WO2012133001A1 - 半導体放熱板用Mo焼結部品およびそれを用いた半導体装置 - Google Patents

半導体放熱板用Mo焼結部品およびそれを用いた半導体装置 Download PDF

Info

Publication number
WO2012133001A1
WO2012133001A1 PCT/JP2012/057047 JP2012057047W WO2012133001A1 WO 2012133001 A1 WO2012133001 A1 WO 2012133001A1 JP 2012057047 W JP2012057047 W JP 2012057047W WO 2012133001 A1 WO2012133001 A1 WO 2012133001A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered
heat sink
semiconductor heat
molybdenum
semiconductor
Prior art date
Application number
PCT/JP2012/057047
Other languages
English (en)
French (fr)
Inventor
勉 森岡
斉 青山
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to CN2012800158014A priority Critical patent/CN103443314A/zh
Priority to KR1020137025443A priority patent/KR101571230B1/ko
Priority to JP2013507405A priority patent/JP5908459B2/ja
Publication of WO2012133001A1 publication Critical patent/WO2012133001A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Definitions

  • the present invention relates to a Mo sintered component used for a semiconductor heat sink and a semiconductor device using the Mo sintered component.
  • Semiconductor devices are used in various electronic devices.
  • a semiconductor device functions by passing a current through a semiconductor element. At this time, the semiconductor element generates heat. If this heat generation is not released efficiently, the semiconductor element itself may be destroyed or malfunctioned. Therefore, an attempt has been made to dispose the semiconductor element on the heat sink and efficiently release the heat of the semiconductor element to the outside of the apparatus.
  • the semiconductor heat sink incorporated in the semiconductor device not only has a high thermal conductivity, but also has a coefficient of thermal expansion approximating that of a semiconductor element in order to reduce stress caused by a difference in thermal expansion. Sufficient structural strength is required.
  • Patent Document 1 discloses a Mo—Cu infiltrated substrate in which copper is infiltrated into a Mo green compact. Yes. By combining Mo, which is a low thermal expansion material, and Cu, which is a high thermal conductivity material, a heat dissipation plate having low thermal expansion and excellent heat dissipation can be provided.
  • the Mo—Cu infiltrated substrate disclosed in Patent Document 1 is formed by a method in which Cu is infiltrated into a Mo green compact, it is difficult to uniformly infiltrate Cu to the inside. There was a problem that there was. In particular, when pores (air) remain in the interior, the portion becomes a heat resistance portion, which is a cause of hindering the heat dissipation effect. In particular, the partial change in the ratio of Mo and Cu not only deteriorates the heat dissipation effect but also causes variations in strength and thermal expansion coefficient.
  • the present invention has been made in view of such technical problems, and provides a Mo sintered component for a semiconductor heat sink having good heat dissipation and high structural strength, and a semiconductor device using the same. .
  • the Mo sintered part for semiconductor heat sink of the present invention is an Mo sintered part for semiconductor heat sink made of a molybdenum sintered alloy material containing 10 to 50% by mass of copper.
  • the variation of the area ratio of Mo crystals per unit area of 500 ⁇ m ⁇ 500 ⁇ m is within 10% of the average value.
  • the surface roughness Ra of Mo sintering components is 5 micrometers or less.
  • the molybdenum sintered alloy material preferably contains 0.1 to 3% by mass of at least one of Ni, Co, and Fe in terms of metal elements.
  • the molybdenum sintered alloy material is preferably a sintered alloy material having a density of 90 to 98%.
  • the Mo sintered part is preferably in the form of a disk having a thickness of 0.05 to 1 mm and a diameter of 5 to 70 mm.
  • the coefficient of thermal expansion of the Mo sintered part is preferably 7 to 14 ⁇ 10 ⁇ 6 / ° C.
  • the tensile strength of Mo sintering components is 0.44 GPa or more.
  • the specific resistance of the Mo sintered component is preferably 5.3 ⁇ 10 ⁇ 6 ⁇ ⁇ m or less.
  • the Mo sintered component for semiconductor heat sink and the semiconductor device using the same the heat sink having excellent heat dissipation and structural strength can be obtained because the variation in the Mo crystal size of the Mo sintered component for semiconductor heat sink is small. Can be provided. As a result, the reliability of the semiconductor device can be greatly improved.
  • the Mo sintered component for a semiconductor heat sink according to the present embodiment is an Mo sintered component for a semiconductor heat sink made of a molybdenum alloy material containing 10 to 50% by mass of copper.
  • the molybdenum alloy material includes an average grain of molybdenum crystals. The diameter is 10 to 100 ⁇ m, and the variation in the area ratio of Mo crystals per unit area of 500 ⁇ m ⁇ 500 ⁇ m is within ⁇ 10% of the average value. If the copper content is less than 10% by mass or exceeds 50% by mass, the coefficient of thermal expansion (thermal expansion coefficient) is likely to deviate from 7 to 14 ⁇ 10 ⁇ 6 / ° C.
  • FIG. 1 shows an example of a component using a semiconductor heat sink.
  • 1 is a Mo sintered component for a semiconductor heat sink
  • 2 is an insulating film (insulating layer)
  • 3 is a semiconductor element.
  • FIG. 1 shows an example in which the semiconductor element 3 is mounted on the Mo component 1 for semiconductor heat sink via the insulating layer 2, but the substrate on which the semiconductor element is mounted is formed of another material (for example, a ceramic substrate)
  • the Mo sintered component for semiconductor heat sink since Mo components are not an insulator, when mounting a semiconductor element, it joins via the insulating layer 2.
  • FIG. Since the Mo sintered component for semiconductor heat sink according to the present embodiment has a heat conductivity of 160 W / m ⁇ K or more and good heat dissipation, it exhibits excellent heat dissipation even when a semiconductor element is mounted. Further, the semiconductor element is formed of a Si component or the like. Since the thermal expansion coefficient of the semiconductor element (Si type) is about 4 to 7 ⁇ 10 ⁇ 6 / ° C., the thermal expansion coefficient of the Mo component is 7 to 14 ⁇ 10 ⁇ 6 / ° C. as described above. Further, it is preferably 8 to 11 ⁇ 10 ⁇ 6 / ° C. By approximating the coefficient of thermal expansion with the semiconductor element in this way, peeling due to the difference in thermal expansion with the semiconductor element can be prevented.
  • the molybdenum alloy material is characterized in that the average grain size of molybdenum crystals is 10 to 100 ⁇ m, and the variation in the area ratio of Mo crystals per unit area of 500 ⁇ m ⁇ 500 ⁇ m is within ⁇ 10% of the average value. It is.
  • the average grain size of the molybdenum crystal is too small, less than 10 ⁇ m, the copper ratio is relatively increased, so the strength of the alloy material is lowered.
  • the average particle size is too large so as to exceed 100 ⁇ m, the proportion of copper is relatively reduced, which is not preferable.
  • the molybdenum alloy material is a sintered body, and the variation in the abundance ratio (area ratio) between molybdenum and copper is within ⁇ 10% of the average value. When there is little variation in the area ratio of molybdenum and copper, variation in the characteristics of the molybdenum alloy material can be suppressed.
  • the Mo sintered component for a semiconductor heat sink is used by mounting a semiconductor element as described above.
  • Mo sintered parts for semiconductor heat sinks thermally expand due to the heat generated by the element.
  • the variation in the abundance ratio (area ratio) between the Mo crystal and copper is within ⁇ 10%.
  • the area ratio between Mo crystal and copper is measured with a unit area of 500 ⁇ m ⁇ 500 ⁇ m as a reference.
  • the unit area is 500 ⁇ m ⁇ 500 ⁇ m is that the upper limit of the average particle diameter is 100 ⁇ m, so that the measurement error can be reduced if the area is about 5 times the area.
  • crystallization and copper can be measured by the surface analysis of a SEM photograph or EPMA.
  • the Mo sintered part for semiconductor heat sink has a surface roughness Ra of 5 ⁇ m or less.
  • the surface roughness Ra is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the surface roughness Ra of the Mo sintered component is preferably 5 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the molybdenum alloy material composition is based on a binary system of Mo and Cu, but may contain at least one of Ni, Co, and Fe in an amount of 0.1 to 3% by mass in terms of metal element.
  • Ni, Co, and Fe the strength and hardness of the molybdenum alloy material can be increased.
  • the strength of the molybdenum alloy in the case of a binary system of Mo and Cu, the tensile strength is 0.44 GPa or more, but the tensile strength can be increased to 0.50 GPa or more by adding Ni, Co, and Fe. .
  • the molybdenum alloy material preferably has a density of 90% or more, more preferably 90 to 98%.
  • the density is expressed by (actual measured value / theoretical density by Archimedes method) ⁇ 100%.
  • the theoretical density is as follows: theoretical density of molybdenum: 10.22 g / cm 3 , theoretical density of copper: 8.96 g / cm 3 , theoretical density of iron: 7.87 g / cm 3 , theoretical density of cobalt: 8.9 g / cm 3 3. Calculated by multiplying the weight ratio using the theoretical density of nickel: 8.9 g / cm 3 .
  • FIG. 2 shows an example of the structure of the Mo sintered component for semiconductor heat sink according to the present embodiment.
  • 4 is molybdenum crystal particles and 5 is copper.
  • copper is filled in the gaps between the molybdenum crystals.
  • the maximum crystal grain size of the molybdenum crystal is not more than twice the average grain size.
  • the Mo sintered component is a sintered body produced by sintering a molded body in which Mo powder and copper powder are mixed.
  • Molybdenum has a melting point of 2620 ° C. and copper has a melting point of 1083 ° C. Therefore, when sintered at a high temperature of 1200 ° C. or higher, the molybdenum crystal particles are grown as they are or partly grown as crystal particles, and the copper melts and becomes molybdenum. The gaps between the crystal grains are filled. Further, it is preferable that the maximum crystal grain size of the molybdenum crystal is not more than twice the average grain size. If the molybdenum crystal has coarse particles that exceed twice the average particle size, variations in the proportion of molybdenum crystal and copper tend to occur.
  • the measuring method of the average particle diameter of the above-mentioned molybdenum crystal uses an enlarged photograph (SEM photograph), calculates the major axis and minor axis of each molybdenum crystal reflected therein, and (the major axis + minor axis) / 2 Obtain the particle size of the crystal particles.
  • the maximum diameter for any 100 particles is obtained, the average value is defined as “average particle diameter”, and the largest “maximum diameter” is defined as “maximum crystal grain diameter”.
  • the farthest distance among adjacent molybdenum crystals is 50 ⁇ m or less.
  • FIG. 5 shows another example of the structure of the Mo sintered component for a semiconductor heat sink of the present invention.
  • the molybdenum crystal particle 4b is the most distant among the molybdenum crystal particles around the molybdenum crystal particle 4a.
  • the shortest distance D is defined as "the most distant distance between adjacent molybdenum crystals".
  • the distance between the adjacent molybdenum crystals is 50 ⁇ m or less, the variation in the partial thermal expansion coefficient is reduced, the strength is improved, and the variation in the partial specific resistance is reduced. Can do. More preferably, the distance between adjacent molybdenum crystals is 5 to 20 ⁇ m.
  • the measuring method of "the most distant distance between adjacent molybdenum crystals" shall be measured using an enlarged photograph (SEM photograph) having a unit area of 500 ⁇ m ⁇ 500 ⁇ m.
  • FIG. 3 shows an example of the shape of Mo sintered parts for semiconductor heat sinks.
  • FIG. 3 exemplifies a cylindrical Mo-sintered part for a semiconductor heat sink, and may be a polygonal column shape such as a square column shape.
  • L is the diameter of the Mo sintered component 1 for semiconductor heat sinks
  • T is the thickness of the Mo sintered component 1 for semiconductor heat sinks.
  • the sizes of the diameter L and the thickness T are not particularly limited, but the thickness is 0.05 to 1 mm, the diameter is 5 to 70 mm, and further the thickness is 0.5 to 1 mm, and the diameter is 5 to It is preferable that it is disk shape which is 10 mm.
  • the Mo sintered component for semiconductor heat sink of the present invention has a uniform ratio of Mo and Cu, the heat dissipation effect in the substrate thickness and width direction is uniform without any anisotropy. Therefore, even if a plurality of semiconductor elements are mounted, the heat dissipation effect can be made the same for each element. Moreover, the reliability of the semiconductor device using the Mo sintered component for semiconductor heat sink of the present invention can be improved.
  • the reliability of the semiconductor heat sink can be improved as the semiconductor heat sink has a plurality of Mo sintered parts for semiconductor heat sink.
  • the number of mounted Mo sintered parts for a semiconductor heat sink is not particularly limited, but is usually 2 to 5.
  • Mo powder and copper powder are prepared and mixed as raw material powder.
  • the Mo powder a raw material powder having an average particle diameter of 1 to 8 ⁇ m, more preferably 3 to 5 ⁇ m is used.
  • the average particle size exceeds 8 ⁇ m, coarse particles that are twice or more the average particle size are likely to be formed.
  • the purity of Mo powder is 99.9 wt% or more.
  • the average particle size of the copper powder is preferably 10 ⁇ m or less, more preferably 0.5 to 5 ⁇ m.
  • the average particle diameter of the copper powder exceeds 10 ⁇ m, it is easy to make a state in which the copper powder does not enter between the Mo particles. Further, the purity of the copper powder is preferably 99.9 wt% or more. In addition, when a third component such as Ni, Co, Fe or the like is added as necessary, the average particle size of the third component is also set to an average particle size of 10 ⁇ m or less, more preferably 0.5 to 5 ⁇ m.
  • the resin binder is preferably PVA (polyvinyl alcohol).
  • the raw material mixed powder is granulated.
  • the granulated powder of the raw material powder has an average particle size of 50 to 200 ⁇ m, more preferably 80 to 140 ⁇ m. It is preferable to uniformly mix the Mo powder and the copper powder (including the third component powder when the third component is added) at the stage of the granulated powder.
  • the granulated powder (the raw material powder mixed with the resin binder) is packed in a mold and press-molded to perform a press step of obtaining a Mo molded part in the shape of a Mo sintered part for a semiconductor heat sink.
  • the pressing pressure is preferably 3 to 13 ton / cm 2 (294 to 1274 MPa). If the pressing pressure is less than 3 ton / cm 3 , the strength of the molded body is insufficient, and if it exceeds 13 ton / cm 2 , the density of the molded body becomes too high, and the mold is easily loaded.
  • the obtained Mo molded body is fired in an oxidation-reduction atmosphere to perform a first firing step for obtaining a first fired body.
  • the maximum temperature is 900 to 1200 ° C. and the holding time at the maximum temperature is 1 to 4 hours.
  • the first firing step is positioned as temporary sintering (or intermediate sintering before the main sintering) when the second firing step described later is the main sintering. If the maximum attained temperature is less than 900 ° C, densification of the compact is insufficient, and if it exceeds 1200 ° C, densification becomes excessive. If it is too densified, copper will not sufficiently enter the gaps between the Mo crystal particles.
  • the oxidation-reduction atmosphere is preferably a wet hydrogen gas atmosphere.
  • Wet hydrogen gas is hydrogen gas containing water vapor.
  • the surface of the Mo sintered body is not intended for densification of the Mo sintered body (Mo sintered part for semiconductor heat sink) as the final product, but is fired in an oxidation-reduction atmosphere. This process aims to remove the carbon and prevent the Mo sintered body from being oxidized more than necessary. If the Mo sintered body is oxidized, copper may not be sufficiently filled between the Mo crystal particles.
  • the rate of temperature rise is too fast, there is a possibility that the binder in the molded body disappears or becomes non-uniform in density, resulting in a sintered body with non-uniform density.
  • the temperature is raised over 7 hours or more, the non-uniformity is eliminated, but it takes too much time and the production efficiency is lowered.
  • the wet hydrogen gas flow rate is 0.2 m 3 / H (hour) or more, and further 0.2 to 17 m 3 / H (hour). It is preferable to do. It is preferable to supply wet hydrogen gas as an air flow so that fresh wet hydrogen gas is supplied to the Mo molded body. Further, if there is a predetermined gas flow rate, the removed carbon components (carbon dioxide, carbon monoxide) can be removed out of the sintering furnace together with the air flow. The resin binder remains as carbon when heat is applied.
  • the remaining carbon becomes a carbon component (carbon dioxide and carbon monoxide) during the first firing step, but these carbon components easily react with copper, so that fresh wet hydrogen gas can be supplied by controlling the air flow. It is necessary to.
  • Mo boat firing boat
  • the wet hydrogen gas flow rate is within a range of 2 m 3 / H or more.
  • FIG. 4 shows an example of a manufacturing method in which a molded body for firing a plurality of Mo molded bodies in one batch is loaded into a firing furnace.
  • 6 is a Mo molded body
  • 7 is a firing container
  • 8 is a firing boat
  • 9 is a separator.
  • a plurality of Mo molded bodies 6 are placed on the firing boat 8.
  • a plurality of firing boats 8 on which a plurality of molded bodies 6 are placed are stacked in multiple stages via separators 9. This is disposed in the firing container 7.
  • the firing containers By arranging the firing containers in a firing furnace, 200 batches or more, further 400 pieces or more, and 2000 pieces or more can be fired at one time.
  • the firing boat, the separator, and the firing container are made of Mo from the viewpoint of heat resistance and the like.
  • a fired boat may be used that is coated with an oxide ceramic as necessary.
  • the second firing step is a step corresponding to a so-called main sintering step.
  • the maximum temperature is 1200 to 1600 ° C. and the holding time at the maximum temperature is 1 to 5 hours. If the maximum temperature is less than 1200 ° C., densification does not proceed sufficiently and the density tends to be less than 90%. On the other hand, when the maximum temperature exceeds 1600 ° C., copper flows out and the density decreases. Preferably, it is in the range of 1300 to 1500 ° C. Further, if the holding time at the highest temperature is less than 1 hour, densification of the Mo sintered body is insufficient, and if it exceeds 5 hours, copper may be dissolved.
  • Example 1 (Examples 1 to 5 and Comparative Example 1) An Mo powder having an average particle diameter of 3 ⁇ m and a purity of 99.9 wt% is mixed with a copper powder having an average particle diameter of 5 ⁇ m and a purity of 99.9%, and further a resin binder (PVA) and A granulated powder having an average particle size of 80 to 120 ⁇ m was prepared by mixing. Next, this granulated powder was die-molded at a press pressure of 3 to 5 ton / cm 2 to prepare a Mo molded body. The composition ratio of Mo and Cu and the size of the Mo sintered body are as shown in Table 1. Next, as shown in FIG.
  • the prepared 400 Mo molded bodies 6 were arranged on a Mo firing boat 8 at intervals of 2 mm.
  • the firing boat 8 was stacked in three stages via a spacer (separator) 9 and accommodated in the Mo firing container 7. This was put into a push-type firing furnace, and the first and second firing steps were performed under the conditions shown in Table 1.
  • the firing step was performed in an atmosphere in which a wet hydrogen gas stream was flowed after the inside of the firing furnace was once filled with nitrogen gas.
  • the temperature was raised from 600 ° C. to the highest temperature over 3 to 7 hours. Thereafter, surface polishing was performed to prepare a Mo sintered part for semiconductor heat sink according to each example.
  • the obtained Mo sintered parts for semiconductor heat sinks were unified with a diameter of 50 mm and a thickness of 0.6 mm.
  • the surface roughness Ra was unified at 3 ⁇ m.
  • Comparative Example 1 after preparing a Mo sintered body having a density of 90%, a Mo sintered part manufactured by an infiltration method infiltrating Cu was prepared.
  • the area ratio of Mo crystals per unit area of 500 ⁇ m ⁇ 500 ⁇ m on the structure surface was determined. This was obtained by taking an enlarged photograph (SEM photograph) having a unit area of 500 ⁇ m ⁇ 500 ⁇ m in an arbitrary cross section, obtaining the area of the Mo crystal reflected there, and calculating the area ratio of the Mo crystal to the unit area.
  • SEM photograph enlarged photograph
  • EPMA surface analysis was used for parts where it was difficult to distinguish (discriminate) between Mo crystal and copper. This operation was performed at arbitrary five locations, and the average value was set as “average value of Mo crystal area ratio”, the difference from the average value of each measurement point was determined, and the largest difference was set as “variation”.
  • crystallization was calculated
  • the particle size of each Mo crystal particle was calculated by the formula of (major axis + minor axis) / 2, and the average value of 100 Mo crystal particles was defined as “average particle size”.
  • grains reflected there there and the average particle size was calculated
  • the distance between the adjacent molybdenum crystals was determined from the above-mentioned enlarged photograph as the shortest distance between the molybdenum crystal grains that were the most distant from the adjacent molybdenum crystals.
  • the density was determined by (Archimedes method / theoretical density) ⁇ 100 (%). Furthermore, the coefficient of thermal expansion, tensile strength, specific resistance, and thermal conductivity were determined.
  • the coefficient of thermal expansion of the Mo sintered part was determined by a volume expansion coefficient from 25 ° C. to 400 ° C.
  • the tensile strength was determined by a tensile strength measurement method according to JIS-Z-2241.
  • the specific resistance was obtained by a volume resistivity measuring method according to JIS-H-0505.
  • the thermal conductivity was determined by a laser flash method. The results are shown in Table 2.
  • the Mo sintered part for semiconductor heat sink according to this example has a thermal expansion coefficient of 7 to 14 ⁇ 10 ⁇ 6 / ° C. and a tensile strength of 0.44 GPa or more.
  • the specific resistance was 5.3 ⁇ 10 ⁇ 6 ⁇ ⁇ m or less, and the thermal conductivity was 160 W / m ⁇ K or more.
  • the gaps between the Mo crystal particles were sufficiently filled with copper.
  • the Mo sintered part according to Comparative Example 1 manufactured by the infiltration method had a region not filled with copper at the center of the Mo sintered body, and the density was 87%.
  • the coefficient of thermal expansion, strength, and thermal conductivity decreased, and the specific resistance value increased.
  • the sintering temperature has to be increased to about 1700 ° C., so that coarse particles that are twice or more the average particle diameter are formed.
  • Example 6 Next, while setting a composition and Mo sintered compact size as shown in Table 3, each Mo sintered component was manufactured according to the conditions of Table 4. The same measurement as Example 1 was performed about Mo sintered components for semiconductor heat sinks concerning each manufactured Example. The results are shown in Table 5. The firing step is performed by raising the temperature from 600 ° C. to the highest temperature over 3 to 7 hours. Further, the obtained Mo sintered part was subjected to surface polishing, and the surface roughness was changed to the numerical values shown in Table 3.
  • the Mo sintered component for semiconductor heat sink according to the present example shows excellent characteristics even when the size is changed.
  • Example 1A to 13A and Comparative Example 1A A semiconductor device as shown in FIG. 1 was manufactured using the Mo sintered parts for semiconductor heat sinks according to Examples 1 to 13 and Comparative Example 1. Specifically, the semiconductor element 3 was mounted on the surface of the Mo sintered component 1 for semiconductor heat sink via the insulating layer 2. Next, the number of semiconductor elements 3 shown in Table 6 was arranged on the insulating film 2 and brazed. Thereafter, a heat resistance cycle test of the semiconductor element was performed. That is, the temperature is raised from room temperature (25 ° C.) to 120 ° C., then returned to room temperature, and further cooled to ⁇ 20 ° C., and one cycle is assumed.
  • the semiconductor device using the Mo sintered component for each semiconductor heat sink according to the present example has no positional deviation and has high reliability and durability. did.
  • the semiconductor device of Comparative Example 1A has a low coefficient of thermal expansion and a low thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 銅を10~50質量%含有するモリブデン合金材から成る半導体放熱板用Mo焼結部品において、上記モリブデン合金材のモリブデン結晶の平均粒径が10~100μmであり、単位面積500μm×500μm当りのMo結晶の面積比のばらつきが平均値の±10%以内であることを特徴とする半導体放熱板用Mo焼結部品である。MoとCuの存在割合のばらつきが小さいので熱膨張率などの特性が優れており、熱膨張率、強度などが優れた半導体放熱板用Mo焼結部品が得られる。

Description

半導体放熱板用Mo焼結部品およびそれを用いた半導体装置
 本発明は、半導体放熱板に用いるMo焼結部品およびそれを用いた半導体装置に関する。
 半導体装置は、様々な電子機器に用いられている。半導体装置では、半導体素子に電流を流すことによって機能する。このとき、半導体素子は発熱する。この発熱を効率的に逃がさないと半導体素子自体の破壊または誤作動の原因となる。そのため、半導体素子を放熱板上に配置し、半導体素子の熱を装置の外部に効率的に逃がすことが試みられている。
 上記半導体装置に組み込まれている半導体放熱板は、単に熱伝導率が高いことのみではなく、熱膨張差に起因する応力を低減するために、熱膨張率が半導体素子に近似していることや、十分な構造強度などが求められている。このような条件を満たす放熱板の具体例として、例えば、特開平11-307701号公報(特許文献1)には、Mo圧粉体に銅を溶浸したMo―Cu溶浸基板が開示されている。低熱膨張率材料であるMoと高熱伝導率材料であるCuを組み合わせることにより、低熱膨張であり、かつ放熱性に優れた放熱板を提供できている。
特開平11-307701号公報
 しかしながら、上記特許文献1に開示されたMo―Cu溶浸基板は、Mo圧粉体にCuを溶浸させる方法で形成されているために、内部まで均一にCuを溶浸することは困難であるという問題点があった。特に内部にポア(空気)が残存すると、その部分は熱抵抗部となり放熱効果を阻害する原因になっていた。特に、部分的にMoとCuの存在比率が変化することが、放熱効果の悪化だけでなく、強度や熱膨張率のばらつきなどの原因にもなっていた。
 本発明は、このような技術課題に鑑みてなされたもので、放熱性が良好であり、かつ構造強度が高い半導体放熱板用Mo焼結部品およびそれを用いた半導体装置を提供するものである。
 本発明の半導体放熱板用Mo焼結部品は、銅を10~50質量%含有するモリブデン焼結合金材からなる半導体放熱板用Mo焼結部品において、モリブデン合金材のモリブデン結晶の平均粒径が10~100μmであり、単位面積500μm×500μm当りのMo結晶の面積比のばらつきが平均値の±10%以内であることを特徴とするものである。
 また、Mo焼結部品の表面粗さRaが5μm以下であることが好ましい。また、モリブデン焼結合金材は、Ni、Co、Feの少なくとも一種以上を金属元素換算で0.1~3質量%含有していることが好ましい。また、モリブデン焼結合金材が密度90~98%の焼結合金材であることが好ましい。また、銅がモリブデン結晶同士の隙間に充填されていることが好ましい。また、モリブデン結晶の最大結晶粒径が平均粒径の2倍以下であることが好ましい。また、隣り合うモリブデン結晶同士の最も離れた距離が50μm以下であることが好ましい。
 また、Mo焼結部品は、厚さが0.05~1mmであり、直径が5~70mmである円板状であることが好ましい。また、Mo焼結部品の熱膨張率が7~14×10-6/℃であることが好ましい。また、Mo焼結部品の引っ張り強度が0.44GPa以上であることが好ましい。また、Mo焼結部品の比抵抗が5.3×10-6Ω・m以下であることが好ましい。
 また、本発明に係る半導体装置は、上記本発明に係る半導体放熱板用Mo焼結部品を放熱板として用いて構成されたものである。
 本発明に半導体放熱板用Mo焼結部品およびそれを用いた半導体装置によれば、半導体放熱板用Mo焼結部品のMo結晶サイズのばらつきが小さいので放熱性や構造強度に優れた放熱板を提供することができる。その結果、半導体装置の信頼性を大幅に向上させることができる。
本発明に係る半導体放熱板用Mo焼結部品の構成例を示す断面図である。 本発明に係る半導体放熱板用Mo焼結部品の組織の一例を示す断面図である。 本発明に係る半導体放熱板用Mo焼結部品の形状例を示す斜視図である。 本発明に係る半導体放熱板用Mo焼結部品の製造方法の一例を示す断面図である。 本発明に係る半導体放熱板用Mo焼結部品の他の組織例を示す断面図である。
 本実施形態に係る半導体放熱板用Mo焼結部品は、銅を10~50質量%含有するモリブデン合金材から成る半導体放熱板用Mo焼結部品において、上記モリブデン合金材は、モリブデン結晶の平均粒径が10~100μmであり、単位面積500μm×500μm当りのMo結晶の面積比のばらつきが平均値の±10%以内であることを特徴とするものである。
 上記銅の含有量が10質量%未満または50質量%を超えると、熱膨張係数(熱膨張率)が7~14×10-6/℃を外れる可能性が高い。
 ここで上記半導体放熱板とは、半導体素子を搭載するための基板またはヒートシンク(放熱板)として使用するためのものである。図1に半導体放熱板を使用した構成部品の一例を示す。図1中、1は半導体放熱板用Mo焼結部品、2は絶縁膜(絶縁層)、3は半導体素子である。
 図1では半導体放熱板用Mo部品1に絶縁層2を介して半導体素子3を搭載した例を示したが、半導体素子を搭載する基板を他の材料(例えば、セラミックス基板)で形成して、他の材料から成る基板の裏面にヒートシンクとして本発明の半導体放熱板用Mo部品を適用してもよい。なお、Mo部品は絶縁体ではないため、半導体素子を搭載する際は絶縁層2を介して接合を行う。
 本実施形態に係る半導体放熱板用Mo焼結部品は、熱伝導率が160W/m・K以上と放熱性も良好であるため、半導体素子を搭載した場合においても優れた放熱性を示す。また、半導体素子はSi成分などで形成されている。半導体素子(Si系)の熱膨張係数は4~7×10-6/℃程度であるので、Mo部品の熱膨張率は前述のように熱膨張率が7~14×10-6/℃、さらには8~11×10-6/℃であることが好ましい。このように半導体素子との熱膨張率を近似させることにより半導体素子との熱膨張差に起因する剥がれを防止することができる。
 また、モリブデン合金材は、モリブデン結晶の平均粒径が10~100μmであり、単位面積500μm×500μm当りのMo結晶の面積比のばらつきが平均値の±10%以内であることを特徴とするものである。
 ここでモリブデン結晶の平均粒径が10μm未満と過小であると相対的に銅の割合が増加するので合金材の強度が低下する。一方、平均粒径が100μmを超えるように過大になると相対的に銅の割合が少なくなるので好ましくない。モリブデン合金材は焼結体であり、モリブデンと銅との存在割合(面積比)のばらつきが平均値の±10%以内である。モリブデンと銅の面積比のばらつきが少ないと、モリブデン合金材の特性ばらつきを抑制することができる。
 半導体放熱板用Mo焼結部品は、前述のように半導体素子を搭載して使われるものである。例えば、半導体素子を搭載した場合、素子の発熱により半導体放熱板用Mo焼結部品は熱膨張する。このとき、Mo結晶と銅との存在割合のばらつきが大きいと部分的に膨張に差が出て半導体素子の剥がれの原因となるおそれがある。そのため、熱膨張率の部分的な差をなくすためにMo結晶と銅との存在割合(面積比)のばらつきを±10%以内にすることが重要である。
 また、Mo結晶と銅との面積比の測定は単位面積500μm×500μmを基準として測定するものとする。単位面積を500μm×500μmとしたのは、平均粒径の上限を100μmとしているので、その5倍程度の面積であれば測定誤差を低減することが可能であるためである。また、Mo結晶と銅との面積比の測定は、SEM写真またはEPMAの面分析により測定できる。
 また、半導体放熱板用Mo焼結部品は、表面粗さRaが5μm以下であることが好ましい。前述のようにヒートシンクとしてモジュールにはめ込んだりするとき、表面粗さRaが大きいと絶縁層との間に隙間ができて、この隙間が熱抵抗体となり放熱性を低下させる原因となるおそれがある。絶縁層は一般的に絶縁樹脂、金属酸化物が用いられる。絶縁樹脂や金属酸化物は、熱伝導率がせいぜい30W/m・K以下と放熱性が悪い。そのため、絶縁層があまり厚いと、さらに放熱性が低下する。そのため、絶縁層は100μm以下、さらには50μm以下であることが好ましい。Mo焼結部品の表面粗さRaは5μm以下、さらには2μm以下であることが好ましい。
 また、モリブデン合金材組成は、MoとCuの2元系を基本とするが、Ni、Co、Feの少なくとも一種以上を金属元素換算で0.1~3質量%含有していてもよい。Ni、Co、Feを所定量含有することにより、モリブデン合金材の強度や硬度を上げることができる。モリブデン合金の強度は、MoとCuの2元系の場合には引っ張り強度が0.44GPa以上であるものが、Ni、Co、Feの添加により引っ張り強度を0.50GPa以上に増加させることができる。
 また、モリブデン合金材は、密度が90%以上、さらには90~98%であることが好ましい。密度は、(アルキメデス法による実測値/理論密度)×100%で示すものとする。理論密度は、モリブデンの理論密度:10.22g/cm、銅の理論密度:8.96g/cm、鉄の理論密度:7.87g/cm、コバルトの理論密度:8.9g/cm、ニッケルの理論密度:8.9g/cmを用いて重量比を掛け算して求める。例えば、Moを70wt%、銅を30wt%のモリブデン合金材の場合、70wt%×10.22+30wt%×8.96=9.842g/cmがMo(70wt%)-Cu(30wt%)のモリブデン合金材の理論密度となる。
 上記密度が90%未満の場合は、モリブデン合金材の強度が低下するおそれがある。一方、密度が98%を超えて高いと強度は十分であるが、製造コストの増大を招くおそれがある。そのため、密度は90~98%が好ましい。さらに、密度は94~97%の範囲が好ましい。
 図2に本実施形態に係る半導体放熱板用Mo焼結部品の組織の一例を示す。図中、4はモリブデン結晶粒子、5は銅である。また、銅がモリブデン結晶同士の隙間に充填されていることが好ましい。また、モリブデン結晶の最大結晶粒径が平均粒径の2倍以下であることが好ましい。
 Mo焼結部品は、Mo粉末と銅粉末とを混合した成形体を焼結して製造される焼結体である。モリブデンの融点は2620℃であり、銅の融点は1083℃であるので1200℃以上の高温で焼結するとモリブデン結晶粒子はそのままあるいは一部粒成長して結晶粒子として存在し、銅は溶けてモリブデン結晶粒子同士の隙間に充填されるようになる。
 また、モリブデン結晶の最大結晶粒径が平均粒径の2倍以下であることが好ましい。モリブデン結晶に平均粒径の2倍を超える粗大粒子があると、モリブデン結晶と銅の存在割合のばらつきが発生し易い。
 なお、上記モリブデン結晶の平均粒径の測定方法は、拡大写真(SEM写真)を用い、そこに写る個々のモリブデン結晶の長径と短径とを求め、(長径+短径)/2により、その結晶粒子の粒径を求める。この作業を任意の100粒子に関する最大径を求め、その平均値を「平均粒径」とし、最も大きな「最大径」を「最大結晶粒径」とする。
 また、隣り合うモリブデン結晶同士間の距離の中で最も離れた距離が50μm以下であることが好ましい。図5に本発明の半導体放熱板用Mo焼結部品の組織の他の一例を示した。図中、4aおよび4bは隣り合うモリブデン結晶粒子であり、5は銅である。
 図5において、モリブデン結晶粒子4aの周囲にあるモリブデン結晶粒子の中で最も離れた距離にあるのはモリブデン結晶粒子4bである。モリブデン結晶粒子4aから最も離れたモリブデン結晶粒子4bに関し、その最短距離Dを「隣り合うモリブデン結晶同士の最も離れた距離」とする。本発明では、隣り合うモリブデン結晶同士の最も離れた距離が50μm以下とすることにより、部分的な熱膨張率のバラツキを低減し、強度を向上させ、部分的な比抵抗のバラツキを低減することができる。また、隣り合うモリブデン結晶同士の最も離れた距離は5~20μmであることがより好ましい。
 なお、「隣り合うモリブデン結晶同士の最も離れた距離」の測定方法は、単位面積500μm×500μmの拡大写真(SEM写真)を使って測定するものとする。
 図3に半導体放熱板用Mo焼結部品の一形状例を示す。図3では円柱形状の半導体放熱板用Mo焼結部品を例示したものであり、その他、四角柱形状などの多角柱形状であってもよい。また、図3中、Lは半導体放熱板用Mo焼結部品1の直径、Tは半導体放熱板用Mo焼結部品1の厚さである。直径L、厚さTのサイズは特に限定されるものではないが、厚さが0.05~1mm、直径が5~70mm、さらには厚さが0.5~1mmであり、直径が5~10mmである円板状であることが好ましい。本発明の半導体放熱板用Mo焼結部品はMoとCuとの存在比率を均質にしているので、基板厚さや幅方向における放熱効果に異方性が無く均質になっている。そのため、複数の半導体素子を搭載しても放熱効果を各素子について同様にできる。また、本発明の半導体放熱板用Mo焼結部品を用いた半導体装置の信頼性を向上させることができる。
 特に、複数個の半導体放熱板用Mo焼結部品を搭載した半導体放熱板であるほど信頼性を向上させることができる。半導体装置において、半導体放熱板用Mo焼結部品の搭載数は特に限定されるものではないが、通常2~5個である。
 次に製造方法について説明する。本発明の半導体放熱板用Mo焼結部品の製造方法は特に限定されるものではないが、効率よく得るための方法として次の製造方法が挙げられる。
 まず、原料粉末としてMo粉末と銅粉末とを用意し混合する。Mo粉末としては、平均粒径が1~8μmであり、さらに好ましくは3~5μmである原料粉末を使用する。平均粒径が8μmを超えると平均粒径の2倍以上の粗大粒子が形成され易い。また、Mo粉末の純度は99.9wt%以上のものであることが好ましい。
 また、銅粉末の平均粒径は、10μm以下、さらには0.5~5μmであることが好ましい。銅粉末の平均粒径が10μmを超えるとMo粒子間に銅粉末が入らない状態ができ易いため、好ましくない。また、銅粉末の純度も99.9wt%以上のものであることが好ましい。また、必要に応じ、Ni,Co,Feなどの第三成分を添加する場合は、第三成分の平均粒径も平均粒径10μm以下、さらに好ましくは0.5~5μm以下とする。
 各原料粉末を混合した後、樹脂バインダを混合する工程を行う。樹脂バインダは、PVA(ポリビニルアルコール)などが好ましい。樹脂バインダ混合工程において、原料混合粉末を造粒する。原料粉末の造粒粉末は、平均粒径が50~200μmであり、さらに80~140μmであることが好ましい。造粒粉末の段階で、Mo粉末と銅粉末(第三成分を添加した場合は第三成分粉末も含めて)を均一に混合しておくことが好ましい。
 次に、この造粒粉末(樹脂バインダと混合した原料粉末)を金型に詰めてプレス成形することにより、半導体放熱板用Mo焼結部品形状のMo成形体を得るプレス工程を行う。プレス圧力は3~13ton/cm(294~1274MPa)が好ましい。プレス圧力が3ton/cm未満では成形体の強度が不十分であり、13ton/cmを超えて大きいと成形体の密度が高くなりすぎ金型に負荷が掛かり易い。
 次に得られたMo成形体を酸化還元雰囲気中で焼成して第一の焼成体を得る第一の焼成工程を行う。第一の焼成工程は、最高到達温度を900~1200℃とし、最高到達温度での保持時間を1~4時間とすることが好ましい。第一の焼成工程は、後述の第二の焼成工程を本焼結としたときの仮焼結(または本焼結前の中焼結)との位置付けとなる。最高到達温度が900℃未満では成形体の緻密化が不十分であり、1200℃を超えると緻密化が過剰になる。緻密化され過ぎると、銅がMo結晶粒子間の隙間に十分入り込まなくなる。また、酸化還元雰囲気としては、ウエット水素ガス雰囲気であることが好ましい。ウエット水素ガスとは、水蒸気を含有した水素ガスのことである。
 第一の焼成工程では、最終製品としてMo焼結体(半導体放熱板用Mo焼結部品)の緻密化を目的としたものではなく、酸化還元雰囲気中で焼成することにより、Mo焼結体表面の炭素を取り除くとともにMo焼結体が必要以上に酸化されるのを防止することを目的とした工程である。Mo焼結体が酸化されると銅がMo結晶粒子間に十分に充填されないおそれがある。
 また、ウエット水素(水蒸気を含んだ水素ガス)雰囲気中での処理を行うことにより、Mo焼結体表面から炭素を除去することが可能である。除去された炭素は二酸化炭素(CO)や一酸化炭素(CO)となり除去される。これは、加熱により温められた水蒸気(HO)は炭素(C)と反応し易くなり、一酸化炭素(CO)や二酸化炭素(CO)としてMo焼結体から除去され易い。Mo成形体を作る際に炭素成分が多い樹脂バインダを使っている。
 また、第一の焼成工程は、600℃から最高到達温度までを3~7時間かけて昇温することが好ましい。第一の焼成工程は、昇温速度があまり早いと成形体中のバインダの消失や緻密化に不均一な個所がでて、密度が不均一な焼結体となるおそれがある。一方で7時間以上かけて昇温すれば不均一性は解消されるが、時間が掛かり過ぎて製造効率が低下する。
 また、第一の焼成工程において、焼成中にMo成形体が酸化されるのを防止するためにウエット水素含有雰囲気中で焼成するものとする。必要以上に酸化を防ぐ観点から、焼成炉内を窒素ガスで置換した後、ウエット水素ガス流量を0.2m/H(時間)以上、さらには0.2~17m/H(時間)とすることが好ましい。ウエット水素ガスを気流として供給し、Mo成形体に新鮮なウエット水素ガスが供給されるようにすることが好ましい。
 また、所定のガス流量があれば、除去された炭素成分(二酸化炭素、一酸化炭素)を気流と一緒に焼結炉外に排除できる。樹脂バインダは、熱を加えると炭素として残存する。残存した炭素は第一の焼成工程中に炭素成分(二酸化炭素や一酸化炭素)になるが、これら炭素成分は銅と反応し易いことから、気流の制御により新鮮なウエット水素ガスを供給できるようにする必要がある。
 特に、焼成ボート(Moボート)上に複数個のMo成形体を並べて1バッチ200個以上の成形体を一度に焼成する場合は、ウエット水素ガス流量の調整は必要であり、そのときは焼成炉内のウエット水素ガス流量が2m/H以上の箇所があるようにすることが好ましい。
 図4に、製造方法の一例として、1バッチで複数個のMo成形体を焼成する際の成形体を焼成炉に装填する例を示す。図中、6はMo成形体、7は焼成用容器、8は焼成ボート、9はセパレータである。焼成ボート8上にMo成形体6を複数個載置する。このとき、各成形体6の隙間を水素ガスが流通し易くするために各成形体同士の隙間を1mm以上開けることが好ましい。複数個の成形体6を載せた焼成ボート8を、セパレータ9を介して複数枚、多段に積層する。これを焼成用容器7内に配置する。この焼成用容器ごと、焼成炉内に配置することにより1バッチ200個以上、さらには400個以上、さらには2000個以上の成形体を一度に焼成することができる。なお、焼成ボート、セパレータ、焼成用容器は、耐熱性等の観点からMoで構成されていることが好ましい。また、焼結体の融着を防止するために、焼成ボートは必要に応じ酸化物セラミックスのコーティングが施されているものを用いてもよい。
 次に、第一の焼成体を水素含有雰囲気中で焼成する第二の焼成体を得る第二の焼成体を得る第二の焼成工程を実施する。第二の焼成工程は、いわゆる本焼結工程に相当する工程である。
 第二の焼成工程は、最高到達温度を1200~1600℃とし、最高到達温度での保持時間を1~5時間とすることが好ましい。最高到達温度が1200℃未満では緻密化が十分に進行せず密度が90%未満になり易い。一方、最高到達温度が1600℃を超えると銅が流れ出し、密度が低下する。好ましくは1300~1500℃の範囲である。
 また、最高到達温度での保持時間が1時間未満ではMo焼結体の緻密化が不十分であり、5時間を超えると銅が溶け出るおそれがある。
 また、第二の焼成工程も第一の焼成工程と同様にMo焼結体の酸化を防ぐために水素含有雰囲気中で実施する必要がある。このため、焼成炉内を窒素ガスで置換した後、水素ガスを供給する方法が好ましい。また、新鮮な水素ガスを供給することが好ましいため、水素ガス気流を第一の焼成工程と同様の条件で調整することが好ましい。特に、1バッチ200個以上、さらには400個以上と多数個の焼結体を得るためには、ウエット水素ガスまたは水素ガスの流量の調整は必要である。
 また、第一の焼成工程から第二の焼成工程は、図4に示したような焼成容器7を用いることにより第一の焼成工程から第二の焼成工程への移動を連続的に実施することができるので量産性が向上する。
 また、上記のように製造したMo焼結体(半導体放熱板用Mo焼結部品)は、必要に応じて、表面研磨加工を施すものとする。研磨加工は、バレル研磨やダイヤモンド砥石による研磨加工が挙げられる。
[実施例]
(実施例1~5および比較例1)
 平均粒径が3μmであり、純度が99.9wt%であるMo粉末と、平均粒径が5μmであり、純度が99.9%である銅粉末とを混合し、さらに樹脂バインダ(PVA)と混合して平均粒径が80~120μmである造粒粉末を調製した。次に、この造粒粉末を3~5ton/cmのプレス圧力で金型成型してMo成形体を調製した。なお、MoとCuの組成比およびMo焼結体のサイズは表1に示した通りである。
 次に図4に示すように、調製した400個のMo成形体6をMo製焼成ボート8上に2mm間隔で並べた。この焼成ボート8を、スペーサ(セパレータ)9を介して3段重ねて、Mo焼成容器7内に収容した。これをプッシュ式焼成炉に投入して表1に示す条件にて第一及び第二の焼成工程を実施した。なお、焼成工程は一旦、焼成炉内部に窒素ガスを充満させた後に、ウエット水素ガス気流を流す雰囲気中で実施した。また、600℃から最高到達温度までは3~7時間かけて昇温して実施したものである。
 その後、表面研磨加工を施して各実施例に係る半導体放熱板用Mo焼結部品を調製した。得られた半導体放熱板用Mo焼結部品は直径50mm×厚さ0.6mmで統一した。また、表面粗さRaは3μmで統一した。
 一方、比較例1として、密度が90%であるMo焼結体を調製した後、Cuを溶浸する溶浸法により製造したMo焼結部品を用意した。
 実施例および比較例に係る半導体放熱板用Mo焼結部品に関し、組織表面の単位面積500μm×500μm当りのMo結晶の面積比を求めた。これは任意の断面において単位面積500μm×500μmの拡大写真(SEM写真)を撮り、そこに写るMo結晶の面積を求めて、単位面積に対するMo結晶の面積比を算出した。また、Mo結晶と銅の見分け(判別)が付きにくい部品についてはEPMA面分析を利用した。この作業を任意の5箇所で行い、その平均値を「Mo結晶の面積比の平均値」とし、各測定点の平均値からの差を求め、最も大きな差を「ばらつき」とした。
 また、Mo結晶の平均粒径は、前述の拡大写真から求めた。具体的には、(長径+短径)÷2の計算式で個々のMo結晶粒子の粒径を求め、Mo結晶粒子の100個分の平均値を「平均粒径」とした。また、同様の拡大写真を用いてそこに写る最も大きな粒子の粒径と平均粒径の比を求めた。また、隣り合うモリブデン結晶同士の最も離れた距離は、前述の拡大写真から、そこに写るモリブデン結晶の中で隣り合うモリブデン結晶同士の最も離れたモリブデン結晶粒子同士の最短距離を求めた。また、密度は(アルキメデス法/理論密度)×100(%)により求めた。
 さらに、熱膨張率、引っ張り強度、比抵抗、熱伝導率を求めた。ここで、Mo焼結部品の熱膨張率は25℃~400℃までの体積膨張率で求めた。また、引っ張り強度はJIS-Z-2241に準拠する引張強さ(tensile strength)測定方法により求めた。さらに比抵抗はJIS-H-0505に準拠する体積抵抗率の測定方法にて求めた。また、熱伝導率はレーザーフラッシュ法により求めた。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、本実施例にかかる半導体放熱板用Mo焼結部品は、熱膨張係数が7~14×10-6/℃であり、引っ張り強度が0.44GPa以上であり、比抵抗が5.3×10-6Ω・m以下であり、熱伝導率が160W/m・K以上であるという優れた特性を示した。また、断面写真を観察すると、Mo結晶粒子の隙間には銅が十分に充填されていた。
 一方、溶浸法で製造した比較例1に係るMo焼結部品は、Mo焼結体の中心部には銅が充填されていない領域があり、密度は87%であった。そのため、熱膨張率、強度および熱伝導率は低下し、比抵抗値は大きくなっていた。また、予めMoのみで焼結体を構成していることから焼結温度を1700℃程度と高くしなければならないことから平均粒径の2倍以上の粗大粒子が形成されていた。
(実施例6~13)
 次に組成およびMo焼結体サイズを表3のように設定すると共に、表4の条件にしたがって各Mo焼結部品を製造した。製造した各実施例に係る半導体放熱板用Mo焼結部品について実施例1と同様の測定を行った。その結果を表5に示す。また、焼成工程は600℃から最高到達温度までの昇温を3~7時間かけて実施したものである。また、得られたMo焼結部品を表面研磨して表面粗さを表3に示す数値にした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本実施例に係る半導体放熱板用Mo焼結部品は、サイズを変更しても優れた特性を示すことが判明した。
(実施例1A~13Aおよび比較例1A)
 実施例1~13および比較例1に係る半導体放熱板用Mo焼結部品を使用して図1に示すような半導体装置を作製した。具体的には、半導体放熱板用Mo焼結部品1の表面に絶縁層2を介して半導体素子3を搭載した。次に、絶縁膜2上に半導体素子3を表6に示す個数配置し、ろう付け接合した。その後、半導体素子の耐熱サイクル試験を行った。すなわち、室温(25℃)から120℃に昇温し、しかる後に室温まで戻し、さらに-20℃まで冷却する熱サイクルを1サイクルとし、1000サイクル後に半導体装置の不具合(半導体素子の剥がれや位置ずれ)の有無を確認した。不具合が1個でも発生したものを「×」、全く発生しなかったものを「○」で表示した。その結果を下記表6に併せて示す。
Figure JPOXMLDOC01-appb-T000006
 上記表6に示す結果から明らかなように、本実施例に係る各半導体放熱板用Mo焼結部品を用いた半導体装置では、位置ずれが全く発生せず信頼性および耐久性が高いことが判明した。一方、比較例1Aの半導体装置では熱膨張率が低く、熱伝導率も低いことから一部の素子に不具合が確認された。
1…半導体放熱板用Mo焼結部品
2…絶縁膜(絶縁層)
3…半導体素子
4,4a,4b…モリブデン結晶粒子
5…銅
6…Mo成形体
7…焼成用容器
8…焼成ボート
9…セパレータ(スペーサ)

Claims (12)

  1. 銅を10~50質量%含有するモリブデン合金材から成る半導体放熱板用Mo焼結部品において、上記モリブデン合金材のモリブデン結晶の平均粒径が10~100μmであり、単位面積500μm×500μm当りのMo結晶の面積比のばらつきが平均値の±10%以内であることを特徴とする半導体放熱板用Mo焼結部品。
  2. 半導体放熱板用Mo焼結部品の表面粗さRaが5μm以下であることを特徴とする請求項1記載の半導体放熱板用Mo焼結部品。
  3. 前記モリブデン合金材は、Ni、Co、Feの少なくとも一種以上を金属元素換算で0.1~3質量%含有していることを特徴とする請求項1または請求項2記載の半導体放熱板用Mo焼結部品。
  4. 前記モリブデン合金材が密度90~98%を有する焼結合金材であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  5. 前記銅がモリブデン結晶同士の隙間に充填されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  6. 前記モリブデン結晶の最大結晶粒径が平均粒径の2倍以下であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  7. 隣り合うモリブデン結晶同士の距離のうち、最も離れた距離が50μm以下であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  8. 半導体放熱板用Mo焼結部品は、厚さが0.05~1mmであり、直径が5~70mmである円板状であることを特徴とする請求項1ないし請求項7のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  9. 半導体放熱板用Mo焼結部品の熱膨張率が7~14×10-6/℃であることを特徴とする請求項1ないし請求項8のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  10. 半導体放熱板用Mo焼結部品の引っ張り強度が0.44GPa以上であることを特徴とする請求項1ないし請求項9のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  11. 半導体放熱板用Mo焼結部品の比抵抗が5.3×10-6Ω・m以下であることを特徴とする請求項1ないし請求項10のいずれか1項に記載の半導体放熱板用Mo焼結部品。
  12. 請求項1ないし請求項11のいずれか1項に記載の半導体放熱板用Mo焼結部品を用いたことを特徴とする半導体装置。
PCT/JP2012/057047 2011-03-30 2012-03-19 半導体放熱板用Mo焼結部品およびそれを用いた半導体装置 WO2012133001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800158014A CN103443314A (zh) 2011-03-30 2012-03-19 半导体散热板用Mo烧结部件以及使用该Mo烧结部件的半导体装置
KR1020137025443A KR101571230B1 (ko) 2011-03-30 2012-03-19 반도체 방열판용 Mo 소결 부품 및 그것을 사용한 반도체 장치
JP2013507405A JP5908459B2 (ja) 2011-03-30 2012-03-19 半導体放熱板用Mo焼結部品およびそれを用いた半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011076431 2011-03-30
JP2011-076431 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133001A1 true WO2012133001A1 (ja) 2012-10-04

Family

ID=46930733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057047 WO2012133001A1 (ja) 2011-03-30 2012-03-19 半導体放熱板用Mo焼結部品およびそれを用いた半導体装置

Country Status (4)

Country Link
JP (1) JP5908459B2 (ja)
KR (1) KR101571230B1 (ja)
CN (2) CN103443314A (ja)
WO (1) WO2012133001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102950287A (zh) * 2012-10-30 2013-03-06 上海瑞钼特金属新材料有限公司 一种钼铜合金薄板、超薄板材和箔材及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462899B2 (ja) * 2016-09-06 2019-01-30 ザ グッドシステム コーポレーション 高出力素子用放熱板材
CN107731929B (zh) * 2017-09-28 2019-12-13 信利(惠州)智能显示有限公司 薄膜晶体管的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212340A (ja) * 1992-11-26 1994-08-02 Tokyo Tungsten Co Ltd Cu−Mo焼結体、これを用いた放熱用部材、及び、放熱用部材を備えた半導体装置
JP2004156056A (ja) * 2001-09-20 2004-06-03 Yamaha Corp ヒートシンクおよびこのヒートシンクを用いた半導体キャリヤならびに半導体素子用パッケージ
JP2004277855A (ja) * 2003-03-18 2004-10-07 Yamaha Corp 高放熱性合金、放熱板、半導体素子用パッケージ、およびこれらの製造方法
JP2006041170A (ja) * 2004-07-27 2006-02-09 Yamaha Corp ヒートシンク用焼結体およびその製造方法ならびに半導体キャリヤ
JP2010126791A (ja) * 2008-11-28 2010-06-10 Jfe Seimitsu Kk 放熱材料およびそれを用いた半導体用放熱板と半導体用放熱部品、並びに放熱材料の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268117A (ja) * 1993-03-15 1994-09-22 Sumitomo Electric Ind Ltd 半導体装置用放熱基板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212340A (ja) * 1992-11-26 1994-08-02 Tokyo Tungsten Co Ltd Cu−Mo焼結体、これを用いた放熱用部材、及び、放熱用部材を備えた半導体装置
JP2004156056A (ja) * 2001-09-20 2004-06-03 Yamaha Corp ヒートシンクおよびこのヒートシンクを用いた半導体キャリヤならびに半導体素子用パッケージ
JP2004277855A (ja) * 2003-03-18 2004-10-07 Yamaha Corp 高放熱性合金、放熱板、半導体素子用パッケージ、およびこれらの製造方法
JP2006041170A (ja) * 2004-07-27 2006-02-09 Yamaha Corp ヒートシンク用焼結体およびその製造方法ならびに半導体キャリヤ
JP2010126791A (ja) * 2008-11-28 2010-06-10 Jfe Seimitsu Kk 放熱材料およびそれを用いた半導体用放熱板と半導体用放熱部品、並びに放熱材料の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102950287A (zh) * 2012-10-30 2013-03-06 上海瑞钼特金属新材料有限公司 一种钼铜合金薄板、超薄板材和箔材及其制备方法

Also Published As

Publication number Publication date
KR20130143640A (ko) 2013-12-31
JPWO2012133001A1 (ja) 2014-07-28
CN107658280A (zh) 2018-02-02
CN103443314A (zh) 2013-12-11
JP5908459B2 (ja) 2016-04-26
KR101571230B1 (ko) 2015-11-23

Similar Documents

Publication Publication Date Title
EP3330985B1 (en) Method for producing soft magnetic dust core, and soft magnetic dust core
US9255747B2 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
WO2020203787A1 (ja) 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
TWI445682B (zh) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
WO2005020339A1 (ja) 熱電材料、熱電素子及び熱電モジュール並びにそれらの製造方法
JP3673436B2 (ja) 炭素基金属複合材料およびその製造方法
WO2007034632A1 (ja) 熱電変換材料及びその製造方法
JP5908459B2 (ja) 半導体放熱板用Mo焼結部品およびそれを用いた半導体装置
JP6891991B2 (ja) 窒化珪素焼結基板の製造方法
KR20170101782A (ko) 세라믹 구조체, 그 제법 및 반도체 제조 장치용 부재
JP2010202896A (ja) スパッタリングターゲット及びその製造方法
JP5092135B2 (ja) 多孔質体およびその製造方法
KR101937961B1 (ko) 평탄화 작업이 필요 없는 질화규소 기판 및 그 제조방법
JP2012106929A (ja) 多孔質体の製造方法
EP2733132A1 (en) Aln substrate and method for producing same
JP6766509B2 (ja) 窒化珪素焼結基板の製造方法
JP7067592B2 (ja) 焼成容器内の温度制御方法
JP4467584B2 (ja) 熱電材料の製造方法
JP2005139554A (ja) 耐熱性被覆部材
EP1174400A1 (en) Porous silicon carbide sintered compact and silicon carbide metal composite suitable for use in table for wafer polishing machine
JPWO2017056202A1 (ja) アルミニウム合金−炭化珪素質複合体の製造方法
JP4585379B2 (ja) 金属−セラミックス複合材料の製造方法
JP2004179264A (ja) 熱電材料及びその製造方法
JP2006040992A (ja) アルミニウム合金−炭化珪素質複合体
JP2012052182A (ja) オルタネータ用Mo焼結部品およびそれを用いたオルタネータ並びに自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507405

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137025443

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763640

Country of ref document: EP

Kind code of ref document: A1