KR102344775B1 - 제3 고조파 생성을 위한 고효율 레이저 시스템 - Google Patents

제3 고조파 생성을 위한 고효율 레이저 시스템 Download PDF

Info

Publication number
KR102344775B1
KR102344775B1 KR1020187030863A KR20187030863A KR102344775B1 KR 102344775 B1 KR102344775 B1 KR 102344775B1 KR 1020187030863 A KR1020187030863 A KR 1020187030863A KR 20187030863 A KR20187030863 A KR 20187030863A KR 102344775 B1 KR102344775 B1 KR 102344775B1
Authority
KR
South Korea
Prior art keywords
crystal
thg
shg
angle
pump
Prior art date
Application number
KR1020187030863A
Other languages
English (en)
Other versions
KR20180128946A (ko
Inventor
안드레이 바부시킨
안드레이 보든유크
Original Assignee
아이피지 포토닉스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이피지 포토닉스 코포레이션 filed Critical 아이피지 포토닉스 코포레이션
Publication of KR20180128946A publication Critical patent/KR20180128946A/ko
Application granted granted Critical
Publication of KR102344775B1 publication Critical patent/KR102344775B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3507Arrangements comprising two or more nonlinear optical devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3503Structural association of optical elements, e.g. lenses, with the non-linear optical device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3509Shape, e.g. shape of end face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Abstract

주파수 변환 레이저 시스템은 기본 주파수로 펄스형 펌프 빔을 출력하는 단일 모드(SM) 레이저 광원 그리고 기본 주파수를 제2 고조파(SH) 및 후속의 제3 고조파(TH)로 순차적으로 변환하도록 동작하는 비선형 광학 시스템으로 구성된다. 비선형 광학 시스템은 SH 빔을 생성하는 SM 펄스형 펌프 빔에 의해 진행되는 세장형 SHG 결정을 포함한다. SHG 결정은 직각과 상이한 제1 웨지각으로 SHG 결정의 길이방향 축에 대해 경사져 있는 출력면을 갖는다. 비선형 광학 시스템은 나머지 펌프 빔 및 SHG 빔에 의해 충돌되고 이들 빔이 그 사이의 워크-오프 각도로 THG 결정을 통해 전파되어 제3 고조파(TH) 빔을 생성하는 입력면을 갖는 세장형 THG 결정을 추가로 갖고, THG 결정의 입력면은 제2 웨지각으로 THG 결정의 길이방향 축에 대해 경사져 있다. 각각의 SHG 및 THG 결정의 출력면 및 입력면은 THG 결정 내에서 SH 및 IR 포인팅 벡터 사이의 워크-오프 각도를 최소화하고 그에 의해 변환 효율 및 TH 출력 빔의 타원율을 개선하도록 경사져 있다.

Description

제3 고조파 생성을 위한 고효율 레이저 시스템
본 개시내용은 합 주파수 혼합(sum frequency mixing)(SFM) 비선형 공정을 위해 설계되는 비선형 결정 내에서 향상된 주파수 변환 효율을 획득하는 시스템에 관한 것이다.
기존에, LED 스크라이빙, 칩 다이싱, 비아-홀 드릴링, 플라스틱 마킹 등과 같은 다양한 산업 분야에서 고출력 자외선(ultraviolet)(UV) 레이저에 대한 수요가 커지고 있다. 더 일반적인 IR 레이저와 비교하면, UV 레이저는 일부의 재료에 의한 UV 광의 더 높은 선형 및 비선형 흡수의 이점 그리고 더 작은 초점 스폿을 성취할 수 있는 그 가능성을 갖는다.
전형적으로, UV 광의 생성은 리튬 트리보레이트 또는 리튬 보레이트(LBO)와 같은, 2개의 비선형 광학 결정의 사용을 요구한다. 초기에, 펌프 빔, 구체적으로 적외선(infrared)(IR) 레이저 빔의 기본 주파수는 제1 비선형 결정을 통해 전파되는 동안에 그 제2 고조파(second harmonic)(SH)를 생성한다. 제2 고조파 생성(second harmonic generation)(SHG) 비선형 공정은 IR 입력 복사선의 2개의 광자를 결합시켜 입력 적외 복사선의 주파수의 2배의 주파수를 갖는 가시 출력 복사선의 광자를 생성하는 것을 포함한다. 제2 비선형 결정 내에서 일어나는, 3차 고조파 생성(third harmonic generation)(THG)에서, 비선형 공정은 SH 출력의 광자를 IR 입력의 광자와 결합시켜 펌프 빔의 주파수의 3배의 주파수로 UV 복사선을 출력하는 것을 포함한다.
LBO를 포함하는 비선형 결정은 보통 굴절률이 복굴절 결정 내에서의 복사선의 편광 방향에 의존한다는 것을 의미하는 이방성 굴절률에 의해 특징지어진다. 복굴절 결정에서, 강도 분포는 도 1에 도시된 바와 같이, 항상 파면(WF)에 직각인 파동 벡터(k)에 의해 한정되는 방향으로부터 이탈된다. 공간 워크-오프, 복굴절 워크-오프 또는 포인팅 벡터 워크-오프(Poynting vector walk-off)(S)로 불리는, 이러한 현상은 에너지 전달 방향을 한정하고, 포인팅 벡터(S)와 파동 벡터(k) 사이의 어떤 유한한 워크-오프 각도(ρ)와 관련된다. 공간 워크-오프는 광학 축에 대해 어떤 각도(θ)로 전파되는 이상 편광을 갖는 빔에서만 일어나고, 그에 따라 굴절률(ne) 및 위상 속도는 그 각도에 의존하게 된다. (굴절률(no)이 전파 각도에 의존하지 않는) 정상 편광을 갖는 빔은 워크-오프를 겪지 않는다.
도 2는 UV 광을 생성하는 데 채용되는 전형적인 구조체를 도시한다. SHG를 위한 비선형 매체로서, 타입 Ⅰ 비-임계 정합 LBO(12)가 도시된 구조체에 사용된다. LBO(12)는 직교 편광된 펌프 및 SH 빔(16, 18)을 출력한다. 제2 LBO(14)는 상호작용 주파수의 SFM을 위해 절단되어 제3 고조파(TH) 출력 빔(22)을 생성하는 타입 Ⅱ 임계 위상 정합(critically phase matched)(CPM) LBO이다. 타입 Ⅱ 위상 정합을 위해, 각각의 기본 주파수 및 그 제2 고조파에서의 입력 펌프(IR) 및 SH 빔(16, 18)의 편광은 서로 직각이어야 하고, 즉 o+e→o 또는 o+e→e이어야 하고, 이것은 정확하게 LBO(12)가 제공하는 것이다. 따라서, 도시된 구조체는 빔의 포커싱을 제외하면 비선형 결정들 사이에 필요한 빔 조작이 없기 때문에 편리하다.
도 2의 THG 구조체에서, 빔(16, 18)은 공선관계 및 동축관계이고, LBO 결정(14)의 입력면(20)에 직각인 방향으로 광 경로를 따라 전파된다. 타입 Ⅱ 위상 정합 LBO 결정(14) 내에서의 합 주파수 비선형 공정 중에, 각각의 펌프 및 신호 파동의 파동 벡터(k1, k2) 그리고 펌프 파동의 포인팅 벡터(S1)는 모두가 서로 평행하다/공선관계이다. 그러나, SH의 포인팅 벡터(S2)는 워크-오프 각도(ρ)로 파동 벡터(k2)로부터 그리고 그에 따라 포인팅 벡터(S1)로부터 이탈된다. 그것은 결정(14) 내에서의 빔(16, 18) 사이의 에너지 전달이 상호작용 길이(L)로서 알려져 있는 비교적 짧은 길이에서만 일어난다는 것을 의미한다. 결국, 이들 빔이 결정(14)을 통해 전파되는 동안에, 그 사이의 분리는 펄스형 레이저의 경우에, 생성된 TH 내의 피크 파워인, THG 변환 효율을 감소시킨다. 위의 상황에 기초하여, 변환 효율은 비교적 작은 상호작용 길이(L)에 의해 제한된다.
워크 오프 현상은 치밀하게 포커싱된(작은 직경의) 고강도 빔을 사용할 때의 변환 효율에 특히 불리하다. 그러나, 고강도 빔은 특히 수백 킬로와트 이하를 출력하는 비교적 낮은 피크 파워 시스템에서, 주파수 변환 공정의 효율이 광 강도의 함수이기 때문에 필요하다. 대응하여, 단일 모드(single mode)(SM) 레이저 시스템에 채용되는 고조파 변환 공정에서 워크-오프 효과를 보상하기 위해, 많은 접근법이 고안되었다.
많은 접근법 중 하나는 비교적 짧은 결정의 길이를 갖고 그에 따라 결정으로부터 출사될 때에 벡터들 사이의 분리를 최소화함으로써 워크-오프의 문제를 다룬다. 그러나, 결정 길이를 감소시키는 것은 임의의 THG 공정에 필수적인 변환 효율의 감소로 이어진다.
워크-오프 효과를 최소화하는 또 다른 방법은 변위 효과가 최소화되도록 빔의 직경을 확대하는 것을 포함한다. 그러나, 변환 효율은 결정 내의 포커싱된 빔의 더 큰 스폿 크기(강도의 감소)에 따라 광 출력 밀도가 감소하기 때문에 낮아진다. 그러나, 이러한 접근법은 광 출력 밀도의 크지 않은 하락을 알아채는 것이 어렵기 때문에 수백 ㎿에 도달하는 피크 출력 파워를 갖는 고출력 레이저 광원에서 정확하게 작용하지 않을 수 있다. 대조적으로, 비교적 크지 않은 출력 밀도 하락일 때에도 최대 수백 ㎾의 출력 피크 파워를 갖는 저출력 레이저 광원이 채용될 때에는 변환 효율을 극적으로 감소시킬 것이다.
대안적인 접근법은 THG 공정에서의 2개의 비선형 결정의 사용을 포함하고, 여기서 적절하게 배향된 제2 결정에 의해 생성되는 워크-오프는 제1 결정 내에서의 워크-오프에 의해 상쇄된다. 이러한 접근법은 워크-오프 효과를 감소시키는 데 어느 정도 성공적이지만, 이러한 개념의 특정 측면에는 문제가 있다. 예를 들어, 워크-오프 효과의 충분한 보상은 보통 성취하기 어렵다. 또한, 이처럼 설계된 레이저의 비용 및 복잡성은 증가된다.
또한, 추가적인 접근법은 빔이 직각 입사각으로 비선형 결정의 입력면 내로 진입될 때에 일어나는 굴절 효과에 기초한다. 이러한 경우에, 입사 광 빔의 파동 벡터(k)는 스넬의 법칙(Snell's law)에 따라 그것이 결정의 입력면을 통해 전파되는 동안에 굴절된다. 스넬의 법칙은 입력면의 양측 상의 재료의 굴절률에 따른 입사각과 굴절각 사이의 관계를 설정한다. THG 공정과 관련하여, 각각의 정상(o) 및 이상(e) 편광 상태와 관련되는 2개의 파동 벡터(k1, k2)는 상이한 각도로 굴절된다. 요컨대, 파동 벡터 이중 굴절로서 불리고 개시된 본 발명의 시스템에 사용되는, 이러한 효과의 크기는 제2 결정의 결정의 광학 축에 대한 입력면의 배향 그리고 워크-오프 보상을 제공하도록 선택될 수 있는 각각의 펌프 및 SH 입사 빔의 입사각에 의존한다.
파동 벡터 이중 굴절 효과는 SHG 공정 그리고 더 구체적으로 공진 공동 방법에서의 SHG와 관련하여 제US 5,136,597호('US 597)에 개시되어 있다. 반세기 전에 양호한 것으로 알려진 것을 반복하면, 이러한 참조문헌은 워크-오프 각도가 KTP 결정 내에서 보상되어 최적의 변환 효율을 제공하도록 펌프 빔의 입사각을 설정하는 것을 개시한다. 이러한 참조문헌은 많은 추가적인 고려사항이 고려되어야 하는, 일반적인 경우의 SFM을 특징짓는 더 복잡한 요건을 예측하고 있지 않다. 예를 들어, 전체적인 THG 시스템의 소형화, 그 다중-레벨 구조 그리고 모두가 THG 시스템에 적용가능한 다른 고려사항조차도 언급되어 있지 않다.
다른 고려사항 중에서, 빔 형상 및 비점수차 특성은 변환 효율만큼 더 고차의 고조파 생성 구조체에 중요하다. 이것은 대부분의 레이저 산업 분야가 원형 빔으로부터 이익을 얻기 때문이다. 이들 분야에서의 빔의 강도는 X-Y 축을 따라 최대한 서로 근접하여야 한다. 당연히, 원형 단면은 이러한 목적에 이상적이다.
미국 특허 제7,292,387호(US '387)는 THG 공정에서의 타원율 문제를 다루고, 파동 벡터 이중 굴절에 기초하는 구조체를 교시한다. 이러한 참조문헌은 제2 결정의 광학 축에 대한 펌프 및 SH 빔의 입사각을 조정함으로써 워크-오프 각도를 보상하는 것을 개시한다. 개시된 THG 구조체는 2개의 LBO 결정, 구체적으로 SHG 공정을 위한 비-임계 위상-정합 LBO 결정(95) 및 TH를 출력하는 타입 Ⅱ 임계 위상-정합 LBO 결정(100)을 포함한다.
US '387에 개시되고 도 3에 도시된 구조체는 전체적인 구조적 복잡성을 증가시키는 많은 광학 요소를 포함한다. 도시된 광학 요소는 결정(95, 100)이 서로 평행하지 않고, 사실상, 그 사이에 둔각을 한정하는 각각의 평면을 갖도록 위치된다. 이러한 구조체의 가장 큰 단점은 정교한 그에 따라 어려운 정렬의 필요성이다. 그러한 구조는 구조의 복잡성 및 비용에 기여하는 특정한 외형의 지지면 및 추가적인 공간을 요구한다.
THG 구조체에서의 빔 왜곡의 문제를 재논의하면, 그것은 타원형 SH 및 나머지 펌프 빔이 THG 결정(100) 내로 커플링되면 더욱 악화될 수 있다. 전형적으로, 렌즈(92)가 빔을 THG 결정(100)에 커플링하는 데 사용된다. 3개의 빔, 즉 펌프, SH 및 TH 출력 빔이 THG 결정 내에서 전파된다. 위상-정합 조건이 THG 결정 내에서 충족되도록, 구체적으로, 바꿔 말하면, 주파수 변환 공정이 효율적이도록, THG 결정 내의 3개의 빔 중 1개 또는 2개는 이상 빔이어야 한다. 도시된 바와 같이, 제2 THG 결정은 o-e-o 구성이고, 즉 펌프 및 TH 빔은 정상 편광을 갖고, 반면에 SH 빔은 이상 편광을 갖는다. 결국, SH 빔은 펌프 및 TH 빔에 대해 제2 워크-오프 각도(ρ')로 전파되고, 이러한 워크-오프는 SH 빔의 타원율과 함께, 일반적으로 출력 TH 빔을 비원형으로 만든다.
따라서, 높은 주파수 변환 효율로 동작하는 THG 레이저 시스템에 대한 필요성이 존재한다.
출력 UV 빔의 고유 비점수차 및 타원율을 최소화하도록 구성되는 THG 레이저 시스템에 대한 또 다른 필요성이 존재한다.
온전히 저비용이고, 단순하게 구성되고, 강력한 THG 레이저 시스템에 대한 또 다른 필요성이 존재한다.
모두가 실질적으로 공면관계인 공지된 시스템에서보다 적은 구성요소로 구성되는 비용 효과적인 THG 레이저 시스템에 대한 또 다른 필요성이 존재한다.
본 개시내용에 따라 구성되는 비선형 광학 시스템은 위에서 언급된 필요성을 충족시킨다. 본 발명의 레이저 시스템은 1 μ 파장 범위 내에서 약 300 ㎑의 주파수로 적외선(IR) 광의 펄스를 출력하는 이테르븀(Yb) 펌프 광원의 비교적 낮은 평균 및 피크 파워에 성공적으로 사용될 수 있다. 본 개시내용의 전후상황 내에서, 저출력 펌프 Yb 광원은 50-60 마이크로줄(μJ) 범위 내의 펄스 에너지를 갖는 1-2 ns 펄스로 최대 30 W의 평균 출력을 출력하는 광원이다. TH의 생성은 IR 출력의 절반과 대략 동일한 UV 광의 평균 및 피크 파워에서 50-55% 범위 내에서 변하는 변환 효율에 의해 특징지어진다. Yb 펌프 광원의 높은 평균 출력은 50-60 W 범위 내에 있는 것으로 간주되고, 반면에 펄스 에너지는 최대 180 μJ에 도달할 수 있다. 이러한 분류의 레이저에서의 TH의 생성 중의 변환 효율은 65-70% 범위 내에 있다. 본 출원인의 지식의 한계 내에서, 위에서-개시된 효율 범위 중 어느 것도 가우시안(Gaussian) 또는 실질적으로 가우시안 빔을 출력하는 개시된 레이저 광원에 도달되지 못했다.
제1 양태에 따르면, 개시된 시스템은 기본 주파수로 펌프 빔에 의한 조사에 대응하여 SH 빔을 제공하는 적어도 하나의 제1, 상류 비선형 결정으로 구성된다. SH 빔 및 나머지 펌프 빔은 제3 고조파(TH)로 제3 빔을 생성하는 제2, 하류 비선형 결정 상에 입사된다. 제1 및 제2 비선형 결정은 각각의 길이방향 결정 축에 대해 경사 각도로 연장하는 각각의 출력면 및 입력면을 갖는다.
출력면 및 입력면은 SH 빔이 완벽하게 직사각형의 제2 결정 상에 입사되는 SH 빔에 비교될 때에 제2 결정의 입력면 상에 입사되는 SH 빔이 굴절하고 그에 따라 그것이 파동 벡터 이중 굴절 현상에 기초하여 제어가능한 각도로 이러한 결정 내에서 경사지는(방향을 바꾸는) 그러한 웨지각으로 제조된다. UV 광의 변환 효율과 타원율 사이의 요구된 절충에 따라, SH 빔은 결정의 전체 길이에 걸쳐 각각의 기본 및 TH 주파수로 광선들을 충분하게 중첩시킬 수 있다. 따라서, 각각의 제1 및 제2 결정의 경사형 출력면 및 입력면은 UV 빔의 타원율을 최소화하고 변환 효율을 최대화하도록 제2 결정 내에서의 각각의 펌프 및 SH 빔의 포인팅 벡터들 사이의 워크-오프 각도의 요구된 보상을 제공한다.
본 개시내용의 제2 양태에 따르면, 제1 양태에 개시된 제1 및 제2 결정은 둘 모두가 LBO 결정이다. 제1 결정은 SHG 공정을 위한 타입 Ⅰ 비-임계 위상-정합 LBO이고, 반면에 제2 결정은 TH로 UV 광을 생성하는 타입 Ⅱ의 임계 위상-정합 LBO로서 구성된다.
그러나, LBO 결정은 본 개시내용의 목적을 충족시킬 수 있는 유일한 타입의 비선형 결정이 아니다. 레이저 물리학의 통상의 기술자에 의해 잘 이해되는 최소의 변형에서, 바륨 보레이트(BBO), 포타슘 2수소 포스페이트(KDP, KD*P-포타슘 2-중수소 포스페이트) 그리고 더 고차의 고조파를 생성할 수 있는 다른 것과 같은 그러한 결정이 본 개시내용의 범주 내에서 용이하게 포함될 수 있고, 위의 그리고 후속의 양태의 모두 또는 그 중 임의의 양태와 연계하여 사용될 수 있다.
제1 또는 제2 양태 또는 제1 및 제2 양태의 둘 모두에 비추어 고려되는 개시된 시스템인, 제3 양태에서, 제1 또는 제2 양태 또는 제1 및 제2 양태의 둘 모두의 각각의 제1 및 제2 결정의 출력면 및 입력면은 서로에 대해 평행하거나 약간 경사져 있다. 표면들 사이의 각도는 바람직하게는 0-20˚를 초과하지 않는다. 각도는 후속적으로 논의되는 양태의 각각에 사용될 수 있는 점에 유의한다.
제4 양태에서, 위에서 논의된 3개의 양태 중 임의의 양태 또는 이들 양태의 임의의 가능한 조합의 개시된 시스템은 각각이 결정의 길이방향 축을 포함하는 각각의 평면 내에 위치되는 제1 및 제2 결정으로 구성된다. 평면은 0 내지 1 ㎜에서 변하는 거리로 광 경로에 직각인 방향으로 상호 오프셋될 수 있다. 따라서, 모든 실제적 목적을 위해, 제1 및 제2 결정은 실질적으로 공면관계이다. 결정의 공면관계는 시스템의 구조를 단순화하고 그에 따라 비용 효율적이고 소형이다. 이러한 양태에 논의된 결정은 물론 임의의 후속적으로 개시되는 양태의 개시된 구조에 사용될 수 있다는 것이 주목되어야 한다.
위의 4개의 양태 중 임의의 양태 그리고 이들 양태의 임의의 조합의 개시된 시스템인, 제5 양태에 따르면, 제1 및 제2 결정은 0 내지 20 ㎜에서 변하는 거리로 광 경로를 따라 이격된다. 20 ㎜ 거리일 때에도 본 출원인에게 공지된 종래 기술의 디바이스의 거리보다 비교불가능할 정도로 작다. 0 ㎜ 거리, 즉 결정들 사이에 자유 공간이 없을 때는 서로 평행한 출력면 및 입력면을 갖는 결정의 구성에서 가능하다. 범위 0-20 ㎜는 개시된 시스템의 비점수차를 상당히 개선하고, 비점수차는 0.95 D 정도로 낮을 수 있다. 여기서 논의된 거리는 본 개시내용의 임의의 후속적인 양태에 비추어 항상 고려되어야 한다.
제6 양태에 따르면, 이전의 5개의 양태 중 임의의 양태 또는 이들의 임의의 조합의 개시된 시스템은 이격되면, 장애물을 갖지 않는 공간을 사이에 갖는 제1 및 제2 결정으로 구성된다. 공지된 종래 기술에서 결정들 사이에 위치되는 통상적인 포커싱 렌즈의 부재는 광학 수차를 최소화하고, 비용을 감소시키고, 개시된 시스템의 비평활성을 개선한다. 분명하게, 이러한 특징은 위에서-논의된 양태와 조합가능하지만, 또한 모든 후속적인 양태에 유리하다.
제7 양태에 따르면, 위의 앞선 6개의 양태 중 임의의 양태 또는 이들 양태의 임의의 조합으로 개시된 시스템은 제1 결정 내에서 펌프 빔의 웨이스트(waist)가 형성되도록 결정을 배치하는 것에 의해 추가로 특징지어지고, 이러한 빔의 롤리 길이(Raleigh length)는 결정의 둘 모두 내에서 빔이 계속하여 확대되도록 되어 있다. 이러한 구조는 전형적으로 결정들 사이에 배치되는 통상적인 포커싱 렌즈의 필요성을 제거한다.
본 개시내용의 제8 양태는 UV 광의 타원율과 관련된다. 이전에 논의된 양태 중 임의의 양태 또는 이들 양태의 임의의 조합의 시스템은 출력 UV 빔의 타원율을 최소화하는 보정 광학 구조체로 추가로 구성된다. 잠시 제1 양태로 돌아가면, 통상의 기술자는 개시된 시스템의 최대로 가능한 변환 효율이 요구되는 상황을 상정할 수 있다. 그러나, 개시된 시스템에서의 최고 변환 효율은 타원율이 양호하고 그에 따라 75 내지 90%에서 변할 때에도 타원율의 희생으로 이루어진다. 주어진 최대 효율에서, 타원율이 훨씬 더 양호할 것이 요구되면, 본 발명의 시스템은 제2 결정으로부터 하류에 위치되고 타원율을 실제로 제거하도록 구성되는 보정 광학 구조체를 포함하고, 타원율은 99%까지 감소될 수 있다.
하나의 바람직한 구성에서, 보정 광학 구조체는 제2 결정의 출력면을 향하는 오목면을 갖는 반사 요소를 포함한다. 이러한 오목면은 출력 빔을 반사하고, 출력 빔은 그것이 광 경로를 따라 전파되는 동안에 확대된다. 확대된 출력 빔은 시준 렌즈 상에 입사된다. 결과적으로, UV 빔의 타원율은 99%까지 향상될 수 있다. 또 다른 바람직한 구성에서, 반사 요소 대신에, 발산 렌즈가 이용될 수 있고, 나머지 광학 구조체는 다른 구성에서와 동일하게 유지된다. 보정 광학 구조체는 최대로 가능한 변환 효율이 필요한지와 무관하게 사용될 수 있다는 것을 주목하여야 한다.
본 개시내용은 또한 개시된 레이저 시스템에서 제1 그리고 제2 내지 제8 양태 또는 제2 내지 제8 양태의 임의의 조합을 이용하는 것과 관련된다. 레이저 시스템은 제1 내지 제8 양태의 비선형 시스템에 추가하여, 마스터 발진기 출력 광섬유 증폭기 구조체로서 구성되는 펌프 광원을 추가로 포함한다.
하나의 바람직한 구성에서, 마스터 발진기는 SM 다이오드 레이저이고, 반면에 Yb 광섬유 증폭기는 SM Yb 도핑 광섬유를 포함한다. 또 다른 바람직한 구성에서, 펌프 광원은 다중모드(multimode)(MM) 구조이다.
추가적인 양태에서, 제1 내지 제8 양태의 비선형 광학 시스템 및/또는 개시된 레이저 시스템 중 하나 또는 그 둘 모두는 광학 시스템에서 제1 결정으로부터 상류에 그리고 본 발명의 레이저 시스템에서 펌프 광원과 제1 결정 사이 내에 위치되는 포커싱 렌즈로 구성된다. 포커싱 렌즈와 제1 결정 사이의 거리는 제1 결정 내에서 펌프 빔의 웨이스트가 형성되도록 조정되고, 이러한 빔의 롤리 길이는 2개의 결정 내에서 계속하여 확대되도록 되어 있다. 이러한 구조는 전형적으로 결정들 사이에 배치되는 통상적인 포커싱 렌즈에 대한 필요성을 제거한다.
바람직하게는, 포커싱 렌즈는 결정들 사이의 거리가 고정되면, 제1 결정에 대해 변위가능하고 그에 따라 주어진 웨이스트를 갖는 펌프 빔이 결정의 주어진 결정 길이에서 제2 결정에 대한 커플링으로부터 이탈되지 않는 최적의 거리를 결정한다. 대안적인 바람직한 조합에서, 결정이 포커싱 렌즈에 대해 변위가능할 수 있거나 이들 요소의 둘 모두가 서로에 대해 변위가능할 수 있다.
위에서-개시된 양태가 하기의 도면에 도시된다.
도 1은 공지된 종래 기술의 워크-오프 현상을 도시한다.
도 2는 비선형 결정 내에서의 워크 오프 현상의 개략도이다.
도 3은 워크-오프 효과를 최소화하도록 구성되는 공지된 종래 기술의 광학 시스템의 개략도이다.
도 4는 제3 고조파 비선형 결정 내에서의 불리한 워크-오프 현상을 최소화하도록 설계되는 본 발명의 주파수 변환 구조체가 제공되는 레이저 시스템의 개략도이다.
도 5는 도 4의 시스템의 출력 빔의 비점수차 및 타원율을 개선하도록 구성되는 본 발명의 빔-형상 보정 광학 시스템의 개략도이다.
도 6 및 7은 도 5의 보정 시스템을 갖지 않는 그리고 그것을 갖는 상태로 조립되는 도 4의 본 발명의 시스템에 의해, 각각, 방출되는 출력 빔의 컴퓨터 생성 이미지이다.
도 8 및 9는 도 4의 본 발명의 시스템의 사용으로 획득되는 실험 데이터를 지시하는 컴퓨터 생성 그래프이다.
개시된 시스템(25)은 공지된 종래 기술보다 적은 구성요소를 포함하는 단순한, 용이하게 제조가능한 LBO-기반 구조를 갖는다. 레이저 시스템(25)은 단순한 방식으로 서로 정렬되고 단일 모드(SM) 펌프 빔의 기본 파장(λf)을 실질적으로 원형의 TH 빔의 1/3 λf 파장으로 최대 70%의 변환 효율로 변환하도록 동작하는 2개의 주파수 변환 단계로 구성된다.
도 4를 참조하면, 본 발명의 레이저 시스템(25)은 SM 또는 실질적으로 SM 광섬유와 같은, 펌프(20) 또는 광 경로를 따라 300 ㎑의 펄스형 반복률로, 1064 ㎚와 같은, 기본 파장으로 SM 펌프 빔을 출력하는 임의의 다른 적합한 레이저로 구성된다. 펌프 빔(20)은 광 경로를 따라 연장하는 길이방향 축(26)을 갖는 제1 세장형 LBO 결정(24) 상에 입사된다. 바람직하게는, 제1 결정(24)은 SHG 공정을 위한 타입 Ⅰ 비-임계 위상-정합 LBO이다. 펌프 빔(20)이 제1 결정(24)을 통해 축(26)에 평행하게 전파되는 동안에, 그 에너지는 532 ㎚ 파장을 갖는 신호 빔(28)으로서 흔히 불리는 생성된 SH 빔으로 전달된다. SH 빔(28)은 결정(24)의 특성으로 인해 펌프 빔(22)으로부터 이탈되지 않고, 즉 빔(22, 28)은 동축관계 및 공선관계이다. 빔의 둘 모두, 구체적으로 나머지 펌프 빔(22) 및 생성된 SH 빔(28)은 출력면(30)을 통해, 장애물을 갖지 않는, 자유 공간 내로 출사되고, 그에 따라 공선관계 및 동축관계를 유지하지만, 서로 직교하는 각각의 편광 평면(o, e)을 갖는다.
제2 LBO 결정(32)은 상호작용 1064 및 532 ㎚ 파장의 SFM을 위해 양의 주축(A)에 각도(θ)로 절단되어 제3 355 ㎚ 파장의 출력 TH 빔을 생성하는 타입 Ⅱ 임계 위상 정합(PM) LBO이다. 제1 결정(24)의 축(26)에 평행한 길이방향 축(34)을 갖는 결정(32)은 또한 세장형이다. 제1 및 제2 결정(24, 32)은 0 내지 20 ㎜에서 변하는 거리로 광 경로를 따라 이격된다. 또한, 길이방향 축의 둘 모두에 직각인 평면 내에서, 결정들은 축(26, 34)을 공선관계로 만드는, 0 내지 1 ㎜의 거리로 이격된다.
제2 결정(32) 내에서 빔(22, 28) 사이의 더 큰 상호작용 길이를 발생시키는 이들 빔의 SFM 공정에서의 주파수 변환 효율의 최적화는 파동 벡터 이중 굴절 효과에 기초한다. 파동 벡터 이중 굴절 효과의 실현은 제2 결정(32)의 입력면(38)이 경사져 있는, 웨지각(α) 그리고 정상 펌프 및 이상 빔(22, 28)과 입력면(38)에 대한 법선(N2) 사이의 입사각(β)의 최적화를 포함한다.
각도(α)를 결정하는 방법은 레이저의 기술분야의 통상의 기술자에게 공지되어 있고, 본 명세서에 참조로 충분하게 포함되는 제US 7292387호에 잘 설명되어 있다. 전형적으로, 이러한 각도 선택에 따른 변환 효율은 변환 효율, 온도와 같은, 위상-정합 조건, SH 신호 빔(28)의 편광(Sλ2) 및 파동 벡터(kλ2) 그리고 3개의 상호작용 빔(22, 28) 및 SM TH 출력 빔 정상 편광 빔(40) 사이의 공간적인 중첩 요건 사이의 절충의 결과이다. 개시된 시스템에서, 요구된 웨지각(α) 그리고 절단각(θ)의 배향은 펌프 빔(22)이 굴절 시에 결정(32)의 길이방향 축(34)과 공선관계이도록 선택된다. 선택된 웨지각(α) 및 절단각(θ)에서, 점선으로 도시되고 완벽한 직사각형 단면을 갖는 결정(32) 내에서의 SH 신호 빔(28)의 굴절에 상당하는, SH 신호 빔(28)의 포인팅 벡터(Sλ2) 및 파동 벡터(kλ2)는 벡터(S'λ2, k'λ2)의 각각의 위치로 각도 면에서 변위된다. 도시된 바와 같이, 벡터(S'λ2, k'λ2)는 웨지각(α) 그리고 절단각(θ)의 적절한 선택 때문에 펌프 빔(22)의 벡터(kλ1, Sλ1)의 양측에 있다. 결과적으로, 출력 TH 빔(40)의 파동 벡터(kλ3)의 방향은 벡터 위상-정합 조건 k3=k1+k2에 의해 결정된다. 출력 TH 빔(40)은 결정(32)으로부터 입력 펌프 빔(22)의 평면에 평행한 평면 내의 그 출력면을 통해 디커플링된다.
아래에 개시되는, 파라미터에 의해 특징지어지는 시스템(25)에서의 워크-오프 각도(p)는 충분하게 보상되지 않지만, 출력 TH 빔(40)의 주파수 변환 효율과 타원율 사이에서, 정확한 균형이 유지된다. 각도(α)의 범위는 바람직하게는 20˚±10˚ 범위 내에 있다.
개시된 시스템(25)의 소형화 및 단순화를 설명하는 본 발명의 추가적인 현저한 구조적 특징은 출력면(36)에 대한 법선(N1)에 대해 웨지각(δ)으로 경사져 있는 제1 결정(24)의 출력면(36)을 포함한다. 여기에서의 각도(δ)의 선택은 펌프 빔(22, 28)이 각도(β)로 제2 결정(32)의 입력면(38) 상에 입사되고 펌프 빔(22)이 길이방향 축(34)과 공선관계로 결정(32) 내에서 전파되도록 수행된다. 제1 결정(24)의 출력면(36)의 웨지각(δ)은 하기의 방법에 따라 결정된다.
우선, 최대 α 각도가 결정의 주어진 길이에 대한 위상 정합을 보존하도록 각각의 펌프 및 SH 신호 빔(22, 28)의 파동 벡터들 사이의 최대 각도에 기초하여 결정되어야 한다. 둘째, 절단각의 배향은 신호 빔(28)의 파동 벡터 및 포인팅 벡터가 펌프 빔(22)의 파동 벡터 주위에 팬(fan)을 형성하게 하도록 선택되어야 한다. 웨지각(α)을 알면 그리고 스넬의 법칙에 기초하여, 제2 결정(32)의 입력면(38) 상으로의 빔(22, 28)의 둘 모두의 (법선(N2)에 대한) 입사각(β)은,
Figure 112018105429981-pct00001
(1)
로서 결정된다. 구체적인 예에서, 1064 ㎚를 갖는 펌프 빔에 대해 100℃에서 위상-정합되는 17.5˚의 각도(α) 및 1.564의 굴절률(n2)의 제2 결정(32)에서, 입사각(β)은 28.05˚이다. 다음에, 입사각과 웨지각/굴절각(α) 사이의 각도(k)는,
Figure 112018105429981-pct00002
(2)
로서 결정될 것이다. 주어진 예에서, k=10.55˚이다. 이제, 제1 결정(24)으로부터의 출력 빔(22, 28)과 출력면(36)에 대한 법선(N1) 사이의 각도(γ)는,
Figure 112018105429981-pct00003
(3)
로서 결정될 수 있고, 여기서 δ는 출력면(36)의 웨지각이다. 스넬의 법칙에 따르면,
Figure 112018105429981-pct00004
(4)
로 표현된다. 식 3, 4에 따르면,
Figure 112018105429981-pct00005
(5)
로서 재표현될 수 있다. 주어진 예에서, 1064 ㎚를 갖는 펌프 빔에 대해 150℃에서 위상-정합되는 제1 결정(24)의 굴절률은 1.605이다. 이것을 대입하면,
Figure 112018105429981-pct00006
(6)
로 표현된다. 식 6으로부터, 웨지각(δ)은 16.4˚이다.
제1 및 제2 결정은 각각이 본 발명의 시스템(25)의 각각의 개별적인 구조적 구성요소와 그리고 또한 이들 구성요소의 임의의 적절한 조합과 완벽하게 제대로 작용하는 2개의 변형예에 따라 구성될 수 있다. 하나의 변형예에서, 각각의 결정(24, 32)의 출력면 및 입력면(36, 38)은 상이한 각도(δ, α)로 경사져 있다. 웨지각의 둘 모두에 대해, 20˚±10˚ 범위 내에서, 웨지각들은 선택된 각도(α) 그리고 각각의 결정이 위상-정합되는 온도에 기초하여, 서로 상이하지만 최대한 작아야 한다. 2˚를 초과하지 않는 웨지각들 사이의 각도 차이(k)는 수용가능하다. 대안으로서, 시스템(25)은 서로 평행한 입력면 및 출력면(36, 38)으로 설계될 수 있다. 각각, 출력면(36)과 입력면(38) 사이의 공간적인 관계에 따라, 제1 및 제2 결정(24, 32)은 물리적으로 접촉하게 되고, 즉 그 사이에 0의 축방향 거리를 가질 수 있다. 일반적으로, 결정들 사이의 축방향 거리는 20 ㎜를 초과하지 않는다.
개시된 구조체(25)는 또한 둘 모두가 길이방향 축(26, 34)에 직각인 공통 평면에 위치되는 결정(24, 32)으로 구성될 수 있다. 이러한 구성에서, 축들은 공선관계이다. 대안으로서, 제1 및 제2 결정(24, 32)은 축에 직각인 방향으로 1 ㎜ 이하로 이격되는 평행한 평면 내에서 각각 연장한다.
위에서 개시된 각각의 치수적인 대안의 각각은 개시된 구조체(25)의 모든 다른 개별적인 특징부 또는 이들 구성요소의 임의의 가능한 조합과 조합하여 사용될 수 있다.
공지된 종래 기술에 개시된 시스템과 대조적으로, 결정들이 축방향으로 이격되면, 정상 펌프 빔(22) 및 이상 SH 신호 빔(28)은 장애물을 갖지 않는 자유 공간을 통해 결정(24, 32) 사이에서 전파된다. 전형적으로 결정들 사이에 위치되는 포커싱 렌즈에 대한 필요성이 없다.
그러나, 본 발명의 시스템(25)은 펌프 광원(20)과 제1 결정(24) 사이에 위치되는 포커싱 렌즈(42)를 포함한다. 렌즈(42)는 SM 펌프 빔(22)이 제1 결정 내에서 형성되는 웨이스트를 갖도록 구성된다. 선택된 결정의 길이, 웨지각 그리고 결정들 사이의 간격에서, 펌프 빔(22)은 물론 제2 결정의 출력면을 제외하면, 결정의 물리적인 경계를 넘는 확대 없이 제2 결정(32)을 통해 연장한다. 필요하면, 렌즈(42)는 축(26)에 평행한 평면 내에서 자동으로 또는 수동으로 변위되어 TH 출력 빔으로의 최적의 주파수 변환 효율을 제공할 수 있다.
도 8 및 9를 참조하면, 2-2.5 ㎝ 범위 내에서 변하는 각각의 결정(24, 32)의 길이, 17.5˚의 웨지각(α) 및 16.4의 δ 각도 그리고 1064 ㎚ 파장 및 15 W 초과의 평균 출력으로 단일 모드(SM) IR 빔을 출력하는, IR 펌프 광원(20)에 대해, 본 발명의 시스템은 최대 70%의, 355 ㎚ 파장 및 1.5 ns의 펄스 지속시간을 갖는, TH 출력 빔(40)으로의 주파수 변환 효율로 동작한다(도 8). 1064 기본 파장 및 15 W 미만의 평균 출력으로 IR 빔을 출력하는 펌프 광원(20)을 갖는 본 발명의 시스템에서의 주파수 변환 효율은 도 9에 도시된 바와 같이, 50%에 도달한다. 변환 효율은 훨씬 더 높을 수 있지만, TH 출력 빔(40)의 비점수차 및 타원율과 같은 다른 고려사항이 아래에서 개시되는 바와 같이, 상당한 영향을 미친다.
구체적으로, 최대 1.2의 M2를 갖는 가우시안 또는 실질적으로 가우시안 빔, 및 개시된 웨지각(α, δ)에 대한 여전히 매우 높은 개시된 주파수 변환 효율에서, TH 빔의 비점수차는 크지 않고, 타원율은 약 0.8일 수 있다. 그러나, 추가적인 광학 보정이 없어도, 비점수차 및 타원율 범위의 둘 모두는 가우시안 강도 프로파일을 갖는 포커싱된 SM 빔에서 여전히 매우 높다. 그러나, 이들 범위는 하기의 빔 형상 광학 보정 구조체로 개선될 수 있다.
도 5를 참조하면, 개시된 보정 광학 구조체(50)는 제2 결정(32)으로부터 광 경로를 따라 하류에 반사 요소(46)를 포함한다. 요소(46)는 TH 출력 빔(40)을 반사하는 오목면으로 구성된다. 구체적인 설정에 따라, 반사된 확대 TH 빔(40)은 미러(42) 상에 입사될 수 있다. 빔(40)은 그것이 시준 렌즈(48) 상에 충돌될 때까지 광 경로를 따라 계속하여 확대된다.
보정 구조체(50)의 효과는 도 6 및 7에 도시된다. 도 6은 보정 시스템(50)을 갖지 않는 본 발명의 시스템(25)의 TH 출력 빔의 약 0.78의 타원율을 도시한다. 도 7은 0.99%에 도달하는 빔의 타원율 및 0.95D일 수 있는 비점수차의 둘 모두의 개선을 도시한다.
본 발명이 바람직한 실시예를 참조하여 설명되었지만, 첨부된 청구범위에 의해 한정되는 것과 같은 본 발명의 범주 및 사상으로부터 벗어나지 않으면서, 다양한 변화 및 변형이 본 기술분야의 통상의 기술자에 의해 그 내에서 수행될 수 있다.

Claims (10)

  1. 비선형 광학 시스템이며,
    길이방향 축을 갖고 제2 고조파(SH) 빔을 생성하는 기본 주파수로 펄스형 펌프 빔에 의해 진행되는 세장형 제2 고조파 생성(SHG) 결정으로서, SHG 결정은 직각과 상이한 제1 각도(δ)로 SHG 결정의 길이방향 축에 대해 경사져 있는 출력면을 갖는, 세장형 제2 고조파 생성(SHG) 결정; 및
    SHG 결정의 길이방향 축에 평행한, 길이방향 축 그리고 나머지 펌프 빔 및 SH 빔에 의해 충돌되고 이들 빔의 둘 모두가 그 사이의 워크-오프 각도로 THG 결정을 통해 전파되어 제3 고조파(TH) 빔을 생성하는, 입력면을 갖는 세장형 제3 고조파 생성(THG) 결정으로서, THG 결정의 입력면은 직각과 상이한 제2 각도(α)로 THG 결정의 길이방향 축에 경사져 있는, 세장형 제3 고조파 생성(THG) 결정
    을 포함하고,
    제1 및 제2 각도는 위상 정합 조건이 보존되면, 각각의 펌프 및 SH 빔의 포인팅 벡터들 사이의 워크-오프 각도를 최소화하여 TH 빔의 타원율을 개선하도록 선택되는,
    비선형 광학 시스템.
  2. 제1항에 있어서, SHG 결정은 타입 Ⅰ 비임계 위상-정합 LBO이고, 반면에 THG 결정은 타입 Ⅱ 임계 위상-정합 LBO로서 구성되는, 비선형 광학 시스템.
  3. 제1항 또는 제2항에 있어서, 각각의 SHG 및 THG 결정의 출력면 및 입력면은 서로 평행하거나 평행하지 않은 각각의 평면 내에서 연장하고, 평행하지 않은 평면들 사이의 각도는 최소화되는, 비선형 광학 시스템.
  4. 제1항 또는 제2항에 있어서, SHG 및 THG 결정은 공면관계이거나 1 ㎜를 초과하지 않는 거리로 결정의 길이방향 치수에 직각인 방향으로 오프셋되는, 비선형 광학 시스템.
  5. 제1항 또는 제2항에 있어서, SHG 및 THG 결정은 자유 공간에 걸쳐 서로 이격되어 광 통신되고, 자유 공간은 SHG 및 THG 결정들 사이에 개재되는 광학 구성요소를 갖지 않는, 비선형 광학 시스템.
  6. 제1항 또는 제2항에 있어서, SHG 및 THG 결정은 0 내지 20 ㎜에서 변하는 거리로 광 경로를 따라 이격되는, 비선형 광학 시스템.
  7. 제1항 또는 제2항에 있어서, SHG 결정으로부터 상류에 있는 포커싱 렌즈를 추가로 포함하고, 포커싱 렌즈 및 SHG 결정은 서로에 대해 제어가능하게 변위되어 SHG 결정 내에서 형성되는 웨이스트를 갖는 펌프 빔을 제공하고, 펌프 빔이 THG 결정을 통해 전파되는 동안에 THG 결정 내에 구속되도록 펌프 빔이 광 경로를 따라 확대되는, 비선형 광학 시스템.
  8. 제1항 또는 제2항에 있어서, THG 결정으로부터 하류에 있는 보정 광학 구조체를 추가로 포함하고, 보정 광학 구조체는 THG 빔을 반사하는 오목면을 갖는 반사 요소 그리고 반사된 THG 빔을 수용하는 시준기를 포함하고 그에 따라 0.95 D의 비점수차 및 0.99의 타원율을 갖는 THG 빔을 제공하고, THG 결정 내에서의, 단일 진행 모드(SM) 빔인, 펌프 빔의 기본 주파수의 제3 고조파로의 최대 변환 효율은 최대 16 W의 SM 펌프 빔에서 50%에 도달하는, 비선형 광학 시스템.
  9. 기본 주파수로 펄스형 펌프 광 빔을 출력하도록 구성되는 단일 모드(SM) 펄스형 레이저 광원; 및
    제1항 또는 제2항의 비선형 광학 시스템
    을 포함하는, 주파수 변환 레이저 시스템.
  10. 제9항에 있어서, SM 펄스형 광원은 SM 다이오드 레이저 그리고 마스터 발진기 출력 광섬유 증폭기 구조체로서 조립되어 300 ㎑ 펄스형 반복률로 동작하는 광섬유 증폭기를 갖는, 주파수 변환 레이저 시스템.
KR1020187030863A 2016-03-30 2017-03-29 제3 고조파 생성을 위한 고효율 레이저 시스템 KR102344775B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662315290P 2016-03-30 2016-03-30
US62/315,290 2016-03-30
PCT/US2017/024678 WO2017172868A1 (en) 2016-03-30 2017-03-29 High efficiency laser system for third harmonic generation

Publications (2)

Publication Number Publication Date
KR20180128946A KR20180128946A (ko) 2018-12-04
KR102344775B1 true KR102344775B1 (ko) 2021-12-28

Family

ID=59966421

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187030863A KR102344775B1 (ko) 2016-03-30 2017-03-29 제3 고조파 생성을 위한 고효율 레이저 시스템

Country Status (6)

Country Link
US (1) US11662644B2 (ko)
EP (1) EP3417515B1 (ko)
JP (1) JP6991995B2 (ko)
KR (1) KR102344775B1 (ko)
CN (1) CN109196737B (ko)
WO (1) WO2017172868A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149714A1 (ko) 2019-01-18 2020-07-23 엘지전자 주식회사 Object 상태 정렬을 이용한 cpm 메시지 분할 방법
CN113131313A (zh) * 2020-01-16 2021-07-16 北京科益虹源光电技术有限公司 一种五倍频激光的和频方法
CN113131312A (zh) * 2020-01-16 2021-07-16 北京科益虹源光电技术有限公司 一种深紫外激光器的和频发生器
US11101614B1 (en) 2020-02-26 2021-08-24 Coherent Lasersystems Gmbh & Co. Kg Second-harmonic generation crystal
CN111399308B (zh) * 2020-03-23 2021-03-30 哈尔滨理工大学 用于任意矢量光场频率变换的偏振无关倍频方法及装置
WO2022036314A1 (en) * 2020-08-14 2022-02-17 The Board Of Trustees Of The Leland Stanford Junior University Self-isolated nanoscale laser
CN116724470A (zh) * 2021-08-24 2023-09-08 维林光电有限公司 使用分层非线性光学器件的腔内谐波产生
US20230335969A1 (en) * 2021-08-24 2023-10-19 Pavilion Integration Corporation Intracavity harmonic generation with layered nonlinear optic

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510402A (en) * 1982-06-10 1985-04-09 The United States Of America As Represented By The United States Department Of Energy Optical harmonic generator
US5047668A (en) 1990-06-26 1991-09-10 Cornell Research Foundation, Inc. Optical walkoff compensation in critically phase-matched three-wave frequency conversion systems
US5136597A (en) 1991-03-15 1992-08-04 Coherent, Inc. Poynting vector walk-off compensation in type ii phasematching
US5144630A (en) 1991-07-29 1992-09-01 Jtt International, Inc. Multiwavelength solid state laser using frequency conversion techniques
US5384803A (en) * 1993-02-22 1995-01-24 Lai; Shui T. Laser wave mixing and harmonic generation of laser beams
US6697391B2 (en) 2002-03-28 2004-02-24 Lightwave Electronics Intracavity resonantly enhanced fourth-harmonic generation using uncoated brewster surfaces
US7292387B2 (en) 2005-01-12 2007-11-06 Spectra-Physics, Inc. Methods and systems to enhance multiple wave mixing process
US7593440B2 (en) * 2005-03-29 2009-09-22 Coherent, Inc. MOPA laser apparatus with two master oscillators for generating ultraviolet radiation
JP4978468B2 (ja) * 2005-04-14 2012-07-18 パナソニック株式会社 短波長光源
JP5047887B2 (ja) 2007-06-21 2012-10-10 パナソニック株式会社 短波長光源
JP5251040B2 (ja) * 2007-08-23 2013-07-31 ソニー株式会社 レーザ光源装置及びこれを用いた画像生成装置
FR2938935B1 (fr) 2008-11-21 2011-05-06 Eolite Systems Dispositif d'allongement de la duree de vie d'un systeme optique non lineaire soumis au rayonnement d'un faisceau laser intense et source optique non lineaire comprenant ce dispositif
JP5159815B2 (ja) * 2010-03-19 2013-03-13 三菱電機株式会社 波長変換レーザ装置
DE102010003591A1 (de) 2010-04-01 2011-10-06 Trumpf Laser Marking Systems Ag Anordnung und Verfahren zur Frequenzkonversion von Laserstrahlung
US20110243163A1 (en) * 2010-04-02 2011-10-06 Electro Scientific Industries, Inc. Wedge-faceted nonlinear crystal for harmonic generation
JP2014512019A (ja) 2011-03-14 2014-05-19 イムラ アメリカ インコーポレイテッド 光ファイバを用いた中赤外コヒーレント・コンティニュームの広帯域発生
CN102944963B (zh) * 2012-11-08 2015-05-13 北京国科世纪激光技术有限公司 一种用于外腔倍频紫外激光器的非线性晶体组件
DE102013113026A1 (de) * 2012-12-18 2014-06-18 Rofin Sinar Laser Gmbh Einrichtung zur Frequenzumwandlung eines mit einer ersten Frequenz von einer Laserstrahlquelle erzeugten Laserstrahls
CN103050880A (zh) * 2012-12-28 2013-04-17 清华大学 一种激光走离效应补偿方法
CN105210245B (zh) * 2013-03-14 2019-04-12 Ipg光子公司 具有圆形输出光束的高效单通型谐波发生器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
일본공표특허공보 특표2005-521910호(2005.07.21.) 1부.*
일본공표특허공보 특표2012-509500호(2012.04.19.) 1부.*
일본공표특허공보 특표2014-512019호(2014.05.19.) 1부.*
일본공표특허공보 특표2015-530620호(2015.10.15.) 1부.*
한국공개특허공보 제10-2013-0014686호(2013.02.08.) 1부.*

Also Published As

Publication number Publication date
JP2019513242A (ja) 2019-05-23
CN109196737A (zh) 2019-01-11
CN109196737B (zh) 2020-07-10
US11662644B2 (en) 2023-05-30
EP3417515A4 (en) 2019-10-23
EP3417515A1 (en) 2018-12-26
WO2017172868A1 (en) 2017-10-05
KR20180128946A (ko) 2018-12-04
EP3417515B1 (en) 2023-11-29
JP6991995B2 (ja) 2022-01-13
US20200301243A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
KR102344775B1 (ko) 제3 고조파 생성을 위한 고효율 레이저 시스템
US6587487B2 (en) Harmonic laser
US10283926B2 (en) Laser system with highly efficient, single-pass, harmonic generator with round output beam
US8125703B2 (en) Wavelength converter and image display with wavelength converter
JP2004048049A (ja) ダイオードポンプ式の多軸モードキャビティ内倍周波数レーザ
US20110243163A1 (en) Wedge-faceted nonlinear crystal for harmonic generation
US6931037B2 (en) Diode pumped, multi axial mode intracavity doubled laser
US6287298B1 (en) Diode pumped, multi axial mode intracavity doubled laser
JP2009253068A (ja) レーザ発振器及びレーザ加工装置
US9543732B2 (en) Laser wavelength conversion apparatus
KR100863199B1 (ko) 고조파 빔 발생용 레이저 장치 및 방법
WO2020226912A1 (en) Single crystal optical parametric amplifier
CN114421262A (zh) 一种采用佩林布洛卡棱镜分光的紫外激光器装置及方法
EP2973897B1 (en) Highly efficient, single-pass, harmonic generator with round output beam
CN105006734A (zh) 一种基于体光栅构成半内腔式光学参量振荡器的2μm激光器
WO2011123822A2 (en) Apparatus and method for generating continuous wave ultraviolet light
JP6055925B2 (ja) レーザ光源によって第1周波数で生成されたレーザビームを周波数変換するための装置
JP6842725B2 (ja) レーザー装置およびレーザー発振方法
Eichhorn et al. 120-mJ mid-infrared ZnGeP2 FIRE OPO
JPH11121842A (ja) アイセーフレーザー光発生装置
JP2021132127A (ja) 半導体レーザ励起固体レーザ
CN116404514A (zh) 295nm紫外固体激光器
KR20120112391A (ko) 고전력 전자기 합 주파수 생성기 시스템
Bell et al. High-power continuous-wave UV generation
JP2011176315A (ja) レーザ装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant