WO2012132431A1 - リレー溶着検出回路及び電力供給システム - Google Patents

リレー溶着検出回路及び電力供給システム Download PDF

Info

Publication number
WO2012132431A1
WO2012132431A1 PCT/JP2012/002153 JP2012002153W WO2012132431A1 WO 2012132431 A1 WO2012132431 A1 WO 2012132431A1 JP 2012002153 W JP2012002153 W JP 2012002153W WO 2012132431 A1 WO2012132431 A1 WO 2012132431A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
relay
detection circuit
welding
side relay
Prior art date
Application number
PCT/JP2012/002153
Other languages
English (en)
French (fr)
Inventor
慎太朗 田崎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/007,713 priority Critical patent/US9001483B2/en
Publication of WO2012132431A1 publication Critical patent/WO2012132431A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a relay welding detection circuit, and more particularly to a relay welding detection circuit for a relay used in a charging circuit for charging a storage battery of an electric vehicle or the like, and a power supply system provided with the relay welding detection circuit.
  • relay circuit for connecting and disconnecting a quick charger and a battery connection junction circuit at the time of charging has been used in a charging circuit of an electric vehicle.
  • a mechanical relay contact (hereinafter abbreviated as “relay”) is used for this relay circuit, and the relay may be welded by ON / OFF at the time of high voltage and high current.
  • a relay welding detection circuit for detecting such relay welding is known (for example, see Patent Document 1).
  • the input impedance of the relay welding detection circuit is not set to a predetermined value (for example, 1 M ⁇ or more)
  • problems such as current flowing from the quick charger to the welding detection circuit occur, so the input side of the relay welding detection circuit It was necessary to increase the impedance. Further, in order to insulate and detect the detection voltage, it is also necessary to supply drive power to the secondary side.
  • An object of the present invention is to provide a relay welding detection circuit and a power supply system provided with the relay welding circuit, in which the relay welding detection circuit can have a high impedance configuration.
  • the relay welding detection circuit of the present invention is provided in a charging path from an external power source to a power storage device, and detects welding of a relay having a power-side relay and a ground-side relay that can be individually controlled to be on or off.
  • a voltage detection circuit for controlling whether or not to supply power for welding detection to the power supply unit based on a voltage on the external power supply side of the power supply relay, and the power supply relay and the ground relay
  • the voltage detection circuit that individually controls an on state or an off state, and that performs welding detection based on whether or not the voltage detection circuit supplies power for detection of welding at this time;
  • a configuration comprising electrically insulated control unit.
  • the power supply system of the present invention supplies / cuts off current to the power storage device in a charging path to the power storage device that supplies power from an external power source to the vehicle driving motor, and individually turns on or off.
  • a power supply system for an electric vehicle having a relay welding detection circuit for detecting welding of a relay having a power-side relay and a ground-side relay capable of controlling the state, for detecting welding independently of the external power source
  • a power supply unit capable of supplying power, and a circuit in which a current flowing from the external power supply side of the power supply side relay becomes substantially zero, and based on a voltage on the external power supply side of the power supply side relay to the power supply unit
  • a voltage detection circuit that controls whether or not to supply power for welding detection, and an on state or an off state of the power supply side relay and the ground side relay.
  • the circuit is a switch using a transistor, and the collector terminal of the transistor is electrically connected to the positive terminal of the power supply unit, and the emitter terminal of the transistor is connected to the charging path side of the external power source of the ground side relay. Electrically connected, the base terminal of the transistor is electrically connected to the charging path on the external power supply side of the power supply side relay, and the negative electrode terminal of the power supply unit is connected to the negative electrode terminal of the power storage device take.
  • the present invention it is possible to provide a relay welding detection circuit and a power supply system including the relay welding circuit that can have a high impedance configuration.
  • FIG. 1 is a schematic configuration explanatory diagram of a power supply system of an electric vehicle according to a first embodiment of the present invention. Operation processing flowchart of the above embodiment Timing chart of the above embodiment Description of schematic configuration of power supply system of electric vehicle according to Embodiment 2 of the present invention Operation processing flowchart of the above embodiment Timing chart of the above embodiment
  • (Embodiment 1) 1 is a schematic configuration explanatory diagram of a power supply system of an electric vehicle according to Embodiment 1.
  • FIG. 1 is a schematic configuration explanatory diagram of a power supply system of an electric vehicle according to Embodiment 1.
  • a charging terminal 12 is provided on the body 10 of the electric vehicle.
  • the charging terminal 12 is provided with a lid 11.
  • the lid 11 is bound during non-charging and the charging terminal 12 is shielded from the outside, and the lid 11 is opened during charging.
  • power is supplied to the charging terminal 12 from the external power supply PW through the power supply plug SP.
  • the positive terminal (+) of the first battery 14 for supplying electric power to the vehicle driving motor is connected to the power terminal 12P of the charging terminal 12 via the power relay RYP.
  • the negative terminal ( ⁇ ) of the first battery is connected to the ground-side terminal 12N of the charging terminal 12 via the ground-side relay RYN.
  • the negative terminal of the second battery 15 (power supply unit) for supplying power to the in-vehicle accessory is connected to the negative terminal of the first battery 14.
  • the positive terminal of the second battery 15 is connected to the anode terminal of the photodiode 16A constituting the photocoupler 16, and the cathode terminal of the photodiode 16A is connected to the collector terminal of the transistor switch 17.
  • the emitter terminal of the transistor switch 17 is connected to the ground side terminal 12N of the charging terminal 12, and the base terminal is connected to the power source side terminal 12P of the charging terminal 12 through the current limiting resistor R (external power source PW side of the power source side relay RYP). It is connected.
  • the reason why a transistor (FET, MOS, etc.) is used for the switch is that the impedance of the terminal for controlling ON / OFF of the switch is very high. That is, in the transistor switch 17 (corresponding to a voltage detection circuit), the current flowing from the external power supply PW side of the power supply side relay RYP becomes substantially zero.
  • the collector of the phototransistor 16B constituting the photocoupler 16 is connected to the voltage detection terminal of the control unit (controller) 18.
  • the emitter terminal of the phototransistor 16B is connected to the vehicle body ground.
  • the control unit 18 is electrically insulated from the high voltage side (transistor switch 17 side) by the photocoupler 16.
  • control unit 18 includes a relay welding determination device 19 that outputs a control signal Vryp for performing on / off control of the power supply side relay RYP and a control signal Vryn for performing on / off control of the ground side relay RYN.
  • FIG. 2 is an operation process flowchart of the welding detection operation of the first embodiment.
  • the control unit 18 controls the power supply side relay RYP and the ground side relay RYN. At this time, whether or not the voltage output from the first battery 14 is transmitted to the external power supply PW side of the power supply side relay RYP.
  • This is an operation of detecting welding by determining whether or not. If electric energy is supplied from the external power supply PW to the first battery 14, the voltage on the external power supply PW side of the power supply side relay RYP is fixed to the voltage supplied by the external power supply PW. Therefore, the welding detection operation is executed when electric energy is not supplied from the external power source PW to the first battery 14.
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP to perform control to turn off the power supply side relay RYP (step S11).
  • the reason why the power supply side relay RYP is expressed as “control to turn off” is that the power supply side relay RYP cannot be turned off if the power supply side relay RYP is welded.
  • FIG. 3 is a timing chart of the first embodiment.
  • the control unit 18 outputs the control signal Vryn to the ground side relay RYN, and performs control to turn off the ground side relay RYN (step S12).
  • ground side relay RYN is expressed as “control to turn off” because the ground side relay RYN cannot be turned off if the ground side relay RYN is welded.
  • control unit 18 determines whether or not a voltage is detected at the voltage detection terminal Vde, that is, whether or not a voltage on the quick charger QC side is detected (step S13; timing t A ).
  • step S13 if a voltage at the time of abnormality is detected at the voltage detection terminal Vde (step S13; Yes), it is determined that the power supply side relay RYP and the ground side relay RYN are welded (step S21). ).
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP, outputs the control and control signal Vryn for turning off the power supply side relay RYP to the ground side relay RYN, and turns off the ground side relay RYN. Control to set the state is performed, and the process is terminated (step S24).
  • step S13 If no abnormal voltage is detected at the voltage detection terminal Vde in step S13 (step S13; No), at least one of the power supply side relay RYP and the ground side relay RYN is off at that time. Since it is in the state, the control unit 18 outputs the control signal Vryp to the power supply side relay RYP to turn on the power supply side relay RYP (step S14).
  • control unit 18 determines whether or not a voltage is detected at the voltage detection terminal Vde, that is, whether or not a voltage on the quick charger QC side is detected (step S15; timing t B ).
  • step S15 If it is determined in step S15 that an abnormal voltage is detected at the voltage detection terminal Vde (step S15; Yes), it is determined that the ground-side relay RYN is welded (step S22).
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP, outputs the control and control signal Vryn for turning off the power supply side relay RYP to the ground side relay RYN, and turns off the ground side relay RYN. (Step S24), and the process ends (END). Note that “end” in FIG. 3 is also synonymous with “end” in FIG.
  • step S15 if no voltage is detected at the voltage detection terminal Vde (step S15; No), the ground-side relay RYN is not welded and is in an off state at that time. 18 outputs a control signal Vryp to the power supply side relay RYP to perform control to turn off the power supply side relay RYP (step S16).
  • control unit 18 outputs the control signal Vryn to the ground side relay RYN to turn on the ground side relay RYN (step S17).
  • control unit 18 determines whether or not a voltage is detected at the voltage detection terminal Vde, that is, whether or not a voltage on the quick charger QC side is detected (step S18; timing t C ).
  • step S18 If it is determined in step S18 that an abnormal voltage is detected at the voltage detection terminal Vde (step S18; Yes), it is determined that the power supply side relay RYP is welded (step S23).
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP, outputs the control and control signal Vryn for turning off the power supply side relay RYP to the ground side relay RYN, and sets the ground side relay RYN to the off state. Control is performed (step S24), and the process ends (END).
  • step S18 If no abnormal voltage is detected at the voltage detection terminal Vde in step S18 (step S18; No), the power supply side relay RYP and the ground side relay RYN are not welded. It is determined that there is none (step S19).
  • control signal Vryp is output to the power supply side relay RYP, the power supply side relay RYP and the ground side relay RRY are turned off (step S20), and the process is ended (end).
  • the relay welding state can be reliably detected without using power from an external power source, and a relay welding circuit having a high impedance configuration is configured. Appropriate measures such as warnings can be taken.
  • FIG. 4 is a schematic configuration explanatory diagram of a power system of the electric vehicle according to the second embodiment.
  • the same parts as those in FIG. 4 are identical to FIG. 4, the same parts as those in FIG. 4, the same parts as those in FIG. 4, the same parts as those in FIG.
  • the positive terminal of the battery 14 for supplying electric power to the vehicle driving motor is connected to the power terminal 12P of the charging terminal 12 of the electric vehicle 10 via the power relay RYP.
  • the ground terminal 12N of the charging terminal 12 is connected to the negative terminal of the battery 14 via the ground relay RYN.
  • the power supply side terminal 12P of the charging terminal 12 is connected to one terminal of a capacitor (power supply unit) C for supplying power to the in-vehicle accessory via the current limiting resistor R.
  • a ground side terminal 12N of the charging terminal 12 is connected to the other terminal of the capacitor C.
  • the collector of the phototransistor 20B constituting the second photocoupler 20 is connected to a connection point between the capacitor C and the current limiting resistor R.
  • the anode terminal of the photodiode 20A constituting the second photocoupler 20 is connected to the control terminal Vc2 of the control unit 18, and the cathode terminal is connected to the body ground of the vehicle body 10.
  • the emitter terminal of the phototransistor 20B is connected to the anode terminal of the photodiode 16A constituting the first photocoupler 16, and the cathode terminal of the photodiode 16A is connected to the collector of the transistor switch 17.
  • the emitter terminal of the transistor switch 17 is connected to the ground side terminal 12N of the charging terminal 12, and the base is connected to the power source side terminal 12P of the charging terminal 12 via the current limiting resistor R.
  • the collector of the phototransistor 16B constituting the first photocoupler 16 is connected to the voltage detection terminal Vde of the control unit (controller) 18.
  • the emitter of the phototransistor 16B is connected to the body ground of the vehicle body 10.
  • control unit 18 includes a relay welding determination device 21 that outputs a control signal Vryp for performing on / off control of the power supply side relay RYP and a control signal Vryn for performing on / off control of the ground side relay RYN. Constitute.
  • the control unit 18 outputs an “H” level control signal from the control terminal Vc2 at the time of relay welding determination.
  • FIG. 5 is a flowchart of the welding detection operation of the second embodiment.
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP and performs control to turn off the power supply side relay RYP (step S31).
  • the reason why the power-side relay RYP is controlled to be in the off state is that, as in the first embodiment, if the power-side relay RYP is in the welded state, it cannot be turned off. .
  • control unit 18 outputs the control signal Vryn to the ground side relay RYN and performs control to turn off the ground side relay RYN (step S32).
  • the reason why the ground-side relay RYN is controlled to be turned off is that the ground-side relay RYN cannot be turned off if the ground-side relay RYN is welded.
  • the control unit 18 sets the control signal output from the control terminal Vc2 to the “H” level, and turns on the second photocoupler 20 (step S33).
  • control unit 18 determines whether or not a voltage at the time of abnormality is detected at the voltage detection terminal Vde, that is, whether or not a voltage on the quick charger QC side is detected (step S34; timing t D ).
  • step S34 If it is determined in step S34 that an abnormal voltage is detected at the voltage detection terminal Vde (step S34; Yes), it is determined that the power supply side relay RYP and the ground side relay RYN are welded (step S43). ).
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP, outputs the control and control signal Vryn for turning off the power supply side relay RYP to the ground side relay RYN, and turns off the ground side relay RYN.
  • Control is performed (step S46), the control signal output from the control terminal Vc2 is set to the “L” level, the second photocoupler 20 is turned off (step S47), and the process ends (end).
  • step S34 If no abnormal voltage is detected at the voltage detection terminal Vde in step S34 (step S34; No), at least one of the power supply side relay RYP and the ground side relay RYN is off at that time. Since it is in the state, the control unit 18 outputs the control signal Vryp to the power supply side relay RYP to turn on the power supply side relay RYP (step S35).
  • the controller 18 determines whether or not an abnormal voltage is detected at the voltage detection terminal Vde, that is, whether or not a voltage on the quick charger QC side is detected (step S36; timing t E ). .
  • step S36 If it is determined in step S36 that an abnormal voltage is detected at the voltage detection terminal Vde (step S36; Yes), it is determined that the ground side relay RYN is welded (step S44).
  • a timing chart is when it becomes as shown in FIG. 6 (c), the at timing t D, while the voltage of the voltage detection terminal Vde was "H” level, the timing at timing t E, the voltage of the voltage detection terminal Vde a case in which changes to "L" level.
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP, outputs the control and control signal Vryn for turning off the power supply side relay RYP to the ground side relay RYN, and sets the ground side relay RYN to the off state.
  • Step S46 the control signal output from the control terminal Vc2 is set to the “L” level, the second photocoupler 20 is turned off (step S47), and the process ends (end).
  • step S36 If the abnormal voltage is not detected at the voltage detection terminal Vde in the determination of step S36 (step S36; No), the ground side relay RYN is not welded and is in an off state at that time.
  • the control unit outputs the control signal Vryp to the power supply side relay RYP and performs control to turn off the power supply side relay RYP (step S37).
  • control unit 18 outputs the control signal Vryn to the ground side relay RYN to turn on the ground side relay RYN (step S38).
  • control unit 18 determines whether or not a voltage at the time of abnormality is detected at the voltage detection terminal Vde, that is, whether or not a voltage on the quick charger side is detected (step S39; timing t F ).
  • step S39 If it is determined in step S39 that an abnormal voltage is detected at the voltage detection terminal Vde (step S39; Yes), it is determined that the power supply side relay RYP is welded (step S45).
  • this welding state is when the timing chart is as shown in FIG. 6D, and the voltage at the voltage detection terminal Vde is “H” at both timings t D and t E. "became remains level, the voltage of the voltage detection terminal Vde at the timing of the timing t F is" a case where a L "level.
  • control unit 18 outputs the control signal Vryp to the power supply side relay RYP, outputs the control and control signal Vryn for turning off the power supply side relay RYP to the ground side relay RYN, and turns off the ground side relay RYN.
  • Control is performed (step S46), the control signal output from the control terminal Vc2 is set to the “L” level, the second photocoupler 20 is turned off (step S47), and the process ends (end).
  • step S39 when the voltage at the time of abnormality is not detected at the voltage detection terminal Vde (step S39; No), the power supply side relay RYP and the ground side relay RYN are not welded, that is, abnormal. It is determined that there is none (step S40).
  • control signal Vryp is output to the power supply side relay RYP, and the power supply side relay RYP and the ground side relay RRY are turned off (step S41).
  • control unit 18 sets the control signal output from the control terminal Vc2 to the “L” level, turns off the second photocoupler 20 (step S42), and ends the processing (end).
  • the relay welding state can be reliably detected without using power from an external power source, and a relay welding circuit having a high impedance configuration is configured. Appropriate measures such as warnings can be taken.
  • the relay welding detection circuit and the power supply system using this relay welding detection circuit according to the present invention are not limited to a battery-driven pure electric vehicle, but may be a so-called hybrid vehicle or a plug-in hybrid vehicle. Applicable.
  • SYMBOLS 10 Vehicle 11 Cover part 12 Charging terminal 12N Ground side terminal 12P Power supply side terminal 14 1st battery 15 2nd battery (Power supply part, electrical storage part) DESCRIPTION OF SYMBOLS 16 Photocoupler 16A Photodiode 16B Phototransistor 17 Transistor switch 18 Control part 19 Relay welding determination apparatus 20 2nd photocoupler 20A Photodiode 20B Phototransistor 21 Relay welding determination apparatus C Capacitor (power supply part, electrical storage part) PW External power supply QC Quick charger R Current limiting resistor RYN Ground side relay RYP Power supply side relay SP Feeding plug Vc2 Control terminal Vde Voltage detection terminal Vryn Control signal Vryp Control signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 リレーの溶着検出回路をハイインピーダンス構成とするリレー溶着検出回路。この回路は、外部電源PWから第1バッテリ(14)への充電経路に設けられたリレーRYP,RYNの溶着検出を行うリレー溶着検出回路であって、外部電源PWとは独立して溶着検出用電源を供給可能な第2バッテリ(15)と、リレーの外部電源PW側から流れ込む電流が略ゼロとなる回路であり、リレーの外部電源PW側の電圧に基づき第2バッテリ(15)に対して溶着検出用の電源を供給させるか否かを制御するトランジスタスイッチ(17)と、トランジスタスイッチ(17)とは電気的に絶縁され、トランジスタスイッチ(17)が溶着検出用の電源を供給したか否かに基づいて溶着検出を行う制御部(18)と、を備える。

Description

リレー溶着検出回路及び電力供給システム
 本発明は、リレー溶着検出回路に係り、特に電気自動車等の蓄電池に充電するための充電回路に用いられているリレーのリレー溶着検出回路及びこのリレー溶着検出回路を備えた電力供給システムに関する。
 従来、電気自動車の充電回路には、充電時に急速充電器とバッテリ接続用ジャンクション回路との接続及び切断を行うためのリレー回路が用いられている。このリレー回路には機械式のリレー接点(以下、リレーと略記)が用いられ、高電圧高電流時のオンオフによりリレーが溶着してしまうことが起こる。このようなリレーの溶着を検出するためのリレー溶着検出回路が知られている(例えば、特許文献1参照)。
 従来、リレー溶着検出回路の入力側インピーダンスを所定の値(例えば、1MΩ以上)にしないと、急速充電器から溶着検知回路に電流が流れ込む等の不具合が発生するため、リレー溶着検出回路の入力側をハイインピーダンス化する必要があった。また、検知電圧を絶縁して検出するにあたり、二次側に駆動電源を供給する必要もあった。
特開2006-310219号公報
 上記従来のリレー溶着検出回路においては、急速充電器側からフォトカプラ等の絶縁デバイスの電源を確保する構成であるため、リレー溶着検知回路のインピーダンスが低くなってしまい、急速充電器がこのインピーダンスに流れる電流を漏電であると判断して充電開始ができなくなってしまうという問題があった。
 本発明の目的は、リレーの溶着検出回路をハイインピーダンス構成とすることが可能なリレーの溶着検出回路及びリレーの溶着回路を備えた電力供給システムを提供することである。
 本発明のリレー溶着検出回路は、外部電源から蓄電装置への充電経路に設けられ、かつ、個別にオン状態またはオフ状態が制御可能な電源側リレー及びグランド側リレーを有したリレーの溶着検出を行うリレー溶着検出回路であって、前記外部電源とは独立して溶着検出用電源を供給可能な電源供給部と、前記電源側リレーの前記外部電源側から流れ込む電流が略ゼロとなる回路であり、前記電源側リレーの前記外部電源側の電圧に基づき前記電源供給部に対して溶着検出用の電源を供給させるか否かを制御する電圧検出回路と、前記電源側リレー及び前記グランド側リレーのオン状態またはオフ状態を個別に制御し、このときに前記電圧検出回路が前記溶着検出用の電源を供給したか否かに基づいて溶着検出を行う、前記電圧検出回路とは電気的に絶縁された制御部と、を備える構成を採る。
 また、本発明の電力供給システムは、外部電源から車両駆動用モータへ電源を供給する蓄電装置への充電経路において前記蓄電装置への電流の供給/遮断を行い、かつ、個別にオン状態またはオフ状態が制御可能な電源側リレー及びグランド側リレーを有したリレーの溶着検出を行うリレー溶着検出回路を備えた電気自動車用の電力供給システムであって、前記外部電源とは独立して溶着検出用電源を供給可能な電源供給部と、前記電源側リレーの前記外部電源側から流れ込む電流が略ゼロとなる回路であり、前記電源側リレーの前記外部電源側の電圧に基づき前記電源供給部に対して溶着検出用の電源を供給させるか否かを制御する電圧検出回路と、前記電源側リレー及び前記グランド側リレーのオン状態またはオフ状態を個別に制御し、このときに前記電圧検出回路が前記溶着検出用の電源を供給したか否かに基づいて溶着検出を行う、前記電圧検出回路とは電気的に絶縁された制御部と、を備え、前記電圧検出回路は、トランジスタを用いたスイッチであり、前記トランジスタのコレクタ端子を前記電源供給部の正極端子と電気的に接続し、前記トランジスタのエミッタ端子を前記グランド側リレーの前記外部電源の充電経路側と電気的に接続し、前記トランジスタのベース端子を前記電源側リレーの前記外部電源側の充電経路と電気的に接続し、前記電源供給部の負極端子を前記蓄電装置の負極端子と接続した構成を採る。
 本発明によれば、リレー溶着検出回路をハイインピーダンス構成とすることが可能なリレー溶着検出回路及びリレー溶着回路を備えた電力供給システムを提供することができる。
本発明の実施の形態1の電気自動車の電源系統の概要構成説明図 上記実施の形態の動作処理フローチャート 上記実施の形態のタイミングチャート 本発明の実施の形態2の電気自動車の電源系統の概要構成説明図 上記実施の形態の動作処理フローチャート 上記実施の形態のタイミングチャート
 次に、本発明の好適な実施形態について図面を参照して説明する。
 (実施の形態1)
 図1は、実施の形態1に係る電気自動車の電源系統の概要構成説明図である。
 電気自動車の車体10には、充電端子12が設けられている。充電端子12には蓋部11が設けられている。非充電時において蓋部11が綴じられて充電端子12は外部より遮蔽され、充電時において蓋部11は開けられる。充電時、充電端子12には、外部電源PWから給電プラグSPを介して電源が供給される。
 充電端子12の電源側端子12Pには、電源側リレーRYPを介して車両駆動用モータに電力を供給するための第1バッテリ14の正極(+)端子が接続されている。
 第1バッテリの負極(-)端子は、グランド側リレーRYNを介して充電端子12のグランド側端子12Nが接続されている。
 さらに第1バッテリ14の負極端子には、車載アクセサリに電力を供給するための第2バッテリ15(電源供給部)の負極端子が接続されている。
 第2バッテリ15の正極端子は、フォトカプラ16を構成するフォトダイオード16Aのアノード端子に接続されており、フォトダイオード16Aのカソード端子は、トランジスタスイッチ17のコレクタ端子に接続されている。
 トランジスタスイッチ17のエミッタ端子は充電端子12のグランド側端子12Nに接続され、ベース端子は、電流制限抵抗Rを介して充電端子12の電源側端子12P(電源側リレーRYPの外部電源PW側)に接続されている。ここで、スイッチにトランジスタ(FET、MOSなど)を用いるのは、スイッチのON/OFFを制御する端子のインピーダンスが非常に高いからである。すなわち、トランジスタスイッチ17(電圧検出回路に相当)は、電源側リレーRYPの外部電源PW側から流れ込む電流が略ゼロとなる。
 フォトカプラ16を構成しているフォトトランジスタ16Bのコレクタは、制御部(コントローラ)18の電圧検出端子に接続されている。フォトトランジスタ16Bのエミッタ端子は車両のボディグランドに接続されている。このフォトカプラ16により制御部18は高電圧側(トランジスタスイッチ17の側)と電気的に絶縁される。
 ここで、制御部18は、電源側リレーRYPのオン/オフ制御を行うための制御信号Vryp及びグランド側リレーRYNのオン/オフ制御を行うための制御信号Vrynを出力するリレー溶着判定装置19を構成する。
 次に、実施の形態1の動作について説明する。図2は、実施の形態1の溶着検出動作の動作処理フローチャートである。溶着検出動作とは、制御部18が電源側リレーRYPおよびグランド側リレーRYNを制御し、このときに電源側リレーRYPの外部電源PW側に第1バッテリ14が出力する電圧が伝達されているか否かを判定することで溶着を検出する動作である。なお、外部電源PWから第1バッテリ14への電気エネルギの供給が行われていれば、電源側リレーRYPの外部電源PW側の電圧が外部電源PWにより供給される電圧に固定されてしまう。したがって、溶着検出動作は、外部電源PWから第1バッテリ14への電気エネルギの供給が行われていないときに実行される。
 まず制御部18は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオフ状態とする制御を行う(ステップS11)。
 ここで、電源側リレーRYPを「オフ状態にする制御」と表現しているのは、電源側リレーRYPが溶着状態であれば、オフ状態とすることはできないからである。
 図3は、実施の形態1のタイミングチャートである。
 制御部18は、制御信号Vrynをグランド側リレーRYNに出力し、グランド側リレーRYNをオフ状態とする制御を行う(ステップS12)。
 ここにおいても、グランド側リレーRYNを「オフ状態とする制御」と表現しているのは、グランド側リレーRYNが溶着状態であれば、オフ状態とすることはできないからである。
 次に、制御部18は電圧検出端子Vdeに電圧が検出されているか否か、すなわち急速充電器QC側の電圧が検出されたか否かを判別する(ステップS13;タイミングt)。
 ステップS13の判別において、電圧検出端子Vdeに異常時の電圧が検出されている場合には(ステップS13;Yes)、電源側リレーRYP及びグランド側リレーRYNが溶着していると判断する(ステップS21)。
 この溶着状態とは、具体的には、タイミングチャート図3(b)のようになった場合であり、タイミングtにおいて電圧検出端子Vdeの電圧が”H”から“L”レベルに変化した場合である。
 そして、制御部18は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオフ状態とする制御及び制御信号Vrynをグランド側リレーRYNに出力して、グランド側リレーRYNをオフ状態とする制御を行い、処理を終了する(ステップS24)。
 ステップS13の判別において、電圧検出端子Vdeに異常時の電圧が検出されていない場合には(ステップS13;No)、当該時点では、電源側リレーRYPあるいはグランド側リレーRYNのうち、少なくとも一方はオフ状態であるので、制御部18は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオン状態とする(ステップS14)。
 次に、制御部18は、電圧検出端子Vdeに電圧が検出されているか否か、すなわち急速充電器QC側の電圧が検出されたか否かを判別する(ステップS15;タイミングt)。
 ステップS15の判別において、電圧検出端子Vdeに異常時の電圧が検出されている場合には(ステップS15;Yes)、グランド側リレーRYNが溶着していると判断する(ステップS22)。
 この溶着状態とは、具体的には、タイミングチャート図3(c)のようになった場合であり、タイミングtにおいては、電圧検出端子Vdeの電圧が“H”レベルとなったが、タイミングtのタイミングにおいて電圧検出端子Vdeの電圧が”H”から“L”レベルに変化した場合である。
 そして、制御部18は、制御信号Vrypを電源側リレーRYPに出力し、電源側リレーRYPをオフ状態とする制御及び制御信号Vrynをグランド側リレーRYNに出力して、グランド側リレーRYNをオフ状態とする制御を行い(ステップS24)、処理を終了する(エンド)。なお、図3の”エンド”も図2の”エンド”と同義である。
 ステップS15の判別において、電圧検出端子Vdeに電圧が検出されていない場合には(ステップS15;No)、当該時点では、グランド側リレーRYNは溶着しておらず、オフ状態であるので、制御部18は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオフ状態とする制御を行う(ステップS16)。
 続いて、制御部18は、制御信号Vrynをグランド側リレーRYNに出力して、グランド側リレーRYNをオン状態とする(ステップS17)。
 次に、制御部18は、電圧検出端子Vdeに電圧が検出されているか否か、すなわち急速充電器QC側の電圧が検出されたか否かを判別する(ステップS18;タイミングt)。
 ステップS18の判別において、電圧検出端子Vdeに異常時の電圧が検出されている場合には(ステップS18;Yes)、電源側リレーRYPが溶着していると判断する(ステップS23)。
 この溶着状態とは、具体的には、タイミングチャートが図3(d)のようになった場合であり、タイミングt及びタイミングtにおいては、電圧検出端子Vdeの電圧が“H”レベルとなったが、タイミングtのタイミングにおいて電圧検出端子Vdeの電圧が“L”レベルに変化した場合である。
 そして、制御部18は、制御信号Vrypを電源側リレーRYPに出力し、電源側リレーRYPをオフ状態とする制御及び制御信号Vrynをグランド側リレーRYNに出力し、グランド側リレーRYNをオフ状態とする制御を行い(ステップS24)、処理を終了する(エンド)。
 ステップS18の判別において、電圧検出端子Vdeに異常時の電圧が検出されていない場合には(ステップS18;No)、電源側リレーRYP及びグランド側リレーRYNは、溶着していないこと、すなわち、異常なしと判断する(ステップS19)。
 この状態は、具体的には、タイミングチャートが図3(a)のようになった場合であり、タイミングt、t、tのいずれのタイミングにおいても、電圧検出端子Vdeの電圧が“H”レベルのままとなった場合である。
 そして、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYP及びグランド側リレーRYNをオフ状態とし(ステップS20)、処理を終了する(エンド)。
 以上の説明のように、本実施の形態1によれば、外部電源からの電力を用いることなく、確実にリレーの溶着状態を検出することができ、ハイインピーダンス構成のリレー溶着回路を構成して、警告など適切な処置を施すことができる。
 (実施の形態2)
 図4は、実施の形態2の電気自動車の電源系統の概要構成説明図である。図4において、図1と同様の部分には、同一の符号を付すものとする。
 電気自動車10の充電端子12の電源側端子12Pには、電源側リレーRYPを介して車両駆動用モータに電力を供給するためのバッテリ14の正極端子が接続されている。バッテリ14の負極端子には、グランド側リレーRYNを介して充電端子12のグランド側端子12Nが接続されている。
 充電端子12の電源側端子12Pには、電流制限抵抗Rを介して車載アクセサリに電力を供給するためのコンデンサ(電源供給部)Cの一方の端子が接続されている。コンデンサCの他方の端子には、充電端子12のグランド側端子12Nが接続されている。
 コンデンサCと電流制限抵抗Rの接続点には、第2のフォトカプラ20を構成するフォトトランジスタ20Bのコレクタが接続されている。
 第2のフォトカプラ20を構成するフォトダイオード20Aのアノード端子は、制御部18の制御端子Vc2が接続され、カソード端子は、車体10のボディグランドに接続されている。
 フォトトランジスタ20Bのエミッタ端子は、第1のフォトカプラ16を構成するフォトダイオード16Aのアノード端子に接続されており、フォトダイオード16Aのカソード端子は、トランジスタスイッチ17のコレクタに接続されている。
 トランジスタスイッチ17のエミッタ端子は充電端子12のグランド側端子12Nに接続され、ベースは、電流制限抵抗Rを介して充電端子12の電源側端子12Pに接続されている。
 第1のフォトカプラ16を構成しているフォトトランジスタ16Bのコレクタは、制御部(コントローラ)18の電圧検出端子Vdeに接続されている。フォトトランジスタ16Bのエミッタは、車体10のボディグランドに接続されている。
 ここで、制御部18は、電源側リレーRYPのオン/オフ制御を行うための制御信号Vryp及びグランド側リレーRYNのオン/オフ制御を行うための制御信号Vrynを出力するリレー溶着判定装置21を構成する。制御部18は、リレーの溶着判別時に制御端子Vc2から“H”レベルの制御信号を出力する。
 次に実施の形態2の動作について説明する。図5は、実施の形態2の溶着検出動作のフローチャートである。
 まず、制御部18は、制御信号Vrypを電源側リレーRYPに出力し、電源側リレーRYPをオフ状態とする制御を行う(ステップS31)。
 ここで、電源側リレーRYPをオフ状態とする制御と表現しているのは、実施の形態1と同様に、電源側リレーRYPが溶着状態であれば、オフ状態とすることはできないからである。
 続いて、制御部18は、制御信号Vrynをグランド側リレーRYNに出力して、グランド側リレーRYNをオフ状態とする制御を行う(ステップS32)。
 ここにおいても、グランド側リレーRYNをオフ状態とする制御と表現しているのは、グランド側リレーRYNが溶着状態であれば、オフ状態とすることはできないからである。
 制御部18は、制御端子Vc2から出力される制御信号を“H”レベルとして、第2のフォトカプラ20をオン状態とする(ステップS33)。
 この結果、第1のフォトカプラ16のフォトダイオード16Aに電力供給可能な状態となる。
 次いで、制御部18は、電圧検出端子Vdeに異常時の電圧が検出されているか否か、すなわち急速充電器QC側の電圧が検出されたか否かを判別する(ステップS34;タイミングt)。
 ステップS34の判別において、電圧検出端子Vdeに異常時の電圧が検出されている場合には(ステップS34;Yes)、電源側リレーRYP及びグランド側リレーRYNが溶着していると判断する(ステップS43)。
 この溶着状態とは、具体的には、タイミングチャートが図6(b)のようになった場合であり、タイミングtのタイミングにおいて、電圧検出端子Vdeの電圧が"L"レベルに変化した場合である。
 そして、制御部18は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオフ状態とする制御及び制御信号Vrynをグランド側リレーRYNに出力して、グランド側リレーRYNをオフ状態とする制御を行い(ステップS46)、制御端子Vc2から出力される制御信号を“L”レベルとして、第2のフォトカプラ20をオフ状態とし(ステップS47)、処理を終了する(エンド)。
 ステップS34の判別において、電圧検出端子Vdeに異常時の電圧が検出されていない場合には(ステップS34;No)、当該時点では、電源側リレーRYPあるいはグランド側リレーRYNのうち、少なくとも一方はオフ状態であるので、制御部18は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオン状態とする(ステップS35)。
 次に、制御部18は、電圧検出端子Vdeに異常時の電圧が検出されているか否か、すなわち急速充電器QC側の電圧が検出されたか否かを判別する(ステップS36;タイミングt)。
 ステップS36の判別において、電圧検出端子Vdeに異常時の電圧が検出されている場合には(ステップS36;Yes)、グランド側リレーRYNが溶着していると判断する(ステップS44)。
 この溶着状態とは、具体的には、タイミングチャートが図6(c)のようになった場合であり、タイミングtでは、電圧検出端子Vdeの電圧が“H”レベルであったが、タイミングtのタイミングにおいて、電圧検出端子Vdeの電圧が“L”レベルに変化した場合である。
 そして、制御部18は、制御信号Vrypを電源側リレーRYPに出力し、電源側リレーRYPをオフ状態とする制御及び制御信号Vrynをグランド側リレーRYNに出力し、グランド側リレーRYNをオフ状態とする制御を行い(ステップS46)、制御端子Vc2から出力される制御信号を“L”レベルとし、第2のフォトカプラ20をオフ状態とし(ステップS47)、処理を終了する(エンド)。
 ステップS36の判別において、電圧検出端子Vdeに異常時の電圧が検出されていない場合には(ステップS36;No)、当該時点では、グランド側リレーRYNは溶着しておらず、オフ状態であるので、制御部は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオフ状態とする制御を行う(ステップS37)。
 続いて、制御部18は、制御信号Vrynをグランド側リレーRYNに出力して、グランド側リレーRYNをオン状態とする(ステップS38)。
 次に制御部18は、電圧検出端子Vdeに異常時の電圧が検出されているか否か、すなわち急速充電器側の電圧が検出されたか否かを判別する(ステップS39;タイミングt)。
 ステップS39の判別において、電圧検出端子Vdeに異常時の電圧が検出されている場合には(ステップS39;Yes)、電源側リレーRYPが溶着していると判断する(ステップS45)。
 この溶着状態とは、具体的には、タイミングチャートが図6(d)のようになった場合であり、タイミングt、tのいずれのタイミングにおいても、電圧検出端子Vdeの電圧が"H"レベルのままとなったが、タイミングtのタイミングで電圧検出端子Vdeの電圧が"L"レベルとなった場合である。
 そして、制御部18は、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYPをオフ状態とする制御及び制御信号Vrynをグランド側リレーRYNに出力して、グランド側リレーRYNをオフ状態とする制御を行い(ステップS46)、制御端子Vc2から出力される制御信号を“L”レベルとして、第2のフォトカプラ20をオフ状態とし(ステップS47)、処理を終了する(エンド)。
 ステップS39の判別において、電圧検出端子Vdeに異常時の電圧が検出されていない場合には(ステップS39;No)、電源側リレーRYP及びグランド側リレーRYNは、溶着していないこと、すなわち、異常なしと判断する(ステップS40)。
 この状態は、具体的には、タイミングチャートが図6(a)のようになった場合であり、タイミングt、t、tのいずれのタイミングにおいても、電圧検出端子Vdeの電圧が“H”レベルのままとなった場合である。
 そして、制御信号Vrypを電源側リレーRYPに出力して、電源側リレーRYP及びグランド側リレーRYNをオフ状態とする(ステップS41)。
 続いて制御部18は、制御端子Vc2から出力される制御信号を“L”レベルとし、第2のフォトカプラ20をオフ状態とし(ステップS42)、処理を終了する(エンド)。
 以上の説明のように、本実施の形態2によれば、外部電源からの電力を用いることなく、確実にリレーの溶着状態を検出することができ、ハイインピーダンス構成のリレー溶着回路を構成して、警告など適切な処置を施すことができる。
 2011年3月30日出願の特願2011-074689の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係るリレーの溶着検出回路およびこのリレーの溶着検出回路を用いた電力供給システムは、バッテリ駆動の純粋な電気自動車に限らず、いわゆるハイブリッド車や、プラグインハイブリッド車であっても同様に適用可能である。
 10 車両
 11 蓋部
 12 充電端子
 12N グランド側端子
 12P 電源側端子
 14 第1バッテリ
 15 第2バッテリ(電源供給部、蓄電部)
 16 フォトカプラ
 16A フォトダイオード
 16B フォトトランジスタ
 17 トランジスタスイッチ
 18 制御部
 19 リレー溶着判定装置
 20 第2のフォトカプラ
 20A フォトダイオード
 20B フォトトランジスタ
 21 リレー溶着判定装置
 C コンデンサ(電源供給部、蓄電部)
 PW 外部電源
 QC 急速充電器
 R 電流制限抵抗
 RYN グランド側リレー
 RYP 電源側リレー
 SP 給電プラグ
 Vc2 制御端子
 Vde 電圧検出端子
 Vryn 制御信号
 Vryp 制御信号
 

Claims (10)

  1.  外部電源から蓄電装置への充電経路に設けられ、かつ、個別にオン状態またはオフ状態が制御可能な電源側リレー及びグランド側リレーを有したリレーの溶着検出を行うリレー溶着検出回路であって、
     前記外部電源とは独立して溶着検出用電源を供給可能な電源供給部と、
     前記電源側リレーの前記外部電源側から流れ込む電流が略ゼロとなる回路であり、前記電源側リレーの前記外部電源側の電圧に基づき前記電源供給部に対して溶着検出用の電源を供給させるか否かを制御する電圧検出回路と、
     前記電源側リレー及び前記グランド側リレーのオン状態またはオフ状態を個別に制御し、このときに前記電圧検出回路が前記溶着検出用の電源を供給したか否かに基づいて溶着検出を行う、前記電圧検出回路とは電気的に絶縁された制御部と、
     を備えるリレー溶着検出回路。
  2.  前記電圧検出回路は、トランジスタを用いたスイッチであり、
     前記トランジスタのコレクタ端子を前記電源供給部の正極端子と電気的に接続し、
     前記トランジスタのエミッタ端子を前記グランド側リレーの前記外部電源側の充電経路と電気的に接続し、
     前記トランジスタのベース端子を前記電源側リレーの前記外部電源側の充電経路と電気的に接続し、
     前記電源供給部の負極端子を前記蓄電装置の負極端子と接続した、リレー溶着検出回路。
  3.  前記外部電源から前記蓄電装置へ電気エネルギが供給されていないときに溶着検出を行う、請求項1記載のリレー溶着検出回路。
  4.  前記電圧検出回路と前記制御部とはフォトカプラにより電気的に絶縁され、
     前記制御部は、前記フォトカプラを介して、前記電圧検出回路が前記溶着検出用の電源を供給したか否かを判定する、
     請求項1記載のリレー溶着検出回路。
  5.  前記電源供給部は、前記外部電源からの電力を抵抗を介して蓄電する蓄電部を備える、請求項1記載のリレー溶着検出回路。
  6.  前記電源供給部は、前記外部電源から供給された電力を抵抗を介して蓄電するコンデンサと、
     前記溶着検出非動作時に前記フォトカプラを介した、前記電圧検出回路への電力供給を遮断する第2のフォトカプラと、を有し、
     前記制御部は、前記溶着検出動作時に前記第2のフォトカプラを制御し、前記フォトカプラを介して、前記電源供給部から前記電圧検出回路に溶着検出用の電源供給を行わせる、
     請求項1記載のリレー溶着検出回路。
  7.  前記制御部は、前記電源側リレー及び前記グランド側リレーを双方ともオフ状態とする制御を行っている状態で、前記電圧検出回路により溶着検出時の電圧が検出された場合に、前記電源側リレー及び前記グランド側リレーが溶着状態にあると検出する、
     請求項1記載のリレー溶着検出回路。
  8.  前記制御部は、前記電源側リレーをオン状態とし、前記グランド側リレーをオフ状態とする制御を行っている状態で、前記電圧検出回路により溶着検出時の電圧が検出された場合に、前記グランド側リレーが溶着状態にあると検出する、
     請求項7記載のリレー溶着検出回路。
  9.  前記制御部は、前記電源側リレーをオフ状態とし、前記グランド側リレーをオン状態とする制御を行っている状態で、前記電圧検出回路により溶着検出時の電圧が検出された場合に、前記電源側リレーが溶着状態にあると検出する、
     請求項6記載のリレー溶着検出回路。
  10.  外部電源から車両駆動用モータへ電源を供給する蓄電装置への充電経路において前記蓄電装置への電流の供給/遮断を行い、かつ、個別にオン状態またはオフ状態が制御可能な電源側リレー及びグランド側リレーを有したリレーの溶着検出を行うリレー溶着検出回路を備えた電気自動車用の電力供給システムであって、
     前記外部電源とは独立して溶着検出用電源を供給可能な電源供給部と、
     前記電源側リレーの前記外部電源側から流れ込む電流が略ゼロとなる回路であり、前記電源側リレーの前記外部電源側の電圧に基づき前記電源供給部に対して溶着検出用の電源を供給させるか否かを制御する電圧検出回路と、
     前記電源側リレー及び前記グランド側リレーのオン状態またはオフ状態を個別に制御し、このときに前記電圧検出回路が前記溶着検出用の電源を供給したか否かに基づいて溶着検出を行う、前記電圧検出回路とは電気的に絶縁された制御部と、を備え、
     前記電圧検出回路は、トランジスタを用いたスイッチであり、
     前記トランジスタのコレクタ端子を前記電源供給部の正極端子と電気的に接続し、
     前記トランジスタのエミッタ端子を前記グランド側リレーの前記外部電源の充電経路側と電気的に接続し、
     前記トランジスタのベース端子を前記電源側リレーの前記外部電源側の充電経路と電気的に接続し、
     前記電源供給部の負極端子を前記蓄電装置の負極端子と接続した、電力供給システム。
PCT/JP2012/002153 2011-03-30 2012-03-28 リレー溶着検出回路及び電力供給システム WO2012132431A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/007,713 US9001483B2 (en) 2011-03-30 2012-03-28 Relay-welding detection circuit and power supplying system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-074689 2011-03-30
JP2011074689A JP5011443B1 (ja) 2011-03-30 2011-03-30 リレー溶着検出回路及び電力供給システム

Publications (1)

Publication Number Publication Date
WO2012132431A1 true WO2012132431A1 (ja) 2012-10-04

Family

ID=46844517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002153 WO2012132431A1 (ja) 2011-03-30 2012-03-28 リレー溶着検出回路及び電力供給システム

Country Status (3)

Country Link
US (1) US9001483B2 (ja)
JP (1) JP5011443B1 (ja)
WO (1) WO2012132431A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897656B2 (en) 2013-05-16 2018-02-20 Carrier Corporation Method for sensing welded contacts on a switching device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308486B2 (ja) * 2012-09-13 2018-04-11 パナソニックIpマネジメント株式会社 リレー溶着検出装置
JP6098011B2 (ja) * 2013-03-27 2017-03-22 パナソニックIpマネジメント株式会社 車両用電力装置
KR20150089646A (ko) * 2014-01-28 2015-08-05 엘에스산전 주식회사 전기 자동차용 충전기 연결 감지 장치
KR20150109153A (ko) * 2014-03-19 2015-10-01 엘에스산전 주식회사 케이블 설치형 충전 제어 장치 및 그 동작 방법
US9466448B2 (en) * 2014-03-24 2016-10-11 Ford Global Technologies, Llc HV relay sticking control system and method
CN106856321B (zh) * 2015-12-08 2019-11-05 太琦科技股份有限公司 洗浴安全控制系统及洗浴安全控制方法
CN106849209B (zh) * 2016-10-27 2020-12-04 蔚来(安徽)控股有限公司 移动充电车启动锁止系统
KR102371597B1 (ko) * 2017-04-06 2022-03-07 현대자동차주식회사 차량의 급속충전 제어 장치 및 방법
JP6534020B2 (ja) * 2018-03-02 2019-06-26 パナソニックIpマネジメント株式会社 リレー溶着検出装置
KR102654911B1 (ko) * 2018-10-23 2024-04-03 현대자동차주식회사 파워 릴레이 어셈블리의 상태 판단 시스템
JP7159792B2 (ja) * 2018-10-31 2022-10-25 トヨタ自動車株式会社 電動車両
JP7246837B2 (ja) * 2020-05-19 2023-03-28 矢崎総業株式会社 充電制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149978A (ja) * 1991-11-29 1993-06-15 Fuji Electric Co Ltd 開閉器の動作状態検出装置と動作状態検出装置組み込み形開閉器
JP2002153086A (ja) * 2000-11-10 2002-05-24 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2009100568A (ja) * 2007-10-17 2009-05-07 Toyota Motor Corp 電動車両および電動車両の制御方法
JP2010252475A (ja) * 2009-04-14 2010-11-04 Toyota Motor Corp 電源装置システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173428A (ja) 1998-12-01 2000-06-23 Sanyo Electric Co Ltd 電気自動車のメインリレー溶着検出装置
EP1610355B1 (en) * 2003-03-31 2012-12-05 NEC Corporation Relay contact welding detection method and apparatus
JP2006310219A (ja) 2005-05-02 2006-11-09 Nissan Motor Co Ltd リレー溶着検出装置
JP4749190B2 (ja) * 2006-03-24 2011-08-17 三洋電機株式会社 車両用の電源装置とこの電源装置のコンタクターの溶着を判別する溶着検出方法
JP4788461B2 (ja) * 2006-04-24 2011-10-05 トヨタ自動車株式会社 電源制御装置およびリレーの異常検出方法
JP5104803B2 (ja) 2009-03-31 2012-12-19 東京電力株式会社 充電システム、充電器、およびリレーの閉固着を検出する方法
JP5421000B2 (ja) 2009-07-03 2014-02-19 トヨタ自動車株式会社 電動車両、溶着判定装置、および溶着判定プログラム
JP5205356B2 (ja) * 2009-10-09 2013-06-05 日立オートモティブシステムズ株式会社 電源装置とコンタクタ溶着判定方法
US8653823B2 (en) * 2010-06-04 2014-02-18 Abb Inc. Detection of welded switch contacts in a line converter system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149978A (ja) * 1991-11-29 1993-06-15 Fuji Electric Co Ltd 開閉器の動作状態検出装置と動作状態検出装置組み込み形開閉器
JP2002153086A (ja) * 2000-11-10 2002-05-24 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2009100568A (ja) * 2007-10-17 2009-05-07 Toyota Motor Corp 電動車両および電動車両の制御方法
JP2010252475A (ja) * 2009-04-14 2010-11-04 Toyota Motor Corp 電源装置システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897656B2 (en) 2013-05-16 2018-02-20 Carrier Corporation Method for sensing welded contacts on a switching device

Also Published As

Publication number Publication date
JP2012209162A (ja) 2012-10-25
US9001483B2 (en) 2015-04-07
JP5011443B1 (ja) 2012-08-29
US20140016238A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5011443B1 (ja) リレー溶着検出回路及び電力供給システム
US8513953B2 (en) Power supply device and method for making decision as to contactor weld of power supply device
EP2760096B1 (en) Electrical storage system and method for controlling electrical storage system
JP5847506B2 (ja) 電子制御装置及び車両制御システム
US20170092023A1 (en) Vehicle power supply device and malfunction diagnosis method thereof
US20130069589A1 (en) Vehicle battery charging apparatus
WO2013129231A1 (ja) 電源装置
JP2010057290A (ja) 車両用の電源装置
JP2009290920A (ja) 電動車両用電源制御装置
CA2986553A1 (en) Power supply control apparatus and method thereof
KR101811062B1 (ko) 이차전지 배터리의 균등화 장치
KR102351067B1 (ko) 전기 자동차용 배터리 전원 공급 장치 및 방법
US9252608B2 (en) Electrical storage system, and control method for electrical storage system
RU2018133589A (ru) Система электропитания и способ управления системой
JP6623794B2 (ja) リレー固着検出システム
JP2010141984A (ja) 車載充電装置
US9884564B2 (en) Electrically powered vehicle and power supply system
JP2015230784A (ja) コンタクタ故障判定装置
JP5842163B2 (ja) リレー溶着検出回路及び電力供給システム
JP6428775B2 (ja) 電池システム及び電池システムの制御方法
KR102087702B1 (ko) 전기차용 파워 릴레이 어셈블리 구동 장치 및 방법
JP6413511B2 (ja) 車両
JP5604947B2 (ja) 電源装置及び電圧調整方法
JP2017073888A (ja) 車両
JP2015211547A (ja) 充電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14007713

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765071

Country of ref document: EP

Kind code of ref document: A1