WO2012132866A1 - 波長変換素子および波長変換レーザ装置 - Google Patents

波長変換素子および波長変換レーザ装置 Download PDF

Info

Publication number
WO2012132866A1
WO2012132866A1 PCT/JP2012/056350 JP2012056350W WO2012132866A1 WO 2012132866 A1 WO2012132866 A1 WO 2012132866A1 JP 2012056350 W JP2012056350 W JP 2012056350W WO 2012132866 A1 WO2012132866 A1 WO 2012132866A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
wavelength
light
harmonic
crystal
Prior art date
Application number
PCT/JP2012/056350
Other languages
English (en)
French (fr)
Inventor
藤川 周一
今野 進
古田 啓介
智毅 桂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280015298.2A priority Critical patent/CN103460125B/zh
Priority to US14/007,469 priority patent/US9188834B2/en
Priority to JP2013507350A priority patent/JP5721812B2/ja
Priority to DE112012001525.8T priority patent/DE112012001525B4/de
Publication of WO2012132866A1 publication Critical patent/WO2012132866A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0815Configuration of resonator having 3 reflectors, e.g. V-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Definitions

  • the present invention relates to a wavelength conversion element for generating higher harmonics higher than the third harmonic and a wavelength conversion laser device using the same.
  • the third harmonic or the fourth harmonic is usually generated in addition to the first wavelength conversion crystal for generating the second harmonic. Therefore, a configuration using the second wavelength conversion crystal is generally used.
  • the angle and temperature of the multiple wavelength conversion crystals, the incident angle of the wavelength-converted light, and the beam diameter must be adjusted. As a result, there is a problem that the output of the higher harmonics, the beam intensity distribution, and the beam diameter are easily changed.
  • Patent Document 1 a method of integrating a plurality of wavelength conversion crystals using a method such as optical contact has been proposed. Further, a method of generating a third harmonic using a specific crystal material and a single wavelength conversion crystal has been proposed (for example, Patent Document 2).
  • the first wavelength conversion crystal for generating the second harmonic Second wavelength conversion crystals that generate higher harmonics of 3 harmonics or more are prepared, and the first wavelength conversion crystal and the second wavelength conversion crystal are joined at an accurate angle using an optical contact or other method.
  • the wavelength conversion element not only cost and labor are required for manufacturing the wavelength conversion element, but also crystals having different coefficients of thermal expansion are joined, so there is a problem in reliability at the joined part such as peeling of the joined part accompanying the heat cycle.
  • the first wavelength conversion crystal and the second wavelength conversion crystal having different refractive indexes are joined. For this reason, there is a problem in that a reflection loss due to Fresnel reflection occurs in the joint, and scattered light is generated depending on the finished state of the joint surface, thereby reducing the wavelength conversion efficiency.
  • the configuration uses a specific wavelength conversion crystal material, and the third harmonic that can be generated can be generated.
  • the wavelength is limited to a specific wavelength determined by the physical property value of the wavelength conversion crystal material.
  • An object of the present invention is to provide a wavelength conversion element capable of efficiently generating higher-order harmonics higher than the third harmonic with a simple configuration and excellent reliability, and a wavelength conversion laser device using the same It is to be.
  • the wavelength conversion element includes: A first phase matching condition for the first wavelength conversion for converting the light of the first wavelength to the light of the second wavelength, and a second for the second wavelength conversion of converting the light of the second wavelength to the light of the third wavelength.
  • a single nonlinear optical crystal that satisfies both biphasic matching conditions; Reflecting means for reflecting the light of the second wavelength generated by the first wavelength conversion and supplying the light to the second wavelength conversion.
  • the wavelength conversion element according to the second aspect of the present invention is Both the first phase matching condition for the first wavelength conversion for converting the fundamental wave to the second harmonic and the second phase matching condition for the second wavelength conversion for converting the second harmonic to the fourth harmonic A single nonlinear optical crystal satisfying Reflection means for reflecting the second harmonic generated by the first wavelength conversion and supplying the second harmonic to the second wavelength conversion.
  • the nonlinear optical crystal further satisfies the third phase matching condition of the third wavelength conversion for converting the fourth harmonic to a higher harmonic than the fourth harmonic, It is preferable to further include additional reflecting means for reflecting the fourth harmonic generated by the second wavelength conversion and supplying it to the third wavelength conversion.
  • the nonlinear optical crystal is preferably a cesium / lithium / borate crystal.
  • the wavelength conversion element is First phase matching condition for first wavelength conversion for converting fundamental wave to second harmonic wave, and second wavelength conversion for converting fundamental wave and second harmonic wave to third harmonic wave by sum frequency generation A single nonlinear optical crystal that satisfies both of the second phase matching conditions; Reflecting means for reflecting the second harmonic generated by the first wavelength conversion and the fundamental wave remaining by the first wavelength conversion and supplying the second harmonic to the second wavelength conversion.
  • the nonlinear optical crystal further satisfies the third phase matching condition of the third wavelength conversion for converting the third harmonic to a higher harmonic than the third harmonic, It is preferable to further include additional reflecting means for reflecting the third harmonic generated by the second wavelength conversion and supplying it to the third wavelength conversion.
  • the nonlinear optical crystal is preferably a lithium triborate crystal.
  • the reflecting means is preferably composed of at least two reflecting surfaces having different crystal orientations.
  • the reflecting means is preferably provided with a polarization adjusting means for adjusting the polarization direction of the reflected light.
  • the wavelength-converted light is incident as P-polarized light on the exit surface where the wavelength-converted light exits the nonlinear optical crystal, and the incident angle of the wavelength-converted light with respect to the exit surface is set to be a Brewster angle. It is preferable.
  • the first wavelength conversion preferably satisfies the type II type phase matching condition.
  • the wavelength conversion laser device is: A laser light source for generating laser light; One of the above-described wavelength conversion elements that performs wavelength conversion of the laser light.
  • a laser light source includes an optical resonator and a laser medium disposed inside the optical resonator,
  • the wavelength conversion element is disposed inside the optical resonator, and the optical axis of the optical resonator matches at least the phase matching direction of the first wavelength conversion.
  • the first wavelength conversion satisfies a type I phase matching condition
  • a polarization adjusting unit for adjusting the polarization direction of the laser light incident on the wavelength conversion element is provided inside the optical resonator.
  • the present invention by using a single nonlinear optical crystal that satisfies both the first phase matching condition for the first wavelength conversion and the second phase matching condition for the second wavelength conversion, By providing a reflection means for supplying the generated light of the second wavelength to the second wavelength conversion, high-order harmonics higher than the third harmonic are efficiently generated with excellent reliability and a simple configuration. Can do.
  • FIG. 1 is a perspective view showing a configuration of a wavelength conversion crystal 100 according to Embodiment 1 of the present invention.
  • the wavelength conversion crystal 100 is a crystal exhibiting a nonlinear optical effect, and in this embodiment, a cesium / lithium / borate-based crystal (CLBO crystal: CsLiB 6 O 10 ) is used as an example.
  • arrows 101, 102, and 103 represent the Z axis, X axis, and Y axis, which are dielectric main axes of the CLBO crystal, respectively, and the Z axis 101 coincides with the optical axis of the CLBO crystal.
  • An arrow 104 is a Z ′ axis that represents the main propagation direction of the light beam in the wavelength conversion crystal 100.
  • one end face 107 (A face) of the wavelength conversion crystal 100 is cut out so that the normal direction thereof coincides with the Z ′ axis 104.
  • the upper surface of the wavelength conversion crystal 101 indicated by 108 (B surface) is a plane parallel to both the phase matching direction of the first wavelength conversion and the phase matching direction of the second wavelength conversion. In this form, it is parallel to both the Z axis 101 that is the dielectric main axis and the Z ′ axis 104 that is the main propagation direction of the light beam.
  • the bottom surface 109 (C surface) of the wavelength conversion crystal 100 is formed to be parallel to the B surface 108 that is the upper surface of the wavelength conversion crystal 100.
  • Reference numeral 110 (D-plane) is a first reflecting surface formed on the other end face of the wavelength conversion crystal 100
  • reference numeral 111 (E-plane) is formed on the other end face of the wavelength conversion crystal 100. This is the second reflecting surface.
  • the declination ⁇ is an angle formed with the Z-axis 101 that is one of the dielectric main axes
  • the declination ⁇ is the X-axis 102 in which the mapping of the azimuth to be expressed on the XY plane is one of the dielectric main axes. It is defined as representing the angle between.
  • the A surface 107 of the wavelength conversion crystal 100 according to the present embodiment is provided with an antireflection coating for both the wavelength 1064 nm and the wavelength 266 nm.
  • the D surface 110 and the E surface 111 are provided with a two-wavelength coating that is highly transmissive for a wavelength of 1064 nm and highly reflective for a wavelength of 532 nm.
  • FIG. 2 is a perspective view schematically showing the propagation direction and the polarization direction of light within the wavelength conversion crystal 100.
  • FIG. 3 is a schematic diagram showing the propagation direction and the polarization direction of light rays in the wavelength conversion crystal 100 when the wavelength conversion crystal is viewed from the normal direction of the B plane 108. 2 and 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the solid line indicated by reference numeral 10 is fundamental wave light having a wavelength of 1064 nm.
  • a yttrium aluminum garnet (YAG) crystal doped with neodymium (Nd) is used as a laser medium. It is emitted from the YAG laser.
  • a double arrow indicated by reference numeral 11 represents the polarization direction of the fundamental wave light 10.
  • a dotted line indicated by reference numeral 20 is the second harmonic light of the outward path having a wavelength of 532 nm generated by the first wavelength conversion in the wavelength conversion crystal 100, and a double-headed arrow indicated by reference numeral 21 indicates the second harmonic light 20 of the forward path. It represents the polarization direction.
  • a dotted line indicated by reference numeral 22 is the second harmonic light of the return path that has been reflected on the D plane 110 and the E plane 111 and turned in the traveling direction, and a double-headed arrow indicated by reference numeral 23 indicates the polarization of the second harmonic light of the return path. It represents the direction.
  • a one-dot chain line indicated by reference numeral 40 is fourth harmonic light having a wavelength of 266 nm generated by the second wavelength conversion, and a double-headed arrow indicated by reference numeral 41 represents the polarization direction of the fourth harmonic light 40.
  • the CLBO crystal which is the wavelength conversion crystal 100 according to the first embodiment, is maintained at around 150 ° C. by the heater and the temperature adjustment mechanism, and adjustment that allows adjustment of the crystal installation angle. A mechanism is provided.
  • the fundamental wave light 10 is maintained in a plane parallel to the B plane 108 (C plane 109), the polarization direction 11 is set to a direction orthogonal to the B plane 108 (C plane 109), and the A plane 107 is set. More incident on the wavelength conversion crystal 100.
  • the incident angle of the fundamental wave light 10 with respect to the A plane 107 that is, the angle formed with the Z ′ axis 104, which is the normal direction of the A plane 107, is set to 24.52 deg.
  • the linearly polarized light component 11 perpendicular to the B plane 108 (C plane 109) having a wavelength of 1064 nm that enters the A plane of the wavelength conversion crystal 100 at an incident angle of 24.52 degrees.
  • the refractive index of the CLBO crystal 100 is 1.383. Due to this refraction effect, the traveling direction of the fundamental wave light 10 in the wavelength conversion crystal 100 is bent according to Snell's law, and forms an angle of 16.25 deg with respect to the Z ′ axis as shown in FIG.
  • the propagation direction of the fundamental wave light 10 in the wavelength conversion crystal 100 is the dielectric principal axis of the CLBO crystal 100.
  • ⁇ polar coordinates with reference to ## EQU1 ## ( ⁇ , ⁇ ) (29.4 deg, 45.0 deg), and the second harmonic wave having a fundamental wave with a wavelength of 1064 nm at a crystal temperature of 150 ° C. for the first wavelength conversion. Consistent with type I phase matching orientation for generation.
  • the polarization direction perpendicular to the B plane 108 (C plane) coincides with the polarization direction of ordinary light in the type I phase matching, and thus the fundamental wave light 10 incident on the wavelength conversion crystal 100 as described above is the first Is efficiently converted into the second harmonic light 20 having a wavelength of 532 nm.
  • the polarization direction of the second harmonic light 20 in the forward path is parallel to the B surface 108 (C surface 109).
  • the fundamental light 10 that propagates through the wavelength conversion crystal 100 while being converted into the second harmonic light 20 reaches the D plane 110.
  • the D surface 110 and the E surface 111 are coated with a two-wavelength coating that is highly transmissive for a wavelength of 1064 nm and highly reflective for a wavelength of 532 nm.
  • the fundamental wave light 10 is emitted to the outside of the wavelength conversion crystal 100.
  • the forward second harmonic light 20 having a wavelength of 532 nm is reflected by two surfaces of the D surface 110 and the E surface 111 and turns back in the traveling direction to become the second harmonic light 22 of the return route.
  • the D surface 110 and the E surface 111 are formed in the above-mentioned orientation, the propagation direction of the second harmonic light 22 in the return path that undergoes reflection action on the two surfaces of the D surface 110 and the E surface 111 is As in the forward path, the angle is 16.25 degrees with respect to the Z ′ axis 104 in a plane parallel to the B surface 108 (C surface 109).
  • the propagation direction of the second harmonic light 20 is defined not by the walk-off direction generated by the birefringence of the wavelength conversion crystal 100 but by the wavefront normal direction assuming a plane wave (hereinafter the same). Therefore, the propagation direction of the second harmonic light 22 on the return path coincides with the type I phase matching direction for the second harmonic generation with the wavelength of 532 nm as the fundamental wave at the crystal temperature of 150 ° C. with respect to the second wavelength conversion.
  • the polarization direction 21 of the second harmonic light 20 in the forward path is parallel to the B plane 108 (C plane 109), whereas the return path Most of the polarization components of the second harmonic light 22 are in a direction perpendicular to the B surface 108 (C surface 109) as indicated by reference numeral 23 in FIG. Since the polarization direction perpendicular to the B surface 108 (C surface) coincides with the polarization direction of ordinary light in the type I phase matching, the traveling direction is turned back by the reflecting action on the D surface 110 and the E surface 111.
  • the second harmonic light 22 on the return path is efficiently converted into the fourth harmonic light 40 having a wavelength of 266 nm by the second wavelength conversion.
  • the polarization direction 41 of the fourth harmonic light 40 is parallel to the B surface 108 (C surface 109).
  • the refractive index of the CLBO crystal 100 with respect to the second harmonic light 22 in the return path having a wavelength of 532 nm, which is ordinary light in the propagation direction, and the fourth harmonic light 40 having a wavelength of 266 nm, which is extraordinary light, is 1.497.
  • the second-harmonic light 22 and the fourth-harmonic light 40 on the return path reaching 107 are both emitted from the wavelength conversion crystal 100 at an angle of 24.77 deg with respect to the Z ′ axis 104.
  • the second harmonic light 22 and the fourth harmonic light 40 emitted from the wavelength conversion crystal 100 and propagating in the same direction are transmitted through a two-wavelength mirror 50 that is highly reflective for a wavelength of 532 nm and highly transparent for a wavelength of 266 nm. By using it, it is possible to easily extract only the fourth harmonic light 40 having a wavelength of 266 nm.
  • the orientation of each surface of the wavelength conversion crystal 100 is determined as described above, and the incident direction of the fundamental wave light 10 that is the wavelength-converted light is determined. Therefore, the fundamental wave light 10 is incident on the wavelength conversion crystal 100 with an azimuth and a polarization direction that match the phase matching conditions of the type I second harmonic generation having a wavelength of 1064 nm as the fundamental wave for the first wavelength conversion, and has a wavelength of 532 nm.
  • the second harmonic light 20 is efficiently converted to the second harmonic light 20, and the second harmonic light 20 is turned back by the reflection action of the two surfaces consisting of the D surface 110 and the E surface 111 to propagate the second harmonic light 22 in the return route.
  • the fourth harmonic light 40 having a wavelength of 266 nm can be efficiently generated from the fundamental light 10 having a wavelength of 1064 nm that is incident light. To do.
  • type I second harmonic generation having a fundamental wave of 1064 nm as the first wavelength conversion
  • type I type second wave having a fundamental wave of 532 nm as the second wavelength conversion.
  • the second harmonic generation is used to illustrate the configuration for converting the fundamental wave light having a wavelength of 1064 nm to the fourth harmonic light having a wavelength of 266 nm using a single wavelength conversion crystal.
  • the wavelength of the fundamental wave that is the wavelength-converted light is This is not a limitation. In short, in the same wavelength conversion crystal, if it is possible to generate both the second harmonic light and higher harmonic light than the second harmonic light at the same temperature, the first wavelength conversion that generates the second harmonic light.
  • the orientation of each surface of the wavelength conversion crystal is determined according to the phase matching orientation and polarization direction of the second wavelength conversion that generates higher-order harmonic light than the second harmonic light, the same effect can be obtained. Needless to say.
  • the refractive index of the wavelength conversion crystal with respect to an arbitrary wavelength, orientation, and polarization direction can be derived using the Cellmeier equation determined by the physical property values of the wavelength conversion crystal. If the phase matching direction and the polarization direction of the first wavelength conversion that generates the second harmonic light and the second wavelength conversion that generates higher-order harmonic light than the second harmonic light are clear, the wavelength conversion crystal The orientation of the reflecting surface to be formed can be obtained analytically based on a geometric optical technique.
  • the phase matching of the second wavelength conversion is the type I type
  • the wavelength-converted light that satisfies the phase matching condition (in the case of the first embodiment, the second wavelength 532 nm second wavelength).
  • the polarization direction of the harmonic light is only one direction (normal light in the case of the first embodiment).
  • the propagation direction of the light beam is set to the second It is difficult to combine the polarized light component separated into the ordinary light and the extraordinary light into a single polarized light component by the reflecting action on the second reflecting surface E surface 111 that matches the phase matching direction of wavelength conversion.
  • the polarization component determined by the reflecting action by the first reflecting surface D surface 110 is as far as possible in the propagation process from the first reflecting surface D surface 110 to the second reflecting surface E surface 111. Or it is desirable to be biased to either one of abnormal light.
  • the second harmonic light that undergoes a reflecting action on the first reflecting surface D surface 110 since the orientation of the first reflecting surface D surface 110 is formed as described above, theoretically, the second harmonic light that undergoes a reflecting action on the first reflecting surface D surface 110. 99% or more of the polarized light components can be polarized in the normal light direction even in the propagation process from the first reflecting surface D surface 110 to the second reflecting surface E surface 111. Further, since the second reflecting surface E surface 111 is formed as described above, theoretically, 99% or more of the ordinary light component reflected by the second reflecting surface E surface 111 is reduced to the second wavelength. In the phase matching azimuth of conversion, the second wavelength conversion can be efficiently performed by polarization in the ordinary light direction that matches the phase matching condition of the second wavelength conversion. However, the ⁇ polar coordinate notation in the normal direction of the first reflecting surface D surface 110 and the second reflecting surface E surface 111 described above is additionally written that the second decimal place is rounded off (the same applies hereinafter). ).
  • the wavelength conversion crystal 100 is formed with two reflecting surfaces (D surface 110 and E surface 111), and a configuration that matches the phase matching condition of the second wavelength conversion is shown.
  • the number of reflecting surfaces that match the phase matching condition of the second wavelength conversion is not limited to this.
  • the polarization component that matches the phase matching condition of the second wavelength conversion is maximized in consideration of the birefringence effect. What is necessary is just to determine the azimuth
  • a CLBO crystal is used for the wavelength conversion crystal 100, and the type I second harmonic generation having a wavelength of 1064 nm as the fundamental wave is used as the first wavelength conversion, and the second wavelength is used.
  • a type I second harmonic generation having a fundamental wavelength of 532 nm as the conversion a single wavelength conversion crystal is used to convert the fundamental light having a wavelength of 1064 nm to the fourth harmonic light having a wavelength of 266 nm.
  • the type of wavelength conversion crystal and the type of phase matching at the time of wavelength conversion are not limited thereto.
  • the second harmonic is used. If the orientation of each surface to be formed on the wavelength conversion crystal is determined based on the geometric optical technique according to the phase matching direction and the polarization direction for generating higher-order harmonic light than the wave light and the second harmonic light, the present embodiment 1 can be obtained.
  • the orientation of each surface formed in the actual wavelength conversion crystal may deviate from the design value due to manufacturing errors.
  • the installation angle of the wavelength conversion crystal and the temperature of the wavelength conversion crystal may be adjusted as appropriate so that the output of higher-order harmonic light than the second harmonic becomes maximum.
  • FIG. FIG. 4 is a schematic diagram showing the propagation direction and the polarization direction of light within the wavelength conversion crystal 100 when the wavelength conversion crystal 100 according to the second embodiment of the present invention is viewed from the normal direction of the B plane 108. 4, the same reference numerals as those in FIGS. 1 to 3 denote the same or corresponding parts. Also in the second embodiment, a CLBO crystal heated to about 150 ° C. is used as the wavelength conversion crystal 100 as in the first embodiment, and the fundamental wavelength is 1064 nm as the first wavelength conversion.
  • type I second harmonic generation using type I second harmonic generation with a fundamental wavelength of 532 nm as second wavelength conversion, and wavelength using a single wavelength conversion crystal 100
  • a configuration for converting the fundamental wave light of 1064 nm to the fourth harmonic light of wavelength 266 nm is shown. That is, the orientation of the A surface 107, the B surface 108, the D surface 109, and the E surface 110 constituting the wavelength conversion crystal 100 with respect to the dielectric principal axis, the fundamental wave light 10 in the wavelength conversion crystal 100, and the second harmonic light
  • the propagation directions and polarization directions of 20, 22, and the fourth harmonic light 40 are the same as those in the first embodiment.
  • an F surface 112 is formed through which the fourth harmonic light 40 generated in the wavelength conversion crystal 100 is emitted to the outside of the wavelength conversion crystal 100.
  • the polarized light 41 of the fourth harmonic light 40 is parallel to the B surface 108, and the fourth harmonic light 40 is incident on the F surface 112 with P polarization.
  • the propagation direction of the fourth harmonic light 40 in the wavelength conversion crystal 100 is parallel to the B surface 108 and forms an angle of 16.25 deg with the Z ′ axis 104, so that the fourth harmonic light 40 moves to the F surface.
  • the incident angle is 33.74 deg.
  • the incident angle of the fourth harmonic light 40 with respect to the F plane 112 is 33.74 deg. Is the Brewster angle.
  • the fourth harmonic light 40 is incident in the direction of the F plane 112 emitted from the wavelength conversion crystal 100, the fourth harmonic light 40 is incident as P-polarized light, and the incident angle of the fourth harmonic light 40 is Since it is formed so as to match the Brewster angle, almost 100% of the fourth harmonic light 40 can be taken out of the wavelength conversion crystal 100 without loss under ideal conditions where the F surface 112 is not altered or adhered to foreign matter. it can.
  • a CLBO crystal is used as the wavelength conversion crystal 100 and the fourth harmonic light 40 having a wavelength of 266 nm is generated from the fundamental wave having a wavelength of 1064 nm.
  • the type of conversion crystal and the order of higher harmonics generated are not limited to this.
  • the second embodiment will be described if the angle of the exit surface becomes a Brewster angle according to the propagation direction of the higher harmonics extracted from the wavelength conversion crystal, the polarization direction, and the refractive index sensed by the higher harmonics. The same effect can be obtained.
  • FIG. 5 is a schematic diagram showing the propagation direction and the polarization direction of light in the wavelength conversion crystal 100 when the wavelength conversion crystal 100 according to the third embodiment of the present invention is viewed from the normal direction of the B plane 108.
  • the same reference numerals as those in FIGS. 1 to 4 denote the same or corresponding parts.
  • the wavelength conversion crystal 100 is a CLBO crystal heated to about 150 ° C. as in the first and second embodiments, and is a type I having a wavelength of 1064 nm as a fundamental wave as the first wavelength conversion.
  • Type second harmonic generation, type I second harmonic generation having a fundamental wavelength of 532 nm as the second wavelength conversion, and a wavelength of 1064 nm using a single wavelength conversion crystal 100 A configuration for converting fundamental wave light into fourth harmonic light having a wavelength of 266 nm is shown. Further, the orientations of the A surface 107 and the B surface 108 constituting the wavelength conversion crystal 100 with respect to the dielectric main axis are the same as those in the first and second embodiments.
  • the D surface 110 of the wavelength conversion crystal 100 of the third embodiment is formed in parallel to the A surface 107, and the D surface 110 is a reflection type 1 for the second harmonic light 20 and 22 having a wavelength of 532 nm.
  • the / 2 wavelength plate 51 is joined by an optical contact.
  • the optical axis of the half-wave plate 51 is bonded to the D surface in a direction that forms an angle of 45 degrees with respect to the normal line of the B surface 108.
  • the D surface 110 is formed in parallel with the A surface 107, the second harmonic light 22 in the return path that is the reflected light from the half-wave plate 51 joined to the D surface 110.
  • the propagation direction in the wavelength conversion crystal 100 is the same as in the first and second embodiments.
  • the half-wave plate 51 is bonded to the D surface 110 such that the optical axis forms an angle of 45 degrees with respect to the normal line of the B surface 108. Accordingly, the polarization direction 21 of the second harmonic light 20 in the forward path parallel to the B surface 108 is rotated by 90 deg by the half-wave plate 51, and the polarization direction 23 of the second harmonic light 22 in the return path is the law of the B surface 108. It becomes equal to the line direction.
  • the propagation direction and the polarization direction 23 of the second harmonic light 22 in the return path are the type I phase matching for the second harmonic generation with the fundamental wavelength of 532 nm at the crystal temperature of 150 ° C. with respect to the second wavelength conversion.
  • the fourth harmonic light 40 having a wavelength of 266 nm can be efficiently generated in accordance with the conditions.
  • the second harmonic light generated by the first wavelength conversion is formed in an orientation that reflects the phase matching orientation of the second wavelength conversion.
  • a reflection-type polarization rotation element that rotates the polarization direction of the second harmonic light generated by the first wavelength conversion to the polarization direction that matches the phase matching condition of the second wavelength conversion is bonded to one surface
  • the first In order to match the azimuth and polarization direction of the second harmonic light generated by the wavelength conversion of the second wavelength conversion with the phase matching condition of the second wavelength conversion, the reflection surface formed in the wavelength conversion crystal may be one surface, so that it is simple and inexpensive. With this configuration, the first and second wavelength conversions can be realized using a single wavelength conversion crystal.
  • the third embodiment a configuration in which a CLBO crystal is used as the wavelength conversion crystal 100 and the fourth harmonic light 40 having a wavelength of 266 nm is generated from the fundamental wave having a wavelength of 1064 nm has been described.
  • the type of conversion crystal and the order of higher harmonics generated are not limited to this.
  • the polarization direction may deviate from the design value due to manufacturing errors when creating the wavelength conversion crystal. In such a case, the angle of the reflection-type polarization rotation element to be joined may be adjusted as appropriate so that the desired high-order harmonic output is maximized.
  • FIG. FIG. 6 is a schematic diagram showing a configuration of a wavelength conversion laser device according to Embodiment 4 of the present invention.
  • the wavelength conversion crystal 100 in which the orientation of each surface is the same as that in the second embodiment shown in FIG. 4 is used.
  • the CLBO crystal which is the wavelength conversion crystal 100 of the first embodiment, is maintained near 150 ° C. by the heater and the temperature adjustment mechanism, and the crystal installation angle can be adjusted. An adjustment mechanism is provided.
  • the A surface 107 of the wavelength conversion crystal 100 of the present embodiment is provided with a two-wavelength coating that provides high transmission at both the wavelength 1064 nm and the wavelength 532 nm, and the D surface 110 and the E surface 111 have A two-wavelength coating is applied to provide high transmission for a wavelength of 1064 nm and high reflection for a wavelength of 532 nm.
  • reference numeral 1 denotes a solid-state laser medium, which uses a YAG crystal doped with Nd.
  • Reference numeral 2 denotes a semiconductor laser used as an excitation light source for the solid-state laser medium 1, and three semiconductor lasers 2 are installed on the side of the solid-state laser medium 1.
  • Reference numeral 3 denotes a first reflecting mirror constituting an optical resonator, which is coated with high reflection with respect to a wavelength of 1064 nm.
  • Reference numeral 4 denotes a second reflecting mirror constituting an optical resonator, which is coated with high reflection with respect to both a wavelength of 1064 nm and a wavelength of 532 nm.
  • Reference numeral 5 denotes an acousto-optic Q switch element inserted in the optical resonator.
  • Reference numeral 6 denotes a polarization selection element for a wavelength of 1064 nm.
  • a parallel plane substrate made of quartz is inserted at a Brewster angle for a wavelength of 1064 nm.
  • the polarization selection element 6 is provided with an adjustment mechanism capable of adjusting the angle with the optical axis of the fundamental wave light 10 as the rotation axis.
  • the two-wavelength mirror 50 of the present embodiment is provided with a two-wavelength coating that is highly transmissive to the second harmonic light 22 with a wavelength of 532 nm and highly reflective to the fourth harmonic light 40 with a wavelength of 266 nm.
  • the second harmonic light 22 transmitted through the two-wavelength mirror 50 is incident on a damper indicated by reference numeral 7.
  • the optical axis of the optical resonator of the wavelength conversion laser device according to the present embodiment constituted by the first reflecting mirror 3 and the second reflecting mirror 4 is such that the optical path in the wavelength conversion crystal 100 is the first wavelength conversion. Is adjusted to match the type I phase matching orientation for second harmonic light generation having a fundamental wave of 1064 nm. Further, the polarization direction of the fundamental wave light 10 in the optical resonator is the type I type for the second harmonic light generation in which the polarization direction in the wavelength conversion crystal 100 has the wavelength of 1064 nm as the fundamental wave described in the first embodiment. Is adjusted by the polarization selection element 6 so as to meet the phase matching condition.
  • the solid-state laser medium 1 When the solid-state laser medium 1 is excited by irradiating the solid-state laser medium 1 with excitation light emitted from the semiconductor laser 2, the solid-state laser medium 1 exhibits an amplification action in a specific wavelength region. Amplified when spontaneously emitted light generated from the solid-state laser medium 1 reciprocates in the optical resonator composed of the first reflecting mirror 3 and the second reflecting mirror 4 and passes through the excited solid-state laser medium 1. Under the action, it leads to laser oscillation.
  • both the first reflecting mirror 3 and the second reflecting mirror 4 are provided with a highly reflective coating for a wavelength of 1064 nm. Therefore, in the wavelength conversion laser device of the present embodiment, 1064 nm is selected as the oscillation wavelength.
  • the acousto-optic Q switch 5 is inserted in the optical resonator, and the Q switch element 5 is used to increase or decrease the loss of the optical resonator with a constant period. By doing so, a Q switch pulse with a high peak output is generated.
  • the wavelength conversion crystal 100 Since the orientation and polarization direction of the fundamental wave light 10 passing through the wavelength conversion crystal 100 match the phase matching condition of the first wavelength conversion, it is efficiently converted into the second harmonic light 20.
  • the wavelength conversion crystal 100 since the wavelength conversion crystal 100 is installed inside the optical resonator that generates the fundamental wave light 10, the first reflection mirror 3 to the second reflection mirror 4. Both the fundamental wave of the outgoing path going to and the fundamental wave of the return path going from the second reflecting mirror 4 to the first reflecting mirror 4 are converted into the second harmonic light 20.
  • the second harmonic light 20 generated by the fundamental wave of the forward path from the first reflecting mirror 3 to the second reflecting mirror 4 is once emitted from the A surface 107 of the wavelength converting crystal 100 to the outside of the wavelength converting crystal 100. 2 to the reflecting mirror 4.
  • the second reflecting mirror 4 Since the second reflecting mirror 4 is provided with a high reflection coating for both the wavelength 1064 nm and the wavelength 532 nm, the second reflecting mirror 4 is generated by the fundamental wave light 10 generated in the forward direction from the first reflecting mirror 3 to the second reflecting mirror 4.
  • the second harmonic light 20 has its traveling direction turned back by the second reflecting mirror 4 and is incident on the wavelength conversion crystal 100 again.
  • the second harmonic light 20 re-incident on the wavelength conversion crystal 100 is reflected by the D surface 110 and the E surface 111 and satisfies the phase condition of the second wavelength conversion in both the azimuth and the polarization direction.
  • the fourth harmonic light 40 is efficiently converted.
  • the wavelength conversion crystal is used as an optical resonance of a wavelength conversion laser device that generates fundamental light. If the optical axis direction and the polarization direction of the fundamental wave light in the optical resonator are matched with the phase matching condition of the first wavelength conversion, the fundamental wave light and the return path in the forward path reciprocating in the optical resonator It is possible to use both of the fundamental wave light for the first wavelength conversion and improve the conversion efficiency of the first wavelength conversion, and in addition to the harmonics generated by the fundamental wave light in the forward path by the first wavelength conversion. Since both the harmonic light generated by the wave light and the fundamental light of the return path can be used for the second wavelength conversion, there is an effect that the conversion efficiency of the second wavelength conversion can be improved.
  • the wavelength conversion crystal is installed in the optical resonator of the wavelength conversion laser device that generates the fundamental light, the intensity of the fundamental light incident on the wavelength conversion crystal is easily increased.
  • the conversion efficiency of the first wavelength conversion can be effectively improved, and as a result, the conversion efficiency of the second wavelength conversion can be improved.
  • the wavelength conversion laser device of the fourth embodiment since a single wavelength conversion crystal is used to perform the first and second wavelength conversions, the adjustment for performing the second wavelength conversion is performed. No work is required, and the second wavelength converted light can be generated stably.
  • the configuration is shown in which only the first wavelength conversion is performed in the optical resonator of the wavelength conversion laser device.
  • the second wavelength light is generated by the first wavelength conversion.
  • both the first wavelength conversion and the second wavelength conversion are optical resonances of the wavelength conversion laser device. It is good also as a structure performed within a container.
  • FIG. FIG. 7 is a perspective view showing the configuration of the wavelength conversion crystal 100 according to the fifth embodiment of the present invention. 7, the same reference numerals as those in FIGS. 1 to 6 denote the same or corresponding parts. Also in the fifth embodiment, the wavelength conversion crystal 100 uses a CLBO crystal heated to about 150 ° C. as in the first to fourth embodiments. In the fifth embodiment, as the first wavelength conversion, the second harmonic generation is performed by the type II phase matching having the wavelength of 1064 nm as the fundamental wave, and the first to fourth embodiments are performed as the second wavelength conversion.
  • the second harmonic generation is performed by the type I type phase matching with the wavelength of 532 nm as the fundamental wave, and the single wavelength conversion crystal 100 is used to convert the fundamental wave light of the wavelength 1064 nm to the fourth harmonic light of the wavelength 266 nm.
  • the structure to be shown is shown.
  • type II type second harmonic generation having a fundamental wavelength of 1064 nm is used as the first wavelength conversion. Therefore, the orientation of each surface formed in the wavelength conversion crystal 100 is Different from Embodiments 1 to 4.
  • the arrow indicated by reference numeral 104 is a Z ′ axis that represents the main propagation direction of the light beam in the wavelength conversion crystal 100.
  • the normal direction of the A plane 107 coincides with the phase matching orientation of the first wavelength conversion
  • the normal direction of the F plane 112 coincides with the phase matching orientation of the second wavelength conversion. It is formed to do.
  • the B surface 108 is a plane parallel to both the phase matching direction of the first wavelength conversion and the phase matching direction of the second wavelength conversion.
  • the C surface 109 is formed in parallel with the B surface 108.
  • the declination ⁇ is an angle formed with the Z-axis 101 that is one of the dielectric main axes
  • the declination ⁇ is the X-axis 102 in which the mapping of the azimuth to be expressed on the XY plane is one of the dielectric main axes. It represents the angle between.
  • the A surface 107 of the wavelength conversion crystal 100 according to the fifth embodiment is provided with an antireflection coating for a wavelength of 1064 nm
  • the F surface 112 is provided with an antireflection coating for a wavelength of 266 nm
  • the E surface 111 is provided with a two-wavelength coating that is highly transmissive with respect to a wavelength of 1064 nm and highly reflective with respect to a wavelength of 532 nm.
  • FIG. 8 is a perspective view schematically showing the propagation direction and polarization direction of light within the wavelength conversion crystal 100 according to the fifth embodiment.
  • FIG. 9 is a schematic diagram showing the propagation direction and the polarization direction of light rays in the wavelength conversion crystal 100 when the wavelength conversion crystal according to the fifth embodiment is viewed from the normal direction of the B plane 108. 8 and 9, the same reference numerals as those in FIGS. 1 to 7 denote the same or corresponding parts.
  • the randomly polarized fundamental wave light 10 having a wavelength of 1064 nm is vertically incident from the A plane 107. Since the A plane 107 is formed so that the normal line thereof coincides with the phase matching orientation of the first wavelength conversion, if the fundamental wave light 10 is incident perpendicularly to the A plane 107, the fundamental in the wavelength conversion crystal 100 is obtained. The propagation direction of the wave light 10 can also coincide with the phase matching direction of the first wavelength conversion. Further, in the wavelength conversion crystal 100, since the polarization direction is allowed only in the ordinary light and extraordinary light directions, the randomly polarized fundamental wave light 10 in which the polarization direction is distributed almost uniformly is substantially even in the wavelength conversion crystal 100.
  • the fundamental wave light 10 propagating through the wavelength conversion crystal 100 and the second harmonic light 20 in the forward path are incident on the D surface 110, undergo total reflection due to the refractive index difference from the outside of the wavelength conversion crystal 100, and change to the propagation direction.
  • the E surface 111 is provided with a two-wavelength coating that is highly transmissive with respect to a wavelength of 1064 nm and highly reflective with respect to a wavelength of 532 nm. Output to the outside.
  • the second harmonic light 20 having a wavelength of 532 nm is reflected by two surfaces, the D surface 110 and the E surface 111, and turns back to the second harmonic light 22 in the return path.
  • the propagation orientation of the second harmonic light 22 in the return path is the dielectric of the CLBO crystal 100.
  • ( ⁇ , ⁇ ) (61.9 deg, 45.0 deg)
  • the second harmonic having a wavelength of 532 nm as a fundamental wave at a crystal temperature of 150 ° C. for the second wavelength conversion. It matches the type I phase matching orientation for wave generation.
  • the orientation of the first reflecting surface D surface is formed as described above, theoretically, 96% or more of the polarization component of the second harmonic light 20 incident on the D surface 110 is transmitted from the D surface 110. Even in the propagation process to the E plane 111, it can be polarized in the extraordinary light direction. Furthermore, since the second reflecting surface E surface 111 is formed as described above, theoretically, 99% or more of the extraordinary light component reflected by the second reflecting surface E surface 111 is reduced to the second In the phase matching azimuth of wavelength conversion, the second wavelength conversion can be efficiently performed by polarization in the normal light direction that matches the phase matching condition of the second wavelength conversion.
  • the propagation direction and the polarization direction 23 of the second harmonic light 22 in the return path are at the crystal temperature of 150 ° C. with respect to the second wavelength conversion.
  • This meets the type I phase matching condition for second harmonic generation with a wavelength of 532 nm as a fundamental wave. Therefore, even if the wavelength conversion crystal 100 formed as described above is used, the basic wavelength of 1064 nm as the incident light is used using the single wavelength conversion crystal 100 as in the first to fourth embodiments.
  • the wave light 10 can be efficiently converted into the fourth harmonic light 40 having a wavelength of 266 nm.
  • the polarization direction 41 of the fourth harmonic light 40 according to the present embodiment becomes extraordinary light in the phase matching orientation of the second wavelength conversion, 41.
  • the angle is 53 degrees.
  • the fifth embodiment even if the type II phase matching is used for the first wavelength conversion, not only the same effects as in the first to fourth embodiments are obtained, but also at random. Since it becomes possible to use the fundamental wave light that is polarized light as the wavelength-converted light, not only the means for selecting the linearly polarized light is unnecessary for the light source of the fundamental wave light, but also when the fundamental wave light is incident on the wavelength conversion crystal, There is an effect that it is not necessary to adjust the polarization method to the phase matching condition, and the adjustment of the incident light is simplified.
  • the effective nonlinear optical constant at the time of type I phase matching is 0.38 pm / V in the second harmonic generation with a wavelength of 1064 nm as a fundamental wave.
  • the effective nonlinear optical constant at the time of type II phase matching is 0.68 pm / V. Therefore, if the type II phase matching is used for the first wavelength conversion, the wavelength conversion efficiency when the second harmonic is generated can be further improved.
  • FIG. FIG. 10 is a schematic diagram showing the configuration of the wavelength conversion laser device according to the sixth embodiment of the present invention.
  • the wavelength conversion crystal 100 in which the orientation of each surface is the same as that in the fifth embodiment shown in FIGS. 7 to 9 is used.
  • the CLBO crystal which is the wavelength conversion crystal 100 of the first embodiment, is maintained near 150 ° C. by the heater and the temperature adjustment mechanism, and the crystal installation angle can be adjusted.
  • An adjustment mechanism is provided.
  • the A surface 107 of the wavelength conversion crystal 100 of the present embodiment is provided with a two-wavelength coating that provides high transmission at both the wavelength 1064 nm and the wavelength 532 nm.
  • the F surface 112 is provided with an antireflection coating for a wavelength of 266 nm. Further, the E surface 111 is provided with a two-wavelength coating that provides high transmission for a wavelength of 1064 nm and high reflection for a wavelength of 532 nm.
  • the wavelength conversion crystal 100 is installed in the optical resonator of the wavelength conversion laser device that generates the fundamental light 10, and the wavelength conversion crystal 100 is also used.
  • the optical axis of the fundamental wave light 10 is made to coincide with the type II phase matching orientation for the second harmonic generation with the wavelength of 1064 nm at the crystal temperature of 150 ° C. as the fundamental wave for the first wavelength conversion.
  • the wavelength conversion efficiency from the fundamental wave light 10 to the second harmonic light 20 in the forward path and the second harmonic light 22 from the return path to the fourth harmonic light 40 is effective as in the fourth embodiment.
  • the fundamental wave light 10 may be randomly polarized
  • a polarization selection element that defines the polarization direction of the fundamental wave light 10 is not required, and adjustment is facilitated. There is an effect that the cost can be reduced. Further, since it is not necessary to select linearly polarized light when the fundamental wave light 10 is generated, the resonator loss due to depolarization can be reduced, and the fundamental light 10 can be generated efficiently, and thus the second harmonic light. 20, The special effect that the wavelength conversion efficiency to the 4th harmonic light 40 can be improved effectively is produced.
  • FIG. FIG. 11 is a perspective view showing the configuration of the wavelength conversion crystal 100 according to the seventh embodiment of the present invention. 11, the same reference numerals as those in FIGS. 1 to 10 denote the same or corresponding parts.
  • the wavelength conversion crystal 100 a lithium triborate crystal (LBO crystal: LiB 3 O 5 ) whose temperature is adjusted to approximately room temperature of 27 ° C. is used.
  • the second harmonic generation is performed by the type I phase matching having the wavelength of 1064 nm as the fundamental wave, and the wavelength of 1064 nm and the wavelength are used as the second wavelength conversion.
  • a configuration is shown in which sum-frequency generation is performed by phase matching of type 532 nm of 532 nm, and a single wavelength conversion crystal 100 is used to convert fundamental light having a wavelength of 1064 nm to third harmonic light having a wavelength of 355 nm.
  • the arrow indicated by reference numeral 104 is a Z ′ axis that represents the main propagation direction of the light beam in the wavelength conversion crystal 100.
  • the normal direction of the A plane 107 coincides with the phase matching orientation of the first wavelength conversion
  • the normal direction of the F plane 112 coincides with the phase matching orientation of the second wavelength conversion. It is formed to do.
  • the B surface 108 is a plane parallel to both the phase matching direction of the first wavelength conversion and the phase matching direction of the second wavelength conversion.
  • the C surface 109 is formed in parallel with the B surface 108.
  • the A surface 107 of the wavelength conversion crystal 100 according to the seventh embodiment is provided with an antireflection coating for a wavelength of 1064 nm
  • the F surface 112 is provided with an antireflection coating for a wavelength of 355 nm
  • the D surface 110 and the E surface 111 are provided with a two-wavelength coating that is highly reflective to both the wavelength 1064 nm and the wavelength 532 nm.
  • FIG. 12 is a perspective view schematically showing the propagation direction and polarization direction of light within the wavelength conversion crystal 100 according to the seventh embodiment.
  • FIG. 13 is a schematic diagram showing the propagation direction and the polarization direction of light rays in the wavelength conversion crystal 100 when the wavelength conversion crystal according to the seventh embodiment is viewed from the normal direction of the B plane 108. 12 and 13, the same reference numerals as those in FIGS. 1 to 11 denote the same or corresponding parts.
  • the fundamental light 10 with a wavelength of 1064 nm What is necessary is just to make it perpendicularly incident on 107.
  • the fundamental light 10 is incident on the A surface 107 of the wavelength conversion crystal 100, it is necessary to match the polarization direction 11 of the fundamental light 10 so as to meet the phase matching condition of the first wavelength conversion.
  • the polarization direction 11 of the fundamental wave light 10 is changed to the direction of ordinary light with respect to the phase matching direction.
  • the LBO crystal is a biaxial optical crystal.
  • the polarization direction 11 of the fundamental wave light 10 incident on the wavelength conversion crystal 100 faces the traveling direction of the fundamental wave light 10 and is rotated 47.96 degrees counterclockwise with respect to the normal direction of the B surface 108. It ’s fine.
  • the polarization direction adjusting means 52 is provided before the fundamental wave light 10 enters the wavelength conversion crystal 100, and the wavelength 355 nm generated by the second wavelength conversion of the seventh embodiment is provided. What is necessary is just to adjust the polarization direction of the fundamental wave light 10 so that the output of the 3rd harmonic light 30 may become the maximum.
  • a transmissive half-wave plate for a wavelength of 1064 nm is used as the polarization direction adjusting means 52.
  • the half-wave plate used as the polarization direction adjusting means 52 is provided with a rotation mechanism having the fundamental wave light 10 as a rotation axis.
  • the phase matching condition of the first wavelength conversion is met, so that it can be efficiently converted into the second harmonic light 20 having a wavelength of 532 nm.
  • the propagation directions of the fundamental wave light 10 and the second harmonic light 20 in the wavelength conversion crystal 100 are the same, the polarization direction 11 of the fundamental wave light 10 is ordinary light, and the polarization direction 21 of the second harmonic light 20 is abnormal light. Therefore, the polarization direction 11 of the fundamental wave light 10 is parallel to the optical axis Z101.
  • the D surface 110 and the E surface 111 of the wavelength conversion crystal 100 in the present embodiment are provided with a two-wavelength coating that is highly reflective to both the wavelength 1064 nm and the wavelength 532 nm. Therefore, both the fundamental wave light 10 with a wavelength of 1064 nm and the second harmonic light 20 with a wavelength of 532 nm are bent in the traveling direction by two reflections by the D surface 110 and the E surface 111 to become the fundamental wave light 12 on the return path and the second harmonic light 22 on the return path. Propagate in the same direction.
  • the D surface 110 is formed as described above, theoretically 99% or more of the fundamental wave light 10 reflected by the D surface 110 is directed to the extraordinary light direction in the propagation process from the D surface 110 to the E surface 111. Theoretically, 99% or more of the second harmonic light 20 reflected by the D plane 110 can be polarized in the normal light direction in the propagation process from the D plane 110 to the E plane 111. Furthermore, since the E surface 111 is formed as described above, theoretically, 99% or more of the ordinary light reflected by the E surface 110 is directed to the extraordinary light direction in the phase matching direction of the second wavelength conversion, and theoretically. Specifically, 99% or more of the extraordinary light reflected by the E plane 110 can be polarized in the normal light direction in the phase matching direction of the second wavelength conversion.
  • the polarization direction 13 of the fundamental wave light 12 in the return path of 98% or more is theoretically normal light, and the second harmonic light of the return path is theoretically 98% or more. Since the polarization direction 23 of 22 is anomalous light, the fundamental wave light 12 on the return path and the second harmonic light 22 on the return path have a propagation wavelength and a polarization direction of 1064 nm and 532 nm at a crystal temperature of 27 ° C. for the second wavelength conversion.
  • the phase matching condition of the type II type in the generation of the sum frequency is matched, and the single wavelength conversion crystal 100 is used, and the fundamental light 10 having a wavelength of 1064 nm, which is incident light, is changed to the third harmonic light 30 having a wavelength of 355 nm. It can be converted efficiently. Since the third harmonic light 30 generated by the second wavelength conversion is ordinary light, the polarization direction 31 is equal to the polarization direction 13 of the fundamental wave light 12 in the return path. The third harmonic light 30 emitted to the outside of the wavelength conversion crystal 100 can be easily separated by using a three-wavelength mirror 53 that transmits the wavelength 1064 nm and the wavelength 532 nm and reflects the wavelength 355 nm.
  • the wavelength conversion efficiency can be improved as in the fourth and seventh embodiments. Needless to say. Further, in the seventh embodiment, since the fundamental wave light 12 having a wavelength of 1064 nm is also used for the sum frequency generation that is the second wavelength conversion, both the first wavelength conversion and the second wavelength conversion are performed by the wavelength conversion laser device. By performing it in the optical resonator, the wavelength conversion efficiency can be further improved.
  • the second wavelength conversion scheme is not limited to the second harmonic generation, and generates the sum frequency of the second harmonic and the fundamental generated by the first wavelength conversion. You may let them.
  • a reflective surface is appropriately added to the wavelength conversion crystal, and the orientation and polarization direction of the reflected light are the phase matching conditions of the third wavelength conversion scheme.
  • a single wavelength conversion crystal can be used to generate a fifth harmonic having a wavelength of 213 nm.
  • wavelength conversion crystal In the above embodiment, the case where a CLBO crystal or an LBO crystal is used as the wavelength conversion crystal is exemplified, but the type of crystal, wavelength, and wavelength conversion scheme are not limited to this. Using various wavelength conversion schemes such as harmonics, sum frequency, difference frequency, etc. that can be phase-matched at the same temperature by forming each surface of the wavelength conversion crystal in an appropriate orientation and using it as a reflective surface 2 More than one stage of wavelength conversion can be realized with a single wavelength conversion crystal.
  • a configuration in which a fundamental wave having a single wavelength is incident on the wavelength conversion crystal has been described.
  • a plurality of wavelength-converted lights having two or more wavelengths are incident on the wavelength conversion crystal, and the first wavelength
  • the sum frequency or difference frequency may be generated as the conversion
  • the second wavelength conversion may generate the sum frequency or difference frequency harmonic generated by the first wavelength conversion, or the first wavelength.
  • a harmonic of one wavelength converted light is generated by the conversion, and a sum frequency or a difference frequency between the harmonic generated by the first wavelength conversion and the other wavelength converted light is generated by the second wavelength conversion. You can also.
  • the present invention is extremely useful industrially in that it is excellent in reliability and can generate high-order harmonics higher than the third harmonic efficiently with a simple configuration.
  • 1 solid-state laser medium 2 semiconductor laser, 3 first reflector, 4 second reflector, 5 Q switch element, 6 polarization selection element, 7 damper, 10 fundamental wave light, 11 polarization direction of fundamental light, 12 return path Polarization direction of fundamental wave light, 13 fundamental wave light of the return path, 20 second harmonic light of the outbound path, 21 polarization direction of the second harmonic light of the outbound path, 22 second harmonic light of the outbound path, 23 polarization direction of the second harmonic light of the return path , 30 3rd harmonic light, 31 3rd harmonic light polarization direction, 40 4th harmonic light, 41 4th harmonic light polarization direction, 50 2 wavelength mirror, 51 1/2 wavelength plate, 100 wavelength conversion crystal, 110th wavelength conversion crystal 1 reflective surface (D surface), 111 second reflective surface (E surface), 112 high-order harmonic emission surface (F surface).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

 波長変換素子は、基本波である波長1064nmの光を第2高調波である波長532nmの光へ変換する第1波長変換のための第1位相整合条件、および波長532nmの光の光を第4高調波である波長266nmの光へ変換する第2波長変換のための第2位相整合条件の両方を満たす単一の波長変換結晶100と、第1波長変換によって発生した波長532nmの光を反射して、第2波長変換に供給するための第1の反射面D面110および第2の反射面E面111などで構成される。 こうした構成により、信頼性に優れ、簡易な構成で、第3高調波以上の高次高調波を効率よく発生することができる。

Description

波長変換素子および波長変換レーザ装置
 本発明は、第3高調波以上の高次高調波を発生するための波長変換素子および、これを用いた波長変換レーザ装置に関する。
 従来、第3高調波光以上の高次高調波を発生させる場合、通常、第2高調波を発生させるための第1の波長変換結晶に加え、第3高調波、もしくは第4高調波を発生させるための第2の波長変換結晶を使用する構成が一般的である。
 しかしながら、複数の波長変換結晶を使用する構成においては、複数の波長変換結晶自体が必要になることに加え、各波長変換結晶の角度および温度を調整するための調整手段、更には各波長変換結晶へ入射させる被波長変換光の入射角度、入射ビーム径を調整するための調整手段が必要であり、波長変換結晶および波長変換レーザ装置に要するコストが増加するという課題がある。
 加えて、複数の波長変換結晶の角度および温度、被波長変換光の入射角度、ビーム径を調整しなければならず、調整作業に手間を要するばかりでなく、各調整要素の適正値からのずれによって、高次高調波の出力やビーム強度分布、ビーム径が容易に変動してしまうという課題がある。
 これらの課題を解決するため、複数の波長変換結晶をオプティカルコンタクト等の手法を使用し、一体化する方法が提案されている(例えば、特許文献1)。また、特定の結晶材料を使用し、単一の波長変換結晶を使用し、第3高調波を発生させる方法が提案されている(例えば、特許文献2)。
特開平11-3845号公報 特開2000-221550号公報
 このように従来、単一の波長変換素子を使用し、第3高調波以上の高次高調波を発生させる場合には、第2高調波を発生するための第1の波長変換結晶と、第3高調波以上の高次高調波を発生させる第2の波長変換結晶を各々準備し、第1の波長変換結晶と第2の波長変換結晶をオプティカルコンタクトその他の手法を用いて精確な角度で接合する必要がある。このため、波長変換素子の製作に著しくコストと労力を要するばかりではなく、熱膨張率の異なる結晶を接合するため、ヒートサイクルに伴う接合部の剥離等接合部における信頼性に課題がある。
 また、従来の単一の波長変換素子を使用し、第3高調波以上の高次高調波を発生させる構成においては、屈折率の異なる第1の波長変換結晶と第2の波長変換結晶を接合するため、接合部においてフレネル反射にともなう反射損失が発生するとともに、接合面の仕上げ状態によって散乱光が発生し、波長変換効率が低下するという課題がある。
 また、従来、単一の波長変換結晶を使用し、第3高調波を発生させる構成も開示されていたが、特定の波長変換結晶材料を使用した構成であり、発生可能な第3高調波の波長は、波長変換結晶材料の物性値で決まる特定の波長に限られるという課題がある。
 本発明の目的は、信頼性に優れ、簡易な構成で、第3高調波以上の高次高調波を効率よく発生することが可能な波長変換素子および、これを用いた波長変換レーザ装置を提供することである。
 上記目的を達成するために、本発明の第1態様に係る波長変換素子は、
 第1波長の光を第2波長の光へ変換する第1波長変換のための第1位相整合条件、および第2波長の光を第3波長の光へ変換する第2波長変換のための第2位相整合条件の両方を満たす単一の非線形光学結晶と、
 第1波長変換によって発生した第2波長の光を反射して、第2波長変換に供給するための反射手段と、を備えることを特徴とする。
 また本発明の第2態様に係る波長変換素子は、
 基本波を第2高調波へ変換する第1波長変換のための第1位相整合条件、および第2高調波を第4高調波へ変換する第2波長変換のための第2位相整合条件の両方を満たす単一の非線形光学結晶と、
 第1波長変換によって発生した第2高調波を反射して、第2波長変換に供給するための反射手段と、を備えることを特徴とする。
 本発明において、非線形光学結晶は、第4高調波を、第4高調波より高次の高調波へ変換する第3波長変換の第3位相整合条件をさらに満たしており、
 第2波長変換によって発生した第4高調波を反射して、第3波長変換に供給するための追加の反射手段をさらに備えることが好ましい。
 本発明において、非線形光学結晶は、セシウム・リチウム・ボレート系結晶であることが好ましい。
 また本発明の第3態様に係る波長変換素子は、
 基本波を第2高調波へ変換する第1波長変換のための第1位相整合条件、および基本波と第2高調波を和周波発生により第3高調波へ変換する第2波長変換のための第2位相整合条件の両方を満たす単一の非線形光学結晶と、
 第1波長変換によって発生した第2高調波および第1波長変換で残存した基本波を反射して、第2波長変換に供給するための反射手段と、を備えることを特徴とする。
 本発明において、非線形光学結晶は、第3高調波を、第3高調波より高次の高調波へ変換する第3波長変換の第3位相整合条件をさらに満たしており、
 第2波長変換によって発生した第3高調波を反射して、第3波長変換に供給するための追加の反射手段をさらに備えることが好ましい。
 本発明において、非線形光学結晶は、リチウム・トリボレート結晶であることが好ましい。
 本発明において、反射手段は、結晶方位が異なる少なくとも2つの反射面で構成されることが好ましい。
 本発明において、反射手段には、反射光の偏光方向を調整する偏光調整手段が設けられることが好ましい。
 本発明において、波長変換光が非線形光学結晶を出射する出射面において、波長変換光がP偏光として入射し、該出射面に対する波長変換光の入射角がブリュースター角となるように設定されていることが好ましい。
 本発明において、第1波長変換は、タイプII型の位相整合条件を満たすことが好ましい。
 本発明の第4態様に係る波長変換レーザ装置は、
 レーザ光を発生するレーザ光源と、
 該レーザ光の波長変換を行う、上記いずれかの波長変換素子と、を備えることを特徴とする。
 本発明において、レーザ光源は、光共振器と、光共振器の内部に配置されたレーザ媒質とを備え、
 前記波長変換素子は、光共振器の内部に配置されており、光共振器の光軸は少なくとも第1波長変換の位相整合方位に合致していることが好ましい。
 本発明において、第1波長変換は、タイプI型の位相整合条件を満たしており、
 光共振器の内部には、波長変換素子に入射するレーザ光の偏光方向を調整する偏光調整手段が設けられることが好ましい。
 本発明によれば、第1波長変換のための第1位相整合条件および第2波長変換のための第2位相整合条件の両方を満たす単一の非線形光学結晶を用いて、第1波長変換によって発生した第2波長の光を第2波長変換に供給するための反射手段を備えることによって、信頼性に優れ、簡易な構成で、第3高調波以上の高次高調波を効率よく発生することができる。
本発明の実施の形態1による波長変換結晶の構成を示す斜視図である。 本発明の実施の形態1による波長変換結晶内での光線の伝播方向および偏光方向を模式的に示す斜視図である。 本発明の実施の形態1による波長変換結晶をB面の法線方向から臨み、波長変換結晶内での光線の伝播方向および偏光方向を示す模式図である。 本発明の実施の形態2による波長変換結晶をB面の法線方向から臨み、波長変換結晶内での光線の伝播方向および偏光方向を示す模式図である。 本発明の実施の形態3による波長変換結晶をB面の法線方向から臨み、波長変換結晶内での光線の伝播方向および偏光方向を示す模式図である。 本発明の実施の形態4による波長変換レーザ装置の構成を示す模式図である。 本発明の実施の形態5による波長変換結晶の構成を示す斜視図である。 本発明の実施の形態5による波長変換結晶内での光線の伝播方向および偏光方向を模式的に示す斜視図である。 本発明の実施の形態5による波長変換結晶をB面の法線方向から臨み、波長変換結晶内での光線の伝播方向および偏光方向を示す模式図である。 本発明の実施の形態6による波長変換レーザ装置の構成を示す模式図である。 本発明の実施の形態7による波長変換結晶の構成を示す斜視図である。 本発明の実施の形態7による波長変換結晶内での光線の伝播方向および偏光方向を模式的に示す斜視図である。 本発明の実施の形態7による波長変換結晶をB面の法線方向から臨み、波長変換結晶内での光線の伝播方向および偏光方向を示す模式図である。
実施の形態1.
 図1は、本発明の実施の形態1による波長変換結晶100の構成を示す斜視図である。波長変換結晶100は、非線形光学効果を示す結晶であり、本実施の形態においては、一例としてセシウム・リチウム・ボレート系結晶(CLBO結晶:CsLiB10)を使用している。図1中、符号101、102、103で示す矢印は、各々CLBO結晶の誘電主軸であるZ軸、X軸、Y軸を表しており、Z軸101はCLBO結晶の光学軸と一致している。また、符号104で示す矢印は、波長変換結晶100中での光線の主伝播方向を表すZ’軸である。
 本実施の形態では、第1の波長変換に関して結晶温度150℃時の波長1064nmを基本波とする第2高調波発生に対するタイプI型の位相整合方位は、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(29.4deg,45.0deg)である。また、第2の波長変換に関して結晶温度150℃時の波長532nmを基本波とする第2高調波発生に対するタイプI型の位相整合方位は、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(61.9deg,45.0deg)である。従って、Z’軸104の方位は、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位との中間方位で定義され、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(45.65deg,45.0deg)となる。
 また、波長変換結晶100の一方の端面107(A面)は、その法線方向がZ’軸104に一致するよう切り出されている。図中、108(B面)で示す波長変換結晶101の上面は、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位の両方に対して平行な平面であり、本実施の形態では、誘電主軸であるZ軸101と、光線の主伝播方向であるZ’軸104の両方に対して平行となる。また、波長変換結晶100の底面109(C面)は、波長変換結晶100の上面であるB面108と平行となるよう形成されている。符号110(D面)は、波長変換結晶100のもう一方の端面に形成された第1の反射面であり、符号111(E面)は、波長変換結晶100のもう一方の端面に形成された第2の反射面である。
 次に、本実施の形態1による波長変換結晶100に形成された各面の方位について、波長変換結晶100の誘電主軸を基準に、XYZ直交座標系およびΘψ極座標系を用いて詳細に説明する。但し、偏角Θは、誘電体主軸の1つであるZ軸101となす角度、偏角ψは、表記すべき方位のXY平面上への写像が誘電体主軸の1つであるX軸102となす角度を表すものと定義する。
 A面107の法線方向、即ちZ’軸104の方位は、XYZ直交座標系で表記すると、(X,Y,Z)=(0.5056,0.5056,0.6990)であり、Θψ極座標系では、(Θ,ψ)=(45.65deg,45.0deg)となる。
 B面108およびこれに平行なC面109の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(0.7071,-0.7071,0)であり、Θψ極座標系では、(Θ,ψ)=(90.0deg,-45.0deg)となる。
 D面110の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(-0.0458,0.9419,0.3327)であり、Θψ極座標系では、(Θ,ψ)=(70.57deg,92.78deg)となる。
 E面111の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(0.7316,-0.1149,0.6720)であり、Θψ極座標系では、(Θ,ψ)=(47.78deg,-8.93deg)となる。
 なお、本実施の形態による波長変換結晶100のA面107には、波長1064nmおよび波長266nmの両方に対する反射防止コーティングが施されている。また、D面110およびE面111には、波長1064nmに対しては高透過、波長532nmに対しては高反射となる2波長コーティングが施されている。
 次に、本実施の形態1による波長変換結晶100を使用した波長変換方法について、図2および図3を用いて説明する。図2は、波長変換結晶100内での光線の伝播方向および偏光方向を模式的に示す斜視図である。図3は、波長変換結晶をB面108の法線方向から臨み、波長変換結晶100内での光線の伝播方向および偏光方向を示す模式図である。図2と図3中、図1と同一符号は同一部分、もしくは相当部分を示している。
 図2および図3において、符号10で示す実線は、波長1064nmの基本波光で、図示してはいないがネオジウム(Nd)がドープされたイットリウム・アルミニウム・ガーネット(YAG)結晶をレーザ媒質として使用したYAGレーザから出射される。符号11で示す両矢印は、基本波光10の偏光方向を表している。
 符号20で示す点線は、波長変換結晶100中において、第1の波長変換によって発生する波長532nmの往路の第2高調波光であり、符号21で示す両矢印は、往路の第2高調波光20の偏光方向を表している。符合22で示す点線は、D面110およびE面111において反射作用を受け、進行方向を折り返した復路の第2高調波光であり、符号23で示す両矢印は、復路の第2高調波光の偏光方向を表している。また、符号40で示す一点鎖線は、第2の波長変換によって発生する波長266nmの第4高調波光であり、符号41で示す両矢印は、第4高調波光40の偏光方向を表している。
 なお、図示してはいないが、本実施の形態1の波長変換結晶100であるCLBO結晶は、ヒータおよび温度調整機構によって150℃近傍に維持されるとともに、結晶の設置角度の調整が可能な調整機構が設けられている。
 次に、本実施の形態1による波長変換結晶100を使用した第1の波長変換について詳細に説明する。まず基本波光10を、B面108(C面109)に対して平行な面内に維持し、偏光方向11をB面108(C面109)に対して直交する方向に設定し、A面107より波長変換結晶100内へ入射させる。このとき、図3に示すように、基本波光10のA面107に対する入射角、即ちA面107の法線方向であるZ’軸104となす角度は24.52degに設定する。A面の方位は前記の通り設定しているので、波長変換結晶100のA面へ、入射角24.52度で入射する波長1064nmのB面108(C面109)に垂直な直線偏光成分11に対するCLBO結晶100の屈折率は、1.483となる。この屈折効果によって波長変換結晶100中での基本波光10の進行方向はスネルの法則に従い折り曲げられ、図3に示すようにZ’軸に対し16.25degの角度をなす。
 波長変換結晶100中の基本波光10は、B面108(C面109)に平行な面内を伝播するため、基本波光10の波長変換結晶100中での伝播方位は、CLBO結晶100の誘電主軸を基準としたΘψ極座標で表記すると、(Θ,ψ)=(29.4deg,45.0deg)となり、第1の波長変換に関して結晶温度150℃時の波長1064nmを基本波とする第2高調波発生に対するタイプI型の位相整合方位と一致する。また、B面108(C面)に垂直な偏光方向は、タイプI型の位相整合において、常光の偏光方向と一致するため、上記の如く波長変換結晶100へ入射した基本波光10は、第1の波長変換によって効率よく波長532nmの第2高調波光20へ変換される。この際、第2高調波光20は異常光となるため、往路の第2高調波光20の偏光方向は、B面108(C面109)と平行な方向になる。
 次に、本実施の形態1による波長変換結晶100を使用した第2の波長変換について詳細に説明する。波長変換結晶100中を第2高調波光20へ変換されながら伝播する基本波光10は、D面110に到達する。前記の通り、D面110、およびE面111には、波長1064nmに対しては高透過、波長532nmに対しては高反射となる2波長コーティングが施されているので、D面110に到達した基本波光10は、波長変換結晶100の外部へ出射する。
 一方、波長532nmの往路の第2高調波光20は、D面110、およびE面111の2面で反射作用を受け、進行方向を折り返し復路の第2高調波光22となる。ここで、D面110、およびE面111は前記方位にて形成されているため、D面110、およびE面111の2面で反射作用を被る復路の第2高調波光22の伝播方位は、往路と同じくB面108(C面109)に平行な面内で、Z’軸104に対し16.25degの角度をなす。従って、復路の第2高調波光22の波長変換結晶100中での伝播方位は、CLBO結晶100の誘電主軸を基準としたΘψ極座標で表記すると、(Θ,ψ)=(61.9deg,45.0deg)と平行になる。但し、第2の高調波光20の伝播方位は、波長変換結晶100の複屈折で発生するウォークオフの方位ではなく、平面波を仮定した場合の波面法線方向で定義する(以下、同様)。従って、復路の第2高調波光22の伝播方位は、第2の波長変換に関して結晶温度150℃時の波長532nmを基本波とする第2高調波発生に対するタイプI型の位相整合方位と一致する。
 また、D面110、およびE面111は前記方位で形成されているため、往路の第2高調波光20の偏光方向21はB面108(C面109)に平行であったのに対し、復路の第2高調波光22の大部分の偏光成分は、図2中、符号23で示す如くB面108(C面109)に垂直な方向となる。B面108(C面)に垂直な偏光方向は、タイプI型の位相整合において、常光の偏光方向と一致するため、D面110、およびE面111での反射作用によって進行方向を折り返された復路の第2高調波光22は、第2の波長変換によって効率よく波長266nmの第4高調波光40へ変換される。この際、第4高調波光40は異常光となるため、第4高調波光40の偏光方向41は、B面108(C面109)と平行な方向になる。
 上記伝播方位における常光である波長532nmの復路の第2高調波光22、および異常光である波長266nmの第4高調波光40に対するCLBO結晶100の屈折率は、ともに1.497となるため、A面107へ到達した復路の第2高調波光22、および第4高調波光40は、ともにZ’軸104に対し24.77degの角度をなして、波長変換結晶100の外部へ出射する。波長変換結晶100を出射し、同一方向に伝播する第2高調波光22と第4高調波光40は、波長532nmに対しては高反射、波長266nmに対しては高透過となる2波長ミラー50を使用することによって、波長266nmの第4高調波光40のみを容易に取り出すことができる。
 本実施の形態1においては、上記の如く波長変換結晶100の各面の方位を決定し、被波長変換光である基本波光10の入射方向を定めている。そのため基本波光10は、第1の波長変換に関して波長1064nmを基本波とするタイプI型の第2高調波発生の位相整合条件に合致する方位と偏光方向で波長変換結晶100へ入射し、波長532nmの第2高調波光20へ効率よく変換されるとともに、第2高調波光20は、D面110、E面111からなる2面での反射作用により光路を折り返し、復路の第2高調光22の伝播方位、偏光方向23を、第2の波長変換に関して波長532nmを基本波とするタイプI型の第2高調波発生の位相整合条件に合致する方位と偏光方向へ反射せしめるので、単一の波長変換結晶100を使用し、入射光である波長1064nmの基本波光10から、波長266nmの第4高調波光40を効率よく発生させることができるという格別の効果を奏するものである。
 なお本実施の形態1においては、第1の波長変換として波長1064nmを基本波とするタイプI型の第2高調波発生、第2の波長変換として波長532nmを基本波とするタイプI型の第2高調波発生を使用し、単一の波長変換結晶を用いて波長1064nmの基本波光から波長266nmの第4高調波光へ変換する構成について例示したが、被波長変換光である基本波の波長はこれに限るものではない。要は同一の波長変換結晶において、同一の温度で第2高調波光、および第2高調波光より高次の高調波光両者の発生が可能であれば、第2高調波光を発生する第1の波長変換、および第2高調波光より高次の高調波光を発生する第2の波長変換の位相整合方位と偏光方向に応じて、波長変換結晶各面の方位を決定してやれば、同様な効果が得られることは言うまでもない。なお、任意の波長、方位、偏光方向に対する波長変換結晶の屈折率は、波長変換結晶の物性値によって決まるセルマイヤー方程式を使用し導出することができる。また第2高調波光を発生する第1の波長変換、および第2高調波光より高次の高調波光を発生する第2の波長変換の位相整合方位と偏光方向が明らかであれば、波長変換結晶に形成する反射面の方位は、幾何光学的手法に基づき解析的に求めることができる。
 ここで注意すべき点は、第1の反射面D面110から第2の反射面E面111へ至る伝播過程においても、伝播方位が波長変換結晶110の光学軸と一致しない限り、複屈折の影響を被ることである。即ち、第1の反射面D面110から第2の反射面E面111へ至る伝播過程においても、偏光方向は常光と異常光の2方向にのみ許容される。このため、第1の反射面D面110から第2の反射面E面111へ至る伝播過程における複屈折の影響も考慮し、反射面の方位を設計する必要がある。
 例えば、本実施の形態1に示すように、第2の波長変換の位相整合がタイプI型である場合、位相整合条件を満たす被波長変換光(実施の形態1の場合、波長532nmの第2高調波光)の偏光方向は1方向(実施の形態1の場合は常光)のみとなる。第1の反射面D面110から第2の反射面E面111へ至る伝播過程において、常光と異常光の2つの偏光成分に分離して光線が伝播した場合、光線の伝播方位を第2の波長変換の位相整合方位へ一致させる第2の反射面E面111での反射作用によって、常光と異常光の2つに分離した偏光成分を単一の偏光成分へ合成することは困難である。このため、第1の反射面D面110による反射作用により決定される偏光成分は、可能な限り第1の反射面D面110から第2の反射面E面111へ至る伝播過程において、常光、もしくは異常光のどちらか一方へ偏ることが望ましい。
 本実施の形態1においては、第1の反射面D面110の方位を前記の如く形成しているので、理論的には、第1の反射面D面110において反射作用を被る第2高調波光の偏光成分のうち99%以上を、第1の反射面D面110から第2の反射面E面111へ至る伝播過程においても常光方向へ偏波させることができる。更に、第2の反射面E面111を前記の如く形成しているので、理論的には、第2の反射面E面111で反射される常光成分のうち99%以上を、第2の波長変換の位相整合方位において、第2の波長変換の位相整合条件に合致する常光方向へ偏波せしめ、効率よく第2の波長変換を行うことができる。但し、前述した第1の反射面D面110、および第2の反射面E面111の法線方向のΘψ極座標表記は、少数点第2位以下を四捨五入したことを追記しておく(以下同様)。
 本実地の形態1においては、波長変換結晶100に2面からなる反射面(D面110、E面111)を形成し、第2の波長変換の位相整合条件へ合致させる構成について示したが、第2の波長変換の位相整合条件へ合致させる反射面の数はこれに限るものではない。要は、被波長変換光の伝播方位を第2の波長変換の位相整合方位へ合致させる過程においても、複屈折効果を考慮し、第2の波長変換の位相整合条件に合致する偏光成分が最大となるよう、各反射面の方位を決定すればよい。波長変換結晶100中での伝播方位が決まれば、常光、異常光の偏光方向は、誘電主軸との相対方位により一義的に求めることができる。
 また本実施の形態1においては、波長変換結晶100にCLBO結晶を使用し、第1の波長変換として波長1064nmを基本波とするタイプI型の第2高調波発生を使用し、第2の波長変換として波長532nmを基本波とするタイプI型の第2高調波発生を使用し、単一の波長変換結晶を用いて波長1064nmの基本波光から波長266nmの第4高調波光へ変換する構成について示したが、波長変換結晶の種類および波長変換時の位相整合のタイプは、これに限るものではない。要は、同一の波長変換結晶において、同一の温度で特定の波長に対し第2高調波光、および第2高調波光より高次の高調波の発生が可能な波長変換結晶であれば、第2高調波光、および第2高調波光より高次の高調波光を発生する位相整合方位、偏光方向に応じて幾何光学的手法に基づき波長変換結晶に形成する各面の方位を決定すれば、本実施の形態1と同様な効果を得ることができる。
 なお実際の波長変換結晶に形成される各面の方位は、製造誤差により設計値からずれを生じる場合がある。このような場合には、波長変換結晶の設置角度および波長変換結晶の温度を、第2高調波より高次の高調波光の出力が最大となるよう適宜調整すればよい。
 実施の形態2.
 図4は、本発明の実施の形態2による波長変換結晶100をB面108の法線方向から臨み、波長変換結晶100内での光線の伝播方向および偏光方向を示す模式図である。図4において、図1乃至図3と同一符号は同一部分もしくは相当部分を示している。本実施の形態2においても、波長変換結晶100には前記実施の形態1と同じく、約150℃に加熱されたCLBO結晶を使用しており、第1の波長変換として波長1064nmを基本波とするタイプI型の第2高調波発生を使用し、第2の波長変換として波長532nmを基本波とするタイプI型の第2高調波発生を使用し、単一の波長変換結晶100を用いて波長1064nmの基本波光から波長266nmの第4高調波光へ変換する構成について示している。即ち、波長変換結晶100を構成するA面107、B面108、D面109、E面110の誘電体主軸を基準とした方位、波長変換結晶100内部での基本波光10、および第2高調波光20、22、および第4高調波光40の伝播方位、偏光方向についても前記実施の形態1と同一である。
 本実施の形態2の波長変換結晶100においては、波長変換結晶100内において発生した第4高調波光40が、波長変換結晶100外部へ出射するF面112が形成されている。ここでF面112は、Z’軸104と49.99degの角度をなす向きに形成されており、F面112の法線の方位を、誘電主軸を基準としたΘψ極座標で表記すると、(Θ,ψ)=(84.36deg,45.0deg)となる。第4高調波光40の偏光41はB面108に平行であり、第4高調波光40はF面112に対しP偏光で入射する。また、波長変換結晶100内での第4高調波光40の伝播方位はB面108に平行で、Z’軸104と16.25degの角度をなしているため、第4高調波光40のF面への入射角は33.74degとなる。波長変換結晶100内において、上記伝播方位および偏光方向の第4高調波光40に対する波長変換結晶100の屈折率は1.497となるため、F面112に対する第4高調波光40の入射角33.74degはブリュースター角となる。
 本実施の形態2においては、第4高調波光40が波長変換結晶100から出射するF面112の方位を、第4高調波光40がP偏光で入射し、かつ第4高調波光40の入射角度がブリュースター角と合致するよう形成したので、F面112に変質や異物付着のない理想的な条件においては、ほぼ100%の第4高調波光40を損失なく波長変換結晶100の外部へ取り出すことができる。
 なお本実施の形態2においては、波長変換結晶100にCLBO結晶を使用し、波長1064nmの基本波から、波長266nmの第4高調波光40を発生させる構成について例示したが、基本波光の波長、波長変換結晶の種類、発生する高次高調波の次数についてはこれに限るものではない。要は波長変換結晶から取り出す高次高調波の伝播方位、偏光方向、高次高調波が感受する屈折率に応じ、出射面の角度がブリュースター角となるよう形勢すれば、本実施の形態2と同様な効果を得ることができる。
 実施の形態3.
 図5は、本発明の実施の形態3による波長変換結晶100をB面108の法線方向から臨み、波長変換結晶100内での光線の伝播方向および偏光方向を示す模式図である。図5において、図1乃至図4と同一符号は同一部分もしくは相当部分を示している。本実施の形態3においても、波長変換結晶100は前記実施の形態1乃至2と同じく、約150℃に加熱されたCLBO結晶であり、第1の波長変換として波長1064nmを基本波とするタイプI型の第2高調波発生を使用し、第2の波長変換として波長532nmを基本波とするタイプI型の第2高調波発生を使用し、単一の波長変換結晶100を用いて波長1064nmの基本波光から波長266nmの第4高調波光へ変換する構成について示している。また、波長変換結晶100を構成するA面107、B面108の誘電体主軸を基準とした方位は、前記実施の形態1乃至2と同一である。
 本実施の形態3の波長変換結晶100のD面110は、A面107に対して平行に形成されており、D面110には、波長532nmの第2高調波光20、22に対する反射型の1/2波長板51が、オプティカルコンタクトによって接合されている。なお、1/2波長板51の光学軸は、B面108の法線に対し45degの角度をなす向きで、D面に接合されている。
 本実施の形態においては、D面110がA面107と平行に形成されているので、D面110に接合された1/2波長板51からの反射光である復路の第2高調波光22の波長変換結晶100中での伝播方位は、前記実施の形態1乃至2と同一になる。ここで、1/2波長板51は、光学軸がB面108の法線に対し45degの角度をなすようD面110に接合されている。従って、B面108に平行な往路の第2高調波光20の偏光方向21は、1/2波長板51によって90deg回転し、復路の第2高調波光22の偏光方向23は、B面108の法線方向と等しくなる。この結果、復路の第2高調波光22の伝播方位、偏光方向23は、第2の波長変換に関して結晶温度150℃時の波長532nmを基本波とする第2高調波発生に対するタイプI型の位相整合条件と一致し、波長266nmの第4高調波光40を効率よく発生させることができる。
 本実施の形態3に示すように、単一の波長変換結晶中において、第1の波長変換によって発生した第2高調波光を、第2の波長変換の位相整合方位へ反射せしめる方位に形成された一面に、第1の波長変換によって発生した第2高調波光の偏光方向を、第2の波長変換の位相整合条件に合致した偏光方向へ回転せしめる反射型の偏光回転素子を接合すれば、第1の波長変換によって発生した第2高調波光の方位および偏光方向を、第2の波長変換の位相整合条件に合致させるため、波長変換結晶中に形成する反射面が一面で良いので、簡易、かつ廉価な構成で、第1および第2の波長変換を単一の波長変換結晶を用いて実現することができる。
 なお本実施の形態3においては、波長変換結晶100としてCLBO結晶を使用し、波長1064nmの基本波から、波長266nmの第4高調波光40を発生させる構成について示したが、基本波光の波長、波長変換結晶の種類、発生する高次高調波の次数についてはこれに限るものではない。また、実際には波長変換結晶作成時の製造誤差により、偏光方向が設計値からずれる場合がある。このような場合には、適宜目的とする高次高調波の出力が最大となるよう接合する反射型の偏光回転素子の角度を調整すればよい。
 実施の形態4.
 図6は、本発明の実施の形態4による波長変換レーザ装置の構成を示す模式図である。本実施の形態に示す波長変換レーザ装置においては、図4において示した前記実施の形態2と各面の方位が同一に形成された波長変換結晶100を使用している。なお、図示してはいないが、本実施の形態1の波長変換結晶100であるCLBO結晶は、ヒータおよび温度調整機構によって150℃近傍に維持されるとともに、結晶の設置角度を調整することができる調整機構が設けられる。また、本実施の形態の波長変換結晶100のA面107には、波長1064nmと波長532nmの両者に高透過となる2波長コーティングが施されており、D面110、およびE面111には、波長1064nmに対しては高透過、波長532nmに対しては高反射となるような2波長コーティングが施されている。
 図6中、符号1は固体レーザ媒質であり、NdがドープされたYAG結晶を使用している。符号2は固体レーザ媒質1の励起光源として使用する半導体レーザで、固体レーザ媒質1の側方に3台の半導体レーザ2が設置されている。符号3は、光共振器を構成する第1の反射鏡で、波長1064nmに対し高反射となるコーティングが施されている。符号4は、光共振器を構成する第2の反射鏡で、波長1064nmと波長532nm両者に対し高反射となるコーティングが施されている。符号5は、光共振器中に挿入された音響光学型のQスイッチ素子である。符号6は、波長1064nmに対する偏光選択素子で、本実施の形態では、石英の平行平面基板を波長1064nmに対するブリュースター角で挿入している。なお、図示してはいないが、偏光選択素子6は、基本波光10の光軸を回転軸に、角度の調整が可能な調整機構が設けられている。また、本実施の形態の2波長ミラー50は、波長532nmの第2高調波光22には高透過となり、波長266nmの第4高調波光40には高反射となる2波長コーティングが施されている。なお、2波長ミラー50を透過した第2高調波光22は、符号7で示されるダンパーへ入射する。
 次に本実施の形態4の動作について説明する。第1の反射鏡3および第2の反射鏡4から構成される本実施の形態の波長変換レーザ装置の光共振器の光軸は、波長変換結晶100内での光路が、第1の波長変換に関して波長1064nmを基本波とする第2高調波光発生に対するタイプI型の位相整合方位と合致するよう調整されている。また、光共振器内の基本波光10の偏光方向は、波長変換結晶100内での偏光方向が、前記実施の形態1において説明した波長1064nmを基本波とする第2高調波光発生に対するタイプI型の位相整合条件に合致するように、偏光選択素子6によって調整されている。
 半導体レーザ2から出射する励起光を固体レーザ媒質1へ照射することにより、固体レーザ媒質1を励起すると、固体レーザ媒質1は特定の波長領域で増幅作用を示す。固体レーザ媒質1から発生した自然放出光が、第1の反射鏡3と第2の反射鏡4で構成される光共振器内を往復し、励起された固体レーザ媒質1を通過する際に増幅作用を受けて、レーザ発振に至る。ここで、第1の反射鏡3、ならびに第2の反射鏡4は、ともに波長1064nmに対する高反射コーティングが施されている。従って、本実施の形態の波長変換レーザ装置においては、発振波長として1064nmが選択される。また、本実施の形態の波長変換レーザ装置においては、光共振器内に音響光学型のQスイッチ5が挿入されており、Qスイッチ素子5を使用し、光共振器の損失を一定周期をもって増減させることにより、尖頭出力の高いQスイッチパルスを発生させている。
 波長変換結晶100内を通過する基本波光10の方位および偏光方向は、第1の波長変換の位相整合条件と合致するため、効率よく第2高調波光20へと変換される。また、本実施の形態の波長変換レーザ装置においては、基本波光10を発生する光共振器の内部に波長変換結晶100を設置しているため、第1の反射鏡3から第2の反射鏡4へ向かう往路の基本波、第2の反射鏡4から第1の反射鏡4へ向かう復路の基本波両者ともに第2高調波光20へ変換される。第1の反射鏡3から第2の反射鏡4へ向かう往路の基本波によって発生した第2高調波光20は、一旦、波長変換結晶100のA面107から波長変換結晶100外部へ出射し、第2の反射鏡4へ至る。第2の反射鏡4には、波長1064nmと波長532nm両者に対する高反射コーティングが施されているため、第1の反射鏡3から第2の反射鏡4へ向かう往路の基本波光10によって発生した第2高調波光20は、第2の反射鏡4により進行方向が折り返され、再度波長変換結晶100へ入射する。波長変換結晶100へ再入射した第2高調波光20は、D面110、ならびにE面111による反射作用を受け、方位、偏光方向ともに、第2の波長変換の位相条件に合致するため、波長266nmの第4高調波光40へ効率よく変換される。
 本実施の形態4に示すように、単一の波長変換結晶を使用し、第1および第2の波長変換を行う構成において、波長変換結晶を、基本波光を発生する波長変換レーザ装置の光共振器内に設置し、光共振器内の基本波光の光軸方位および偏光方向を、第1の波長変換の位相整合条件と合致させれば、光共振器内を往復する往路の基本波光および復路の基本波光の両者を第1の波長変換に供することが可能になり、第1の波長変換の変換効率を向上させることができることに加え、第1の波長変換により往路の基本波光によって発生した高調波光および復路の基本波光により発生した高調波光ともに、第2の波長変換へ供することが可能になるので、第2の波長変換の変換効率も向上させることができるという効果がある。
 また、本実施の形態4においては、波長変換結晶を、基本波光を発生する波長変換レーザ装置の光共振器内に設置しているので、波長変換結晶へ入射する基本波光の強度を容易に高め、第1の波長変換の変換効率を効果的に向上させ、ひいては第2の波長変換の変換効率を向上させることができる。
 また、本実施の形態4の波長変換レーザ装置においては、単一の波長変換結晶を使用し、第1および第2の波長変換を行う構成としているので、第2の波長変換を行うための調整作業が不要となり、安定に第2の波長変換光を発生さることができる。
 なお、本実施の形態4においては、第1の波長変換のみを、波長変換レーザ装置の光共振器内で行う構成を示したが、例えば、第1の波長変換で第2高調波光を発生させ、第2の波長変換によって、第2高調波光と基本波の和周波を発生させる第3高調波発生等については、第1の波長変換、第2の波長変換ともに、波長変換レーザ装置の光共振器内で行う構成としてもよい。
 実施の形態5.
 図7は、本発明の実施の形態5による波長変換結晶100の構成を示す斜視図である。図7において、図1乃至図6と同一符号は同一部分もしくは相当部分を示している。本実施の形態5においても、波長変換結晶100は前記実施の形態1乃至4と同じく、約150℃に加熱されたCLBO結晶を使用している。本実施の形態5では、第1の波長変換として、波長1064nmを基本波とするタイプII型の位相整合で第2高調波発生を行い、第2の波長変換として、前記実施の形態1乃至4と同じく波長532nmを基本波とするタイプI型の位相整合で第2高調波発生を行い、単一の波長変換結晶100を使用し、波長1064nmの基本波光から波長266nmの第4高調波光へ変換する構成を示している。本実施の形態においては、第1の波長変換として、波長1064nmを基本波とするタイプII型の第2高調波発生を使用するので、波長変換結晶100に形成された各面の方位は、前記実施の形態1乃至4とは異なる。
 図7中、符号104で示す矢印は、波長変換結晶100中での光線の主伝播方向を表すZ’軸である。本実施の形態では、第1の波長変換に関して結晶温度150℃時の波長1064nmを基本波とする第2高調波発生に対するタイプII型の位相整合方位は、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(42.6deg,0deg)である。また、第2の波長変換に関して結晶温度150℃時の波長532nmを基本波とする第2高調波発生に対するタイプI型の位相整合方位は、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(61.9deg,45.0deg)である。従って、Z’軸104の方位は、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位との中間方位で定義され、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(50.08deg,25.62deg)となる。
 また、波長変換結晶100において、A面107の法線方向は、第1の波長変換の位相整合方位と一致し、F面112の法線方向は、第2の波長変換の位相整合方位と一致するよう形成されている。また、B面108は、前記実施の形態1乃至5と同様、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位の両者に平行な平面である。C面109はB面108と平行に形成されている。
 次に、本実施の形態5による波長変換結晶100に形成された各面の方位について、波長変換結晶100の誘電主軸を基準に、XYZ直交座標系およびΘψ極座標系を用いて詳細に説明する。但し、偏角Θは、誘電体主軸の1つであるZ軸101となす角度、偏角ψは、表記すべき方位のXY平面上への写像が誘電体主軸の1つであるX軸102となす角度を表すものとする。
 A面107の法線方向は、第1の波長変換に関して結晶温度150℃時の波長1064nmを基本波とした第2高調波発生に対するタイプII型の位相整合方位と一致するので、XYZ直交座標系で表記すると、(X,Y,Z)=(0.6769,0,0.7361)であり、Θψ極座標系では、(Θ,ψ)=(42.6deg,0deg)となる。
 B面108およびこれに平行なC面109は、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位の両者に平行なので、B面108およびC面109の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(0.7181,-0.2195,-0.6604)であり、Θψ極座標系では、(Θ,ψ)=(131.33deg,-16.99deg)となる。
 第1の反射面D面110の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(-0.2863,-0.0938,0.9535)であり、Θψ極座標系では、(Θ,ψ)=(17.53deg,-161.86deg)となる。
 第2の反射面E面111の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(0.9029,0.4080,0.1351)であり、Θψ極座標系では、(Θ,ψ)=(82.24deg,24.31deg)となる。
 なお、本実施の形態5による波長変換結晶100のA面107には、波長1064nmに対する反射防止コーティングが施され、F面112には、波長266nmに対する反射防止コーティングが施されている。また、E面111には、波長1064nmに対しては高透過、波長532nmに対しては高反射となる2波長コーティングが施されている。
 次に、本実施の形態5による波長変換結晶100を使用した波長変換方法について、図8および図9を用いて説明する。図8は、本実施の形態5による波長変換結晶100内での光線の伝播方向および偏光方向を模式的に示す斜視図である。図9は、本実施の形態5による波長変換結晶をB面108の法線方向から臨み、波長変換結晶100内での光線の伝播方向および偏光方向を示す模式図である。図8と図9中、図1乃至図7と同一符号は同一部分もしくは相当部分を示している。
 本実施の形態5では、第1の波長変換がタイプII型の位相整合であるため、波長1064nmのランダム偏光の基本波光10をA面107より垂直入射させる。A面107は、その法線が第1の波長変換の位相整合方位と一致するよう形成されているため、基本波光10をA面107に垂直入射させれば、波長変換結晶100内での基本波光10の伝播方位も第1の波長変換の位相整合方位と一致させることができる。また、波長変換結晶100中では、偏光方向は常光と異常光方向にのみ許容されるため、偏光方向が概ね均一に分布するランダム偏光の基本波光10は、波長変換結晶100内で略均等に常光と異常光に分配され、タイプII型の位相整合により、効率よく波長532nmの第2高調波光20を発生させることができる。タイプII型の位相整合により発生した第2高調波光20は異常光となるため、その伝播方位は基本波光10と同一であり、その偏光方向は、CLBO結晶の誘電主軸を基準としたΘψ極座標で表記すると、(Θ,ψ)=(47.40deg,180.0deg)となる。
 波長変換結晶100中を伝播する基本波光10および往路の第2高調波光20は、D面110に入射し、波長変換結晶100外部との屈折率差により全反射作用を受け、伝播方位へ変えてE面111へ入射する。E面111には、波長1064nmに対しては高透過、波長532nmに対しては高反射となる2波長コーティングが施されているので、波長1064nmの基本波光10はE面111より波長変換結晶100外部へ出射する。一方、波長532nmの第2高調波光20は、D面110およびE面111の2面で反射作用を受け、進行方向を折り返し復路の第2高調波光22となる。ここで本実施の形態5の波長変換結晶100では、D面110およびE面111の方位が前記の如く形成されているため、復路の第2高調波光22の伝播方位は、CLBO結晶100の誘電主軸を基準としたΘψ極座標で表記すると、(Θ,ψ)=(61.9deg,45.0deg)となり、第2の波長変換に関して結晶温度150℃時の波長532nmを基本波とする第2高調波発生に対するタイプI型の位相整合方位と一致する。
 また、第1の反射面D面の方位を前記の如く形成しているため、理論的にはD面110に入射する第2高調波光20の偏光成分のうち96%以上を、D面110からE面111へ至る伝播過程においても、異常光方向へ偏波させることができる。更に、第2の反射面E面111を前記の如く形成しているので、理論的には、第2の反射面E面111で反射される異常光成分のうち99%以上を、第2の波長変換の位相整合方位において、第2の波長変換の位相整合条件に合致する常光方向へ偏波せしめ、効率よく第2の波長変換を行うことができる。即ち、第1の波長変換によって発生する第2高調波光20のうち、理論的には95%以上の第2高調波光を、CLBO結晶の誘電主軸を基準としたΘψ極座標で、(Θ,ψ)=(90.0deg,-45.0deg)と表記される偏光方向23へ偏波させることができる。
 この偏波方向は、第2の波長変換の位相整合方位において常光と一致するため、復路の第2高調波光22の伝播方位および偏光方向23は、第2の波長変換に関して結晶温度150℃時の波長532nmを基本波とする第2高調波発生に対するタイプI型の位相整合条件に合致する。従って、上記の如く形成された波長変換結晶100を使用しても、前記実施の形態1乃至実施の形態4と同じく、単一の波長変換結晶100を使用し、入射光である波長1064nmの基本波光10から、波長266nmの第4高調波光40へ効率よく変換することができる。但し、本実施の形態による第4高調波光40の偏光方向41は、第2の波長変換の位相整合方位において異常光となるため、波長変換結晶100のB面108の法線に対し、41.53degの角度をなしている。
 本実施の形態5に示すように、第1の波長変換にタイプII型の位相整合を使用しても、前記実施の形態1乃至実施の形態4と同様な効果が得られるばかりでなく、ランダム偏光である基本波光を被波長変換光として使用することが可能になるので、基本波光の光源に直線偏光の選択手段が不要になるばかりでなく、波長変換結晶へ基本波光を入射させる際に、偏光方法を位相整合条件に合わせる必要がなく、入射光の調整も簡易になるという効果がある。
 更に、波長変換結晶としてCLBO結晶を使用した場合、波長1064nmを基本波とした第2高調波発生において、タイプI型の位相整合時の実効非線形光学定数が0.38pm/Vであるのに対し、タイプII型の位相整合時の実効非線形光学定数は0.68pm/Vとなる。そのため第1の波長変換にタイプII型の位相整合を使用すれば、第2高調波発生時の波長変換効率を更に向上させることができるという格別な効果を奏する。
 実施の形態6.
 図10は、本発明の実施の形態6による波長変換レーザ装置の構成を示す模式図である。本実施の形態に示す波長変換レーザ装置においては、図7乃至図9において示した前記実施の形態5と各面の方位が同一に形成された波長変換結晶100を使用している。なお、図示してはいないが、本実施の形態1の波長変換結晶100であるCLBO結晶は、ヒータおよび温度調整機構によって150℃近傍に維持されるとともに、結晶の設置角度を調整することができる調整機構が設けられている。また、本実施の形態の波長変換結晶100のA面107には、波長1064nmと波長532nmの両者に高透過となる2波長コーティングが施されている。F面112には、波長266nmに対する反射防止コーティングが施されている。また、E面111には、波長1064nmに対しては高透過、波長532nmに対しては高反射となるような2波長コーティングが施されている。
 本実施の形態6による波長変換レーザ装置も、前記実施の形態4と同じく、波長変換結晶100を、基本波光10を発生する波長変換レーザ装置の光共振器中に設置するとともに、波長変換結晶100中での基本波光10の光軸を、第1の波長変換に関して結晶温度150℃時の波長1064nmを基本波とする第2高調波発生に対するタイプII型の位相整合方位と一致させている。
 また本実施の形態6においても、前記実施の形態4と同じく、基本波光10から往路の第2高調波光20、復路の第2高調波光22から第4高調波光40への波長変換効率を効果的に高めることができるばかりでなく、基本波光10はランダム偏光でよいので、基本波光10の偏光方向を規定する偏光選択素子が不要になり、調整が容易になることに加え、波長変換レーザ装置のコスト低減が可能になるという効果がある。更に、基本波光10の発生時に、直線偏光を選択する必要がないので、脱偏光にともなう共振器損失を低減し、効率よく基本波光10を発生させることが可能になり、ひいては、第2高調波光20、第4高調波光40への波長変換効率を効果的に向上させることができるという格別な効果を奏する。
 実施の形態7.
 図11は、本発明の実施の形態7による波長変換結晶100の構成を示す斜視図である。図11において、図1乃至図10と同一符号は同一部分もしくは相当部分を示している。本実施の形態7においては、波長変換結晶100として、27℃のほぼ室温に温度調整されたリチウム・トリボレート結晶(LBO結晶:LiB)を使用している。また、本実施の形態7においては、第1の波長変換として、波長1064nmを基本波とするタイプI型の位相整合で第2高調波発生を行い、第2の波長変換として、波長1064nmと波長532nmのタイプII型の位相整合によって和周波発生を行い、単一の波長変換結晶100を使用し、波長1064nmの基本波光から波長355nmの第3高調波光へ変換する構成を示す。
 図11中、符号104で示す矢印は、波長変換結晶100中での光線の主伝播方向を表すZ’軸である。本実施の形態では、第1の波長変換に関して結晶温度27℃時の波長1064nmを基本波とする第2高調波発生に対するタイプI型の位相整合方位は、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(90.0deg,11.3deg)である。また、第2の波長変換に関して結晶温度27℃時の波長1064nmと波長532nmの和周波発生に対するタイプII型の位相整合方位は、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(42.6deg,90.0deg)である。従って、Z’軸104の方位は、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位との中間方位で定義され、誘電主軸を基準としたΘψ極座標表示で、(Θ,ψ)=(60.72deg,41.67deg)となる。
 また、波長変換結晶100において、A面107の法線方向は、第1の波長変換の位相整合方位と一致し、F面112の法線方向は、第2の波長変換の位相整合方位と一致するよう形成されている。また、B面108は、前記実施の形態1乃至7と同様、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位の両者に平行な平面である。C面109はB面108と平行に形成されている。
 次に、本実施の形態7による波長変換結晶100に形成された各面の方位について、波長変換結晶100の誘電主軸を基準に、XYZ直交座標系およびΘψ極座標系を用いて詳細に説明する。
 A面107の法線方向は、第1の波長変換に関して結晶温度27℃時の波長1064nmを基本波とした第2高調波発生に対するタイプI型の位相整合方位と一致するので、XYZ直交座標系で表記すると、(X,Y,Z)=(0.9806,0.1959,0)であり、Θψ極座標系では、(Θ,ψ)=(90.0deg,11.3deg)となる。
 B面108およびこれに平行なC面109は、第1の波長変換の位相整合方位と第2の波長変換の位相整合方位の両者に平行なので、B面108およびC面109の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(0.1455,-0.7283,0.6697)であり、Θψ極座標系では、(Θ,ψ)=(47.96deg,-78.70deg)となる。
 第1の反射面D面110の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(-0.6654,-0.1326,0.7346)であり、Θψ極座標系では、(Θ,ψ)=(42.72deg,-168.73deg)となる。
 第2の反射面E面111の法線方向は、XYZ直交座標系で表記すると、(X,Y,Z)=(0.0416,0.3709,0.9277)であり、Θψ極座標系では、(Θ,ψ)=(21.92deg,83.60deg)となる。
 なお、本実施の形態7による波長変換結晶100のA面107には、波長1064nmに対する反射防止コーティングが施され、F面112には、波長355nmに対する反射防止コーティングが施されている。また、D面110およびE面111には、波長1064nmおよび波長532nmの両者に対し高反射となる2波長コーティングが施されている。
 次に、本実施の形態7による波長変換結晶100を使用した波長変換方法について、図12および図13を用いて説明する。図12は、本実施の形態7による波長変換結晶100内での光線の伝播方向および偏光方向を模式的に示す斜視図である。図13は、本実施の形態7による波長変換結晶をB面108の法線方向から臨み、波長変換結晶100内での光線の伝播方向および偏光方向を示す模式図である。図12と図13中、図1乃至図11と同一符号は同一部分もしくは相当部分を示している。
 本実施の形態7の波長変換結晶100においては、A面107の法線が、第1の波長変換の位相整合方位と一致するよう形成されているので、波長1064nmの基本波光10は、A面107に対し垂直入射すればよい。但し、波長変換結晶100のA面107へ基本波光10を入射させる際には、第1の波長変換の位相整合条件に合致するよう基本波光10の偏光方向11を合致させる必要がある。
 第1の波長変換に関して結晶温度27℃時の波長1064nmを基本波とするタイプI型の位相整合による第2高調波発生においては、基本波光10の偏光方向11を位相整合方位に対する常光の方向へ一致させる必要がある。LBO結晶は二軸性の光学結晶であり、第1の波長変換の主変換面を誘電主軸で表記するとXY面となる。従って、第1の波長変換の常光の偏光方向は誘電主軸のZ軸と平行になる。このため、波長変換結晶100へ入射する基本波光10の偏光方向11は、基本波光10の進行方向を臨み、B面108の法線方向に対し反時計回りの向きへ、47.96deg回転させれば良い。実際には、図13に示すように、基本波光10が波長変換結晶100へ入射する手前に、偏光方向調整手段52を設け、本実施の形態7の第2の波長変換によって発生する波長355nmの第3高調波光30の出力が最大となるよう基本波光10の偏光方向を調整してやればよい。なお、本実施の形態7では、偏光方向調整手段52として、波長1064nmに対する透過型の1/2波長板を使用している。また、図示してはいないが、偏光方向調整手段52として使用する1/2波長板には、基本波光10を回転軸とする回転機構が設けられている。
 上記の如く基本波光10を波長変換結晶100へ入射させれば、第1の波長変換の位相整合条件に合致するため、効率よく波長532nmの第2高調波光20へ変換することができる。なお、基本波光10と第2高調波光20の波長変換結晶100中での伝播方位は同一であり、基本波光10の偏光方向11は常光、第2高調波光20の偏光方向21は異常光となるため、基本波光10の偏光方向11は光学軸Z101に平行となる。一方、第2高調波光20の偏光方向21は、LBO結晶の誘電主軸を基準としたΘψ極座標で表記すると、(Θ,ψ)=(90.0deg,101.3deg)となる。
 本実施の形態における波長変換結晶100のD面110およびE面111には、波長1064nmおよび波長532nmの両者に対し高反射となる2波長コーティングが施されている。そのため波長1064nmの基本波光10、波長532nmの第2高調波光20ともに、D面110およびE面111による2回反射によって進行方向を折り曲げられ、復路の基本波光12および復路の第2高調波光22となり、同一方位に伝播する。ここで本実施の形態7の波長変換結晶100では、D面110およびE面111の方位が前記の如く形成されているため、復路の基本波光12および復路の第2高調波光22の伝播方位は、LBO結晶の誘電主軸を基準としたΘψ極座標で表記すると、(Θ,ψ)=(42.6deg,90.0deg)となり、第2の波長変換に関して結晶温度27℃時の波長1064nmと波長532nmの和周波発生におけるタイプII型の位相整合方位と一致する。
 また、D面110を前記の如く形成しているため、理論的にはD面110で反射した基本波光10の99%以上を、D面110からE面111へ至る伝播過程において異常光方向へ、また、理論的にはD面110で反射した第2高調波光20の99%以上を、D面110からE面111へ至る伝播過程において常光方向へ、偏波させることができる。更に、E面111を前記の如く形成しているため、理論的にはE面110で反射する常光の99%以上を、第2の波長変換の位相整合方位において異常光方向へ、また、理論的にはE面110で反射する異常光の99%以上を、第2の波長変換の位相整合方位において常光方向へ、偏波させることができる。
 従って、D面110とE面111での2回反射によって、第1の波長変換によって発生した第2高調波光20のうち、理論的には98%以上の第2高調波光20を、誘電主軸を基準としたΘψ極座標で、(Θ,ψ)=(47.4deg、-90.0deg)と表記される偏光方向23へ、また、第1の波長変換で残存した基本光10のうち、理論的には98%以上の基本波光10を、誘電主軸を基準としたΘψ極座標で、(Θ,ψ)=(90.0deg,0.0deg)と表記される偏光方向13へ、偏波させることができる。
 第2の波長変換の主変換面はYZ面となるため、理論的には98%以上の復路の基本波光12の偏光方向13は常光、理論的には98%以上の復路の第2高調波光22の偏光方向23は異常光となるため、復路の基本波光12と復路の第2高調波光22は伝播方位、偏光方向ともに、第2の波長変換に関して結晶温度27℃時の波長1064nmと波長532nmの和周波発生におけるタイプII型の位相整合条件に合致しており、単一の波長変換結晶100を使用し、入射光である波長1064nmの基本波光10から、波長355nmの第3高調波光30へ効率よく変換することができる。なお、第2の波長変換によって発生する第3高調波光30は、常光となるため、偏光方向31は復路の基本波光12の偏光方向13と等しくなる。波長変換結晶100の外部へ出射した第3高調波光30は、波長1064nmと波長532nmは透過し、波長355nmは反射する3波長ミラー53を使用すれば容易に分離することができる。
 なお、本実施の形態7で示した波長変換結晶100を波長変換レーザ装置の光共振器内に設置すれば、前記実施の形態4および実施の形態7と同様、波長変換効率の向上が可能であることは言うまでもない。また、本実施の形態7では、波長1064nmの基本波光12を第2の波長変換である和周波発生にも使用するので、第1の波長変換、第2の波長変換ともに、波長変換レーザ装置の光共振器内で行うことにより、更に波長変換効率の向上が可能になる。
 本実施の形態7に示すように、第2の波長変換のスキームは第2高調波発生に限るものではなく、第1の波長変換で発生させた第2高調波と基本波の和周波を発生させてもよい。また、同一の温度での発生が可能な第3の波長変換スキームがあれば、波長変換結晶に反射面を適宜追加し、反射光の方位、偏光方向が第3の波長変換スキームの位相整合条件に合致するよう適切な方位に反射面を形成することによって、単一の波長変換結晶を使用して3段階以上の波長変換を行うことも原理的に可能である。前記実施の形態で示したCLBO結晶を使用すれば、波長変換結晶の各面を適切な方位で形成することにより、3段階の波長変換を単一の波長変換結晶内で実現することにより、単一の波長変換結晶を使用し、波長213nmの第5高調波を発生させることも可能である。
 なお、上記実施の形態では、波長変換結晶としてCLBO結晶またはLBO結晶を使用した場合を例示したが、結晶の種類、波長、波長変換のスキームはこれに限るものではない。波長変換結晶の各面を適切な方位で形成し、反射面として利用することにより、同一の温度で位相整合が可能な、高調波、和周波、差周波等、あらゆる波長変換スキームを利用した2段階以上の波長変換を単一の波長変換結晶で実現することが可能になる。
 また、上記実施の形態においては、単一波長の基本波を波長変換結晶へ入射させる構成を示したが、2波長以上の複数の被波長変換光を波長変換結晶へ入射し、第1の波長変換として和周波または差周波を発生させ、更に第2の波長変換により、第1の波長変換で発生させた和周波または差周波の高調波を発生させてもよいし、あるいは、第1の波長変換で一方の被波長変換光の高調波を発生させ、第2の波長変換により第1の波長変換で発生させた高調波と別の被波長変換光との和周波または差周波を発生させることもできる。
 本発明は、信頼性に優れ、簡易な構成で、第3高調波以上の高次高調波を効率よく発生することができる点で、産業上極めて有用である。
 1 固体レーザ媒質、 2 半導体レーザ、 3 第1の反射鏡、 4 第2の反射鏡、 5 Qスイッチ素子、 6 偏光選択素子、 7 ダンパー、 10 基本波光、 11 基本波光の偏光方向、 12 復路の基本波光、 13 復路の基本波光の偏光方向、 20 往路の第2高調波光、 21 往路の第2の高調波光の偏光方向、 22 復路の第2高調波光、 23 復路の第2高調波光の偏光方向、 30 第3高調波光、 31 第3高調波光の偏光方向、 40 第4高調波光、 41 第4高調波光の偏光方向、 50 2波長ミラー、 51 1/2波長板、 100 波長変換結晶、 110 第1の反射面(D面)、 111 第2の反射面(E面)、 112 高次高調波の出射面(F面)。

Claims (14)

  1.  第1波長の光を第2波長の光へ変換する第1波長変換のための第1位相整合条件、および第2波長の光を第3波長の光へ変換する第2波長変換のための第2位相整合条件の両方を満たす単一の非線形光学結晶と、
     第1波長変換によって発生した第2波長の光を反射して、第2波長変換に供給するための反射手段と、を備えることを特徴とする波長変換素子。
  2.  基本波を第2高調波へ変換する第1波長変換のための第1位相整合条件、および第2高調波を第4高調波へ変換する第2波長変換のための第2位相整合条件の両方を満たす単一の非線形光学結晶と、
     第1波長変換によって発生した第2高調波を反射して、第2波長変換に供給するための反射手段と、を備えることを特徴とする波長変換素子。
  3.  非線形光学結晶は、第4高調波を、第4高調波より高次の高調波へ変換する第3波長変換の第3位相整合条件をさらに満たしており、
     第2波長変換によって発生した第4高調波を反射して、第3波長変換に供給するための追加の反射手段をさらに備えることを特徴とする請求項2記載の波長変換素子。
  4.  非線形光学結晶は、セシウム・リチウム・ボレート系結晶であることを特徴とする請求項2または3記載の波長変換素子。
  5.  基本波を第2高調波へ変換する第1波長変換のための第1位相整合条件、および基本波と第2高調波を和周波発生により第3高調波へ変換する第2波長変換のための第2位相整合条件の両方を満たす単一の非線形光学結晶と、
     第1波長変換によって発生した第2高調波および第1波長変換で残存した基本波を反射して、第2波長変換に供給するための反射手段と、を備えることを特徴とする波長変換素子。
  6.  非線形光学結晶は、第3高調波を、第3高調波より高次の高調波へ変換する第3波長変換の第3位相整合条件をさらに満たしており、
     第2波長変換によって発生した第3高調波を反射して、第3波長変換に供給するための追加の反射手段をさらに備えることを特徴とする請求項5記載の波長変換素子。
  7.  非線形光学結晶は、リチウム・トリボレート結晶であることを特徴とする請求項5または6記載の波長変換素子。
  8.  反射手段は、結晶方位が異なる少なくとも2つの反射面で構成されることを特徴とする請求項1~7のいずれかに記載の波長変換素子。
  9.  反射手段には、反射光の偏光方向を調整する偏光調整手段が設けられることを特徴とする請求項1~8のいずれかに記載の波長変換素子。
  10.  波長変換光が非線形光学結晶を出射する出射面において、波長変換光がP偏光として入射し、該出射面に対する波長変換光の入射角がブリュースター角となるように設定されていることを特徴とする請求項1~9のいずれかに記載の波長変換素子。
  11.  第1波長変換は、タイプII型の位相整合条件を満たすことを特徴とする請求項1~10のいずれかに記載の波長変換素子。
  12.  レーザ光を発生するレーザ光源と、
     該レーザ光の波長変換を行う、請求項1~11のいずれかに記載の波長変換素子と、を備えることを特徴とする波長変換レーザ装置。
  13.  レーザ光源は、光共振器と、光共振器の内部に配置されたレーザ媒質とを備え、
     前記波長変換素子は、光共振器の内部に配置されており、光共振器の光軸は少なくとも第1波長変換の位相整合方位に合致していることを特徴とする請求項12記載の波長変換レーザ装置。
  14.  第1波長変換は、タイプI型の位相整合条件を満たしており、
     光共振器の内部には、波長変換素子に入射するレーザ光の偏光方向を調整する偏光調整手段が設けられることを特徴とする請求項13記載の波長変換レーザ装置。
PCT/JP2012/056350 2011-03-28 2012-03-13 波長変換素子および波長変換レーザ装置 WO2012132866A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280015298.2A CN103460125B (zh) 2011-03-28 2012-03-13 波长变换晶体以及波长变换激光装置
US14/007,469 US9188834B2 (en) 2011-03-28 2012-03-13 Wavelength conversion crystal and wavelength conversion laser device
JP2013507350A JP5721812B2 (ja) 2011-03-28 2012-03-13 波長変換結晶および波長変換レーザ装置
DE112012001525.8T DE112012001525B4 (de) 2011-03-28 2012-03-13 Kristall zur Wellenlängen-Umwandlung und Laservorrichtung zur Wellenlängen-Umwandlung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011069303 2011-03-28
JP2011-069303 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012132866A1 true WO2012132866A1 (ja) 2012-10-04

Family

ID=46930603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056350 WO2012132866A1 (ja) 2011-03-28 2012-03-13 波長変換素子および波長変換レーザ装置

Country Status (6)

Country Link
US (1) US9188834B2 (ja)
JP (1) JP5721812B2 (ja)
CN (1) CN103460125B (ja)
DE (1) DE112012001525B4 (ja)
TW (1) TWI487993B (ja)
WO (1) WO2012132866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211707B1 (en) 2020-11-13 2021-12-28 Lyteloop Technologies, Llc Apparatus for broadband wavelength conversion of dual-polarization phase-encoded signal
US11346923B1 (en) * 2020-11-13 2022-05-31 Lyteloop Technologies, Llc LiDAR system implementing wavelength conversion

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3649508B1 (en) * 2017-07-03 2023-04-05 Electro Scientific Industries, Inc. Optically contacted acousto-optic device and method of making the same
DE102018109763B4 (de) * 2018-04-24 2019-12-24 Toptica Photonics Ag Erzeugung frequenzverdreifachter Laserstrahlung
CN110061413B (zh) * 2019-05-27 2024-08-09 青岛镭视光电科技有限公司 带有折叠腔的自倍频晶体、激光发生装置及激光器
DE102021116391A1 (de) 2021-06-24 2022-12-29 Universität Stuttgart, Körperschaft Des Öffentlichen Rechts Strahlungsfeldbereitstellungsvorrichtung
WO2023026217A1 (en) * 2021-08-24 2023-03-02 Pavilion Integration Corporation Intracavity harmonic generation with layered nonlinear optic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194705A (ja) * 1992-12-24 1994-07-15 Hamamatsu Photonics Kk 光高調波発生器
JPH06216453A (ja) * 1993-01-14 1994-08-05 Hamamatsu Photonics Kk 固体レーザ装置
JP2001075135A (ja) * 1999-09-01 2001-03-23 Matsushita Electric Ind Co Ltd 光高調波発生器
JP2009145791A (ja) * 2007-12-18 2009-07-02 Lasertec Corp 波長変換装置、検査装置及び波長変換方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156230A (ja) * 1988-12-08 1990-06-15 Sanyo Electric Co Ltd 光波長変換素子の製造方法と光波長変換素子
US5341393A (en) * 1990-05-10 1994-08-23 Fuji Photo Film Co., Ltd. Laser-diode-pumped solid-state laser
JP3641291B2 (ja) 1995-03-09 2005-04-20 ペンタックス株式会社 偏光変換素子およびその使用方法
JP3048912B2 (ja) * 1996-02-06 2000-06-05 日本電気株式会社 光ヘッド装置
JP3787417B2 (ja) 1997-06-11 2006-06-21 キヤノン株式会社 電子ビーム露光方法及び電子ビーム露光装置
JP3479205B2 (ja) 1997-07-16 2003-12-15 日本電気株式会社 レーザ光の波長変換方法および波長変換素子
JP3212931B2 (ja) * 1997-11-26 2001-09-25 日本電気株式会社 波長変換方法及び波長変換素子
JP4052751B2 (ja) 1999-01-29 2008-02-27 独立行政法人科学技術振興機構 レーザー光発生装置
DE69933017T2 (de) 1998-03-27 2007-03-15 Japan Science And Technology Agency, Kawaguchi WELLENLÄNGENUMWANDLUNGSKRISTALL, VERFAHREN und Gerät ZUR ERZEUGUNG VON LASERSTRAHLEN
US7826500B2 (en) * 2005-08-29 2010-11-02 Panasonic Corporation Fiber laser and optical device
CN102768450B (zh) * 2011-05-03 2014-10-29 中国科学院理化技术研究所 Kbbf族晶体与棱镜耦合的光学耦合器件及制备方法
JP2013041051A (ja) * 2011-08-12 2013-02-28 Gigaphoton Inc 波長変換装置、固体レーザ装置およびレーザシステム
JP2013178462A (ja) * 2012-02-08 2013-09-09 Gigaphoton Inc 波長変換器、波長変換装置、固体レーザ装置およびレーザシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194705A (ja) * 1992-12-24 1994-07-15 Hamamatsu Photonics Kk 光高調波発生器
JPH06216453A (ja) * 1993-01-14 1994-08-05 Hamamatsu Photonics Kk 固体レーザ装置
JP2001075135A (ja) * 1999-09-01 2001-03-23 Matsushita Electric Ind Co Ltd 光高調波発生器
JP2009145791A (ja) * 2007-12-18 2009-07-02 Lasertec Corp 波長変換装置、検査装置及び波長変換方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211707B1 (en) 2020-11-13 2021-12-28 Lyteloop Technologies, Llc Apparatus for broadband wavelength conversion of dual-polarization phase-encoded signal
US11346923B1 (en) * 2020-11-13 2022-05-31 Lyteloop Technologies, Llc LiDAR system implementing wavelength conversion
US12072444B2 (en) 2020-11-13 2024-08-27 Nkb Properties Management, Llc LiDAR system implementing wavelength conversion

Also Published As

Publication number Publication date
TWI487993B (zh) 2015-06-11
DE112012001525T5 (de) 2014-01-09
US20140016186A1 (en) 2014-01-16
JP5721812B2 (ja) 2015-05-20
TW201245835A (en) 2012-11-16
US9188834B2 (en) 2015-11-17
CN103460125B (zh) 2016-05-25
DE112012001525B4 (de) 2024-07-18
JPWO2012132866A1 (ja) 2014-07-28
CN103460125A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5721812B2 (ja) 波長変換結晶および波長変換レーザ装置
JPH0575196A (ja) 単一周波数の周波数2倍化レーザ及び単一周波数の緑色又は青色光を発生する方法
KR102344775B1 (ko) 제3 고조파 생성을 위한 고효율 레이저 시스템
US9036249B2 (en) Method of sum-frequency conversion and frequency converter with optical active rotator
US20070041421A1 (en) Holographic element for stabilizing coupled laser and SHG resonators
US20060120415A1 (en) Blue laser beam oscillating method and system
JP2004111542A (ja) 半導体レーザ装置
US9172201B2 (en) Wavelength conversion laser light source, and image display device
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
EP1180717B1 (en) Optical harmonic generator
JP4719918B2 (ja) レーザー光の波長変換法
JP5855229B2 (ja) レーザ装置
JP2006310743A (ja) レーザ発振装置
WO2004102752A1 (ja) 固体レーザ装置
JPH1055005A (ja) レーザ光発生装置
WO2011123822A2 (en) Apparatus and method for generating continuous wave ultraviolet light
RU76509U1 (ru) Лазер с оптическим параметрическим генератором
JPH06265955A (ja) 波長変換素子
WO2000071342A1 (en) Contacted crystal surface protector and method
JP2014174379A (ja) 赤外固体レーザー発振装置
JP2021132127A (ja) 半導体レーザ励起固体レーザ
JPH05235456A (ja) レーザー装置
JP2005123226A (ja) 内部共振器型の和周波混合レーザ
JP6107397B2 (ja) 波長変換素子および波長変換レーザ装置
Cui UV pumped holosteric optical parametric oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507350

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14007469

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120015258

Country of ref document: DE

Ref document number: 112012001525

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765806

Country of ref document: EP

Kind code of ref document: A1