the inorganic particle layer is excellent, but if the thickness of the inorganic particle layer exceeds 4 ⁇ m, the battery internal resistance increases. As a result, the load characteristics are lowered, and the energy density of the battery is lowered due to a decrease in the amount of each active material of the positive electrode plate and the negative electrode plate. Therefore, in the nonaqueous electrolyte secondary battery of the present invention, the thickness of the inorganic particle layer is preferably 0.1 ⁇ m or more and 4 ⁇ m or less.
  • the inorganic particles contained in at least the negative electrode surface layer of the separator and the inorganic particle layer formed on the surface of the positive electrode plate are at least one of oxides or nitrides of silicon, aluminum, and titanium. Silicon dioxide, aluminum oxide and titanium oxide are more preferable.
  • the positive electrode active material that can be used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium, and has been commonly used from the above-described conventional ones.
  • the positive electrode active material can be used.
  • the negative electrode active material that can be used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium, and graphite, non-graphitizable carbon, and easy Carbon materials such as graphitizable carbon, titanium oxides such as LiTiO 2 and TiO 2 , metalloid elements such as silicon and tin, or Sn—Co alloys can be used.
  • nonaqueous solvent examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and fluorinated cyclic esters.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC)
  • fluorinated cyclic esters examples include fluorinated cyclic esters.
  • Carbonic acid esters such as ⁇ -butyrolactone ( ⁇ -BL), ⁇ -valerolactone ( ⁇ -VL), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), chain carbonates such as dibutyl carbonate (DBC), fluorinated chain carbonates, chain carboxylates such as methyl pivalate, ethyl pivalate, methyl isobutyrate, methyl propionate, N, N'-dimethylformamide Amide compounds such as N- methyl-oxazolidinone, sulfur compounds such as sulfolane, etc.
  • ⁇ -BL ⁇ -butyrolactone
  • ⁇ -VL dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • MPC methyl propyl carbonate
  • chain carbonates such as dibutyl carbonate (DBC)
  • ambient temperature molten salt such as tetrafluoroboric acid 1-ethyl-3-methylimidazolium
  • molten salt such as tetrafluoroboric acid 1-ethyl-3-methylimidazolium
  • vinylene carbonate (VC), vinyl ethyl carbonate (VEC), succinic anhydride ( Add SUCAH), maleic anhydride (MAAH), glycolic anhydride, ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate, biphenyl (BP), etc. May be. Two or more of these compounds can be appropriately mixed and used.
  • a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used.
  • Such lithium salts include LiPF 6 (lithium hexafluorophosphate), LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 and mixtures thereof are exemplified.
  • LiPF 6 is particularly preferable.
  • the amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.
  • the non-aqueous electrolyte secondary battery of the present invention may be not only liquid but also gelled.
  • the specific manufacturing method of the nonaqueous electrolyte secondary battery concerning each Example and each comparative example is demonstrated.
  • positive electrode active material a mixture of different element-added lithium cobalt oxide and layered nickel manganese lithium cobalt oxide was used.
  • the different element-added lithium cobalt oxide was prepared as follows.
  • lithium carbonate (Li 2 CO 3 ) was used for the lithium source, and 0.2 mol% of Zr and 0.5 mol% of Mg were added to the cobalt source as different elements during the synthesis of cobalt carbonate.
  • Zr and Mg-added tricobalt tetroxide (Co 3 O 4 ) obtained by coprecipitation from an aqueous solution and then obtained by a thermal decomposition reaction were used. A predetermined amount of these were weighed and mixed, and then calcined at 850 ° C. for 24 hours in an air atmosphere to obtain Zr and Mg-added lithium cobalt oxide. This was pulverized with a mortar to an average particle size of 14 ⁇ m to obtain a positive electrode active material A.
  • the layered nickel manganese lithium cobaltate was prepared as follows.
  • Li 2 CO 3 was used as a lithium source, and a coprecipitated hydroxide represented by Ni 0.33 Mn 0.33 Co 0.34 (OH) 2 was used as a transition metal source.
  • a predetermined amount of these were weighed and mixed, and then fired at 1000 ° C. for 20 hours in an air atmosphere to obtain a layer nickel manganese cobaltate represented by LiNi 0.33 Mn 0.33 Co 0.34 O 2 . .
  • This was pulverized to an average particle size of 5 ⁇ m with a mortar to obtain a positive electrode active material B.
  • the positive electrode active material A and the positive electrode active material B obtained as described above are mixed in a mass ratio of 7: 3, and used for the non-aqueous electrolyte secondary batteries of the examples and the comparative examples.
  • a positive electrode active material was obtained.
  • inorganic particle layer For the nonaqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Example 1, an inorganic particle layer was further formed on the surface of the positive electrode plate obtained as described above. Acetone is used as a solvent, rutile type titanium oxide (TiO 2 : KR380 manufactured by Titanium Industry Co., Ltd.) having a particle size of 0.38 ⁇ m as inorganic particles is 10% by mass with respect to acetone, and acrylonitrile structure (unit) as a binder. 10% by mass of a copolymer (rubber-like polymer) containing bismuth was mixed with a special mechanized film, and a titanium oxide dispersion slurry was prepared.
  • rutile type titanium oxide TiO 2 : KR380 manufactured by Titanium Industry Co., Ltd.
  • acrylonitrile structure unit
  • inorganic particle layers of titanium oxide were laminated on both surfaces of the positive electrode plate by a die coating method, and the solvent was dried and removed to form inorganic particle layers on both surfaces of the positive electrode plate.
  • the thickness of the inorganic particle layer in Examples 1 to 3 and Comparative Example 1 was 4 ⁇ m, and the thickness of the inorganic particle layer in Example 4 was 0.1 ⁇ m. This thickness is the thickness of the inorganic particle layer provided on one side of the positive electrode plate.
  • a slurry was prepared by dispersing 96 parts by mass of graphite powder as a negative electrode active material, 2 parts by mass of carboxymethyl cellulose as a thickener, and 2 parts by mass of styrene butadiene rubber (SBR) as a binder.
  • This slurry was applied to both sides of a copper negative electrode collector having a thickness of 8 ⁇ m by the doctor blade method and then dried to form an active material layer on both sides of the negative electrode collector.
  • the negative electrode plate which the length of the short side 37.5mm used in common with the nonaqueous electrolyte secondary battery of each Example and each comparative example was produced by compressing using a compression roller.
  • the potential of graphite is 0.1 V based on lithium.
  • the active material filling amount of the positive electrode plate and the negative electrode plate is such that the charge capacity ratio between the positive electrode plate and the negative electrode plate (negative electrode charge capacity / positive electrode charge capacity) is 1. It adjusted so that it might be set to 1.
  • each layer is kneaded and heated and melted so that the layer containing inorganic particles becomes a separator disposed on the surface layer on both sides Using a coextrusion method, a sheet having three layers was formed. Then, after stretching, extracting and removing the plasticizer, drying and stretching, a microporous film made of polyethylene consisting of 3 layers each having two surface layers of 2 ⁇ m and an intermediate layer of 10 ⁇ m was prepared. A separator used in the non-aqueous electrolyte secondary battery of Comparative Example 2 was used.
  • the separator used for the non-aqueous electrolyte secondary battery of Comparative Examples 1 and 3 is made by using polyethylene as a raw material, kneading with liquid paraffin which is a plasticizer, extruding while heating and melting, and forming into a sheet shape. did.
  • This separator does not contain inorganic particles and has a single layer structure of polyethylene.
  • Capacity recovery rate (%) (Capacity after storage) / (Initial capacity) x 100
  • Table 1 summarizes the results of the capacity recovery rate and battery thickness after high-temperature charge storage obtained as described above.
  • the battery of Comparative Example 3 that does not have an inorganic particle layer on the surface of the positive electrode active material layer has a poor capacity recovery rate, and the deterioration of the battery under a high temperature environment is quick.
  • the battery of Comparative Example 1 provided with the inorganic particle layer on the surface of the positive electrode active material layer has an improved capacity recovery rate after storage at high temperature compared to the battery of Comparative Example 3, and the positive electrode active material It has been shown that the storage characteristics in a high temperature environment are improved by forming an inorganic particle layer on the surface of the layer. However, while the battery of Comparative Example 1 shows improved storage characteristics in a high temperature environment, the battery thickness has greatly increased.
  • a microporous membrane having a three-layer structure that can be stably produced in the film forming process is used as a separator.
  • the present invention is a microporous membrane composed of a laminated film of two or more layers. The same effect can be obtained if the surface layer on the negative electrode side contains inorganic particles.
  • the content of the inorganic particles contained in the surface layer of the separator is preferably 3% by mass or more and 60% by mass or less. However, if the content of the inorganic particles contained in the surface layer is small, the effect of adding the inorganic particles hardly appears. If the amount is too large, the rigidity of the separator is increased, and the productivity is reduced due to the separator being easily entangled with the equipment during winding. Therefore, the amount is more preferably 5% by mass or more and 40% by mass or less.
  • silicon dioxide is used as the inorganic particles to be included in the separator surface layer.
  • any material that is insulative and does not easily react with the non-aqueous electrolyte can be used.
  • oxides or nitrides of silicon, aluminum and titanium can also be used. Of these, silicon dioxide and aluminum oxide are preferable.
  • the thickness of the inorganic particle layer formed on the surface of the positive electrode plate is 0.1 ⁇ m or more, the effect of forming the inorganic particle layer is excellent, but if the thickness of the inorganic particle layer exceeds 4 ⁇ m, the resistance inside the battery As a result, the load characteristics deteriorate, and the energy density of the battery decreases due to the decrease in the amount of each active material of the positive electrode plate and the negative electrode plate. Therefore, in the nonaqueous electrolyte secondary battery of the present invention, the thickness of the inorganic particle layer is preferably 0.1 ⁇ m or more and 4 ⁇ m or less.
  • a rectangular nonaqueous electrolyte secondary battery using a flat wound electrode body is shown as an example, but the present invention depends on the shape of the electrode body of the nonaqueous electrolyte secondary battery. Not what you want. Therefore, the present invention provides a nonaqueous electrolyte secondary battery having a circular or elliptical shape using a wound electrode body, or a laminated nonaqueous electrolyte solution in which a positive electrode plate and a negative electrode plate are stacked with a separator interposed therebetween. It can also be applied to secondary batteries.

Abstract

【課題】高温環境下における保存特性の向上と電池の膨化抑制が両立された非水電解液二次電池を提供すること。 【解決手段】リチウムを可逆的に吸蔵・放出可能な正極活物質を含む正極極板と、リチウムを可逆的に吸蔵・放出可能な負極活物質を含む負極極板と、前記正極極板及び前記負極極板を隔離するセパレータと、非水溶媒及び電解質塩を含む非水電解液と、を備えた非水電解液二次電池において、前記正極極板の表面には無機粒子とバインダーとを含有する無機粒子層が形成され、セパレータとして、二層以上の積層フィルムからなり、少なくとも負極側の表面層には無機粒子を含有しているポリオレフィン微多孔膜を用いる。

Description

非水電解液二次電池
 本発明は、非水電解液二次電池に関し、特に高温保存特性とサイクル特性に優れた非水電解液二次電池に関する。
 今日の携帯電話機、携帯型パーソナルコンピューター、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源として、更には、ハイブリッド電気自動車(HEV)や電気自動車(EV)用の電源として、高エネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解液二次電池が広く利用されている。
 これらの非水電解液二次電池の正極活物質としては、リチウムイオンを可逆的に吸蔵・放出することが可能なLiCoO、LiNiO、LiNiCo1-x(x=0.01~0.99)、LiMnO、LiMn、LiNiMnCo(x+y+z=1)又はLiFePOなどが一種単独もしくは複数種を混合して用いられている。
 このうち、特に各種電池特性が他のものに対して優れていることから、リチウムコバルト複合酸化物や異種金属元素添加リチウムコバルト複合酸化物が多く使用されている。しかしながら、コバルトは高価であると共に資源としての存在量が少ない。そのため、これらのリチウムコバルト複合酸化物や異種金属元素添加リチウムコバルト複合酸化物を非水電解液二次電池の正極活物質として使用し続けるには非水電解液二次電池の更なる高性能化が望まれている。
 このようなリチウムコバルト複合酸化物を正極活物質として用いた非水電解液二次電池の高容量化の手段の一つとして、充電終止電圧を引き上げることが考えられる。ところが、充電終止電圧を引き上げた場合、サイクル特性や保存特性が低下してしまうという問題がある。この充電終止電圧の引き上げに伴うサイクル特性や保存特性の低下は、特に高温環境下において顕著になることが知られている。詳細なメカニズムは不明であるが、サイクル特性や保存特性が低下した非水電解液二次電池の分析結果からは、電解液の分解物の増大や電解液中への正極活物質元素の溶出が認められており、これらがサイクル特性や保存特性の低下を引き起こす要因となっているものと推測されている。
 このような課題に対して、正極活物質層とセパレータとの間に無機粒子とバインダーとを含有する無機粒子層を設けることで、高温環境下での保存特性やサイクル特性を向上させる方法が提案されている。例えば、下記特許文献1や下記特許文献2には、正極活物質層の表面の被膜として無機粒子層を設けた非水電解液二次電池が開示されている。
特開2007-134279号公報 特開2007-280917号公報 国際公開WO2006/038532号公報
 しかしながら、正極活物質層の表面に無機粒子層を配置した場合、電解液の分解、正極活物質層からの元素の溶出やセパレータの酸化反応が抑制されて、高温保存時の自己放電やサイクル時の容量低下が改善される一方、高温保存時の電池厚みが増大してしまうという課題がある。
 また、上記特許文献3には、非水電解液の含浸性、機械的強度、透過性及び電池に用いたときの高温保存特性の向上効果を兼ね備えたリチウムイオン電池用セパレータとして、ポリエチレンとポリプロピレンとを含み、二層以上の積層フィルムからなるポリオレフィン微多孔膜であって、少なくとも片側の表面層が無機粒子を含むセパレータが開示されているが、正極活物質層の表面に無機粒子層が設けられた非水電解液二次電池に対して、二層以上の積層フィルムからなり少なくとも片側の表面層が無機粒子を含む上記ポリオレフィン微多孔膜をセパレータとして用いた場合については何も検討されておらず、高温保存時の電池厚みの変化に対する効果などについては何も示唆されていない。
 本発明者は、正極活物質層の表面に無機粒子層を配置した場合に高温保存時の電池厚みが増大してしまう原因について種々検討を重ね、その結果、正極活物質層の表面に配置された無機粒子層が電解液を保持しやすく、そのため正極活物質層の表面側での電解液の酸化分解反応がより生じやすくなっているためであることを知見した。
 更に本発明者は、負極側へも無機粒子を配置することによって正極側での過剰な電解液保持を抑制し、正極側での特異的な電解液の酸化分解を抑制し得ることを見出し、本発明を完成するに至ったのである。
 すなわち、本発明は高温環境下における保存特性の向上と電池の膨化抑制が両立された非水電解液二次電池を得ることを目的とする。
 上記目的を達成するため、本発明の非水電解液二次電池は、リチウムを可逆的に吸蔵・放出可能な正極活物質を含む正極極板と、リチウムを可逆的に吸蔵・放出可能な負極活物質を含む負極極板と、前記正極極板及び前記負極極板を隔離するセパレータと、非水溶媒及び電解質塩を含む非水電解液と、を備えた非水電解液二次電池において、前記正極極板の表面には無機粒子とバインダーとを含有する無機粒子層が形成され、前記セパレータは、二層以上の積層フィルムからなるポリオレフィン微多孔膜であり、かつ、少なくとも負極側の表面層には無機粒子を含有していることを特徴とする。
 本発明の非水電解液二次電池によれば、正極活物質層の表面に無機粒子層を形成すると共に、二層以上の積層フィルムであって表面層に無機粒子を含有している複層の微多孔膜をセパレータとして用いることで、高温環境下における保存特性が向上するだけでなく、正極活物質層の表面に無機粒子層が形成されることによって生じ得るガスの発生が顕著に抑制され、高温環境下での保存特性が向上すると共に電池の膨化が抑制された非水電解液二次電池を得ることができる。
 なお、本発明においては、セパレータに用いるポリオレフィン微多孔膜は、セパレータとしての透過性やシャットダウン特性に優れることから、ポリエチレンを含有していることが好ましい。また、セパレータ表面層に含まれる無機粒子の含有量は3質量%以上60質量%以下であることが好ましい。表面層に含有させる無機粒子の含有量は、少ないと無機粒子添加の効果が現れ難く、また、多過ぎるとセパレータの剛性が高くなり、巻取り時にセパレータが設備に絡みやすくなることなどによって生産性が低下するため、5質量%以上40質量%以下とすることがより好ましい。
 正極極板の表面に形成される無機粒子層の厚みが、0.1μm以上なら無機粒子層形成の効果が良好に奏されるが、無機粒子層の厚みが4μmを超えると電池内部抵抗の増大により負荷特性が低下したり、正極極板及び負極極板の各活物質量の減少により電池のエネルギー密度が低下することになる。よって、本発明の非水電解液二次電池においては、無機粒子層の厚みは0.1μm以上4μm以下とすることが好ましい。
 なお、セパレータの少なくとも負極側の表面層及び正極極板の表面に形成される無機粒子層に含有させる無機粒子としては、ケイ素、アルミニウム及びチタンの酸化物ないし窒化物の少なくともいずれかを用いることが好ましく、二酸化ケイ素、酸化アルミニウムや酸化チタンがより好ましい。
 また、本発明の非水電解液二次電池で使用し得る正極活物質としては、リチウムを可逆的に吸蔵・放出することのできる材料なら特に限定されず、上述した従来から普通に使用されている正極活物質を用いることができる。また、本発明の非水電解液二次電池で使用し得る負極活物質としては、リチウムを可逆的に吸蔵・放出することのできる材料なら特に限定されず、黒鉛、難黒鉛化性炭素及び易黒鉛化性炭素などの炭素材料、LiTiO及びTiOなどのチタン酸化物、ケイ素及びスズなどの半金属元素、又はSn-Co合金等を用いることができる。
 また、本発明の非水電解液二次電池において使用し得る非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などの環状炭酸エステル、フッ素化された環状炭酸エステル、γ-ブチロラクトン(γ-BL)、γ-バレロラクトン(γ-VL)などの環状カルボン酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)などの鎖状炭酸エステル、フッ素化された鎖状炭酸エステル、ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネートなどの鎖状カルボン酸エステル、N,N'-ジメチルホルムアミド、N-メチルオキサゾリジノンなどのアミド化合物、スルホランなどの硫黄化合物、テトラフルオロ硼酸1-エチル-3-メチルイミダゾリウムなどの常温溶融塩などが例示できる。これらは2種以上混合して用いることが望ましい。これらの中では、特に誘電率とイオン伝導度の観点から環状炭酸エステルと鎖状炭酸エステルを混合して用いることが好ましい。
 なお、本発明の非水電解液二次電池で使用する非水電解液中には、電極の安定化用化合物として、更に、ビニレンカーボネート(VC)、ビニルエチルカーボネート(VEC)、無水コハク酸(SUCAH)、無水マイレン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)などを添加してもよい。これらの化合物は、2種以上を適宜に混合して用いることもできる。
 また、本発明の非水電解液二次電池で使用する電解質塩としては、非水電解液二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF(ヘキサフルオロリン酸リチウム)、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPFが特に好ましい。前記非水溶媒に対する電解質塩の溶解量は、0.5~2.0mol/Lとするのが好ましい。
 更に、本発明の非水電解液二次電池においては、非水電解液は液状のものだけでなく、ゲル化されているものであってもよい。
 以下、本発明を実施するための形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解液二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。
 最初に、各実施例及び各比較例にかかる非水電解液二次電池の具体的製造方法について説明する。
[正極活物質の作製]
 正極活物質には、異種元素添加コバルト酸リチウムと層状ニッケルマンガンコバルト酸リチウムの混合物を用いた。異種元素添加コバルト酸リチウムは次のようにして作製した。出発原料としては、リチウム源には炭酸リチウム(LiCO)を用い、コバルト源には炭酸コバルト合成時に異種元素としてZrをCoに対して0.2mol%及びMgを0.5mol%添加した水溶液から共沈させ、その後、熱分解反応によって得られたZr及びMg添加四酸化三コバルト(Co)を用いた。これらを所定量秤量して混合した後、空気雰囲気下において850℃で24時間焼成し、Zr及びMg添加コバルト酸リチウムを得た。これを乳鉢で平均粒径14μmまで粉砕し、正極活物質Aとした。
 層状ニッケルマンガンコバルト酸リチウムは次のようにして作製した。出発原料としては、リチウム源にはLiCOを、遷移金属源にはNi0.33Mn0.33Co0.34(OH)で表される共沈水酸化物を用いた。これらを所定量秤量して混合した後、空気雰囲気下において1000℃で20時間焼成し、LiNi0.33Mn0.33Co0.34で表される層ニッケルマンガンコバルト酸リチウムを得た。これを乳鉢で平均粒径5μmまで粉砕し、正極活物質Bとした。以上のようにして得られた正極活物質A及び正極活物質Bを質量比が7:3になるように混合することで、各実施例及び各比較例の非水電解液二次電池に用いる正極活物質を得た。
[正極極板の作製]
 以上のようにして得られた正極活物質を94質量部、導電剤としての炭素粉末を3質量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末を3質量部となるよう混合し、これをN-メチルピロリドン(NMP)溶液と混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム製の正極集電体の両面にドクターブレード法により塗布、乾燥して、正極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、各実施例及び各比較例の非水電解液二次電池に用いる短辺の長さが36.5mmの正極極板を作製した。
[無機粒子層の形成]
 実施例1~4及び比較例1の非水電解液二次電池については、以上のようにして得られた正極極板の表面に更に以下のようにして無機粒子層を形成した。溶剤としてアセトンを用い、無機粒子としての粒径0.38μmのルチル型酸化チタン(TiO:チタン工業株式会社製KR380)をアセトンに対して10質量%、結着剤としてのアクリロニトリル構造(単位)を含む共重合体(ゴム性状高分子)を酸化チタンに対して10質量%混合し、特殊機化製Filmicsを用いて混合分散処理を行い、酸化チタン分散スラリーを調製した。このスラリーを用いて、ダイコート方式で前記正極極板の両面に酸化チタンの無機粒子層を積層させ、溶剤を乾燥・除去することで、正極極板の両表面に無機粒子層を形成した。
 なお、実施例1~3及び比較例1の無機粒子層の厚みは4μm、実施例4の無機粒子層の厚みは0.1μmとした。
 また、この厚みは、正極極板の片面に設けられた無機粒子層の厚みである。
[負極極板の作製]
 負極活物質としての黒鉛粉末96質量部、増粘剤としてのカルボキシメチルセルロース2質量部、結着剤としてのスチレンブタジエンゴム(SBR)2質量部を水に分散させスラリーを調製した。このスラリーを厚さ8μmの銅製の負極集電体の両面にドクターブレード法により塗布後、乾燥して負極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮することで、各実施例及び各比較例の非水電解液二次電池で共通して用いる短辺の長さが37.5mmの負極極板を作製した。
 なお、黒鉛の電位はリチウム基準で0.1Vである。また、正極極板及び負極極板の活物質充填量は、設計基準となる正極活物質の電位において、正極極板と負極極板の充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。
[非水電解液の調製]
 エチレンカーボネート(EC):ジエチルカーボネート(DEC):メチルエチルカーボネート(MEC)が、20:30:50(体積比)となるように混合した混合溶媒にLiPFを1.0mol/L溶解させることで、各実施例及び各比較例の非水電解液二次電池で用いる非水電解液を調製した。
[セパレータの作製]
[実施例1~4及び比較例2]
 実施例1~4及び比較例2の非水電解液二次電池に用いるセパレータとしては3層からなるポリエチレン製微多孔膜を用いた。表面に相当する2つの層は、ポリエチレンと無機粒子としての二酸化ケイ素(SiO)を、各種質量比(実施例1=86:14、実施例2=95:5、実施例3=60:40、実施例4=86:14、比較例2=86:14)で混合し、ミキサーで撹拌したものを原料とし、上記2つの表面層に挟まれる中間層はポリエチレンを原料とした。表面層及び中間層の原料について、それぞれ可塑剤である流動パラフィンと混練した後、無機粒子を含む層が両側の表面層に配置されたセパレータとなるように各々の層を混練・加熱溶融しながら共押出法を用いて、3層を有するシート状に成形した。その後延伸し、可塑剤を抽出除去した後、乾燥及び延伸することで、2つの表面層がそれぞれ2μm、中間層が10μmである3層からなるポリエチレン製微多孔膜を作製し、各実施例及び比較例2の非水電解液二次電池で用いるセパレータとした。
[比較例1及び3]
 また、比較例1及び3の非水電解液二次電池に用いるセパレータは、ポリエチレンを原料とし、可塑剤である流動パラフィンと混錬した後、加熱溶融しながら押し出し、シート状に成形して作製した。このセパレータは、無機粒子を含有せず、ポリエチレンの単層構造からなるものである。
[電池の作製]
 上記の各実施例及び各比較例に対応する正極極板と負極極板との間に、各実施例及び各比較例に対応するセパレータを介在させて巻回することによって巻回電極体となし、これを金属製角形外装缶に収納した後、上記の電解液を注液することで、各実施例及び各比較例にかかる角形非水電解液二次電池(厚み5.5mm×幅34mm×高さ43mm)を作製した。得られた非水電解液二次電池の設計容量は800mAhである。
 [高温保存試験]
 各実施例及び各比較例の電池に対して、25℃の環境下で、1It=800mAの定電流で電池電圧が4.4V(正極電位はリチウム基準で4.5V)となるまで充電し、電池電圧が4.4Vに達した以降は、4.4Vの定電圧で、充電電流が1/40It=20mAとなるまで充電し、満充電状態の電池を得た。その後、1It=800mAの定電流で電池電圧が3.0Vとなるまで放電し、このときの放電容量を測定して初期容量とした。
 その後、各電池を25℃の環境下で、1It=800mAの定電流で充電し、電池電圧が4.4Vに達した以降は、4.4Vの定電圧で充電電流が1/40It=20mAとなるまで充電して満充電状態とした。その後、この満充電状態の各電池を60℃に維持された恒温槽中で20日間保存した。
 20日間の保存後の各電池について、電池温度が25℃になるまで放冷して電池厚みをノギスで測定した。そして、25℃の環境下で、1It=800mAの定電流で電池電圧が3.0Vになるまで放電した後、初期容量測定と同じ条件で測定した放電容量を保存後容量として、以下の式から容量復帰率を求めた。
  容量復帰率(%) = (保存後容量)/(初期容量)×100
 以上のようにして得られた高温充電保存後の容量復帰率及び電池厚みについて、結果を纏めて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 正極活物質層の表面に無機粒子層を備えていない比較例3の電池では、容量復帰率が劣っており、高温環境下での電池の劣化が早いことがわかる。
 それに対して、正極活物質層の表面に無機粒子層を備えている比較例1の電池は、比較例3の電池に比べて高温充電保存後の容量復帰率が向上しており、正極活物質層の表面に無機粒子層を形成することで高温環境下での保存特性が向上することが示されている。しかしながら、比較例1の電池では高温環境下での保存特性の向上が見られる一方、電池厚みが大きく増大している。
 これは以下のようなメカニズムによるものと推測される。すなわち、正極活物質層の表面に配置された無機粒子層は電解液を保持しやすいため、比較例1の電池では正極活物質層の表面側での電解液の酸化分解反応が促進されて、電解液の分解によるガスが生じやすくなっているものと考えられる。
 一方、実施例1~4の電池では、高温充電保存後の容量復帰率が比較例1の電池以上に向上しているだけでなく、比較例3の電池に対して電池厚みの増大は僅かにしか認められない。このように、正極活物質層の表面に無機粒子層を形成すると共に、二層以上の積層フィルムであって表面層に無機粒子を含有している複層の微多孔膜をセパレータとして用いることによって、高温環境下における保存特性が向上するだけでなく、無機粒子層によって生じ得るガスの発生が顕著に抑制されるため、電池の膨化が抑制されているものと考えられる。
 また、比較例2と比較例3の結果の比較により、単にセパレータとして表面層が無機粒子含有の微多孔膜を用いただけでは、無機粒子非含有の微多孔膜を用いた場合と比較して、電池厚みを減少するような効果はないことが分かる。このことは、高温環境下において、保存特性を向上させるとともに電池の膨化を抑制するという本発明の効果は、正極活物質層の表面に無機粒子層を形成すると共に、二層以上の積層フィルムであって表面層に無機粒子を含有している複層の微多孔膜をセパレータとして用いることによって初めて奏される相乗的な効果であることを示している。
 なお、上記実施例においては、製膜プロセス上安定して生産できる3層構造の微多孔膜をセパレータとして用いているが、本発明は原理上、二層以上の積層フィルムからなる微多孔膜において負極側となる表面層に無機粒子が含有される構成であれば同様の効果を奏する。
 なお、セパレータの表面層に含まれる無機粒子の含有量は、3質量%以上60質量%以下が好ましいが、表面層に含有させる無機粒子の含有量は、少ないと無機粒子添加の効果が現れ難く、また、多過ぎるとセパレータの剛性が高くなり、巻取り時にセパレータが設備に絡みやすくなることなどによって生産性が低下するため、5質量%以上40質量%以下とすることがより好ましい。
 また、上記実施例においては、セパレータの表面層に含有させる無機粒子として二酸化ケイ素を用いたものを示したが、絶縁性で非水電解液と反応し難いものであれば使用することができる。含有させることができる無機粒子としては、ケイ素、アルミニウム及びチタンの酸化物ないし窒化物も使用し得る。中でも二酸化ケイ素や酸化アルミニウムが好ましい。
 また、正極極板の表面に形成される無機粒子層の厚みが0.1μm以上なら無機粒子層形成の効果が良好に奏されるが、無機粒子層の厚みが4μmを超えると電池内部の抵抗の増大により負荷特性が低下したり、正極極板及び負極極板の各活物質量の減少により電池のエネルギー密度が低下することとなる。よって、本発明の非水電解液二次電池においては、無機粒子層の厚みは0.1μm以上4μm以下とすることが好ましい。
 また、上記実施例においては、異種元素添加コバルト酸リチウムと層状ニッケルマンガンコバルト酸リチウムの混合物を正極活物質に用いたが、本発明は、従来から普通に使用されているリチウムを可逆的に吸蔵・放出することが可能なLiCoO、LiNiO、LiNiCo1-x(x=0.01~0.99)、LiMnO、LiMn、LiNiMnCo(x+y+z=1)又はLiFePO等を用いた場合においても、均しく適用可能である。
 また、上記実施例の電池では偏平状巻回電極体を用いた角形非水電解液二次電池を例として示したが、本発明は、非水電解液二次電池の電極体の形状に依存するものではない。そのため、本発明は、巻回電極体を用いた円形状ないし楕円形状の非水電解液二次電池や、正極極板及び負極極板をセパレータを介して互いに積層した積層型非水電解液二次電池に対しても適用可能である。

Claims (3)

  1.  リチウムを可逆的に吸蔵・放出可能な正極活物質を含む正極極板と、リチウムを可逆的に吸蔵・放出可能な負極活物質を含む負極極板と、前記正極極板及び前記負極極板を隔離するセパレータと、非水溶媒及び電解質塩を含む非水電解液と、を備えた非水電解液二次電池において、
     前記正極極板の表面には無機粒子とバインダーとを含有する無機粒子層が形成され、
     前記セパレータは、二層以上の積層フィルムからなるポリオレフィン微多孔膜であり、かつ、少なくとも負極側の表面層には無機粒子を含有していることを特徴とする非水電解液二次電池。
  2.  前記表面層中の無機粒子の含有量は5質量%以上40質量%以下であることを特徴とする請求項1に記載の非水電解液二次電池。
  3.  前記無機粒子層の厚みは0.1μm以上4μm以下であることを特徴とする請求項1又は2に記載の非水電解液二次電池。
PCT/JP2012/057108 2011-03-29 2012-03-21 非水電解液二次電池 WO2012133016A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/006,119 US20140011068A1 (en) 2011-03-29 2012-03-21 Non-aqueous electrolyte secondary battery
CN2012800156678A CN103477493A (zh) 2011-03-29 2012-03-21 非水电解液二次电池
JP2013507415A JP6092096B2 (ja) 2011-03-29 2012-03-21 非水電解液二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-072716 2011-03-29
JP2011072716 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012133016A1 true WO2012133016A1 (ja) 2012-10-04

Family

ID=46930748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057108 WO2012133016A1 (ja) 2011-03-29 2012-03-21 非水電解液二次電池

Country Status (4)

Country Link
US (1) US20140011068A1 (ja)
JP (1) JP6092096B2 (ja)
CN (1) CN103477493A (ja)
WO (1) WO2012133016A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056208A (ja) * 2013-09-10 2015-03-23 株式会社豊田自動織機 活物質層上に形成された保護層を具備する電極
WO2015053177A1 (ja) * 2013-10-11 2015-04-16 株式会社村田製作所 非水電解質電池およびその製造方法
US20150188107A1 (en) * 2012-09-27 2015-07-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663286B (zh) * 2022-12-08 2023-09-08 深圳新宙邦科技股份有限公司 一种锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038532A1 (ja) * 2004-10-01 2006-04-13 Asahi Kasei Chemicals Corporation ポリオレフィン微多孔膜
JP2007134279A (ja) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007250433A (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd 非水電解質電池
JP2007280917A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池
JP2009146822A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 非水電解質二次電池
JP2010262785A (ja) * 2009-04-30 2010-11-18 Asahi Kasei E-Materials Corp 非水電解液電池用セパレータ及び非水電解液電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253905B2 (ja) * 2008-06-30 2013-07-31 パナソニック株式会社 非水電解液および非水電解液二次電池
JP4527190B1 (ja) * 2009-01-14 2010-08-18 パナソニック株式会社 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038532A1 (ja) * 2004-10-01 2006-04-13 Asahi Kasei Chemicals Corporation ポリオレフィン微多孔膜
JP2007134279A (ja) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007250433A (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd 非水電解質電池
JP2007280917A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池
JP2009146822A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 非水電解質二次電池
JP2010262785A (ja) * 2009-04-30 2010-11-18 Asahi Kasei E-Materials Corp 非水電解液電池用セパレータ及び非水電解液電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150188107A1 (en) * 2012-09-27 2015-07-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP2015056208A (ja) * 2013-09-10 2015-03-23 株式会社豊田自動織機 活物質層上に形成された保護層を具備する電極
WO2015053177A1 (ja) * 2013-10-11 2015-04-16 株式会社村田製作所 非水電解質電池およびその製造方法
JPWO2015053177A1 (ja) * 2013-10-11 2017-03-09 株式会社村田製作所 非水電解質電池およびその製造方法

Also Published As

Publication number Publication date
JP6092096B2 (ja) 2017-03-08
CN103477493A (zh) 2013-12-25
JPWO2012133016A1 (ja) 2014-07-28
US20140011068A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP5431218B2 (ja) 非水電解液二次電池
JP5499541B2 (ja) 正極活物質、正極および非水電解質二次電池
WO2010067549A1 (ja) 非水電解液二次電池
JP5989634B2 (ja) 非水電解液二次電池
WO2012133027A1 (ja) 非水電解液二次電池システム
JP2015170542A (ja) 非水電解質二次電池
JP2014135154A (ja) 非水電解質二次電池
CA3040031C (en) Battery module for starting a power equipment
JP2014035926A (ja) 非水電解質二次電池
WO2016013179A1 (ja) 非水電解質二次電池
JP6092096B2 (ja) 非水電解液二次電池
WO2013146512A1 (ja) 非水電解質二次電池
JP6104536B2 (ja) 非水電解質二次電池及びその製造方法
JP2011181386A (ja) 非水電解質二次電池
WO2013031712A1 (ja) 非水電解質二次電池及びその製造方法
WO2014068931A1 (ja) 非水電解質二次電池
WO2014050025A1 (ja) 非水電解質二次電池
JP5405353B2 (ja) 非水電解液二次電池
JP6282595B2 (ja) 非水電解質二次電池
WO2012147783A1 (ja) 非水電解質二次電池
JP2014035893A (ja) 非水電解質二次電池
WO2010147106A1 (ja) 非水電解液二次電池
JP2012178308A (ja) リチウムイオン二次電池
JP2023533050A (ja) リチウム二次電池用非水系電解液及びこれを含むリチウム二次電池
CN116995234A (zh) 正极片、电化学装置、电子装置以及正极片的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14006119

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013507415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765062

Country of ref document: EP

Kind code of ref document: A1