JP2013178462A - 波長変換器、波長変換装置、固体レーザ装置およびレーザシステム - Google Patents

波長変換器、波長変換装置、固体レーザ装置およびレーザシステム Download PDF

Info

Publication number
JP2013178462A
JP2013178462A JP2012225191A JP2012225191A JP2013178462A JP 2013178462 A JP2013178462 A JP 2013178462A JP 2012225191 A JP2012225191 A JP 2012225191A JP 2012225191 A JP2012225191 A JP 2012225191A JP 2013178462 A JP2013178462 A JP 2013178462A
Authority
JP
Japan
Prior art keywords
wavelength converter
bonding surface
nonlinear optical
crystal
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012225191A
Other languages
English (en)
Inventor
Koji Kakizaki
弘司 柿崎
Takashi Onose
貴士 小野瀬
Hideyuki Hoshino
秀往 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2012225191A priority Critical patent/JP2013178462A/ja
Priority to US13/710,658 priority patent/US8934510B2/en
Publication of JP2013178462A publication Critical patent/JP2013178462A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3503Structural association of optical elements, e.g. lenses, with the non-linear optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1625Solid materials characterised by an active (lasing) ion transition metal titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

【課題】安定した波長変換器、波長変換装置、固体レーザ装置およびレーザシステムを実現する。
【解決手段】波長変換器は、第1非線形光学結晶と、前記第1非線形光学結晶の第1接合面における外周から所定距離以上内側の領域に接合された第1光学部材と、を含んでもよい。
【選択図】図4

Description

本開示は、波長変換器、波長変換装置、固体レーザ装置およびレーザシステムに関する。
半導体リソグラフィプロセスに使用される典型的な紫外線光源エキシマレーザは、波長がおよそ248nmのKrFエキシマレーザと波長がおよそ193nmのArFエキシマレーザである。
そうしたArFエキシマレーザの殆どは発振段レーザと増幅段を含む2ステージレーザシステムとして市場に供給されている。2ステージのArFエキシマレーザシステムの発振段レーザと増幅段の共通する主要な構成を説明する。発振段レーザは第1チャンバを有し、増幅段は第2チャンバを有する。それらの第1、第2チャンバ内にレーザガス(F、Ar、Ne、Xeの混合ガス)が封入されている。発振段レーザと増幅段はまた、前記レーザガスを励起するために電気エネルギーを供給する電源を有する。発振段レーザと増幅段とはそれぞれ電源を有することができるが、1台の電源を共有することもできる。前記第1チャンバ内には、それぞれが前記電源に接続された第1アノードと第1カソードとを含む第1放電電極が設置され、前記第2チャンバ内にも同様にそれぞれが前記電源に接続された第2アノードと第2カソードとを含む第2放電電極が設置されている。
発振段レーザ特有の構成は、例えば狭帯域化モジュールである。狭帯域化モジュールは典型的にはひとつのグレーティングと少なくともひとつのプリズムビームエキスパンダとを含む。部分反射ミラーと前記グレーティングとが光共振器を構成し、これらの部分反射ミラーとグレーティングとの間に発振段レーザの前記第1チャンバが設置されている。
前記第1放電電極に電源から電気エネルギーが供給され、第1アノードと第1カソードとの間に放電が発生すると前記レーザガスが励起されて、その励起エネルギーを放出する際に光が発生する。その光が前記狭帯域化モジュールによって波長が狭帯域化されたレーザ光となって発振段レーザから出力される。
増幅段が共振器構造を含む場合の2ステージレーザシステムをMOPOと言い、増幅段が共振器構造を含まない場合の2ステージレーザシステムをMOPAと言う。前記発振段レーザからのレーザ光が前記増幅段の第2チャンバ内を通過する際に、前記第2放電電極の第2アノードと第2カソードとの間に放電を発生させる制御が行なわれる。これにより前記第2チャンバ内のレーザガスが励起されて、前記レーザ光が増幅されて増幅段から出力される。
米国特許第6859305号明細書
概要
本開示の一態様による波長変換器は、レーザ光を入力して、該レーザ光と異なる波長の光を出力する波長変換器であって、第1非線形光学結晶と、前記第1非線形光学結晶の第1接合面における外周から所定距離以上内側の領域に接合された第1光学部材と、を含んでもよい。
本開示の他の態様による波長変換器は、レーザ光を入力して、該レーザ光と異なる波長の光を出力する波長変換器であって、第1非線形光学結晶と、前記第1非線形光学結晶の第1接合面における外周から所定距離以上内側の領域に接合された第1中間層と、前記第1中間層において前記第1接合面とは反対側に位置する第2接合面に接合された第1光学部材と、を含んでもよい。
本開示の他の態様による波長変換装置は、レーザ光を入力して、該レーザ光と異なる波長の光を出力する波長変換装置であって、上述の構成を含む波長変換器と、前記第1プリズムを前記第1および第2中間層と前記第1および第2非線形光学結晶とを挟んで前記第2プリズム側へ付勢する圧力をかけた状態に保持するホルダと、を備えてもよい。
本開示の他の態様による固体レーザ装置は、レーザ光を出力するように構成されたレーザと、前記レーザ光を増幅するように構成された増幅部と、増幅後の前記レーザ光を波長変換するように構成された、上述の波長変換器と、を備えてもよい。
本開示の他の態様によるレーザシステムは、上記の固体レーザ装置と、前記固体レーザ装置から出力されたレーザ光を増幅するように構成された増幅装置と、を備えてもよい。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、本開示にかかる2ステージレーザ装置の構成例を概略的に示す。 図2は、図1に示される増幅装置の図1に示される断面とは異なる断面の構成例を概略的に示す。 図3は、実施の形態1による波長変換器01の構成を概略的に示す斜視図を示す。 図4は、図3に示される波長変換器をKBBF結晶の搭載面側から見た際の上視図を示す。 図5は、図3に示される波長変換器をKBBF結晶へ入射したレーザ光の入射面を含む面で切断した際の断面図を示す。 図6は、実施の形態1における波長変換器のバリエーションの第1例による波長変換器の構成を概略的に示す斜視図を示す。 図7は、図6に示される波長変換器をKBBF結晶へ入射させるレーザ光の入射面を含む面で切断した際の断面図である。 図8は、実施の形態1における波長変換器のバリエーションの第2例による波長変換器をKBBF結晶へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。 図9は、実施の形態1における波長変換器のバリエーションの第3例による波長変換器をKBBF結晶へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。 図10は、実施の形態2による波長変換器の構成を概略的に示す。 図11は、実施の形態3による波長変換器の構成を概略的に示す。 図12は、実施の形態4による波長変換器の構成を概略的に示す。 図13は、実施の形態5による波長変換器の構成を概略的に示す。 図14は、実施の形態5の変形例による波長変換器の構成を概略的に示す。 図15は、実施の形態6による波長変換器の構成を概略的に示す。 図16は、実施の形態6の変形例による波長変換器の構成を概略的に示す。 図17は、実施の形態7による波長変換器の構成を概略的に示す。 図18は、実施の形態7の変形例による波長変換器の構成を概略的に示す。 図19は、実施の形態8によるホルダおよび波長変換器の構成を概略的に示す斜視図を示す。 図20は、図19に示される波長変換器をKBBF結晶へ入射したレーザ光の入射面を含む面で切断した際の断面図を示す。
実施の形態
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示の一例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。なお、以下の説明では、下記目次の流れに沿って説明する。
目次
1.概要
2.用語の説明
3.波長変換素子を有する固体レーザ装置とArF増幅器とを備えたレーザシステム
3.1 構成
3.2 動作
4.非線形光学結晶の少なくとも1つの面側に光学素子が配置された波長変換器(実施の形態1)
4.1 構成
4.2 動作
4.3 作用
4.4 光学素子のバリエーション
4.4.1 第1例
4.4.2 第2例
4.4.3 第3例
5.非線形光学結晶の少なくとも1つの面側に中間層を挟んで光学素子が配置された波長変換器(実施の形態2)
5.1 構成
5.2 動作
5.3 作用
6.非線形光学結晶の少なくとも2つの面側それぞれに光学素子が配置された波長変換器(実施の形態3)
6.1 構成
6.2 動作
6.3 作用
7.非線形光学結晶の少なくとも2つの面側それぞれに中間層を挟んで光学素子が配置された波長変換器(実施の形態4)
7.1 構成
7.2 動作
7.3 作用
8.少なくとも2つの非線形光学結晶を備えた波長変換器
8.1 非線形光学結晶同士がオプティカルコンタクトを形成する場合(実施の形態5)
8.1.1 構成
8.1.2 動作
8.1.3 作用
8.1.4 変形例
8.2 非線形光学結晶間に中間層が配置された場合(実施の形態6)
8.2.1 構成
8.2.2 動作
8.2.3 作用
8.2.4 変形例
9.非線形光学結晶内の光の光路が2回以上折り返される波長変換器(実施の形態7)
9.1 構成
9.2 動作
9.3 作用
9.4 変形例
10.非線形光学結晶が2つの光学素子で挟まれた構造を有する波長変換器のホルダ(実施の形態8)
10.1 構成
10.2 作用
1.概要
実施の形態の概要について、以下に説明する。
KBBF(KBeBO)結晶は、193nmの第2高調波をSHG(Second Harmonic Generation)によって発生させることができてもよい。また、KBBF結晶は、160nm以下の波長の光に対して透明であって、潮解性が無いという特性を持っていてもよい。
しかしながら、KBBF結晶は、結晶成長が難しく、また、へき開性が高いという特性を持っていてもよい。そのため、KBBF結晶を位相整合角で切り出すことは困難であり得る。なお、へき開性とは、一般的に、物理的な衝撃が加わったときに、結晶の特定方向に割れやすい性質のことを意味する。
KBBF結晶を用いて波長773nm程度の光を深紫外(DUV)領域の光に波長変換する場合、位相整合角が臨界角を超える場合があり得る。そのため、通常、DUV領域への波長変換では、プリズムカップリングデバイス(PCD)が用いられ得る。PCDとは、結晶表面にプリズムが接合されたデバイスであってよい。このデバイスを用いれば、空気層とプリズムと結晶との屈折率の関係から、KBBF結晶に対する光の導入および導出が可能となり得る。
KBBF結晶を用いたPCDにおいては、接合部の品質が悪いと接合部での透過率が低下し得る。これは、変換効率の低下や接合部にダメージが発生する原因となり得る。
接合部の品質は、結晶とプリズムとの密着精度に依存してよい。一般的に、接合する光学素子同士の接合面の面精度や面粗さを十分に高めることで、両者を自動的に接着させることができてよい。これは、オプティカルコンタクトと呼ばれる接合技術であって、非常に高い密着精度を実現可能であってよい。しかしながら、KBBF結晶は、上述したように、へき開性を有し得る。このため、研磨後であってもKBBF結晶の縁部分が盛り上がり、接合面に十分な面精度を得ることができない場合があり得る。その結果、KBBF結晶とプリズムとをオプティカルコンタクトで接合することができない場合が生じ得る。そこで、従来のPCDでは、KBBF結晶とプリズムとに圧力をかけて接合する方法が用いられ得る。
しかしながら、KBBF結晶とプリズムとに圧力をかけて接合する方法では、接合時に結晶へストレスが与えられ得る。そのため、微小なへき開による接合面の悪化や結晶の破損等が発生してしまう場合が存在し得た。
また、従来では、KBBF結晶とプリズムとの接合部の品質を維持するために、両者を圧力をかけた状態に保持するホルダが用いられ得る。ここで、KBBF結晶に1つのプリズムが取り付けられるシングルプリズムカップリングデバイスでは、KBBF結晶におけるプリズムが接合された面と反対側の面の少なくとも一部で、KBBF結晶に入射した光を全反射させる必要があってもよい。KBBF結晶表面の少なくとも一部を全反射領域とするためには、この領域に空気層を接触させるための空間(溝や穴等)がホルダに設けられる必要があり得るが、この空間が設けられた部分ではホルダによる押し付け力が不十分となる場合があってよい。そのため、KBBF結晶とプリズムとの接合維持用の圧力をかけることができない部分が生じ得る。結果として、プリズムと結晶との間に空間が生じ、結晶への光入射が妨げられてしまう場合があり得る。
さらに、KBBF結晶が複数枚重ねられた積層構造を作成する場合、KBBF結晶の積層数を増やすほど、へき開性に起因する縁部の盛り上がりの影響が強くなり得る。
さらにまた、従来の方法で接合したデバイスは、両者を接合させる圧力を緩めた際に、圧迫から開放された部分が剥がれようとし得る。その結果、剥がれによる微小なへき開が発生する場合が存在し得る。そのため、デバイスの製造工程では、プリズム、結晶等を積層して一度に押さえ付ける必要があった。
そこで、以下の実施の形態では、KBBF結晶の縁部分に光学素子が接しない構成を用いてもよい。これによれば、へき開等によって面精度が低下する部分以外の領域でKBBF結晶と光学素子とを接合することが可能であるため、両者の接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。
2.用語の説明
KBBF結晶とは、化学式KBeBOで表される非線形光学結晶であってよい。
光路とは、レーザ光が伝搬する経路のことであってよい。光軸とは、レーザ光の進行方向に沿ってレーザ光のビーム断面の略中心を通る軸であってよい。
光路における上流とは、光源に近い側を意味してよい。また、下流とは、露光装置に近い側を意味してよい。
プリズムとは、互いに平行でない2面を持ち、少なくともレーザ光を透過し得る材質によって構成された光学素子であってよい。プリズムの底面および上面は、三角形またはそれに類似した形状に限られなくともよい。プリズムの頂辺を削るなどして形状を変形したものについても、本説明におけるプリズムに含まれ得る。
また、本開示では、レーザ光の進行方向がZ方向と定義される。また、このZ方向と垂直な一方向がX方向と定義され、X方向およびZ方向と垂直な方向がY方向と定義される。レーザ光の進行方向がZ方向であるが、説明において、X方向とY方向は言及するレーザ光の位置によって変化する場合がある。例えば、レーザ光の進行方向(Z方向)がX−Z平面内で変化した場合、進行方向変化後のX方向は進行方向の変化に応じて向きを変えるが、Y方向は変化しない。一方、レーザ光の進行方向(Z方向)がY−Z平面内で変化した場合、進行方向変化後のY方向は進行方向の変化に応じて向きを変えるが、X方向は変化しない。なお、理解のために各図では、図示されている光学素子のうち、最上流に位置する光学素子に入射するレーザ光と、最下流に位置する光学素子から出射するレーザ光とのそれぞれに対して、座標系が適宜図示される。また、その他の光学素子に対して入射するレーザ光の座標系は、必要に応じて適宜図示される。
反射型の光学素子に関し、光学素子に入射するレーザ光の光路と該光学素子によって反射したレーザ光の光路との双方を含む面を入射面とすると、「S偏光」とは、入射面に対して垂直な方向の偏光状態であってもよい。一方、「P偏光」とは、光路に直交し、且つ入射面に対して平行な方向の偏光状態であってもよい。
3.波長変換素子を有する固体レーザ装置とArF増幅器とを備えたレーザシステム
まず、本開示にかかるレーザシステムの全体概要について、図面を用いて詳細に説明する。なお、以下では、レーザシステムとして、2ステージレーザ装置が例示される。
3.1 構成
図1は、本開示にかかる2ステージレーザ装置の構成例を概略的に示す。図2は、図1に示される増幅装置における、図1に示される断面とは異なる断面の構成例を概略的に示す。
図1および図2に示されるように、2ステージレーザ装置であるレーザシステム1は、固体レーザ装置2と、増幅装置3とを含んでもよい。固体レーザ装置2は、たとえば波長変換素子を有してもよい。増幅装置3は、たとえば放電励起式ArFエキシマ増幅器であってよい。固体レーザ装置2と増幅装置3との間には、低コヒーレンス化光学システム4が設置されてもよい。低コヒーレンス化光学システム4としては、光学パルスストレッチャーやランダム位相板等を用いた光学システムが使用されてもよい。
次に、固体レーザ装置2について説明する。固体レーザ装置2は、ポンピングレーザ5と、Ti:サファイアレーザ6と、増幅器7と、ビームスプリッタ81と、高反射ミラー82と、波長変換装置9と、高反射ミラー11とを含んでもよい。
ポンピングレーザ5は、たとえば半導体レーザ励起Nd:YAGレーザの第2高調波光を出力するレーザであってもよい。Ti:サファイアレーザ6は、Ti:サファイア結晶と、光共振器とを含んでもよい。増幅器7は、Ti:サファイア結晶を含む増幅器であってもよい。波長変換装置9は、第一波長変換器91と、第二波長変換器92とを備えてもよい。第一波長変換器91は、波長変換素子としてLBO結晶を含んでもよい。第二波長変換器92は、波長変換素子としてKBBF結晶を含んでもよい。
次いで、増幅装置3について説明する。増幅装置3は、チャンバ20と、一対の放電電極であるアノード21およびカソード22と、出力結合ミラー14と、高反射ミラー15、16および17とを含んでもよい。チャンバ20内には、レーザガスが封入されていてもよい。このレーザガスは、Ar、Ne、F、またはXeの混合ガスであってもよい。アノード21およびカソード22は、チャンバ20内に設置されてもよい。図2に示されるように、アノード21およびカソード22は、紙面に平行かつ紙面上下方向に間隔を開けて配置されてもよい。ただし、これに限らず、アノード21およびカソード22は、図2の紙面に対して垂直方向に間隔を開けて配列されてもよい。
アノード21およびカソード22の間は、放電空間23であってよい。この放電空間23には、アノード21およびカソード22に放電電力が供給された際に、放電が発生してもよい。チャンバ20には、パルスレーザ光32を透過するウィンドウ18および19が取り付けてあってもよい。また、図示を省略した電源がチャンバ20外に設置されていてもよい。この電源は、アノード21およびカソード22へ放電電力を供給してもよい。
出力結合ミラー14と高反射ミラー15、16、および17とは、リング光共振器を構成してもよい。出力結合ミラー14は、一部の光を透過し、一部の光を反射する光学素子であってもよい。
3.2 動作
固体レーザ装置2は、波長がおよそ193nmのパルスレーザ光31を出力してもよい。低コヒーレンス化光学システム4は、パルスレーザ光31のコヒーレンシーを低下させてもよい。増幅装置3は、コヒーレンシーの低下したパルスレーザ光32を増幅してパルスレーザ光33として出力してもよい。パルスレーザ光33は、例えば図示していない露光装置へ送られて、リソグラフィ工程に使用されてもよい。
ポンピングレーザ5からは、波長がおよそ532nmの励起光51が出力されてもよい。励起光51の一部は、ビームスプリッタ81を透過してもよい。励起光51の他の一部は、ビームスプリッタ81で反射されてもよい。ビームスプリッタ81を透過した励起光51aは、Ti:サファイアレーザ6のTi:サファイア結晶を励起してもよい。励起された結晶からの放出光が共振器内で増幅され、Ti:サファイアレーザ6からは、波長がおよそ773.6nmのパルスレーザ光31aが出力されてもよい。Ti:サファイアレーザ6は、図示しない波長選択素子を備える光共振器を含んでもよい。この場合、Ti:サファイアレーザ6からは、波長選択素子によってスペクトル幅が狭帯域化されたパルスレーザ光31aが出力されてもよい。
一方、ポンピングレーザ5から出力された励起光51のうち、ビームスプリッタ81で反射した励起光51bは、さらに高反射ミラー82で反射されてもよい。反射された励起光51bは、Ti:サファイアの増幅器7に入射し、これが備えるTi:サファイア結晶を励起してもよい。増幅器7はその励起エネルギーによってTi:サファイアレーザ6から出力されたパルスレーザ光31aを増幅してもよい。この結果、増幅器7からは、波長がおよそ773.6nmの増幅されたパルスレーザ光31bが出力されてもよい。
Ti:サファイアの増幅器7から出力されたパルスレーザ光31bは、波長変換装置9に入射してもよい。波長変換装置9に入射したパルスレーザ光31bは、まず、第一波長変換器91に入射してもよい。第一波長変換器91が備えるLBO結晶は、入射したパルスレーザ光31bを、波長がおよそ386.8nm(前記773.6nmの1/2)のパルスレーザ光31cに変換してもよい。つぎに、波長変換後のパルスレーザ光は、第二波長変換器92に入射してもよい。第二波長変換器92が備えるKBBF結晶は、入射したパルスレーザ光を、波長がおよそ193.4nm(前記386.8nmの1/2)のパルスレーザ光31にさらに変換してもよい。
波長変換装置9から出射したパルスレーザ光31は、高反射ミラー11によって進行方向を変えられて、低コヒーレンス化光学システム4に入射してもよい。パルスレーザ光31のコヒーレンスは、低コヒーレンス化光学システム4を透過することによって低下してもよい。そのコヒーレンスが低下したパルスレーザ光32は増幅装置3に入射してもよい。
チャンバ20内のアノード21とカソード22に電気的に接続された電源は、アノード21およびカソード22に放電電力を供給してもよい。これにより、アノード21およびカソード22間の放電空間23に放電が発生してもよい。
低コヒーレンス化光学システム4を出射したパルスレーザ光32の一部は、出力結合ミラー14を透過し、高反射ミラー15で反射されてもよい。反射されたパルスレーザ光32は、ウィンドウ18を透過して、アノード21とカソード22との間の放電空間23へ進行してもよい。パルスレーザ光32が放電空間23内に存在するときに放電空間23に放電を生じさせることで、放電空間23内のレーザガスが励起されてもよい。励起されたレーザガスを含む放電空間23を通過するパルスレーザ光32は増幅されてもよい。増幅されたパルスレーザ光32は、ウィンドウ19を介してチャンバ20から出射してもよい。出射したパルスレーザ光32は、高反射ミラー16および17で高反射されて、再びウィンドウ19を介して、チャンバ20内の放電空間23を通過してもよい。この際、パルスレーザ光32が増幅されてもよい。そして、パルスレーザ光32は、今度はウィンドウ18を介してチャンバ20から出射してもよい。出射したパルスレーザ光32は、出力結合ミラー14に入射してもよい。このパルスレーザ光32の一部は、出力結合ミラー14を透過して、パルスレーザ光33として増幅装置3から出射してもよい。パルスレーザ光32の他の一部は、出力結合ミラー14で反射することで、再びリング光共振器中に戻されて、再度、増幅されてもよい。
本説明では、増幅装置3がリング光共振器を含む場合を例示したが、この例に限定されるものではない。たとえば、増幅装置3は、増幅器に光共振器が配置されたファブリーペロー型共振器を含んでもよい。
なお、ここでは、固体レーザの波長変換装置9及びそれを用いたレーザシステム1が例示するが、図1における低コヒーレンス化光学システム4及び増幅装置3等は、他の構成に置き換えてもよい。また、波長変換装置9によって波長変換する前のパルスレーザ光31bは、必ずしもTi:サファイアレーザ6を含むレーザ装置から出力されたレーザ光でなくともよい。
4.非線形光学結晶の少なくとも1つの面側に光学素子が配置された波長変換器(実施の形態1)
つぎに、図1における波長変換装置9の第一波長変換器91または第二波長変換器92として用いることができる波長変換器について、以下に図面を参照して詳細に説明する。
4.1 構成
図3は、実施の形態1による波長変換器101の構成を概略的に示す斜視図を示す。図3に示されるように、波長変換器101は、プリズム110と、KBBF結晶210とを備えてもよい。なお、KBBF結晶210に限らず、LBO結晶やBBO結晶など、他の非線形光学結晶が用いられてもよい。また、KBBF結晶210は、1つの結晶体に限らず、複数の結晶体が積層されてなるKBBF積層構造体であってもよい。さらに、プリズム110に代えて、他の光学素子が用いられてもよい。この光学素子は、波長変換器101へ入射するレーザ光が、光学素子を介してKBBF等の結晶210へ位相整合角で入射する条件を満たすように形成されていればよい。
プリズム110の材料は、たとえば合成石英ガラスであってもよい。その他にも、SiO結晶、溶融石英ガラス、CaF結晶、またはMgF結晶などの材料がプリズム110に用いられてもよい。プリズム110の材料には、紫外レーザ光に強い耐性を示すフッ化物系の材料が用いられるとよい。
プリズム110は、たとえば上面および底面が直角三角形の直角プリズムであってもよい。以下では、説明の都合上、このプリズム110の3つの側面のうち、上面および底面の直角三角形の斜辺を含む側面を接合面113という。また、残りの2つの側面のうち、一方を入射用面111といい、他方を出射面112という。
プリズム110の入射用面111および出射面112には、パルスレーザ光31cの反射を低減する反射防止膜(ARコート)がコーティングされていてもよい。
KBBF結晶210は、波長変換素子としての非線形光学結晶であってよい。KBBF結晶210は、波長変換素子としての他の非線形光学結晶に置き換えられてもよい。KBBF結晶210は、結晶軸D1がプリズム110の接合面113に対して略垂直となるように、プリズム110と接合してもよい。結晶軸とは、非線形光学結晶がほぼ最大の第2高調波強度を示す軸であってよい。
プリズム110の接合面113は、KBBF結晶210の接合面211と接合してもよい。この接合は、オプティカルコンタクトであってもよい。
図4は、図3に示される波長変換器101をKBBF結晶210の接合面211側から見た際の上視図を示す。図4に示されるように、プリズム110は、KBBF結晶210との接合面211の外周から距離D内側の領域に接合面113が接触するように、KBBF結晶210に接合されてもよい。距離Dは、少なくともKBBF結晶210のへき開等によってその面精度が低下する幅以上であればよい。この幅は、KBBF結晶210の縁からの長さであってよい。たとえば、距離Dは1mm以上としてもよい。なお、接合面211の縁からの距離Dは、接合面113の外周全体において一定である必要はない。最短の距離Dが少なくともKBBF結晶210のへき開等によって面精度が低下する幅(たとえば1mm)以上であればよい。なお、図4から図20までの各図に示されている各所の距離が全て同じDで例示されているが、これらの距離が同一であることは必須ではない。
4.2 動作
図5は、図3に示される波長変換器101をKBBF結晶210へ入射したレーザ光の入射面を含む面で切断した際の断面図を示す。図5に示されるように、パルスレーザ光31cは、プリズム110の入射用面111に入射してもよい。パルスレーザ光31cは、偏光方向がKBBF結晶210の入射面に対して垂直(図5の紙面に対して垂直)な直線偏光の光であってもよい。プリズム110に入射したパルスレーザ光31cは、プリズム110を透過した後、KBBF結晶とそのプリズムとの接合部を介してKBBF結晶210内に入射してもよい。
KBBF結晶210内に入射したパルスレーザ光31cの一部は、KBBF結晶210中を伝播する途中で、たとえば波長が193.4nmのパルスレーザ光31に変換されてもよい。波長変換されたパルスレーザ光31は、偏光方向がKBBF結晶210の入射面と平行(図5の紙面に対して平行)な直線偏光の光であってもよい。
変換されたパルスレーザ光31および残りのパルスレーザ光31cは、KBBF結晶210との接合面211と反対側の面である反射面212で高反射してもよい。反射面212における少なくともパルスレーザ光31cおよび31を反射する領域は、真空空間または空気層(大気であってもよい)に接触していてもよい。これは、反射面212全体が真空空間または空気層(大気であってもよい)に接触していることを除外しない。
パルスレーザ光31cおよび31は、KBBF結晶210中のパルスレーザ光31cおよび31が反射面212で高反射し得る角度で、KBBF結晶210とプリズムとの接合面211に入射してもよい。
反射面212で反射したパルスレーザ光31cおよび31は、再び、KBBF結晶210中を伝播してもよい。この際、2ω光であるパルスレーザ光31cと4ω光であるパルスレーザ光31との光路は、波長に対する屈折率の違いによって分離されてもよい。KBBF結晶210中を伝播する反射後のパルスレーザ光31cの一部は、パルスレーザ光31に変換されてもよい。
その後、パルスレーザ光31cおよび31は、接合面113を介して再びプリズム110に入射してもよい。この際、パルスレーザ光31cおよび31は、異なる光路でプリズム110に入射してもよい。その結果、パルスレーザ光31cおよび31は、異なる光路でプリズム110の出射面112から出射してもよい。
ここで、たとえばプリズム110をCaF結晶とした場合、その屈折率は1.44程度であってよい。この場合、プリズム110の接合面113に対する入射面の仰角θ1が58°とされ、接合面113に対する出射面の仰角θ2が32°とされるとよい。このプリズム110の入射用面111に対してパルスレーザ光31cが0.9°の入射角φ1で入射すると、パルスレーザ光31cおよび31の両方がKBBF結晶210の反射面212で高反射または全反射し得る。また、この場合、反射後のパルスレーザ光31cは、40.3°の出射角φ3で、プリズム110の出射面112から出射し得る。反射後のパルスレーザ光31は、30.2°の出射角φ2で、プリズム110の出射面112から出射し得る。
4.3 作用
実施の形態1によれば、非線形結晶のへき開等による面精度の低下を実質的に無視できる領域でKBBF結晶210とプリズム110とを接合することが可能となってよい。そのため、両者の接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。その結果、接合部の品質が高い波長変換器101を実現することができてもよい。
4.4 光学素子のバリエーション
なお、KBBF結晶210と組み合わせされる光学素子は、プリズム110のような直角プリズムに限られない。以下に、光学素子のバリエーションを、いくつかの例を用いて説明する。
4.4.1 第1例
図6は、第1例による波長変換器102の構成を概略的に示す斜視図を示す。図7は、図6に示される波長変換器102をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
図6および図7に示されるように、KBBF結晶210に組み合わせされる光学素子は、入射面用111と接合面113とが交わる角を含む部分124a、および、出射面112と接合面113とが交わる角を含む部分124bのそれぞれが除去された形状を持つプリズム120であってもよい。当該削られた部分は破線で示されている。更に、プリズム120は、入射面用111と出射面112とが交わる角を含む部分124cが除去された形状を有してもよい。当該除去された部分は破線で示されている。
プリズム120は、KBBF結晶210の接合面211における外周から距離D内側の領域に、部分124aおよび124bが無い状態の接合面113が接触するように、KBBF結晶210に接合されてもよい。距離Dは、図4を用いて説明した距離Dと同様であってよい。
4.4.2 第2例
図8は、第2例による波長変換器103をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
プリズム130における入射面用111と接合面113とが交わる角を含む部分134aが除かれた後に残る面は、接合面113(または接合面211)に対して必ずしも垂直でなくてよい。この面は、たとえば図8の波長変換器103に示されるように、接合面113(または接合面211)に対して鈍角に傾いていてもよいし、鋭角に傾いていてもよい。同様に、プリズム130における出射面112と接合面113とが交わる角を含む部分134bが除かれた後に残る面は、接合面113(または接合面211)に対して鈍角に傾いていてもよいし、鋭角に傾いていてもよい。
プリズム130は、KBBF結晶210の接合面211における外周から距離D内側の領域に、部分134aおよび134bが無い状態の接合面113が接触するように、KBBF結晶210に接合されてもよい。距離Dは、図4を用いて説明した距離Dと同様であってよい。
4.4.3 第3例
図9は、第3例による波長変換器104をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
プリズム140における入射面用111と接合面113とが交わる角を含む部分144aは除去されて、図9に示されるような形状とされてもよい。同様に、プリズム140における出射面112と接合面113とが交わる角を含む部分144bは除去されて、図9に示されるような形状とされてもよい。
プリズム140における部分144aが除かれた後に残る部分の面であって接合面113と接しない面141aと、接合面113との間の距離dは、へき開によってKBBF結晶210の端部が盛り上がる高さ以上の距離であればよい。すなわち、距離dは、へき開によってKBBF結晶210端部が盛り上がった場合でもKBBF結晶210端部とプリズム140との接触を回避できる程度の距離以上であればよい。同様に、プリズム140における部分144bが除かれた後に残る部分の面であって接合面113と接しない面141bと、接合面113との間の距離dは、へき開によってKBBF結晶210の端部が盛り上がる高さ以上の距離であればよい。なお、接合面113は、KBBF結晶210端部のへき開による盛り上がりを含まない平面であるとする。
プリズム140は、KBBF結晶210の接合面211における外周から距離D内側の領域に、部分144aおよび144bが無い状態の接合面113が接触するように、KBBF結晶210に接合されてもよい。距離Dは、図4を用いて説明した距離Dと同様であってよい。
5.非線形光学結晶の少なくとも1つの面側に中間層を挟んで光学素子が配置された波長変換器(実施の形態2)
つぎに、波長変換器の他の形態について、以下に図面を用いて詳細に説明する。
5.1 構成
図10は、実施の形態2による波長変換器301の構成を概略的に示す。図10は、波長変換器301をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
図10に示されるように、波長変換器301は、プリズム110およびKBBF結晶210に加え、中間層310を備えてもよい。プリズム110およびKBBF結晶210は、上述した実施の形態1によるプリズム110(そのバリエーションを含む)およびKBBF結晶210と同様であってよい。
中間層310は、板状の部材やフィルム状の部材などであってよい。中間層310の材料は、たとえば合成石英ガラスであってもよい。その他にも、SiO結晶、溶融石英ガラス、CaF結晶、またはMgF結晶などの材料が中間層310に用いられてもよい。特に、紫外レーザ光に強い耐性をしめすフッ化物系の材料が用いられるとよい。
また、中間層310の屈折率は、プリズム110の屈折率と同等であってもよい。ただし、これに限定されない。たとえば中間層310の屈折率とプリズム110の屈折率とを同等とする場合、中間層310の材料には、プリズム110と同じ材料が用いられてもよい。
中間層310とプリズム110との接合は、オプティカルコンタクトであってもよい。同様に、中間層310とKBBF結晶210との接合は、オプティカルコンタクトであってもよい。
中間層310は、実施の形態1におけるプリズム110と同様に、KBBF結晶210の接合面211における外周から距離D内側の領域に接触するように、KBBF結晶210に接合されてもよい。一方、プリズム110の中間層310との接合面113のサイズは、中間層310のプリズム110に対向する面のサイズよりも大きくても小さくてもよい。また、接合面113のサイズおよび形状と、中間層310のプリズム110に対向する面のサイズおよび形状を一致さてもよいし、させなくてもよい。一致させた場合、これらを位置合わせした状態で接触させてもよいし、位置合わせせずに接触させてもよい。
中間層310の厚さtは、すなわち、プリズム110の接合面113と接合面211との間の距離dは、へき開によってKBBF結晶210の端部が盛り上がる高さ以上の長さであればよい。すなわち、厚さt(=距離d)は、へき開後にKBBF結晶210端部が盛り上がった場合でもKBBF結晶210端部とプリズム110との接触を回避できる程度の厚さ以上であればよい。
5.2 動作
波長変換器301の動作は、上述した実施の形態1における波長変換器101の動作と同様であってよい。ただし、図10に示されるように、プリズム110に入射したパルスレーザ光31cは、中間層310を介してKBBF結晶210に入射してもよい。また、反射面212で反射したパルスレーザ光31および31cは、中間層310を介して再びプリズム110に入射してもよい。その後、パルスレーザ光31および31cは、異なる光路でプリズム110の出射面112から出射してもよい。
5.3 作用
実施の形態2によれば、へき開等による面精度の低下を実質的に無視できる領域でKBBF結晶210と中間層310とが接合するため、両者の接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。また、これにより、平坦性が維持された中間層310に対してプリズム110が接合されるため、両者の接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。これらの結果、接合部の品質が高い波長変換器301を実現することができる。
6.非線形光学結晶の少なくとも2つの面側それぞれに光学素子が配置された波長変換器(実施の形態3)
つぎに、波長変換器の他の形態について、以下に図面を用いて詳細に説明する。
6.1 構成
図11は、実施の形態3による波長変換器105の構成を概略的に示す。図11は、波長変換器105をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
図11に示されるように、波長変換器105は、2つのプリズム110Aおよび110Bと、KBBF結晶210とを備えてもよい。各プリズム110Aおよび110B、ならびにKBBF結晶210は、上述した実施の形態1によるプリズム110(そのバリエーションを含む)およびKBBF結晶210と同様であってよい。
入射側のプリズム110Aは、実施の形態1におけるプリズム110と同様に、KBBF結晶210の第1接合面211における外周から距離D内側の領域に接合面113aが接触するように、KBBF結晶210に接合されてもよい。同様に、出射側のプリズム110Bは、KBBF結晶210の第2接合面212における外周から距離D内側の領域に接合面113aが接触するように、KBBF結晶210に接合されてもよい。この際、プリズム110Aの接合面113aとプリズム110Bの接合面113bとは、互いに平行であってもよい。その場合、プリズム110Aの入射用面111aと対応するプリズム110Bの面111bが、波長変換後のパルスレーザ光31および残りのパルスレーザ光31cの出射面(以下、面111bを出射面という)として機能し得る。
6.2 動作
波長変換器105の動作は、上述した実施の形態1による波長変換器101の動作と同様であってよい。ただし、図11に示されるように、KBBF結晶210で波長変換されたパルスレーザ光31および残りのパルスレーザ光31cは、KBBF結晶210の第2接合面212を介してプリズム110Bに入射してもよい。その後、パルスレーザ光31および31cは、それぞれ異なる光路でプリズム110Bの出射面111bから出射してもよい。
6.3 作用
実施の形態3によれば、実施の形態1と同様に、へき開等による面精度の低下を実質的に無視できる領域でKBBF結晶210とプリズム110Aおよび110Bとをそれぞれ接合することが可能であってよい。そのため、それぞれの接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。その結果、接合部の品質が高い波長変換器105を実現することができてよい。
7.非線形光学結晶の少なくとも2つの面側それぞれに中間層を挟んで光学素子が配置された波長変換器(実施の形態4)
また、図11に示された波長変換器105に、図10において示された波長変換器301を適用することも可能である。以下、波長変換器301を波長変換器105に適用した形態を、実施の形態4として、図面を用いて詳細に説明する。
7.1 構成
図12は、実施の形態4による波長変換器305の構成を概略的に示す。図12は、波長変換器305をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
図12に示されるように、波長変換器305は、2つのプリズム110Aおよび110Bと、KBBF結晶210とに加え、2つの中間層310Aおよび310Bを備えてもよい。各プリズム110Aおよび110B、KBBF結晶210、および各中間層310Aおよび310Bは、上述した実施の形態2によるプリズム110、KBBF結晶210、および中間層310と同様であってよい。
中間層310Aは、入射側のプリズム110AとKBBF結晶210との間に介在してもよい。中間層310Bは、出射側のプリズム110BとKBBF結晶210との間に介在してもよい。プリズム110A、中間層310AおよびKBBF結晶210よりなる構造部は、図10に示された波長変換器301と同様であってよい。同様に、プリズム110B、中間層310BおよびKBBF結晶210よりなる構造部は、図10に示された波長変換器301と同様であってよい。この際、プリズム110Aとプリズム110Bとの向きは、互いに反対方向を向いていてもよい。
7.2 動作
波長変換器305の動作は、上述した実施の形態3における波長変換器105の動作と同様であってよい。ただし、図12に示されるように、プリズム110Aに入射したパルスレーザ光31cは、中間層310Aを介してKBBF結晶210に入射してもよい。また、KBBF結晶210から出射したパルスレーザ光31および31cは、中間層310Bを介してプリズム110Bに入射してもよい。その後、パルスレーザ光31および31cは、それぞれ異なる光路でプリズム110Bの出射面111bから出射してもよい。
7.3 作用
実施の形態4によれば、実施の形態2と同様に、へき開等による面精度の低下を実質的に無視できる領域でKBBF結晶210と中間層310Aおよび310Bとがそれぞれ接合してもよい。そのため、それぞれの接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。また、これにより、それぞれKBBF結晶210よりも平坦性が維持された中間層310Aおよび310Bに対してプリズム110Aおよび110Bが接合されるため、それぞれの接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。これらの結果、接合部の品質が高い波長変換器305を実現することができてよい。
8.少なくとも2つの非線形光学結晶を備えた波長変換器
また、波長変換器に用いられる非線形光学結晶の数は、1つに限られず、2つ以上とすることができてよい。以下に、2つの非線形光学結晶が用いられた波長変換器について、図面を用いて詳細に説明する。
8.1 非線形光学結晶同士がオプティカルコンタクトを形成する場合(実施の形態5)
まず、非線形光学結晶同士がオプティカルコンタクトを形成する場合を、実施の形態5として、図面を用いて詳細に説明する。
8.1.1 構成
図13は、実施の形態5による波長変換器106の構成を概略的に示す。図13は、波長変換器106をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
図13に示されるように、波長変換器106は、2つのプリズム110および150と、2つのKBBF結晶210および220とを備えてもよい。各プリズム110および150、ならびに各KBBF結晶210および220は、上述した実施の形態1によるプリズム110(そのバリエーションを含む)およびKBBF結晶210と同様であってよい。ただし、KBBF結晶220の接合面221のサイズは、KBBF結晶210の接合面212のサイズよりも大きくてもよい。
入射側のプリズム110は、KBBF結晶210の接合面211における外周から距離D内側の領域に接合面113aが接するように、KBBF結晶210に接合されてもよい。一方、出射側のプリズム150は、KBBF結晶220の接合面222における外周から距離D内側の領域に接合面113bが接するように、KBBF結晶220に接合されてもよい。この際、プリズム110とプリズム150との向きは、上述した実施の形態3と同様に、互いに反対方向を向いていてもよい。
KBBF結晶210は、KBBF結晶220の接合面221における外周から距離D内側の領域に接合面212が接触するように、KBBF結晶220に接合されてもよい。この接合は、オプティカルコンタクトであってもよい。
8.1.2 動作
波長変換器106の動作は、上述した実施の形態4における波長変換器105の動作と同様であってよい。ただし、図13に示されるように、KBBF結晶210で波長変換されたパルスレーザ光31および残りのパルスレーザ光31cは、つぎにKBBF結晶220に入射してもよい。KBBF結晶220に入射したパルスレーザ光31および31cのうち、パルスレーザ光31cの一部は、KBBF結晶220中を伝播する途中でパルスレーザ光31に変換されてもよい。その後、KBBF結晶220内を伝播するパルスレーザ光31および31cは、KBBF結晶220の接合面222を介してプリズム110Bに入射してもよい。その後、パルスレーザ光31および31cは、それぞれ異なる光路でプリズム110Bの出射面111bから出射してもよい。
8.1.3 作用
実施の形態5によれば、実施の形態3と同様に、へき開等による面精度の低下を実質的に無視できる領域で、KBBF結晶210およびプリズム110と、KBBF結晶220およびプリズム150と、KBBF結晶210および220とをそれぞれ接合することが可能であってよい。そのため、それぞれの接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。その結果、接合部の品質が高い波長変換器106を実現することができてよい。また、複数のKBBF結晶210および220よりなる積層構造を採用することで、パルスレーザ光31cからパルスレーザ光31への変換効率を向上することが可能となってよい。その結果、より高い強度のパルスレーザ光31を得ることが可能となってよい。ここで、KBBF結晶210の接合面212の端部では必ずしもへき開等による面精度の低下を実質的に無視できる領域が接合面221と接合していない場合があってよい。その場合でも、波長変換器106全体としてはへき開等による面精度の低下を実質的に無視できればよい。
8.1.4 変形例
また、実施の形態4による波長変換器305と同様に、図13において示された波長変換器106に、図10に示された波長変換器301を適用することも可能である。図14は、波長変換器301を波長変換器106に適用した構造を備える波長変換器306の構成を概略的に示す。ただし、図14では、プリズム110および150の代わりに、プリズム110Aおよび110Bが用いられてもよい。
図14に示されるように、波長変換器306は、プリズム110AとKBBF結晶210との間に中間層310が配置され、また、プリズム110BとKBBF結晶220との間に中間層320が配置された構造を有してもよい。中間層310および320は、それぞれ上述した実施の形態2による中間層310と同様であってよい。ただし、それらのサイズは、KBBF結晶210の接合面211およびKBBF結晶220の接合面222の形状に合わせてへき開等による面精度の低下を実質的に無視できるように適宜変更されていてもよい。
また、この変形例では、プリズム110Aおよび110Bは、KBBF結晶210および220とそれぞれ直接接触しなくてよい。そのため、プリズム110Aおよび110Bのサイズは、それぞれKBBF結晶210および220の接合面211および222のサイズに依らず、適宜変更可能であってよい。
8.2 非線形光学結晶間に中間層が配置された場合(実施の形態6)
つぎに、非線形光学結晶同士が直接接触しない場合を、実施の形態6として、図面を用いて詳細に説明する。
8.2.1 構成
図15は、実施の形態6による波長変換器107の構成を概略的に示す。図15は、波長変換器107をKBBF結晶210Aへ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
図15に示されるように、波長変換器107は、2つのプリズム110Aおよび110Bと、2つのKBBF結晶210Aおよび210Bとに加え、中間層330を備えてもよい。各プリズム110Aおよび110B、ならびに各KBBF結晶210Aおよび210Bは、上述した実施の形態1によるプリズム110(そのバリエーションを含む)およびKBBF結晶210と同様であってよい。また、中間層330は、上述した実施の形態2による中間層310と同様であってよい。ただし、中間層330の厚さttは、へき開後にKBBF結晶210Aおよび210Bの端部がそれぞれ盛り上がる高さの合計以上の距離であればよい。
プリズム110AおよびKBBF結晶210Aよりなる構造部、およびプリズム110BおよびKBBF結晶210Bよりなる構造部は、それぞれ図5に示された波長変換器101と同様であってよい。この際、プリズム110Aとプリズム110Bとの向きは、互いに反対方向を向いていてもよい。
中間層330は、KBBF結晶210Aの接合面212aおよびKBBF結晶210Bの接合面211bの双方に対して、それらの外周から距離D内側の領域に接合面331および332それぞれが接するように、KBBF結晶210Aおよび210Bにそれぞれ接合されてもよい。
8.2.2 動作
波長変換器107の動作は、上述した波長変換器106の動作と同様であってよい。ただし、図15に示されるように、KBBF結晶210Aで波長変換されたパルスレーザ光31および残りのパルスレーザ光31cは、中間層330を介してKBBF結晶210Bに入射してもよい。KBBF結晶210Bに入射したパルスレーザ光31および31cのうち、パルスレーザ光31cの一部は、KBBF結晶210B中を伝播する途中でパルスレーザ光31に変換されてもよい。その後、KBBF結晶210B内を伝播するパルスレーザ光31および31cは、KBBF結晶210Bの接合面212bを介してプリズム110Bに入射してもよい。その後、パルスレーザ光31および31cは、異なる光路でプリズム110Bの出射面111bから出射してもよい。
8.2.3 作用
実施の形態6によれば、実施の形態5と同様に、へき開等による面精度の低下を実質的に無視できる領域で、KBBF結晶210Aおよびプリズム110Aと、KBBF結晶210Bおよびプリズム110Bとを接合し、さらに、KBBF結晶210A、中間層330およびKBBF結晶210Bとをそれぞれ接合することが可能であってよい。そのため、それぞれの接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。その結果、接合部の品質が高い波長変換器107を実現することができてよい。また、複数のKBBF結晶210および220を含む積層構造を採用することで、パルスレーザ光31cからパルスレーザ光31への変換効率を向上することが可能となってよい。その結果、より高い強度のパルスレーザ光31を得ることが可能となってよい。
8.2.4 変形例
また、実施の形態5の変形例による波長変換器306と同様に、図15において示された波長変換器107に、図10に示された波長変換器301を適用することも可能である。図16は、波長変換器301を波長変換器107に適用した構造を備える波長変換器307の構成を概略的に示す。
図16に示されるように、波長変換器307は、プリズム110AとKBBF結晶210Aとの間に中間層310Aが配置され、また、プリズム110BとKBBF結晶210Bとの間に中間層310Bが配置された構造を有してもよい。さらに、KBBF結晶210AとKBBF結晶210Bとの間に中間層330が配置されてもよい。中間層310A、310Bおよび330は、それぞれ上述した実施の形態2による中間層310と同様であってよい。
また、この変形例では、プリズム110Aおよび110Bは、KBBF結晶210Aおよび210Bとそれぞれ直接接触しなくてよい。そのため、プリズム110Aおよび110Bのサイズは、それぞれKBBF結晶210Aおよび210Bの接合面211aおよび212bのサイズに依らず、適宜変更可能であってよい。
9.非線形光学結晶内の光の光路が2回以上折り返される波長変換器(実施の形態7)
また、上述した実施の形態における2つのプリズムを用いた形態では、パルスレーザ光31cおよび31がそれぞれ折り返されずに各KBBF結晶を通過する場合が例示された。ただし、これらの形態に限られるものではない。たとえばパルスレーザ光31cおよび31の光路が波長変換素子(KBBF結晶)内で1回以上折り返されてもよい。以下では、KBBF結晶内部でパルスレーザ光31cおよび31の光路が2回折り返される構成を有する波長変換器を、実施の形態7として、図面を用いて詳細に説明する。
9.1 構成
図17は、実施の形態7による波長変換器108の構成を概略的に示す。図17は、波長変換器108をKBBF結晶210へ入射させるレーザ光の入射面を含む面で切断した際の断面図を示す。
図17に示されるように、波長変換器108は、2つのプリズム160Aおよび160Bと、KBBF結晶210とを備えてもよい。各プリズム160Aおよび160B、ならびにKBBF結晶210は、上述した実施の形態1によるプリズム110(そのバリエーションを含む)およびKBBF結晶210と同様であってよい。ただし、各プリズム160Aおよび160Bは、それぞれの接合面163aおよび163bに、溝161aおよび161bを備えてもよい。
出射側のプリズム160Bの溝161bは、KBBF結晶210との接合面163bにおいて、入射側のプリズム160Aを介してKBBF結晶210に入射したパルスレーザ光31cおよびこれの一部が波長変換されることで生成されたパルスレーザ光31が進行する方向の領域に位置しているとよい。プリズム160BとKBBF結晶210とがオプティカルコンタクトを形成している状態において、溝161bの内部は空気層であってもよい。
一方、入射側のプリズム160Aの溝161aは、KBBF結晶210との接合面163aにおいて、KBBF結晶210の第2接合面212で反射したパルスレーザ光31cおよび31が進行する方向の領域に位置しているとよい。プリズム160AとKBBF結晶210とがオプティカルコンタクトを形成している状態において、溝161aの内部は空気層であってもよい。
9.2 動作
波長変換器108の動作は、上述した実施の形態3における波長変換器105の動作と同様であってよい。ただし、図17に示されるように、入射側のプリズム160Aを介してKBBF結晶210に入射したパルスレーザ光31cおよびパルスレーザ光31は、KBBF結晶210の第2接合面212が溝161b内部の空気層と接触する領域で高反射または全反射され得る。この反射されたパルスレーザ光31cおよび31のうちパルスレーザ光31cの一部は、再度、KBBF結晶210内を伝播する途中でパルスレーザ光31に変換されてもよい。つぎに、KBBF結晶210内を伝播するパルスレーザ光31cおよび31は、KBBF結晶210の第1接合面211が溝161a内部の空気層と接触する領域で再び高反射または全反射され得る。この反射されたパルスレーザ光31cおよび31のうちパルスレーザ光31cの一部は、再度、KBBF結晶210内を伝播する途中でパルスレーザ光31に変換されてもよい。つぎに、KBBF結晶210内を伝播するパルスレーザ光31および31cは、KBBF結晶210の第2接合面212を介してプリズム110Bに入射してもよい。その後、パルスレーザ光31および31cは、それぞれ異なる光路でプリズム110Bの出射面111bから出射してもよい。
9.3 作用
実施の形態7によれば、実施の形態3と同様に、へき開等による面精度の低下を実質的に無視できる領域でKBBF結晶210とプリズム110Aおよび110Bとをそれぞれ接合することが可能であってよい。そのため、それぞれの接合部に高い品質のオプティカルコンタクトを形成することが可能となってよい。その結果、接合部の品質が高い波長変換器108を実現することができてよい。
また、パルスレーザ光31cがKBBF結晶210を複数回(本例では3回)通過する構成とすることで、パルスレーザ光31cからパルスレーザ光31への変換効率を向上することが可能となってよい。その結果、より高い強度のパルスレーザ光31を得ることが可能となってよい。
9.4 変形例
また、実施の形態4による波長変換器305と同様に、図17において示された波長変換器108に、図10に示された波長変換器301を適用することも可能である。図18は、波長変換器301を波長変換器108に適用した構造を備える波長変換器308の構成を概略的に示す。ただし、図18では、プリズム160Aおよび160Bの代わりに、プリズム110Aおよび110Bが用いられてもよい。
図18に示されるように、波長変換器308は、プリズム110AとKBBF結晶210との間に中間層340Aが配置され、また、プリズム110BとKBBF結晶210との間に中間層340Bが配置された構造を有してもよい。中間層340Aおよび340Bは、それぞれ上述した実施の形態2による中間層310と同様であってよい。ただし、各中間層340Aおよび340Bは、それぞれKBBF結晶310との接合面343aおよび343bに、溝341aおよび341bを備えてもよい。
出射側のプリズム110BとKBBF結晶210との間に配置された中間層340Bの溝341bは、KBBF結晶210との接合面343bにおいて、入射側のプリズム110Aおよび中間層340Aを介してKBBF結晶210に入射したパルスレーザ光31cおよびパルスレーザ光31が進行する方向の領域に位置しているとよい。KBBF結晶210と中間層340Bとがオプティカルコンタクトを形成している状態において、溝341bの内部は空気層であってもよい。
一方、入射側のプリズム110AとKBBF結晶210との間に配置された中間層340Aの溝341aは、KBBF結晶210との接合面343aにおいて、KBBF結晶210の第2接合面212で反射したパルスレーザ光31cおよび31が進行する方向の領域に位置しているとよい。KBBF結晶210と中間層340Aとがオプティカルコンタクトを形成している状態において、溝341aの内部は空気層であってもよい。
10.非線形光学結晶が2つの光学素子で挟まれた構造を有する波長変換器のホルダ(実施の形態8)
つぎに、波長変換器のホルダについて、その一例を挙げて説明する。以下では、KBBF結晶が2つのプリズムで挟まれた構造の波長変換器を圧力をかけた状態に保持するホルダが例に挙げられる。
10.1 構成
図19は、実施の形態8によるホルダ400および波長変換器の構成を概略的に示す斜視図を示す。図20は、図19に示される波長変換器をKBBF結晶210Aへ入射したレーザ光の入射面を含む面で切断した際の断面図を示す。
図19および図20に示されるように、波長変換器は、たとえば2つのプリズム170Aおよび170Bと、2つのKBBF結晶210Aよび210Bと、2つの中間層310Aおよび310Bとを備えてもよい。各プリズム170Aおよび170B、ならびに各KBBF結晶210Aおよび210Bは、上述した実施の形態1によるプリズム110(そのバリエーションを含む)およびKBBF結晶210と同様であってよい。各中間層310Aおよび310Bは、上述した実施の形態2による中間層310と同様であってよい。ただし、これらに限定されず、上述した実施の形態のいずれかによる波長変換器が用いられてもよい。
ホルダ400は、たとえば第1部材410および第2部材420と、これらを互いに固定する複数のボルト431とを備えてもよい。第1部材410および第2部材420の材料は、それぞれ鉄や銅やアルミニウムなどの金属であってもよい。ただし、これらに限定されず、比較的剛性の高い材料が用いられるとよい。この際、熱や応力に対する変形量が小さい材料が用いられるとよい。
各プリズムとして図5に示す直角プリズムを用いる場合について説明する。第1部材410は、プリズム170Aの3つの側面のうち中間層310Aと接しない2つの面それぞれと実質的に均等な圧力で接触し得る形状を備えているとよい。同様に、第2部材420は、プリズム170Bの3つの側面のうち中間層310Bと接しない2つの面それぞれと実質的に均等な圧力で接触し得る形状を備えているとよい。図7、図8等に示したように角を削除されたプリズムを用いる場合も同様に、第1部材410、第2部材420が接するのは、図7のプリズムの面111,112、図8のプリズムの面111,112である。
第1部材410および第2部材420は、間に波長変換器を保持した状態で、それらの端部412および422に形成された2つ以上の螺子穴にそれぞれボルト431が螺子入れられることで、波長変換器を均一な圧力が加えられた状態に保持してもよい。この圧力は、プリズム170Aと中間層310AとKBBF結晶210AとKBBF結晶210Bと中間層310Bとプリズム170Bとを互いに密着させる方向に作用してもよい。
また、第1部材410には、入射側のプリズム170Aにパルスレーザ光31cを入射させるための窓411が設けられてもよい。一方、第2部材420には、出射側のプリズム170Bから出射したパルスレーザ光31cおよび31が通過するための窓421が設けられてもよい。
10.2 作用
プリズム170Aと中間層310AとKBBF結晶210AとKBBF結晶210Bと中間層310Bとプリズム170Bとを互いに密着させる方向に圧力を加えた状態を保持する構成とすることで、それぞれの接合状態を向上することが可能となってよい。その結果、波長変素子による変換効率の向上や長寿命化を実現することができてもよい。
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
上述の実施形態においては、増幅器7が1つである例を示したが、複数の増幅器7を直列あるいは並列に配置してもよい。また、Ti:サファイアレーザ6と増幅器7は共通のポンピングレーザ5によってポンピングしているが、別々のポンピングレーザを使用してもよい。また、ポンピングレーザ5としてNd:YLFレーザあるいはNd:YVOレーザの第2高調波光を出力するレーザを使用してもよい。また、Ti:サファイアレーザ6の代わりにエルビウムドープト光ファイバレーザの第2高調波光を発生するレーザを使用してもよい。このレーザは、半導体レーザによってポンピングしてもよい。また、波長変換装置9は、本開示の構成に限定されるものではなく、波長変換装置9に入射される光を増幅装置3の増幅波長帯域の波長、例えば略193nmの波長の光に変換するものであればよい。例えば、波長変換装置9に含まれる非線形光学結晶としては、LBO結晶の代わりにCLBO結晶を使用してもよい。
1 2ステージレーザ装置(レーザシステム)
2 固体レーザ装置
3 増幅装置
4 低コヒーレンス化光学システム
5 ポンピングレーザ
6 Ti:サファイアレーザ
7 増幅器
9 波長変換装置
11、15、16、17 高反射ミラー
14 出力結合ミラー
18、19 ウィンドウ
20 チャンバ
21 アノード
22 カソード
23 放電空間
31、31a、31b、31c、32、33 パルスレーザ光
51、51a、51b 励起光
81 ビームスプリッタ
82 高反射ミラー
91 第一波長変換器
92 第二波長変換器
101、102、103、104、105、106、107、108、301、305、306、307、308 波長変換器
110、110A、110B、120、130、140、150、160A、160B、170A、170B プリズム
111、111a 入射用面
111b 出射面
112 出射面
113、113a、113b、163a、163b 接合面
124a、124b、124c、134a、134b、144a、144b 部分
161a、161b 溝
210、210A、210B、220 KBBF結晶
211 接合面(第1接合面)
212 反射面(接合面、第2接合面)
211a、211b、212a、212b、221、222 接合面
310、310A、310B、340A、340B 中間層
331、332、343a、343b 接合面
341a、341b 溝
400 ホルダ
410 第1部材
411 窓
412 端部
420 第2部材
422 端部
421 窓
431 ボルト

Claims (25)

  1. レーザ光を入力して、該レーザ光と異なる波長の光を出力する波長変換器であって、
    第1非線形光学結晶と、
    前記第1非線形光学結晶の第1接合面における外周から所定距離以上内側の領域に接合された第1光学部材と、
    を含む波長変換器。
  2. 前記第1非線形光学結晶は、KBBF結晶である、請求項1記載の波長変換器。
  3. 前記第1非線形光学結晶と前記第1光学部材との接合は、オプティカルコンタクトである、請求項1記載の波長変換器。
  4. 前記第1光学部材は、プリズムを含む、請求項1記載の波長変換器。
  5. 前記第1非線形光学結晶において前記第1接合面とは反対側に位置する第2接合面における外周から所定距離以上内側の領域に接合された第2光学部材をさらに備える、
    請求項1記載の波長変換器。
  6. 前記第1非線形光学結晶と前記第2光学部材との接合は、オプティカルコンタクトである、請求項5記載の波長変換器。
  7. 前記第1および第2光学部材は、それぞれプリズムを含む、請求項5記載の波長変換器。
  8. 前記第1非線形光学結晶において前記第1接合面とは反対側に位置する第2接合面と接合された第2非線形光学結晶をさらに備える、
    請求項1記載の波長変換器。
  9. 前記第1非線形光学結晶と前記第2非線形光学結晶との接合は、オプティカルコンタクトである、請求項8記載の波長変換器。
  10. 前記第2非線形光学結晶は、前記第1非線形光学結晶の前記第2接合面における外周から所定距離以上内側の前記領域に接合する、
    請求項8記載の波長変換器。
  11. 前記第2非線形光学結晶において前記第1非線形光学結晶との第3接合面とは反対側に位置する第4接合面における外周から所定距離以上内側の領域に接合された第2光学部材をさらに備える、
    請求項8記載の波長変換器。
  12. 前記第2非線形光学結晶と前記第2光学部材との接合は、オプティカルコンタクトである、請求項11記載の波長変換器。
  13. 前記第1および第2光学部材は、それぞれプリズムを含む、請求項11記載の波長変換器。
  14. 前記第1非線形光学結晶において前記第1接合面とは反対側に位置する第2接合面側に配置された第2非線形光学結晶と、
    前記第1非線形光学結晶の前記第2接合面における外周から所定距離以上内側の領域に接合され、かつ、前記第2非線形光学結晶において前記第1非線形光学結晶側に位置する第3接合面における外周から所定距離以上内側の領域に接合された中間層と、
    をさらに備える、請求項1記載の波長変換器。
  15. 前記第2非線形光学結晶において前記第3接合面とは反対側に位置する第4接合面における外周から所定距離以上内側の領域に接合された第2光学部材をさらに備える、
    請求項14記載の波長変換器。
  16. 前記第1および第2光学部材は、それぞれプリズムを含む、請求項15記載の波長変換器。
  17. レーザ光を入力して、該レーザ光と異なる波長の光を出力する波長変換器であって、
    第1非線形光学結晶と、
    前記第1非線形光学結晶の第1接合面における外周から所定距離以上内側の領域に接合された第1中間層と、
    前記第1中間層において前記第1接合面とは反対側に位置する第2接合面に接合された第1光学部材と、
    を含む波長変換器。
  18. 前記第1非線形光学結晶において前記第1接合面とは反対側に位置する第3接合面における外周から所定距離以上内側の領域に接合された第2光学部材をさらに含む、
    請求項17記載の波長変換器。
  19. 前記第1非線形光学結晶において前記第1接合面とは反対側に位置する第3接合面における外周から所定距離以上内側の領域に接合された第2中間層と、
    前記第2中間層の前記第3接合面とは反対側に位置する第4接合面に接合された第2光学部材と、
    をさらに含む、請求項17記載の波長変換器。
  20. 前記第1非線形結晶において前記第1接合面とは反対側に位置する第3接合面に接合された第2非線形光学結晶と、
    前記第2非線形光学結晶において前記第3接合面とは反対側に位置する第4接合面における外周から所定距離以上内側の領域に接合された第2中間層と、
    前記第2中間層において前記第4接合面とは反対側に位置する第5接合面に接合された第2光学部材と、
    をさらに含む、請求項17記載の波長変換器。
  21. 前記第1非線形光学結晶は、前記第1非線形光学結晶の前記第3面における外周から所定距離以上内側の領域に接合されている、請求項20記載の波長変換器。
  22. 前記第1非線形光学結晶において前記第1接合面とは反対側に位置する第3接合面側に配置された第2非線形光学結晶と、
    前記第1非線形光学結晶の前記第3接合面における外周から所定距離以上内側の領域に接合され、かつ、前記第2非線形光学結晶において前記第1非線形光学結晶側に位置する第4接合面における外周から所定距離以上内側の領域に接合された第2中間層と、
    前記第2非線形光学結晶において前記第4接合面とは反対側に位置する第5接合面における外周から所定距離以上内側の領域に接合された第3中間層と、
    前記第3中間層において前記第5接合面とは反対側に位置する第6接合面に接合された第2光学部材と、
    をさらに含む、請求項17記載の波長変換器。
  23. レーザ光を入力して、該レーザ光と異なる波長の光を出力する波長変換装置であって、
    請求項5、11、18、19、20または22記載の波長変換器と、
    前記第1プリズムを前記第1および第2中間層と前記第1および第2非線形光学結晶とを挟んで前記第2プリズム側へ付勢する圧力をかけた状態に保持するホルダと、
    を備える波長変換装置。
  24. レーザ光を出力するように構成されたレーザと、
    前記レーザ光を増幅するように構成された増幅部と、
    増幅後の前記レーザ光を波長変換するように構成された、請求項1記載の波長変換器と、
    を備える固体レーザ装置。
  25. 請求項24記載の固体レーザ装置と、
    前記固体レーザ装置から出力されたレーザ光を増幅するように構成された増幅装置と、
    を備えるレーザシステム。
JP2012225191A 2012-02-08 2012-10-10 波長変換器、波長変換装置、固体レーザ装置およびレーザシステム Pending JP2013178462A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012225191A JP2013178462A (ja) 2012-02-08 2012-10-10 波長変換器、波長変換装置、固体レーザ装置およびレーザシステム
US13/710,658 US8934510B2 (en) 2012-02-08 2012-12-11 Wavelength converter, wavelength converting device, solid state laser device, and laser system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012025411 2012-02-08
JP2012025411 2012-02-08
JP2012225191A JP2013178462A (ja) 2012-02-08 2012-10-10 波長変換器、波長変換装置、固体レーザ装置およびレーザシステム

Publications (1)

Publication Number Publication Date
JP2013178462A true JP2013178462A (ja) 2013-09-09

Family

ID=48902849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012225191A Pending JP2013178462A (ja) 2012-02-08 2012-10-10 波長変換器、波長変換装置、固体レーザ装置およびレーザシステム

Country Status (2)

Country Link
US (1) US8934510B2 (ja)
JP (1) JP2013178462A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460125B (zh) * 2011-03-28 2016-05-25 三菱电机株式会社 波长变换晶体以及波长变换激光装置
CN104092092B (zh) * 2014-07-29 2016-03-30 中国科学院理化技术研究所 一种氟硼铍酸钾族晶体斜入射激光倍频器
WO2016065314A1 (en) * 2014-10-23 2016-04-28 Automaton, Inc. Systems and methods for rfid tag locating using constructive interference
US9740081B1 (en) * 2015-02-20 2017-08-22 Iowa State Research Foundation, Inc. Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323247A (ja) * 1996-06-04 1997-12-16 Nikon Corp 極薄板光学部材の加工方法及び極薄板光学部品
JP2002365679A (ja) * 2001-04-18 2002-12-18 Technical Inst Of Physics & Chemistry Chinese Academy Of Science 非線形光学クリスタル・レーザー周波数変換カプラ
JP2008124321A (ja) * 2006-11-14 2008-05-29 Nikon Corp レーザ装置、光照射装置及び露光装置、並びに光生成方法、光照射方法、露光方法及びデバイス製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148895A1 (ja) * 2010-05-24 2011-12-01 ギガフォトン株式会社 固体レーザ装置およびレーザシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323247A (ja) * 1996-06-04 1997-12-16 Nikon Corp 極薄板光学部材の加工方法及び極薄板光学部品
JP2002365679A (ja) * 2001-04-18 2002-12-18 Technical Inst Of Physics & Chemistry Chinese Academy Of Science 非線形光学クリスタル・レーザー周波数変換カプラ
JP2008124321A (ja) * 2006-11-14 2008-05-29 Nikon Corp レーザ装置、光照射装置及び露光装置、並びに光生成方法、光照射方法、露光方法及びデバイス製造方法

Also Published As

Publication number Publication date
US20130202003A1 (en) 2013-08-08
US8934510B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
JP4925085B2 (ja) 深紫外レーザー光の発生方法および深紫外レーザー装置
US20070264734A1 (en) Solid-state laser device and method for manufacturing wavelength conversion optical member
US8587863B2 (en) Wavelength conversion device, solid-state laser apparatus, and laser system
JPWO2006103767A1 (ja) モード制御導波路型レーザ装置
US20120236894A1 (en) Wavelength conversion device, solid-state laser apparatus, and laser system
JP2013222173A (ja) レーザ装置
JP4231829B2 (ja) 内部共振器型和周波混合レーザ
JP2013178462A (ja) 波長変換器、波長変換装置、固体レーザ装置およびレーザシステム
JP6592784B2 (ja) 固体レーザシステムおよびエキシマレーザシステム
CN111404011A (zh) 一种高次谐波激光器
JP5410344B2 (ja) レーザ装置
JP2013135075A (ja) 固体レーザ増幅器、レーザ光増幅器、固体レーザ装置、およびレーザ装置
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
US11264773B2 (en) Laser apparatus and method for manufacturing optical element
JP2006310743A (ja) レーザ発振装置
JP5855229B2 (ja) レーザ装置
US20170149199A1 (en) Laser device
JP2012168498A (ja) 波長変換素子、固体レーザ装置およびレーザシステム
JPH06120586A (ja) 固体レーザ装置
US20080020083A1 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
US20230387648A1 (en) Uv laser systems, devices, and methods
JP5232884B2 (ja) 紫外レーザ装置
JP4713281B2 (ja) コレステロール除去用赤外線発生装置
JP2003304019A (ja) 波長変換レーザ装置
JPH0555671A (ja) 半導体レーザ励起固体レーザ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170208