WO2012132954A1 - 半導体セラミック及び正特性サーミスタ - Google Patents

半導体セラミック及び正特性サーミスタ Download PDF

Info

Publication number
WO2012132954A1
WO2012132954A1 PCT/JP2012/056837 JP2012056837W WO2012132954A1 WO 2012132954 A1 WO2012132954 A1 WO 2012132954A1 JP 2012056837 W JP2012056837 W JP 2012056837W WO 2012132954 A1 WO2012132954 A1 WO 2012132954A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
withstand voltage
semiconductor ceramic
smc
sample
Prior art date
Application number
PCT/JP2012/056837
Other languages
English (en)
French (fr)
Inventor
正人 後藤
達也 松永
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013507382A priority Critical patent/JP5812091B2/ja
Priority to EP12763680.1A priority patent/EP2695869B1/en
Priority to CN201280015862.0A priority patent/CN103459350B/zh
Priority to TW101110898A priority patent/TWI468363B/zh
Publication of WO2012132954A1 publication Critical patent/WO2012132954A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Definitions

  • the present invention relates to a semiconductor ceramic, and more particularly to a semiconductor ceramic having a positive temperature coefficient (hereinafter referred to as “PTC characteristic”).
  • PTC characteristic a positive temperature coefficient
  • the present invention also relates to a positive temperature coefficient thermistor using the semiconductor ceramic.
  • a barium titanate (BaTiO 3 ) -based semiconductor ceramic generates PTC characteristics that generate heat when a voltage is applied and the resistance value rapidly increases when a Curie point Tc at which phase transition from tetragonal to cubic is exceeded. Utilizing this PTC characteristic, semiconductor ceramics are widely used for heater applications, motor start applications, and the like.
  • Patent Document 1 discloses a semiconductor ceramic containing BaTiO 3 , SrTiO 3 , CaTiO 3 , and PbTiO 3 as main components at a certain ratio as a semiconductor ceramic having PTC characteristics.
  • the semiconductor ceramic described in Patent Document 1 contains lead. Since lead is an environmentally hazardous substance, the development of a lead-free semiconductor ceramic that does not substantially contain lead is required in consideration of the environment. In addition to the voltage to be used, an electromotive force due to electromagnetic induction is further applied to the PTC thermistor used for starting the motor, so that resistance to high voltage (pressure resistance) is required.
  • the present invention has been made in view of such a problem.
  • a semiconductor ceramic having excellent pressure resistance without substantially containing an environmental load substance, and a positive temperature coefficient thermistor element using the semiconductor ceramic as a component body. The purpose is to provide.
  • the semiconductor ceramic according to the present invention includes a compound represented by the general formula (Ba 1 ⁇ (x + y + z) / 100 Ca x / 100 Sry / 100 Smc z / 100 ) TiO 3 (where Smc is a semiconducting agent). )
  • Mn is contained in a proportion of t mol parts, and the x, y, and t are 2.500 ⁇ x ⁇ 20.000,. 000 ⁇ y ⁇ 5.000, 2.500 ⁇ x + y ⁇ 20.000, 0.030 ⁇ t ⁇ 0.150, and z is determined by x, y, and t. It is characterized in that the specific resistance in the curve showing the relationship between the amount of the agent Smc and the specific resistance is equal to or more than the amount of the semiconducting agent Smc that minimizes.
  • the semiconducting agent Smc is Er
  • Mn is contained in a proportion of t mol parts with respect to 100 mol parts of the main components, and x, y, z, and t are 2.500 ⁇ x ⁇ .
  • the semiconducting agent Smc is Dy, and the general formula (Ba 1 ⁇ (x + y + z) / 100 Ca x / 100 Sry / 100 Dy z / 100 ) TiO 3
  • Mn is contained in a proportion of t mol parts with respect to 100 mol parts of the main components, and x, y, z, and t are 2.500 ⁇ x ⁇ .
  • the semiconducting agent Smc is Y, and the general formula (Ba 1 ⁇ (x + y + z) / 100 Ca x / 100 Sry / 100 Y z / 100 ) TiO 3
  • Mn is contained in a proportion of t mol parts with respect to 100 mol parts of the main components, and x, y, z, and t are 2.500 ⁇ x ⁇ .
  • the semiconducting agent Smc is Gd, and the general formula (Ba 1 ⁇ (x + y + z) / 100 Ca x / 100 Sry / 100 Gd z / 100 ) TiO 3
  • Mn is contained in a proportion of t mol parts with respect to 100 mol parts of the main components, and x, y, z, and t are 2.500 ⁇ x ⁇ .
  • the semiconducting agent Smc is Bi, and the general formula (Ba 1 ⁇ (x + y + z) / 100 Ca x / 100 Sry / 100 Biz / 100 ) TiO 3
  • Mn is contained in a proportion of t mol parts with respect to 100 mol parts of the main components, and x, y, z, and t are 2.500 ⁇ x ⁇ .
  • the semiconducting agent Smc is Nd, and the general formula (Ba 1 ⁇ (x + y + z) / 100 Ca x / 100 Sry / 100 Nd z / 100 ) TiO 3
  • Mn is contained in a proportion of t mol parts with respect to 100 mol parts of the main components, and x, y, z, and t are 2.500 ⁇ x ⁇ .
  • the present invention is also directed to a positive temperature coefficient thermistor in which a pair of external electrodes is formed on the surface of a component body, and the component body is formed of the semiconductor ceramic.
  • the present invention it is possible to provide a semiconductor ceramic having excellent pressure resistance and a positive temperature coefficient thermistor element using the semiconductor ceramic without substantially containing an environmental load substance.
  • FIG. 3 is a perspective view showing a positive temperature coefficient thermistor element according to the present invention. It is the curve which showed the relationship between the amount of Er of Table 1, and specific resistance. It is a SEM photograph of the semiconductor ceramic of sample number 1. 4 is an SEM photograph of a semiconductor ceramic of sample number 3. 5 is a SEM photograph of a semiconductor ceramic of sample number 5.
  • FIG. 1 is a perspective view showing a positive temperature coefficient thermistor element according to the present invention.
  • the positive temperature coefficient thermistor element 1 includes a component body 11 and electrodes 12 and 13.
  • the component body 11 is made of a semiconductor ceramic.
  • the component body 11 is formed in a plate shape having a main surface.
  • the component body 11 is formed in a disk shape, but may be formed in a rectangular parallelepiped shape.
  • the electrodes 12 and 13 are formed on both main surfaces of the component base body 11. Examples of the structure of the electrodes 12 and 13 include a two-layer structure of Ni and Ag.
  • the present inventor has intensively studied paying attention to a barium titanate-based ceramic substantially containing no lead.
  • the semiconducting agent Smc (the semiconducting agent is represented by the symbol “Smc”; the same applies hereinafter)
  • the specific resistance can be lowered and the ceramic can be made semiconducting.
  • the specific resistance decreases until the amount of the semiconducting agent Smc reaches a predetermined amount, but the specific resistance tends to increase when the amount exceeds the predetermined amount.
  • the present inventor found that there is a correlation between the crystal grain size and the pressure resistance of the semiconductor ceramic, and when the semiconducting agent Smc is contained in an amount more than the amount of the semiconducting agent Smc that minimizes the specific resistance, the semiconductor ceramic It has been found that the crystal grain size is reduced and the pressure resistance is improved.
  • the semiconducting agent Smc for example, Er, Dy, Y, Gd, Bi, Nd and the like can be used.
  • the specific resistance can be lowered and the ceramic can be made into a semiconductor.
  • the specific resistance decreases until the Er amount reaches a predetermined amount, but when the Er amount exceeds the predetermined amount, the specific resistance tends to increase.
  • the inventor has a correlation between the crystal grain size of the semiconductor ceramic and the pressure resistance, and if Er is contained in an amount more than the Er amount at which the specific resistance is minimized, the crystal grain size of the semiconductor ceramic is reduced. It was found that pressure resistance is improved.
  • the semiconductor ceramic according to the present invention includes a compound represented by the general formula (Ba 1 ⁇ (x + y + z) / 100 Ca x / 100 Sry / 100 Smc z / 100 ) TiO 3 (where Smc is a semiconducting agent). )
  • Mn is included in a proportion of t mol parts with respect to 100 mol parts of the main components, and x, y, and t are 2.500 ⁇ x ⁇ 20.000,. 000 ⁇ y ⁇ 5.000, 2.500 ⁇ x + y ⁇ 20.000, and 0.030 ⁇ t ⁇ 0.150 are satisfied.
  • z is equal to or greater than the amount of the semiconducting agent Smc at which the specific resistance in the curve indicating the relationship between the amount of the semiconducting agent Smc and the specific resistance is determined by x, y, and t. It is characterized by. In this case, the crystal grain size of the semiconductor ceramic is reduced and the pressure resistance is improved.
  • the present inventor first conducted an experiment using Er as the semiconducting agent Smc, and the relationship between the Er amount z min at which the specific resistance is minimized and the x, y, t in the above x, y, t range. Is expressed by the following formula (1).
  • Formula (1): z min (30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200 Therefore, if the amount of Er is equal to or greater than z min , the crystal grain size of the semiconductor ceramic is reduced and the pressure resistance is improved.
  • the semiconductor ceramic of the present invention has a simple perovskite structure, and the simple perovskite structure is represented by the general formula ABO 3 .
  • the semiconductor ceramic of the present invention it is generally known that Ba, Ca, and Sr are incorporated into the A site and Ti is incorporated into the B site.
  • the function of the semiconducting agent Smc depends on the ionic radius of the semiconducting agent Smc. That is, the semiconducting agent Smc functions as a semiconducting agent when incorporated into the A site of the general formula (BaCaSr) TiO 3 , and functions as an inhibitor for semiconductorization when incorporated into the B site.
  • the ease of incorporation into the B site depends on the ionic radius of the semiconducting agent Smc, and the closer to 0.68 ⁇ ⁇ ⁇ ⁇ which is the ionic radius of Ti 4+ constituting the B site, the easier it is to incorporate.
  • the ion radius of each element constituting the A site is 1.34 ⁇ ⁇ for Ba 2+ , 0.99 ⁇ for Ca 2+ , and 1.12 ⁇ for Sr 2+ .
  • the ionic radii are all estimated by Ahrens (1952).
  • Table 1 shows ionic radii and donor coefficients of the semiconducting agents Smc, Er 3+ , Dy 3+ , Y 3+ , Gd 3+ , Bi 3+ , and Nd 3+ .
  • the donor coefficient means that when Er is used as the semiconducting agent Smc, the amount of Er necessary for semiconductorization and other semiconducting agents Smc (Dy, Y, Gd, Bi, Nd, etc.) are used.
  • the ionic radius of Dy is 0.92 ⁇ , which is 0.68 ⁇ which is the ionic radius of Ti 4+ constituting the B site, rather than 0.89 E which is the ionic radius of Er. Since the difference is large, it is difficult to be taken into the B site and easily taken into the A site.
  • the donor coefficient of Dy is 0.84, and when Dy is used for the semiconducting agent Smc, the amount may be 0.84 times that when Er is used for the semiconducting agent Smc.
  • equation (1) is modified depending on the type of semiconducting agent Smc, and based on the donor coefficient in Table 1, for example, when semiconducting agent Smc is Dy, Y, the following equation (2) is obtained.
  • Formula (2): z min 0.84 ⁇ [(30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200]
  • the semiconducting agent Smc is Gd
  • equation (3) is obtained.
  • raw material powder for semiconductor ceramic is prepared.
  • compound powders such as oxides and carbonates containing constituent elements of the main component are mixed at a predetermined ratio and calcined to obtain a raw material powder for semiconductor ceramic.
  • This method is generally called a solid phase synthesis method, but a wet synthesis method such as a hydrothermal synthesis method or an oxalic acid method may be used as another method.
  • a vinyl acetate organic binder and pure water are added to the raw material powder of the semiconductor ceramic and mixed with the media in a wet manner, and the resulting slurry is dried to obtain a molding powder.
  • a molded object is produced by the pressure molding method.
  • the compact is fired for a predetermined time at a temperature at which the semiconductor ceramic becomes a semiconductor, for example, 1250 to 1450 ° C., in the atmosphere to obtain a semiconductor ceramic.
  • electrodes are formed on both main surfaces of the semiconductor ceramic.
  • the electrode is formed by plating, sputtering, baking, or the like. As described above, a positive temperature coefficient thermistor element is manufactured.
  • the present invention is not limited to the above embodiment.
  • the above-mentioned semiconductor ceramic may contain alkali metal, transition metal, Cl, S, P, Hf and the like in an amount range that does not hinder the effects of the present invention.
  • substantially free of lead means that lead is not contained in the main component. Therefore, even lead that is inevitably mixed in a range that does not affect the characteristics is not excluded.
  • Equation (6) 100 (Ba 1- (x + y + z) / 100 Ca x / 100 Sr y / 100 Er z / 100) TiO 3 + tMn (B) Production of positive temperature coefficient thermistor element A binder and pure water were added to the above raw material powder, and wet pulverization was performed with a PSZ ball in a ball mill for a certain period of time, followed by granulation to obtain a molding powder.
  • this molding powder was pressurized with a uniaxial press at a pressure of about 2000 kgf / cm 2 to form a molded body having a size of ⁇ 19.2 mm ⁇ t3.0 mm. Thereafter, the molded body was fired at 1350 ° C. for 2 hours to obtain a fired body.
  • the size of the obtained fired body was about 16 mm in diameter and about 2.5 mm in thickness.
  • Ni plating was performed on the fired body. Then, the plating film formed on the side surface of the fired body was removed by polishing. Thereafter, an Ag film was baked on the plating film formed on the end face of the fired body. Thus, a positive temperature coefficient thermistor element having a two-layer electrode of Ni and Ag was obtained.
  • a static resistance test was performed as follows. First, a voltage of 100 V was applied to each sample for 1 minute, and the current value at that time was measured. When the device did not break down at a voltage of 100 V, the voltage was increased and the same measurement was repeated. The voltage value at which the measured current value was minimized or the voltage value immediately before the element was destroyed was defined as the static withstand voltage value.
  • “Static withstand voltage lower limit value” in the table is a calculated value of the lower limit value WSV min of the static withstand voltage at the specific resistance of each sample.
  • a sample number with * is a sample outside the scope of the present invention.
  • FIG. 2 shows a curve showing the relationship between the Er amount and the specific resistance in Table 2.
  • FIGS. 3 to 5 are SEM photographs of semiconductor ceramics in sample numbers 1, 3, and 5 in Table 2.
  • the static withstand voltage in Table 2 is improved as the Er amount is increased, and it can be seen that the static withstand voltage value is improved as the crystal grain size is reduced.
  • z min tends to decrease as the Ca amount x and the Sr amount y increase. It can also be seen that as the Mn amount t increases, z min tends to increase.
  • an equation f 1 (x) 30 (30 ⁇ x) / 1000 + 5/200 was assumed.
  • the calculated Er values in Table 3 are the calculated values of f 3 (x, y, t) using Equation (1).
  • Formula (1): z min (30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200 As can be seen from Table 3, when z min is compared with the calculated Er value, it can be said that the calculated value of f 3 (x, y, t) reproduces z min well.
  • Table 4 shows the results. As the calculated Er value, the calculated value of f 3 (x, y, t) using the above formula (1) is described. Moreover, the static withstand voltage lower limit in the specific resistance of each sample was shown similarly to Experimental Example 1. The specific resistance was 1000 ⁇ ⁇ cm or less, which has no problem in practical use, as a good product. Also, the resistance double point was 115 to 140 ° C. as a good product.
  • Sample Nos. 41, 48, and 53 had a Ca content x as small as 0.000, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 47 had a large Ca amount x of 22.500 and a small resistance double point.
  • the total amount x + y of Ca and Sr was as large as 22.500, and the resistance double point was small.
  • Sample No. 60 had a large Sr amount y of 7.500 and a small resistance double point.
  • the static withstand voltage value is 280, which is smaller than the static withstand voltage lower limit 418.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • the static withstand voltage value is 315, which is smaller than the static withstand voltage lower limit value.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • Sample No. 61 had a Mn amount t as small as 0.020, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 64 had a large Mn amount t of 0.170 and a specific resistance value of 2032.
  • Sample numbers 45, 46, 49 to 51, 54, 55, 62, and 63 showed good static withstand voltage values and double resistance values.
  • Example 4 In Experimental Example 4, Dy was used as the semiconducting agent Smc, and the specific resistance, static withstand voltage, and resistance double point were obtained when the values of x, y, z, and t were changed.
  • the resistance double point is a temperature at which the resistance value at 25 ° C. is doubled.
  • Table 5 shows the results.
  • Dy calculated value the value of the calculated value of f 3 (x, y, t) using Equation (2) is described.
  • Formula (2): z min 0.84 ⁇ [(30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200]
  • the static withstand voltage lower limit value in the specific resistance of each sample is shown.
  • the specific resistance was 1000 ⁇ ⁇ cm or less, which has no problem in practical use, as a good product.
  • the resistance double point was 115 to 140 ° C. as a good product.
  • Sample Nos. 71 and 77 had a Ca content x as small as 0.000, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 76 had a large Ca amount x of 22.500 and a small resistance double point.
  • Sample Nos. 76 and 82 had a large total amount x + y of Ca and Sr of 22.500 and a small resistance double point.
  • Sample No. 83 had a large Sr amount y of 7.500 and a small resistance double point.
  • the static withstand voltage value is 280, which is smaller than the static withstand voltage lower limit value 406.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • the static withstand voltage value is 280, which is smaller than the static withstand voltage lower limit value.
  • the static withstand voltage value is larger than the static withstand voltage lower limit value.
  • Sample No. 84 had a Mn amount t as small as 0.020, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 87 had a large Mn amount t of 0.170 and a large specific resistance value of 1890.
  • Sample numbers 75, 78, 85 and 86 showed good static withstand voltage values and double resistance values.
  • Example 5 In Experimental Example 5, Y was used as the semiconducting agent Smc, and the specific resistance, static withstand voltage, and resistance double point were obtained when the values of x, y, z, and t were changed.
  • the resistance double point is a temperature at which the resistance value at 25 ° C. is doubled.
  • Table 6 shows the results.
  • the value of the calculated value of f 3 (x, y, t) using Equation (2) is described.
  • Formula (2): z min 0.84 ⁇ [(30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200]
  • the static withstand voltage lower limit value in the specific resistance of each sample is shown.
  • the specific resistance was 1000 ⁇ ⁇ cm or less, which has no problem in practical use, as a good product.
  • the resistance double point was 115 to 140 ° C. as a good product.
  • Sample Nos. 91 and 97 had a Ca content x as small as 0.000, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 96 had a large Ca amount x of 22.500 and a small resistance double point.
  • the total amount x + y of Ca and Sr was as large as 22.500, and the resistance double point was small.
  • Sample No. 103 had a large Sr amount y of 7.500 and a small resistance double point.
  • the static withstand voltage value is 280, which is smaller than the static withstand voltage lower limit value 399.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • the static withstand voltage value is 315, which is smaller than the static withstand voltage lower limit value.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • Sample No. 104 had a Mn amount t as small as 0.020, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 107 had a large Mn amount t of 0.170 and a specific resistance value of 1829.
  • Sample numbers 95, 98, 105 and 106 showed good static withstand voltage values and double resistance values.
  • Example 6 In Experimental Example 6, Gd was used as the semiconducting agent Smc, and the specific resistance, static withstand voltage, and resistance double point were obtained when the values of x, y, z, and t were changed.
  • the resistance double point is a temperature at which the resistance value at 25 ° C. is doubled.
  • Table 7 shows the results.
  • the value of the calculated value of f 3 (x, y, t) using Equation (3) is described.
  • Expression (3): z min 0.63 ⁇ [(30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200]
  • the static withstand voltage lower limit value in the specific resistance of each sample is shown.
  • the specific resistance was 1000 ⁇ ⁇ cm or less, which has no problem in practical use, as a good product.
  • the resistance double point was 115 to 140 ° C. as a good product.
  • Sample Nos. 111 and 117 had a Ca content x as small as 0.000, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 116 had a large Ca amount x of 22.500 and a small resistance double point.
  • the total amount x + y of Ca and Sr was as large as 22.500, and the resistance double point was small.
  • Sample No. 123 had a large Sr amount y of 7.500 and a small resistance double point.
  • the static withstand voltage value is 250, which is smaller than the static withstand voltage lower limit value 364.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • the static withstand voltage value is 280, which is smaller than the static withstand voltage lower limit value.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • Sample No. 124 had a Mn amount t as small as 0.020, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 127 had a large Mn amount t of 0.170 and a specific resistance value of 1483.
  • Sample numbers 115, 118, 125, and 126 showed good static withstand voltage values and double resistance values.
  • Table 8 shows the results.
  • the value of the calculated value of f 3 (x, y, t) using Equation (4) is described.
  • Formula (4): z min 0.68 ⁇ [(30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200]
  • the static withstand voltage lower limit value in the specific resistance of each sample is shown.
  • the specific resistance was 1000 ⁇ ⁇ cm or less, which has no problem in practical use, as a good product.
  • the resistance double point was 115 to 140 ° C. as a good product.
  • Sample Nos. 131 and 137 had a Ca content x as small as 0.000, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 136 had a large Ca amount x of 22.500 and a small resistance double point.
  • the total amount x + y of Ca and Sr was as large as 22.500, and the resistance double point was small.
  • Sample No. 143 had a large Sr amount y of 7.500 and a small resistance double point.
  • the static withstand voltage value is 220, which is smaller than the static withstand voltage lower limit value 347.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • the static withstand voltage value is 280, which is smaller than the static withstand voltage lower limit value.
  • the static withstand voltage value was larger than the static withstand voltage lower limit value.
  • Sample No. 144 had a Mn amount t as small as 0.020, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 147 had a large Mn amount t of 0.170 and a specific resistance value of 1361.
  • Sample numbers 135, 138, 145, and 146 showed good static withstand voltage values and double resistance values.
  • Example 8 In Experimental Example 8, Nd was used as the semiconducting agent Smc, and the specific resistance, static withstand voltage, and resistance double point were obtained when the values of x, y, z, and t were changed.
  • the resistance double point is a temperature at which the resistance value at 25 ° C. is doubled.
  • Table 9 shows the results.
  • the value of the calculated value of f 3 (x, y, t) using the formula (5) is described.
  • Formula (5): z min 0.42 ⁇ [(30 ⁇ x) (30 ⁇ y) (1 + 15t) / ⁇ 125 (20 + y) ⁇ + (5 + 3y) / 200]
  • the static withstand voltage lower limit value in the specific resistance of each sample is shown.
  • the specific resistance was 1000 ⁇ ⁇ cm or less, which has no problem in practical use, as a good product.
  • the resistance double point was 115 to 140 ° C. as a good product.
  • Sample Nos. 151 and 157 had a Ca amount x as small as 0.000, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 156 had a large Ca amount x of 22.500 and a small resistance double point.
  • the total amount x + y of Ca and Sr was as large as 22.500, and the resistance double point was small.
  • Sample No. 163 had a large Sr amount y of 7.500 and a small resistance double point.
  • the static withstand voltage value is 220, which is smaller than the static withstand voltage lower limit value 297.
  • the static withstand voltage value is larger than the static withstand voltage lower limit value.
  • the static withstand voltage value is 220, which is smaller than the static withstand voltage lower limit value.
  • the static withstand voltage value is larger than the static withstand voltage lower limit value.
  • Sample No. 164 had a Mn amount t as small as 0.020, and the static withstand voltage value was smaller than the static withstand voltage lower limit value.
  • Sample No. 167 had a large Mn amount t of 0.170 and a large specific resistance value of 1016.
  • Sample numbers 155, 158, 165 and 166 showed good static withstand voltage values and double resistance values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

 耐圧性の優れた半導体セラミックと、その半導体セラミックを用いた正特性サーミスタ素子を提供することを目的とする。 正特性サーミスタ素子1の部品素体11を構成する半導体セラミックは、一般式(Ba1-(x+y+z)/100Cax/100Sry/100Smcz/100)TiO3で表される化合物(ただしSmcは半導体化剤)を主成分として含み、主成分100モル部に対して、Mnがtモル部の割合で含まれており、x、y、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、の関係を満足し、zは、x、y、tによって定められる、半導体化剤Smcの量と比抵抗との関係を示した曲線での比抵抗が極小となる半導体化剤Smcの量以上であることを特徴としている。

Description

半導体セラミック及び正特性サーミスタ
 本発明は、半導体セラミック、特に正の抵抗温度係数(Positive Temperature Coefficient;以下、「PTC特性」という)を有する半導体セラミックに関するものである。また、その半導体セラミックを用いた正特性サーミスタに関するものである。
 チタン酸バリウム(BaTiO3)系の半導体セラミックは、電圧の印加により発熱し、正方晶から立方晶に相転移するキュリー点Tcを超えると抵抗値が急激に増大するPTC特性を有する。このPTC特性を利用して、半導体セラミックはヒータ用途やモータ起動用途等に広く使用されている。
 例えば特許文献1には、PTC特性を有する半導体セラミックとして、主成分としてBaTiO3、SrTiO3、CaTiO3、PbTiO3を一定の割合で含有している半導体セラミックが記載されている。
特開平4-170361号公報
 しかしながら、特許文献1に記載の半導体セラミック中には鉛が含まれている。鉛は環境負荷物質であることから、環境面を考慮すると実質的に鉛を含まない非鉛系の半導体セラミックの開発が要請されている。また、モータ起動用途に用いられるPTCサーミスタには、使用する電圧の他に、モータ起動時に電磁誘導による起電力がさらに加わることから、高電圧に対する耐性(耐圧性)が要求される。
 本発明はかかる課題に鑑みてなされたものであって、環境負荷物質を実質的に含まずに、耐圧性の優れた半導体セラミックと、その半導体セラミックを部品素体として用いた正特性サーミスタ素子を提供することを目的とする。
 本発明に係る半導体セラミックは、一般式(Ba1-(x+y+z)/100Cax/100Sry/100Smcz/100)TiO3で表される化合物(ただしSmcは半導体化剤)を主成分として含み、前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、前記x、y、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、の関係を満足し、前記zは、前記x、y、tによって定められる、半導体化剤Smcの量と比抵抗との関係を示した曲線での比抵抗が極小となる半導体化剤Smcの量以上であることを特徴としている。
 また、本発明に係る半導体セラミックは、前記半導体化剤SmcがErであり、一般式(Ba1-(x+y+z)/100Cax/100Sry/100Erz/100)TiO3で表される化合物を主成分として含み、前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、前記x、y、z、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、z≧(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200、の関係を満足することを特徴としている。
 また、本発明に係る半導体セラミックは、前記半導体化剤SmcがDyであり、 一般式(Ba1-(x+y+z)/100Cax/100Sry/100Dyz/100)TiO3で表される化合物を主成分として含み、前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、前記x、y、z、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、z≧0.84×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、の関係を満足することを特徴としている。
 また、本発明に係る半導体セラミックは、前記半導体化剤SmcがYであり、 一般式(Ba1-(x+y+z)/100Cax/100Sry/100z/100)TiO3で表される化合物を主成分として含み、前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、前記x、y、z、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、z≧0.84×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、の関係を満足することを特徴としている。
 また、本発明に係る半導体セラミックは、前記半導体化剤SmcがGdであり、 一般式(Ba1-(x+y+z)/100Cax/100Sry/100Gdz/100)TiO3で表される化合物を主成分として含み、前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、前記x、y、z、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、z≧0.63×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、の関係を満足することを特徴としている。
 また、本発明に係る半導体セラミックは、前記半導体化剤SmcがBiであり、 一般式(Ba1-(x+y+z)/100Cax/100Sry/100Biz/100)TiO3で表される化合物を主成分として含み、前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、前記x、y、z、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、z≧0.68×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、の関係を満足することを特徴としている。
 また、本発明に係る半導体セラミックは、前記半導体化剤SmcがNdであり、 一般式(Ba1-(x+y+z)/100Cax/100Sry/100Ndz/100)TiO3で表される化合物を主成分として含み、前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、前記x、y、z、tが、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、z≧0.42×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、の関係を満足することを特徴としている。
 また、本発明は、部品素体の表面に一対の外部電極が形成され、前記部品素体が、上記半導体セラミックで形成されている正特性サーミスタにも向けられる。
 この発明によれば、環境負荷物質を実質的に含まずに、耐圧性の優れた半導体セラミックと、その半導体セラミックを用いた正特性サーミスタ素子を提供することが可能である。
本発明に係る正特性サーミスタ素子を示す斜視図である。 表1のEr量と比抵抗との関係を示した曲線である。 試料番号1の半導体セラミックのSEM写真である。 試料番号3の半導体セラミックのSEM写真である。 試料番号5の半導体セラミックのSEM写真である。
 以下において、本発明を実施するための形態について説明する。
 図1は、本発明に係る正特性サーミスタ素子を示す斜視図である。正特性サーミスタ素子1は、部品素体11と、電極12、13と、を備えている。部品素体11は、半導体セラミックで構成されている。
 部品素体11は主面を有する板状に形成されている。本実施形態では部品素体11は円板状に形成されているが、直方体状に形成されていても良い。
 電極12、13は、部品素体11の両主面に形成されている。電極12、13の構造としては、例えばNiとAgの2層構造が挙げられる。
 本発明者は、実質的に鉛を含まないチタン酸バリウム系セラミックに着目して鋭意研究を行っている。チタン酸バリウム系セラミックに半導体化剤Smc(半導体化剤を記号「Smc」と表す。以下において同じ。)を添加すると、比抵抗を下げ、セラミックを半導体化させることができる。その際、半導体化剤Smcの量を増加させると、半導体化剤Smcの量が所定量までは比抵抗が低下するが、所定量以上は比抵抗が増大する傾向を示す。そして、本発明者は、半導体セラミックの結晶粒径と耐圧性には相関関係があり、半導体化剤Smcが、比抵抗が極小となる半導体化剤Smcの量以上含まれていると、半導体セラミックの結晶粒径が小さくなり、耐圧性が向上することを見出した。
 半導体化剤Smcとしては、たとえば、Er、Dy、Y、Gd、Bi、Ndなどを用いることができる。
 たとえば、半導体化剤SmcとしてErを用い、チタン酸バリウム系セラミックにErを添加すると、比抵抗を下げ、セラミックを半導体化させることができる。その際、Er量を増加させると、Er量が所定量までは比抵抗が低下するが、所定量以上は比抵抗が増大する傾向を示す。そして、本発明者は、半導体セラミックの結晶粒径と耐圧性には相関関係があり、Erが、比抵抗が極小となるEr量以上含まれていると、半導体セラミックの結晶粒径が小さくなり、耐圧性が向上することを見出した。
 本発明に係る半導体セラミックは、一般式(Ba1-(x+y+z)/100Cax/100Sry/100Smcz/100)TiO3で表される化合物(ただしSmcは半導体化剤)を主成分として含んでおり、主成分100モル部に対して、Mnがtモル部の割合で含まれており、x、y、tは、2.500≦x≦20.000、0.000≦y≦5.000、2.500≦x+y≦20.000、0.030≦t≦0.150、の関係を満足している。
 本発明では、zは、x、y、tによって定められる、半導体化剤Smcの量と比抵抗との関係を示した曲線での比抵抗が極小となる半導体化剤Smcの量以上であることを特徴としている。この場合に、半導体セラミックの結晶粒径が小さくなり、耐圧性が向上する。
 本発明者は、まず、半導体化剤SmcとしてErを用いて実験を行い、上記x、y、tの範囲において、比抵抗が極小となるEr量zminと、x、y、tとの関係が、下記の式(1)で表されることを明らかにした。
式(1):zmin=(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200
 従って、Er量がzmin以上であれば、半導体セラミックの結晶粒径が小さくなり、耐圧性が向上する。
 なお、式(1)の導出方法については、後述する実験例1および実験例2の説明部分において詳述する。
 なお、zの上限については特に定められるものではないが、z=1.500以下であれば、セラミックが半導体化しやすく、好ましい。
 次に、本発明者は、Er以外の半導体化剤Smcを用いる場合について検討した。
 本発明の半導体セラミックは、単純ぺロブスカイト型構造を有しており、単純ぺロブスカイト型構造は一般式ABO3で表される。本発明の半導体セラミックにおいては、一般的に、Ba、Ca、SrがAサイトに、TiがBサイトに取り入れられることが知られている。
 また、半導体化剤Smcの機能は、半導体化剤Smcのイオン半径に依存することが知られている。すなわち、半導体化剤Smcは、一般式(BaCaSr)TiO3のAサイトに取り込まれた場合に半導体化剤として機能し、Bサイトに取り込まれた場合は半導体化を阻害するものとして機能する。そして、Bサイトへの取り込まれやすさは半導体化剤Smcのイオン半径に依存し、Bサイトを構成するTi4+のイオン半径である0.68Åに近づくほど取り込まれやすくなる。なお、Aサイトを構成する各元素のイオン半径は、Ba2+が1.34Å、Ca2+が0.99Å、Sr2+が1.12Åである。(イオン半径は、いずれも、Ahrens(1952)による推定値によった。)
 表1に、半導体化剤SmcであるEr3+、Dy3+、Y3+、Gd3+、Bi3+、Nd3+のイオン半径とドナー係数とを示す。ここにドナー係数とは、半導体化剤SmcとしてErを用いた場合に半導体化に必要なEr量と、他の各半導体化剤Smc(Dy、Y、Gd、Bi、Ndなど)を用いた場合に半導体化に必要な当該半導体化剤Smcの量の割合である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、たとえば、Dyのイオン半径は0.92Åであり、Erのイオン半径である0.89Åよりも、Bサイトを構成するTi4+のイオン半径である0.68Åとの差異が大きいため、Bサイトに取り込まれにくく、Aサイトに取り込まれやすい。Dyのドナー係数は0.84であり、半導体化剤SmcにDyを用いる場合には、半導体化剤SmcにErを用いる場合に比べて、0.84倍の量で良いことになる。
 このことより、式(1)は半導体化剤Smcの種類により変形され、表1のドナー係数に基づき、たとえば、半導体化剤SmcがDy、Yの場合は、次の式(2)となる。
式(2):zmin=0.84×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、半導体化剤SmcがGdの場合は、次の式(3)となる。
式(3):zmin=0.63×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、半導体化剤SmcがBiの場合は、次の式(4)となる。
式(4):zmin=0.68×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、半導体化剤SmcがNdの場合は、次の式(5)となる。
式(5):zmin=0.42×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 次に、正特性サーミスタ素子の製造方法について説明する。
 最初に、半導体セラミックの原料粉末を作製する。まず、主成分の構成元素を含む酸化物、炭酸物等の化合物粉末を所定の割合で混合し、仮焼し、半導体セラミックの原料粉末を得る。この方法は一般的に固相合成法と呼ばれるものであるが、他の方法として、水熱合成法、シュウ酸法等の湿式合成法を用いても良い。
 次に、半導体セラミックの原料粉末に、酢酸ビニル系の有機バインダと、純水とを加えメディアと共に湿式で混合し、得られたスラリーを乾燥させて成形用粉末を得る。そして、加圧成形法で成形体を作製する。なお、シート成形法等、他の成形方法で成形体を作成しても良い。
 次に、この成形体を、大気中で半導体セラミックが半導体化する温度、例えば1250~1450℃で所定時間焼成して、半導体セラミックを得る。
 次に、半導体セラミックの両主面に電極を形成する。電極は、めっきや、スパッタや、焼き付け等により形成される。以上のようにして、正特性サーミスタ素子を作製する。
 なお、本発明は上記の実施形態に限定されるものではない。例えば、上記半導体セラミック中に、アルカリ金属、遷移金属、Cl、S、P、Hf等が、本発明の効果を妨げない量の範囲で含まれていても良い。
 また、本明細書において、「実質的に鉛を含まない」とは、鉛が主成分中に含有していないことをいう。したがって、特性に影響を与えない範囲で不可避的に混入する程度の鉛までも排除するものではない。
 次に、この発明に基づいて実施した実験例について説明する。
 [実験例1]
 実験例1では、半導体化剤SmcとしてErを用いた場合において、所定のx、y、tの条件における、Er量と比抵抗の関係を調査した。
 (A)半導体セラミックの原料粉末の作製
 最初に、出発原料であるBaCO3、CaCO3、SrCO3、Er23、MnCO3、及びSiO2の各粉末を用意した。そして、各出発原料を秤量し、調合した。そして、純水と高分子型の分散剤を加えて、ボールミル内でPSZボールと共に、一定時間湿式粉砕を行った。その後脱水、乾燥させ、1200℃の温度範囲で2時間熱処理して、式(6)で表される半導体セラミックの原料粉末を得た。各試料番号の配合割合は、後述する表2に示す。
式(6):100(Ba1-(x+y+z)/100Cax/100Sry/100Erz/100)TiO3+tMn
 (B)正特性サーミスタ素子の作製
 上記の原料粉末に、バインダと純水を加え、ボールミル内でPSZボールと共に、一定時間湿式粉砕を行い、その後造粒して、成形用粉末を得た。
 次に、この成形用粉末を1軸加圧機で2000kgf/cm2程度の圧力で加圧して、φ19.2mm×t3.0mmの大きさの成形体を成形した。その後、成形体を1350℃で2時間焼成して焼成体を得た。得られた焼成体の大きさは、直径約16mm、厚さ約2.5mmであった。
 次に、焼成体にNiめっきを行った。その後、研磨により、焼成体の側面に形成されためっき膜を除去した。その後、焼成体の端面上に形成されためっき膜の上に、Ag膜の焼き付けを行った。このようにして、NiとAgの2層構造の電極を有する正特性サーミスタ素子を得た。
 (C)特性評価
 まず、25℃での比抵抗測定を4端子法を用いて行った。
 次に、半導体セラミックの耐圧性を評価するために、静耐性試験を以下のように行った。まず、各試料に100Vの電圧を1分間印加し、その時の電流値を測定した。そして、100Vの電圧において素子が破壊しない場合には、電圧を上げて同様の測定を繰り返した。そして、測定した電流値が最小となった電圧値、または素子が破壊した直前の電圧値を静耐圧値とした。
 比抵抗と静耐圧値には相関があり、比抵抗が小さい場合には静耐圧値が小さくなり、比抵抗が大きい場合には静耐圧値が大きくなる。そのため、試料の比抵抗の値によって、求められる静耐圧値が異なる。ここでは、商品の要求から、静耐圧の下限値をWSVmin、比抵抗をρ25としたときに、静耐圧値がWSVmin=400×log10(ρ25)-200以上の試料を良品とした。
 表2に、x=10.000、y=0.000、t=0.100の条件において、Er量を変化させた場合の、比抵抗と静耐圧試験の結果を示す。表中の「静耐圧下限値」は、各試料の比抵抗での、静耐圧の下限値WSVminの計算値である。また、試料番号に*を付したものは、この発明の範囲外の試料である。また、図2に、表2のEr量と比抵抗との関係を示した曲線を示す。
Figure JPOXMLDOC01-appb-T000002
 表2と図2から明らかなように、x=10.000、y=0.000、t=0.100の条件では、z=0.625で比抵抗が極小値を示していることが分かる。また、z=0.625以上の試料番号3~6で、静耐圧は静耐圧下限値を上回り、良好な耐圧性を示していることが分かる。
 図3~図5は、表2の試料番号1、3、5における、半導体セラミックのSEM写真である。図3~5をみると、z=0.575である試料番号1では、結晶粒径が大きく、粒界にも空隙が生じている。一方、z=0.625である試料番号3や、z=0.675である試料番号5では、結晶粒径が小さくなっている。また、表2の静耐圧は、Er量が増大するにつれて向上しており、結晶粒径が小さくなるほど、静耐圧値が向上することが分かる。
 [実験例2]
 実験例2では、半導体化剤SmcとしてErを用い、x、y、tの値をそれぞれ変化させた場合における、各々のx、y、tの条件での比抵抗が極小となる極小Er量zminを実験により求めた。実験では、Er量を0.025刻みで変化させてzminを求めた。表3に、各々のx、y、tの条件におけるzminの値を示す。なお、正特性サーミスタ素子の作成方法は、実験例1と同様である。
Figure JPOXMLDOC01-appb-T000003
 表3より、Ca量xやSr量yが増えると、zminは低下する傾向がある。また、Mn量tが増えると、zminは増加する傾向があることが分かる。
 次に、このzminを説明するための式を(A)~(D)の順番で導出した。
 (A)の試料番号11~18は、y=0.000、t=0.100の条件で、Ca量xを変化させた場合のzminの結果である。ここで、Ca量xとzminの関係を説明するために、f1(x)=30(30-x)/1000+5/200という式を仮定した。
 (B)の試料番号19~22は、y=5.000、t=0.100の条件で、Ca量xを変化させた場合のzminの結果である。ここで、(A)と(B)の両方の条件を満たすために、f1(x)を変形させて、f2(x、y)=(30-x)(30-y)/(1000+50y)+(5+3y)/200という式を仮定した。
 (C)の試料番号23~27は、x=15.000、y=0.000の条件で、Mn量tを変化させた場合のzminの結果である。また、(D)の試料番号28~31は、x=10.000、y=0.000の条件で、Mn量tを変化させた場合のzminの結果である。(C)、(D)の両方の条件を満たすために、f2(x、y)を変形させて、f3(x、y、t)=(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200という式を仮定した。
 表3のEr計算値は、式(1)を使ったf3(x、y、t)の計算値の値である。
式(1):zmin=(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200
 表3からわかるように、zminとEr計算値を比較すると、f3(x、y、t)の計算値の値は、zminを良く再現しているといえる。
 [実験例3]
 実験例3では、半導体化剤SmcとしてErを用い、x、y、z、tの値をそれぞれ変化させた場合における、比抵抗、静耐圧、及び抵抗2倍点を求めた。抵抗2倍点は、25℃での抵抗値の2倍となる温度である。
 表4に結果を示す。Er計算値として、上記式(1)を使ったf3(x、y、t)の計算値の値を記載した。また、実験例1と同様に、各試料の比抵抗での静耐圧下限値を示した。比抵抗は実用上問題の無い1000Ω・cm以下を良品とした。また、抵抗2倍点は115~140℃を良品とした。
Figure JPOXMLDOC01-appb-T000004
 試料番号41、48、53は、Ca量xが0.000と小さく、静耐圧値が静耐圧下限値よりも小さい結果となった。
 試料番号47はCa量xが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号52、59は、CaとSrの合計量x+yが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号60は、Sr量yが7.500と大きく、抵抗2倍点が小さい結果となった。
 試料番号42~44は、x=2.500、y=0.000、t=0.100の条件で、Er量zを変化させたものである。Er量zが小さい試料番号42では、静耐圧値が280と静耐圧下限値418に比べて小さい。一方、Er量zがEr計算値以上である試料番号43、44では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号56~58は、x=15.000、y=5.000、t=0.100の条件で、Er量zを変化させたものである。Er量zが小さい試料番号56では、静耐圧値が315と静耐圧下限値よりも小さい。一方、Er量zがEr計算値以上である試料番号57、58では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号61はMn量tが0.020と小さく、静耐圧の値が静耐圧下限値よりも小さい結果となった。また、試料番号64はMn量tが0.170と大きく、比抵抗の値が2032と大きい結果となった。
 また、試料番号45、46、49~51、54、55、62、63では、良好な静耐圧値と抵抗2倍点の値を示した。
 [実験例4]
 実験例4では、半導体化剤SmcとしてDyを用い、x、y、z、tの値をそれぞれ変化させた場合における、比抵抗、静耐圧、及び抵抗2倍点を求めた。抵抗2倍点は、25℃での抵抗値の2倍となる温度である。
 なお、試料の作製方法等は、実験例1~3と同様とした(以下の実験例においても同じ)。
 表5に結果を示す。Dy計算値として、式(2)を使ったf3(x、y、t)の計算値の値を記載した。
式(2):zmin=0.84×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、各試料の比抵抗での静耐圧下限値を示した。比抵抗は実用上問題の無い1000Ω・cm以下を良品とした。また、抵抗2倍点は115~140℃を良品とした。
Figure JPOXMLDOC01-appb-T000005
 試料番号71、77は、Ca量xが0.000と小さく、静耐圧値が静耐圧下限値よりも小さい結果となった。
 試料番号76はCa量xが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号76、82は、CaとSrの合計量x+yが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号83は、Sr量yが7.500と大きく、抵抗2倍点が小さい結果となった。
 試料番号72~74は、x=2.500、y=0.000、t=0.100の条件で、Dy量zを変化させたものである。Dy量zが小さい試料番号72では、静耐圧値が280と静耐圧下限値406に比べて小さい。一方、Dy量zがDy計算値以上である試料番号73、74では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号79~81は、x=15.000、y=5.000、t=0.100の条件で、Dy量zを変化させたものである。Dy量zが小さい試料番号79では、静耐圧値が280と静耐圧下限値よりも小さい。一方、Dy量zがDy計算値以上である試料番号80、81では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号84はMn量tが0.020と小さく、静耐圧の値が静耐圧下限値よりも小さい結果となった。また、試料番号87はMn量tが0.170と大きく、比抵抗の値が1890と大きい結果となった。
 また、試料番号75、78、85、86では、良好な静耐圧値と抵抗2倍点の値を示した。
 [実験例5]
 実験例5では、半導体化剤SmcとしてYを用い、x、y、z、tの値をそれぞれ変化させた場合における、比抵抗、静耐圧、及び抵抗2倍点を求めた。抵抗2倍点は、25℃での抵抗値の2倍となる温度である。
 表6に結果を示す。Y計算値として、式(2)を使ったf3(x、y、t)の計算値の値を記載した。
式(2):zmin=0.84×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、各試料の比抵抗での静耐圧下限値を示した。比抵抗は実用上問題の無い1000Ω・cm以下を良品とした。また、抵抗2倍点は115~140℃を良品とした。
Figure JPOXMLDOC01-appb-T000006
 試料番号91、97は、Ca量xが0.000と小さく、静耐圧値が静耐圧下限値よりも小さい結果となった。
 試料番号96はCa量xが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号96、102は、CaとSrの合計量x+yが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号103は、Sr量yが7.500と大きく、抵抗2倍点が小さい結果となった。
 試料番号92~94は、x=2.500、y=0.000、t=0.100の条件で、Y量zを変化させたものである。Y量zが小さい試料番号92では、静耐圧値が280と静耐圧下限値399に比べて小さい。一方、Y量zがY計算値以上である試料番号93、94では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号99~101は、x=15.000、y=5.000、t=0.100の条件で、Y量zを変化させたものである。Y量zが小さい試料番号99では、静耐圧値が315と静耐圧下限値よりも小さい。一方、Y量zがY計算値以上である試料番号100、101では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号104はMn量tが0.020と小さく、静耐圧の値が静耐圧下限値よりも小さい結果となった。また、試料番号107はMn量tが0.170と大きく、比抵抗の値が1829と大きい結果となった。
 また、試料番号95、98、105、106では、良好な静耐圧値と抵抗2倍点の値を示した。
 [実験例6]
 実験例6では、半導体化剤SmcとしてGdを用い、x、y、z、tの値をそれぞれ変化させた場合における、比抵抗、静耐圧、及び抵抗2倍点を求めた。抵抗2倍点は、25℃での抵抗値の2倍となる温度である。
 表7に結果を示す。Y計算値として、式(3)を使ったf3(x、y、t)の計算値の値を記載した。
式(3):zmin=0.63×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、各試料の比抵抗での静耐圧下限値を示した。比抵抗は実用上問題の無い1000Ω・cm以下を良品とした。また、抵抗2倍点は115~140℃を良品とした。
Figure JPOXMLDOC01-appb-T000007
 試料番号111、117は、Ca量xが0.000と小さく、静耐圧値が静耐圧下限値よりも小さい結果となった。
 試料番号116はCa量xが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号116、122は、CaとSrの合計量x+yが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号123は、Sr量yが7.500と大きく、抵抗2倍点が小さい結果となった。
 試料番号112~114は、x=2.500、y=0.000、t=0.100の条件で、Gd量zを変化させたものである。Gd量zが小さい試料番号112では、静耐圧値が250と静耐圧下限値364に比べて小さい。一方、Gd量zがGd計算値以上である試料番号113、114では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号119~121は、x=15.000、y=5.000、t=0.100の条件で、Gd量zを変化させたものである。Gd量zが小さい試料番号119では、静耐圧値が280と静耐圧下限値よりも小さい。一方、Gd量zがGd計算値以上である試料番号120、121では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号124はMn量tが0.020と小さく、静耐圧の値が静耐圧下限値よりも小さい結果となった。また、試料番号127はMn量tが0.170と大きく、比抵抗の値が1483と大きい結果となった。
 また、試料番号115、118、125、126では、良好な静耐圧値と抵抗2倍点の値を示した。
 [実験例7]
 実験例7では、半導体化剤SmcとしてBiを用い、x、y、z、tの値をそれぞれ変化させた場合における、比抵抗、静耐圧、及び抵抗2倍点を求めた。抵抗2倍点は、25℃での抵抗値の2倍となる温度である。
 表8に結果を示す。Y計算値として、式(4)を使ったf3(x、y、t)の計算値の値を記載した。
式(4):zmin=0.68×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、各試料の比抵抗での静耐圧下限値を示した。比抵抗は実用上問題の無い1000Ω・cm以下を良品とした。また、抵抗2倍点は115~140℃を良品とした。
Figure JPOXMLDOC01-appb-T000008
 試料番号131、137は、Ca量xが0.000と小さく、静耐圧値が静耐圧下限値よりも小さい結果となった。
 試料番号136はCa量xが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号136、142は、CaとSrの合計量x+yが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号143は、Sr量yが7.500と大きく、抵抗2倍点が小さい結果となった。
 試料番号132~134は、x=2.500、y=0.000、t=0.100の条件で、Bi量zを変化させたものである。Bi量zが小さい試料番号132では、静耐圧値が220と静耐圧下限値347に比べて小さい。一方、Bi量zがBi計算値以上である試料番号133、134では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号139~141は、x=15.000、y=5.000、t=0.100の条件で、Bi量zを変化させたものである。Bi量zが小さい試料番号139では、静耐圧値が280と静耐圧下限値よりも小さい。一方、Bi量zがBi計算値以上である試料番号140、141では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号144はMn量tが0.020と小さく、静耐圧の値が静耐圧下限値よりも小さい結果となった。また、試料番号147はMn量tが0.170と大きく、比抵抗の値が1361と大きい結果となった。
 また、試料番号135、138、145、146では、良好な静耐圧値と抵抗2倍点の値を示した。
 [実験例8]
 実験例8では、半導体化剤SmcとしてNdを用い、x、y、z、tの値をそれぞれ変化させた場合における、比抵抗、静耐圧、及び抵抗2倍点を求めた。抵抗2倍点は、25℃での抵抗値の2倍となる温度である。
 表9に結果を示す。Y計算値として、式(5)を使ったf3(x、y、t)の計算値の値を記載した。
式(5):zmin=0.42×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]
 また、各試料の比抵抗での静耐圧下限値を示した。比抵抗は実用上問題の無い1000Ω・cm以下を良品とした。また、抵抗2倍点は115~140℃を良品とした。
Figure JPOXMLDOC01-appb-T000009
 試料番号151、157は、Ca量xが0.000と小さく、静耐圧値が静耐圧下限値よりも小さい結果となった。
 試料番号156はCa量xが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号156、162は、CaとSrの合計量x+yが22.500と大きく、抵抗2倍点が小さい結果となった。また、試料番号163は、Sr量yが7.500と大きく、抵抗2倍点が小さい結果となった。
 試料番号152~154は、x=2.500、y=0.000、t=0.100の条件で、Nd量zを変化させたものである。Nd量zが小さい試料番号152では、静耐圧値が220と静耐圧下限値297に比べて小さい。一方、Nd量zがNd計算値以上である試料番号153、154では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号159~161は、x=15.000、y=5.000、t=0.100の条件で、Nd量zを変化させたものである。Nd量zが小さい試料番号159では、静耐圧値が220と静耐圧下限値よりも小さい。一方、Nd量zがNd計算値以上である試料番号160、161では、静耐圧値が静耐圧下限値よりも大きい結果となった。
 試料番号164はMn量tが0.020と小さく、静耐圧の値が静耐圧下限値よりも小さい結果となった。また、試料番号167はMn量tが0.170と大きく、比抵抗の値が1016と大きい結果となった。
 また、試料番号155、158、165、166では、良好な静耐圧値と抵抗2倍点の値を示した。
 1 正特性サーミスタ素子
 11 部品素体
 12、13 電極

Claims (8)

  1.  一般式(Ba1-(x+y+z)/100Cax/100Sry/100Smcz/100)TiO3で表される化合物(ただしSmcは半導体化剤)を主成分として含み、
     前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、
     前記x、y、tが、
    2.500≦x≦20.000、
    0.000≦y≦5.000、
    2.500≦x+y≦20.000、
    0.030≦t≦0.150、
    の関係を満足し、
     前記zは、前記x、y、tによって定められる、半導体化剤Smcの量と比抵抗との関係を示した曲線での比抵抗が極小となる半導体化剤Smcの量以上であることを特徴とする半導体セラミック。
  2.  前記半導体化剤SmcがErであり、
     一般式(Ba1-(x+y+z)/100Cax/100Sry/100Erz/100)TiO3で表される化合物を主成分として含み、
     前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、
     前記x、y、z、tが、
    2.500≦x≦20.000、
    0.000≦y≦5.000、
    2.500≦x+y≦20.000、
    0.030≦t≦0.150、
    z≧(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200、
    の関係を満足することを特徴とする、請求項1に記載の半導体セラミック。
  3.  前記半導体化剤SmcがDyであり、
     一般式(Ba1-(x+y+z)/100Cax/100Sry/100Dyz/100)TiO3で表される化合物を主成分として含み、
     前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、
     前記x、y、z、tが、
    2.500≦x≦20.000、
    0.000≦y≦5.000、
    2.500≦x+y≦20.000、
    0.030≦t≦0.150、
    z≧0.84×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、
    の関係を満足することを特徴とする、請求項1に記載の半導体セラミック。
  4.  前記半導体化剤SmcがYであり、
     一般式(Ba1-(x+y+z)/100Cax/100Sry/100z/100)TiO3で表される化合物を主成分として含み、
     前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、
     前記x、y、z、tが、
    2.500≦x≦20.000、
    0.000≦y≦5.000、
    2.500≦x+y≦20.000、
    0.030≦t≦0.150、
    z≧0.84×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、
    の関係を満足することを特徴とする、請求項1に記載の半導体セラミック。
  5.  前記半導体化剤SmcがGdであり、
     一般式(Ba1-(x+y+z)/100Cax/100Sry/100Gdz/100)TiO3で表される化合物を主成分として含み、
     前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、
     前記x、y、z、tが、
    2.500≦x≦20.000、
    0.000≦y≦5.000、
    2.500≦x+y≦20.000、
    0.030≦t≦0.150、
    z≧0.63×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、
    の関係を満足することを特徴とする、請求項1に記載の半導体セラミック。
  6.  前記半導体化剤SmcがBiであり、
     一般式(Ba1-(x+y+z)/100Cax/100Sry/100Biz/100)TiO3で表される化合物を主成分として含み、
     前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、
     前記x、y、z、tが、
    2.500≦x≦20.000、
    0.000≦y≦5.000、
    2.500≦x+y≦20.000、
    0.030≦t≦0.150、
    z≧0.68×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、
    の関係を満足することを特徴とする、請求項1に記載の半導体セラミック。
  7.  前記半導体化剤SmcがNdであり、
     一般式(Ba1-(x+y+z)/100Cax/100Sry/100Ndz/100)TiO3で表される化合物を主成分として含み、
     前記主成分100モル部に対して、Mnがtモル部の割合で含まれており、
     前記x、y、z、tが、
    2.500≦x≦20.000、
    0.000≦y≦5.000、
    2.500≦x+y≦20.000、
    0.030≦t≦0.150、
    z≧0.42×[(30-x)(30-y)(1+15t)/{125(20+y)}+(5+3y)/200]、
    の関係を満足することを特徴とする、請求項1に記載の半導体セラミック。
  8.  部品素体の表面に一対の外部電極が形成された正特性サーミスタにおいて、
     前記部品素体が、請求項1ないし7のいずれか1項に記載の半導体セラミックで形成されていることを特徴とする正特性サーミスタ。
PCT/JP2012/056837 2011-03-30 2012-03-16 半導体セラミック及び正特性サーミスタ WO2012132954A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013507382A JP5812091B2 (ja) 2011-03-30 2012-03-16 半導体セラミック及び正特性サーミスタ
EP12763680.1A EP2695869B1 (en) 2011-03-30 2012-03-16 Semiconductor ceramic, and positive temperature coefficient thermistor
CN201280015862.0A CN103459350B (zh) 2011-03-30 2012-03-16 半导体陶瓷及正温度系数热敏电阻
TW101110898A TWI468363B (zh) 2011-03-30 2012-03-28 Semiconductor Ceramic and Positive Characteristic Thermistors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-076060 2011-03-30
JP2011076060 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132954A1 true WO2012132954A1 (ja) 2012-10-04

Family

ID=46930687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056837 WO2012132954A1 (ja) 2011-03-30 2012-03-16 半導体セラミック及び正特性サーミスタ

Country Status (5)

Country Link
EP (1) EP2695869B1 (ja)
JP (1) JP5812091B2 (ja)
CN (1) CN103459350B (ja)
TW (1) TWI468363B (ja)
WO (1) WO2012132954A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608146A (zh) * 2020-12-31 2021-04-06 马鞍山巨华电子科技有限公司 一种具有耐高压性能的新型环保ptc热敏电阻

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500307B2 (ja) * 2011-02-24 2014-05-21 株式会社村田製作所 正特性サーミスタ素子

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170361A (ja) 1990-10-31 1992-06-18 Murata Mfg Co Ltd チタン酸バリウム系半導体磁器組成物
JP2000264726A (ja) * 1999-03-19 2000-09-26 Tdk Corp 半導体磁器
JP2002029836A (ja) * 2000-07-05 2002-01-29 Samsung Electro Mech Co Ltd 誘電体セラミック組成物及びこれを用いた積層セラミックキャパシター並びにその製造方法
JP2002029839A (ja) * 2000-07-21 2002-01-29 Murata Mfg Co Ltd 半導体セラミック及び正特性サーミスタ
WO2008152976A1 (ja) * 2007-06-14 2008-12-18 Murata Manufacturing Co., Ltd. 半導体セラミック材料
JP2009177017A (ja) * 2008-01-25 2009-08-06 Tdk Corp 積層型ptcサーミスタ及びその製造方法
WO2010067868A1 (ja) * 2008-12-12 2010-06-17 株式会社 村田製作所 半導体セラミック及び正特性サーミスタ
WO2010067867A1 (ja) * 2008-12-12 2010-06-17 株式会社 村田製作所 半導体セラミック及び正特性サーミスタ
WO2010067865A1 (ja) * 2008-12-12 2010-06-17 株式会社 村田製作所 半導体セラミック及び正特性サーミスタ
WO2010140653A1 (ja) * 2009-06-05 2010-12-09 株式会社村田製作所 チタン酸バリウム系半導体磁器組成物およびチタン酸バリウム系半導体磁器素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151106A (ja) * 1992-11-13 1994-05-31 Sumitomo Metal Ind Ltd 正特性サーミスタ用半導体磁器組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170361A (ja) 1990-10-31 1992-06-18 Murata Mfg Co Ltd チタン酸バリウム系半導体磁器組成物
JP2000264726A (ja) * 1999-03-19 2000-09-26 Tdk Corp 半導体磁器
JP2002029836A (ja) * 2000-07-05 2002-01-29 Samsung Electro Mech Co Ltd 誘電体セラミック組成物及びこれを用いた積層セラミックキャパシター並びにその製造方法
JP2002029839A (ja) * 2000-07-21 2002-01-29 Murata Mfg Co Ltd 半導体セラミック及び正特性サーミスタ
WO2008152976A1 (ja) * 2007-06-14 2008-12-18 Murata Manufacturing Co., Ltd. 半導体セラミック材料
JP2009177017A (ja) * 2008-01-25 2009-08-06 Tdk Corp 積層型ptcサーミスタ及びその製造方法
WO2010067868A1 (ja) * 2008-12-12 2010-06-17 株式会社 村田製作所 半導体セラミック及び正特性サーミスタ
WO2010067867A1 (ja) * 2008-12-12 2010-06-17 株式会社 村田製作所 半導体セラミック及び正特性サーミスタ
WO2010067865A1 (ja) * 2008-12-12 2010-06-17 株式会社 村田製作所 半導体セラミック及び正特性サーミスタ
WO2010140653A1 (ja) * 2009-06-05 2010-12-09 株式会社村田製作所 チタン酸バリウム系半導体磁器組成物およびチタン酸バリウム系半導体磁器素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2695869A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608146A (zh) * 2020-12-31 2021-04-06 马鞍山巨华电子科技有限公司 一种具有耐高压性能的新型环保ptc热敏电阻

Also Published As

Publication number Publication date
CN103459350B (zh) 2016-01-06
EP2695869A4 (en) 2014-09-17
EP2695869A1 (en) 2014-02-12
EP2695869B1 (en) 2015-07-29
CN103459350A (zh) 2013-12-18
TWI468363B (zh) 2015-01-11
JPWO2012132954A1 (ja) 2014-07-28
TW201249776A (en) 2012-12-16
JP5812091B2 (ja) 2015-11-11

Similar Documents

Publication Publication Date Title
JP4400754B2 (ja) 圧電体磁器組成物、及び圧電セラミック電子部品
Lee et al. Crystal Structure, dielectric and ferroelectric properties of (Bi0. 5Na0. 5) TiO3–(Ba, Sr) TiO3 lead-free piezoelectric ceramics
WO2014084265A1 (ja) 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
JP2005179143A (ja) 圧電磁器およびその製造方法
JP2014224038A (ja) 圧電セラミックス及びこれを用いた圧電デバイス
JP2011195359A (ja) 誘電体磁器組成物
KR20170016805A (ko) 반도체 자기 조성물 및 ptc 서미스터
JP5192737B2 (ja) 非鉛系圧電セラミックス用焼結助剤、非鉛系圧電セラミックスおよび非鉛系圧電セラミックスの製造方法
JP5760890B2 (ja) 誘電体磁器組成物および電子部品
JP5418323B2 (ja) 誘電体磁器組成物および電子部品
JP2008156172A (ja) 無鉛圧電磁器組成物
JP4432969B2 (ja) 圧電磁器組成物、及び圧電素子
JP6636744B2 (ja) 誘電体磁器組成物及びこれを用いた電子素子
JP2010150060A (ja) 非鉛系圧電セラミックス、積層型圧電デバイスおよび非鉛系圧電セラミックスの製造方法
JP5831079B2 (ja) 誘電体磁器組成物および電子部品
JP5812091B2 (ja) 半導体セラミック及び正特性サーミスタ
Islam et al. Effect of manganese doping on the grain size and transition temperature of barium titanate ceramics
JP2016160166A (ja) 誘電体組成物および電子部品
WO2013065441A1 (ja) Ptcサーミスタおよびptcサーミスタの製造方法
JP5462759B2 (ja) 圧電セラミックスおよび圧電素子
JP5834674B2 (ja) 誘電体磁器組成物および電子部品
JP2008056549A (ja) 無鉛圧電磁器組成物
JP4779466B2 (ja) チタン酸バリウム系半導体磁器組成物
JP4370135B2 (ja) 圧電磁器組成物
JP2012201581A (ja) 誘電体磁器組成物および電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012763680

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013507382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE