WO2012132052A1 - 金属鋳塊製造方法、液面制御方法、極細銅合金線 - Google Patents

金属鋳塊製造方法、液面制御方法、極細銅合金線 Download PDF

Info

Publication number
WO2012132052A1
WO2012132052A1 PCT/JP2011/070698 JP2011070698W WO2012132052A1 WO 2012132052 A1 WO2012132052 A1 WO 2012132052A1 JP 2011070698 W JP2011070698 W JP 2011070698W WO 2012132052 A1 WO2012132052 A1 WO 2012132052A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
analysis
camera
spout
liquid level
Prior art date
Application number
PCT/JP2011/070698
Other languages
English (en)
French (fr)
Inventor
修司 富松
大亮 西出
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201180068797.3A priority Critical patent/CN103402672B/zh
Priority to JP2012504599A priority patent/JP5065540B1/ja
Priority to US13/499,908 priority patent/US8509942B2/en
Publication of WO2012132052A1 publication Critical patent/WO2012132052A1/ja
Priority to HK14103366.4A priority patent/HK1190360A1/xx

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/004Copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/185Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using optical means

Definitions

  • the present invention relates to a liquid level control method, a metal ingot manufacturing method, and an ultrafine copper alloy wire using the liquid level control method capable of monitoring and controlling the fluctuation of the liquid level.
  • an ingot by continuously casting a metal such as a copper alloy.
  • a metal such as a copper alloy.
  • an ingot can be obtained by solidifying the metal while continuously pouring molten metal into the mold.
  • the surface height As a factor that affects the quality of the ingot, there is the mold height of the molten metal inside the mold (hereinafter referred to as “the surface height”).
  • the molten metal surface height fluctuates, the thickness of the chill layer of the ingot surface layer, the size of the metal structure, and the like become unstable. Moreover, it becomes a factor of casting troubles, such as molten metal overflow and running out of hot water. For this reason, it is desirable to control the molten metal surface height inside the mold as constant as possible.
  • Patent Document 1 performs analysis on six lines, but the molten metal surface height between the lines is not taken into account, and there is a possibility that the abnormal point extends over a plurality of lines. For this reason, it is easy to be influenced by the undulation of the hot water surface, and the accurate hot water surface cannot always be grasped. Therefore, the hot water level control is not accurate, and it is difficult to stabilize the hot water level.
  • a rotary moving mold as a method for continuously casting a long ingot.
  • the rotary moving mold has a very small molten metal capacity (mold size) relative to the amount injected from the spout.
  • template fluctuates greatly by the slight fluctuation
  • the quality of the ingot is not stable due to large fluctuations in the molten metal surface during casting. For this reason, particularly when the ingot is made of an ultrafine copper alloy wire, there is a limit to reducing the diameter of the drawn wire due to the influence of micro defects and the like due to the quality of the ingot.
  • the present invention has been made in view of such problems.
  • the present invention provides a method for producing a metal ingot capable of accurately monitoring the molten metal level in a mold and controlling the molten metal level accurately. Objective.
  • the first invention is a method for manufacturing a metal ingot, a mold, a spout for pouring molten metal in a tundish into the mold, a stopper for adjusting the opening of the spout, A camera for photographing the molten metal surface inside the mold, an analysis unit for analyzing an image photographed by the camera, and a control unit for adjusting the opening of the spout based on information analyzed by the analysis unit
  • the analysis unit has a predetermined width with respect to the molten metal surface image photographed by the camera, and sets an analysis band in the vertical movement direction of the molten metal surface including the molten metal surface.
  • the control unit by comparing the melt-surface height and the reference molten metal surface level, a metal ingot manufacturing method characterized by adjusting the opening of the spout.
  • the analysis unit may calculate the peak by analyzing image data at regular intervals and averaging a plurality of image data within a predetermined time.
  • the analysis unit recognizes a molten metal part shape of a part of the molten metal part after binarization in the imaging field of view of the camera, and always compares the pattern shape corresponding to the molten metal part shape with the molten metal part shape. It is desirable to correct the position of the analysis band in the photographing field of view of the camera while performing position correction so that the molten metal shape and the pattern shape overlap.
  • the analysis unit monitors the width of the molten metal poured into the mold in the field of view of the camera, corrects the opening of the spout by the molten metal width of the molten metal, and When the molten metal width of the part becomes 0, an abnormal signal may be transmitted.
  • the analysis unit controls the spout to close in a case where it is determined that the molten metal surface has risen to the upper limit of the analysis zone, and if it is not determined that the molten metal surface has descended after a predetermined time, an abnormal signal is transmitted. You may send to a control part.
  • the peak has a change rate of 100% when a boundary between the molten metal part and the non-molten metal part is formed in the longitudinal direction of the analysis band, and the change rate of black and white is not inclined at the boundary, and is white or black at a part other than the boundary.
  • the reference value may be set in the range of 50% to 80% when the rate of change is 0%.
  • An upper limit may be set for the opening degree of the spout. You may correct
  • an analysis band having a predetermined width is set using image analysis for analyzing the molten metal surface height, and binary data (black and white) of the molten metal part and the non-molten metal part within the width of the analytical band. ) Is recognized by the rate of color change, so that it is less affected by hot water ripples and splashes, and the height of the hot water can be accurately determined.
  • the rate of change of the binary data refers to the width of the analysis band with respect to the length h of the analysis band in the longitudinal direction (the vertical direction of the analysis band and the fluctuation direction of the molten metal surface). It is the change rate obtained by analyzing the differential value of the color change at each longitudinal position (dh) as a whole. For example, the rate of change is maximum (100%) at the boundary between the molten metal position and the non-molten molten metal position when there is no undulation of the molten metal surface and the molten metal surface is constant at a certain height. Further, if there is no change inside the molten metal part or the non-molten metal part, the minimum (0%) is obtained.
  • the pattern shape corresponding to the molten metal part shape is compared with the molten metal part shape, and the molten metal part shape and the pattern shape are always compared.
  • the position is corrected so that and overlap. That is, the position of the analysis band in the camera's field of view can be corrected to an appropriate position. Therefore, it is possible to automatically correct the displacement of the analysis position due to vibration from the equipment, mold wear, mold change, etc., and always detect the molten metal surface under a certain condition.
  • the spout is controlled in a closing direction, and after that, when it is not determined that the molten metal surface has lowered after a predetermined time, an abnormal signal is generated, thereby Can be reliably prevented from overflowing.
  • a reference value for the rate of change of binary data is set in a range of 50% to 80%, and a position exceeding the reference value is recognized as a molten metal surface (that is, a peak is in a range of 50% to 100% or By identifying the peak position as the molten metal surface height in the range of 80% to 100%), the molten metal surface position can be detected more accurately without being affected by the ripples of the molten metal surface.
  • 2nd invention is a liquid level control method, Comprising: The liquid holding
  • the analysis band is set in the binarization, the image of the analysis band is binarized into a liquid part and a non-liquid part, the change rate of the binary data with respect to the longitudinal direction of the analysis band is obtained, and the peak of the calculated change rate is Of the positions that are equal to or greater than a predetermined reference value, the lowest position is recognized
  • the height of the liquid level can be reliably controlled not only in the metal casting but also in a situation where it is necessary to control the level of the liquid.
  • the third invention is an ultrafine copper alloy wire having a diameter of 0.03 mm ⁇ or less obtained by rolling and drawing a copper alloy ingot produced by the method for producing a metal ingot according to the first invention. And it is an extra fine copper alloy wire characterized by the drawing dose per break at the time of wire drawing being 15 kg or more.
  • the present invention for example, it is possible to provide a method for producing a metal ingot capable of accurately monitoring the molten metal level inside the mold and controlling the molten metal level accurately.
  • FIG. The figure which shows the continuous casting rolling apparatus 1.
  • FIG. The A section enlarged view of FIG. C arrow figure from the camera 25 of FIG. It is a conceptual diagram which shows the image by the camera 25, (a) is a binarized image, (b) is an image after setting each analysis frame.
  • FIG. The flowchart which shows a hot_water
  • FIG. 1 is a schematic view showing a continuous casting and rolling apparatus 1.
  • a continuous casting and rolling apparatus 1 An example of continuous casting of a copper alloy using a rotary moving mold is shown as an example of a continuous casting and rolling apparatus, but the present invention is not limited to this.
  • the present invention is naturally applicable to other metals.
  • the present invention can also be applied to other continuous casting methods such as a so-called twin belt type (rotating) moving mold formed of a pair of belts.
  • the continuous casting and rolling apparatus 1 is mainly composed of a rotary moving mold composed of a shaft furnace 3, a rod 5, a tundish 7, a wheel 11, and the like, a rolling mill 17, a winder 23, and the like.
  • the shaft furnace 3 melts, for example, electrolytic copper ingot in a reducing atmosphere.
  • the molten metal melted in the shaft furnace 3 is continuously led into the tundish 7 through the gutter 5.
  • the molten metal in the tundish 7 is poured through a spout 9 into a rotary moving mold constituted by a belt 15 and a wheel 11.
  • the belt 15 is moved by the plurality of turn rolls 13 and covers a part of the outer periphery of the wheel 11.
  • a space surrounded by a recess (not shown) formed on the outer periphery of the wheel 11 and the belt is a mold.
  • the molten metal poured into the mold is cooled and solidified in the mold to become an ingot 19.
  • the ingot 19 is continuously drawn out of the mold and continuously rolled by the rolling mill 17 to become a wire 21.
  • the wire 21 is wound up by a winder 23.
  • the ingot in the present invention refers to all of the cast products obtained by continuously solidifying directly from the molten metal as in this embodiment. That is, if it is a cast product obtained continuously, it is called an ingot regardless of its form.
  • FIG. 2 is an enlarged view of a portion A in FIG. 1 and shows a vicinity of a pouring portion of the molten metal into the mold.
  • the belt 15 is brought into close contact with the outer peripheral surface of the wheel 11 by the turn roll 13, and the space between the belt 15 and the outer peripheral surface of the wheel 11 becomes a mold.
  • the molten metal 29 a is poured from the tundish 7 through the spout 9 into the mold.
  • the wheel 11 continuously cools and solidifies the molten metal while rotating (in the direction of arrow B in the figure). Therefore, the molten metal 29a is continuously poured into the mold.
  • the molten metal surface 27 inside the mold is constantly monitored by the camera 25 (in the direction of arrow C in the figure).
  • the camera 25 is, for example, a CCD camera.
  • the molten metal surface 27 varies depending on the balance between the amount continuously cast by the wheel 11 rotating at a substantially constant speed and the amount of the molten metal 29a to be poured.
  • the rotary moving mold has a small surface area with respect to the inner diameter of the spout 9 (the surface area of the molten metal is about 5 to 30 times the inner diameter of the spout). For this reason, even if there is a slight change in the amount of hot water discharged from the spout 9, the hot water surface may fluctuate greatly.
  • FIG. 3 is a schematic view of the vicinity of the mold as seen from the direction of photographing by the camera 25 in FIG.
  • the camera 25 images the molten metal surface from an obliquely upper side of the mold within a range that does not affect the casting operation or the like. That is, the camera 25 photographs the molten metal 29a in the outlet portion including the molten metal surface 27 inside the mold, the molten metal 29b such as molten metal splash, and the like.
  • FIG. 4 is an image of the D part of FIG. 3 and is a conceptual diagram of the field of view of the camera 25.
  • FIG. 4A shows an image obtained by binarizing the molten metal part and the non-molten metal part.
  • 4 (b) is an image showing a state in which analysis frames and the like are superimposed.
  • the analysis unit sets various analysis frames such as an analysis band 35, a molten metal pattern 37, and a molten metal monitoring unit 43 for the obtained image.
  • the analysis band 35 includes the molten metal surface (the molten metal portion 31c), and is set with a predetermined width so that the fluctuation direction of the molten metal surface is the longitudinal direction (the direction of arrow E in the figure).
  • the width of the analysis band 35 is set to be as wide as possible in such a range that a part of the analysis band 35 does not reach the molten metal part (the molten metal part 31a).
  • the change rate of the binary data is calculated by the analysis unit.
  • the peak display unit 41 the peak of the calculated change rate of the binary data is displayed. That is, the rate of change at each position in the longitudinal direction of the analysis band 35 is displayed in a direction perpendicular to the analysis band 35 (in the direction of arrow F in the figure).
  • FIG. 5 is an enlarged view of the analysis band 35 and the peak display section 41, in which the horizontal axis is the E direction (FIG. 4 (b)) and the vertical axis is the F direction (FIG. 4 (b)).
  • the analysis unit calculates the boundary between the molten metal part 31c (white part) and the non-molten metal part 33 (black part).
  • the color change rate in the minute range (dh) is differentiated and calculated from the left side (the side where the molten metal surface is low) in the drawing toward the right side in the longitudinal direction.
  • a large peak 45 is obtained near the hot water surface.
  • the rate of change is calculated for the change from white to black as the color change from the lower side of the hot water surface. That is, the changing portion from black to white is not calculated as a peak. Therefore, only the boundary from the molten metal part (white) to the non-molten metal part (black) is recognized as the molten metal surface, and the boundary between the non-molten metal part (for example, the shadow of the mold) and the molten metal part is not recognized as the molten metal surface.
  • the molten metal surface may not be constant over the entire width of the analysis zone 35.
  • an image is analyzed every 0.1 second, and a peak is calculated by, for example, a moving average of 6 points (0.6 seconds). Therefore, the molten metal surface in the entire width of the analysis band 35 is not always constant, and the peak 45 may not be 100%.
  • the threshold value 47 is set to 50 to 80%. If it is less than 50%, there is a possibility that waves and splashes of the molten metal may be erroneously recognized as the molten metal surface, and if it is 80% or more, there is a possibility that the molten metal surface cannot be recognized due to the undulation of the molten metal surface.
  • the influence of the ripples on the hot water surface can be minimized.
  • the molten metal part 31b such as splashes, can prevent erroneous recognition of the molten metal surface without the peak exceeding the threshold value.
  • the hot water surface position inside the analysis zone 35 can be calculated.
  • a belt-shaped pouring monitoring unit 43 is set inside the molten metal part 31c which is a tapping part.
  • the pouring monitoring unit 43 is always set to a position where the molten metal is located even when the spout opening degree is adjusted to reduce the amount of discharged hot water. That is, normally, a molten metal part (white) always exists inside the pouring monitoring unit 43 during monitoring.
  • the molten metal monitoring unit 43 monitors the molten metal width (N in the figure) of the molten metal part 31a in the molten metal part.
  • the amount of molten metal discharged from the spout is calculated based on the information on the molten metal width of the molten metal portion 31a in the molten metal portion obtained by the molten metal monitoring unit 43.
  • the amount of discharged hot water can be predicted from the relational expression between the molten metal width and the amount of discharged hot water obtained in advance by a test or the like.
  • the molten metal will not be poured, or if the camera is abnormal or an obstacle is reflected in front of the camera, it will be impossible to accurately monitor the hot water level.
  • the molten metal width of the molten metal part 31a becomes zero.
  • the monitoring unit recognizes an abnormality and transmits an abnormality signal.
  • the casting apparatus is controlled safely by issuing an alarm for notifying an operator or the like or turning on a light.
  • the analysis unit stores the molten metal pattern 37.
  • the molten metal pattern 37 matches the shape in the camera image field of view of the tip of the molten metal portion 31c inside the mold. That is, the molten metal pattern 37 is a part of the shape of the white part of the site
  • the analysis unit sets the molten metal pattern 37 at a predetermined position within the pattern control range 39.
  • FIG. 6 is a conceptual diagram showing control by the molten metal pattern.
  • the molten metal pattern 37 corresponds with the front-end
  • the analysis unit searches for a molten metal part (white part) that matches the molten metal pattern 37 in the pattern control range 39 and arranges the molten metal pattern 37 at the site. At this time, other analysis frames such as the analysis band 35 are set according to the position of the molten metal pattern 37.
  • FIG. 6B is a diagram showing a state where the position of the molten metal part 31c is deviated from the state of FIG.
  • Such situations include, for example, the effects of camera and mold vibrations, and variations in mold surface (mold) position due to mold size changes, mold wear, and the like.
  • the molten metal surface in the analysis zone 35 cannot be calculated because the position of the molten metal portion 31 c varies.
  • the position of the molten metal pattern 37 is always followed by the molten metal part 31c.
  • the position of the analysis frame such as the analysis band 35 is always corrected to an appropriate position according to the position of the molten metal portion 31c (in the direction of arrow I in the figure). Therefore, it is possible to always grasp the accurate molten metal surface position regardless of the position fluctuation of the molten metal part 31c.
  • the pattern control range 39 is set in a range where there is no erroneous recognition of the position of the molten metal pattern 37.
  • tip part shape of the molten metal part 31c approximates the molten metal part 31a front-end
  • the pattern control range 39 is set in advance in a range in which the molten metal pattern 37 may move (a range in which the molten metal portion 31a is not reflected).
  • the camera since the camera is not affected by the vibration of the camera as described above, the camera can be disposed near the casting apparatus. For this reason, a sufficient amount of light in the field of view can be secured. For this reason, the shutter speed can be increased. For this reason, the influence of the image blur due to vibration can be further reduced. Moreover, high resolution can be obtained by photographing near the molten metal part.
  • FIG. 7 is a flowchart showing a hot water level control process.
  • the analysis unit sets an analysis band and a threshold value (step S1). For the width and length of the analysis band and the threshold value, for example, information stored in the storage unit may be read.
  • step S2 the molten metal is poured into the mold and analysis by the camera is started.
  • step S3 the change rate of black and white inside the analysis band is calculated and the peak is analyzed.
  • step S3 For calculating the peak, for example, a moving average of 6 points is taken. Further, step S2 may be performed every time the peak is analyzed.
  • the analysis unit compares the calculated peak with the threshold value, and recognizes the peak position higher than the threshold value on the lowest molten metal level as the molten metal surface height (step S4).
  • step S5 When the hot water surface height is higher than the hot water surface upper limit (step S5), the opening of the spout is narrowed, and the hot water surface position after a predetermined time (for example, 2 seconds) is detected (step S6). If the length does not fall below the upper limit of the hot water surface, an abnormal signal is transmitted (step S14). When the hot water surface height falls below the upper limit, the process proceeds to step S13.
  • a predetermined time for example, 2 seconds
  • the hot water surface height is lower than the upper limit of the hot water surface, the hot water surface height is compared with the reference hot water surface height (step S8), and the spout opening degree control is performed based on the difference between the hot water surface height and the reference hot water surface height. The amount is calculated (step S9). Note that the spout opening control optimizes the gain of PID control to prevent hunting and the like.
  • step S10 If the spout opening exceeds the upper limit (step S10), the spout opening is set to the upper limit (step S11) to prevent the spout from opening beyond the upper limit.
  • the control unit controls the opening of the spout (step S12).
  • a control part adjusts the opening degree of a spout by raising and lowering the stopper provided in a spout, for example with the electric cylinder using a servomotor.
  • the electric cylinder is preferably a high torque of about 200 N, for example, and has a high resolution of about 0.02 mm.
  • the pouring monitoring unit determines that the pouring unit is a non-molten molten metal part (step S13)
  • an abnormal signal is transmitted.
  • the hot water surface position can be made constant at a predetermined position by calculating the hot water surface position and controlling the spout opening.
  • step S12 when performing the spout opening degree adjustment according to the molten metal surface height in the mold (step S12), fine adjustment of the spout opening degree by the molten metal width in the pouring part obtained by the above-described pouring monitoring part 43 ( Correction of the opening degree) may be performed.
  • the analysis section stores the reference molten metal width with respect to the spout reference opening, and compares it with the molten metal width obtained by the molten metal monitoring section 43.
  • the actual melt width obtained is narrower than the expected melt width, there may be problems such as deposits on the spout and the flow of the melt not smooth.
  • the actual melt width obtained is wider than the expected melt width, there is a possibility that spout or other refractory materials are worn or chipped.
  • the analysis unit Adjust the opening slightly. Specifically, when the actual melt width is narrower than the assumed melt width, the spout opening degree is corrected to slightly open. Similarly, when the actual melt width is wider than the assumed melt width, the spout opening degree is corrected in a slightly closing direction. Note that this control may be performed at the same timing as the above-described control based on the mold surface level or may be performed at a predetermined interval.
  • the amount of molten metal discharged from the tundish also depends on the hot water level in the tundish. That is, if the tundish hot water level is high, more molten metal is discharged even at the same spout opening. Therefore, as mentioned above, in addition to fluctuations in the amount of tapping due to the volume of the spout, the spout installation state, wear of the refractory material near the tapping part, etc., the amount of tapping also depends on the level of molten metal in the tundish. (Melt width) fluctuates.
  • the analysis unit may monitor the hot water surface height in the tundish and finely adjust the spout opening (correction of the opening) according to the hot water surface height in the tundish. For example, the actual hot water surface height relative to the reference hot water surface height in the tundish may be detected by the analysis unit, and the opening degree of the spout may be adjusted slightly.
  • the spout opening is corrected to slightly open.
  • the spout opening degree is corrected in a slightly closing direction.
  • This control may be performed at the same timing as the above-described control based on the molten metal surface height in the mold (for example, before or after step S12), or at a predetermined interval (for example, for the flow of FIG. 7). It may be performed once every several cycles).
  • the hot water surface height in the tundish can be grasped by the amount of molten metal (weight) in the tundish.
  • weight the amount of molten metal in the tundish.
  • the weight of the entire tundish can be monitored by a load cell, and the amount of molten metal in the tundish can be calculated from the obtained weight. Therefore, it is possible to know the surface height corresponding to the amount of molten metal in the tundish.
  • molten_metal surface height may each be only one, and may combine both. Moreover, you may control them by PID control.
  • an abnormal signal may be transmitted.
  • an abnormal signal may be transmitted if the amount of tapping with respect to the amount of molten metal in the tundish is not within a predetermined range set at a certain spout opening. That is, when it becomes difficult to adjust the amount of hot water by adjusting the spout opening due to an abnormality such as clogging or cracking of the spout, an abnormality signal may be transmitted.
  • FIG. 8 (a) is a diagram showing a change in the molten metal surface and a change in the spout opening degree controlled according to the present invention. Indicates. As shown in the figure, in the present invention, the molten metal surface variation is extremely small, and the molten metal surface variation width can be kept within ⁇ 10 mm.
  • FIG. 8 (b) is a diagram showing the variation in the molten metal surface and the change in the spout opening degree controlled by the conventional control method, where the horizontal axis represents time, L in the diagram represents the molten metal surface variation, M indicates spout opening control.
  • the conventional control method in which the width is not set in the analysis unit for detecting the molten metal level as in the analysis band of the present invention, the moving average of the data of a plurality of points (time) is not taken) The fluctuation was large, and the molten metal surface fluctuation was about ⁇ 50 mm.
  • the analysis band has a predetermined width
  • the molten metal surface is calculated throughout the analysis band, and the molten metal surface is identified by a predetermined number of moving averages. It is possible to reduce the size and detect a more accurate hot water surface position.
  • the position of the analysis band for recognizing the molten metal surface pattern and analyzing the molten metal surface is always placed at an appropriate position, it is not affected by vibrations or mold wear. Even when the mold size is changed, it is not necessary to set the camera position and the like each time.
  • the spout opening is narrowed, and when the molten metal surface that is higher than the molten metal surface upper limit is continued for a predetermined time or more, it is judged as abnormal. Overflow can be prevented. Moreover, since an upper limit is set to the opening degree of the spout, it is possible to prevent the molten metal from being poured excessively and causing hunting of the molten metal surface.
  • the rough drawn wire eddy current flaw detection is performed by performing a eddy current flaw detection on a rough drawing wire of 30 tons and continuously detecting a surface flaw of the rough drawing wire.
  • the L defect, the M defect, and the S defect are obtained by ranking the flaw depth according to the obtained detection intensity of the flaw detection, and the L defect indicates the largest defect.
  • the 0.03 mm ⁇ wire drawing property indicates the average of the drawing dose per one break (kg / Br) when 100 kg of wire drawing is performed. That is, the drawing dose that can be drawn without breaking is shown. This is based on the rough drawn wire manufactured by the continuous casting and rolling apparatus 1 as a base material, drawn to 2.6 mm ⁇ by a general-purpose continuous wire drawing machine, and subsequently subjected to a plurality of wire drawing operations to 0.03 mm ⁇ . This is an evaluation method related to the process.
  • the rough line according to the present invention has few defects, and no L defect was detected. Moreover, since there were few defects and the structure was uniform, the drawing dose per break became 15 kg or more in the subsequent wire drawing. In particular, with oxygen-free copper and a copper alloy containing 0.7 wt% tin, it was possible to ensure 20 kg or more as the elongation dose per break.
  • the control of the molten metal surface height inside the mold at the time of metal casting has been described, but the present invention is not limited to this, and can be applied to the detection and control of the liquid surface height of any liquid. It is.
  • the opening of the injection unit can be adjusted by detecting the liquid level in the liquid holding unit.
  • the liquid level inside the liquid holding unit is photographed with a camera, the image photographed with the camera is analyzed with the same analysis unit as described above, and the liquid level is certified, What is necessary is just to adjust the opening degree of an injection
  • an infrared camera capable of grasping the liquid temperature may be used as the camera. That is, the liquid part and the non-liquid part may be binarized at the liquid temperature.
  • the liquid level reference height is not always constant and can be controlled such that the reference liquid level changes at a predetermined speed. The optimum position of the reference liquid level depends on the mold and spout setting errors before the start of continuous casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Metal Extraction Processes (AREA)

Abstract

 鋳型内部の溶湯の湯面27は、カメラ25により常に監視される。カメラ25は、鋳造作業等に影響を及ぼさない範囲で、鋳型の斜め上方から湯面を撮影する。カメラ25により撮影されたに対して、解析帯35、溶湯パターン37、注湯監視部43等の各種解析枠等が設定される。解析帯35は、湯面(溶湯部31c)を含み、湯面の変動方向が長手方向となるように所定の幅で設定される。解析帯35の幅は、出湯部(溶湯部31a)にかからないような範囲でできるだけ広くなるように設定される。解析帯35内部では、解析部によって二値データの変化率が算出される。

Description

金属鋳塊製造方法、液面制御方法、極細銅合金線
 本発明は、液面の変動を監視して制御可能な液面制御方法、金属鋳塊製造方法およびこれを用いた極細銅合金線に関するものである。
 従来、例えば銅合金等の金属を連続鋳造して鋳塊を製造する方法がある。鋳造時には、鋳型内部に連続的に金属溶湯を注ぎつつ金属を凝固させることで鋳塊を得ることができる。
 鋳塊の品質に影響を与える要因として、鋳型内部の溶湯のモールド高さ(以下「湯面高さ」)がある。湯面高さが変動することで、鋳塊表層のチル層の厚みや金属組織の大きさなどが安定しなくなる。また、溶湯のあふれや、湯切れなどの鋳造トラブルの要因ともなる。このため、鋳型内部の溶湯の湯面高さはできるだけ一定に制御することが望まれる。
 このような鋳型内部の溶湯の湯面高さを監視する方法としては、CCDカメラを用い、モールド内の湯面の画像を取り込み、6本の線上で湯面位置を制御する方法がある(特許文献1)。
特開平06-188044号公報
 しかし、特許文献1のような従来の方法は、解析を6本の線上で行うものであるが、線間の湯面高さが考慮されず、異常点が複数線にまたがる恐れもある。このため、湯面の波立ちなどの影響を受けやすく、必ずしも正確な湯面を把握できるものではない。したがって、湯面制御が正確ではなく、湯面を安定させることが困難である。
 特に、連続して長尺の鋳塊を鋳造する方法として、回転式移動鋳型がある。回転式移動鋳型は、通常のビレット・スラブ用連続鋳造モールドと異なり、スパウトからの注入量に対する鋳型内部の溶湯容量(鋳型サイズ)が極めて小さい。このため、鋳型への注湯量のわずかな変動により、鋳型内部の湯面が大きく変動する。このため、特に正確な湯面制御方法が望まれる。
 また、鋳造時の湯面変動が大きいことで、鋳塊の品質が安定しない。このため、特に当該鋳塊を極細銅合金線とする場合には、鋳塊の品質に起因するミクロ欠陥等の影響を受け、伸線の細径化には限界があった。
 本発明は、このような問題に鑑みてなされたもので、例えば鋳型内部の溶湯の湯面を精度よく監視するとともに、湯面を正確に制御可能な金属鋳塊製造方法等を提供することを目的とする。
 前述した目的を達するために第1の発明は、金属鋳塊の製造方法であって、鋳型と、前記鋳型にタンディッシュ内の溶湯を注ぐスパウトと、前記スパウトの開度を調節するストッパーと、前記鋳型の内部の溶湯の湯面を撮影するカメラと、前記カメラで撮影された画像を解析する解析部と、前記解析部で解析された情報に基づき、前記スパウトの開度を調節する制御部と、を具備する製造装置を用い、前記解析部は、前記カメラで撮影された湯面画像に対し、所定の幅を有し、前記湯面を含み湯面の上下動方向に解析帯を設定し、前記解析帯の内部の画像を溶湯部と非溶湯部とに二値化して、前記解析帯の長手方向に対する二値データの変化率を求め、算出された変化率のピークが所定の基準値以上である位置の内、最も低い位置を湯面高さと認定し、前記制御部は、前記湯面高さと基準湯面高さとを比較して、前記スパウトの開度を調整することを特徴とする金属鋳塊製造方法である。
 前記解析部は、一定間隔で画像データを解析し、所定時間内の複数の画像データを平均化して、前記ピークを算出してもよい。
 前記解析部は、前記カメラの撮影視野における二値化後の溶湯部の一部の溶湯部形状を認識し、前記溶湯部形状に対応するパターン形状と前記溶湯部形状とを比較して、常に前記溶湯部形状と前記パターン形状とが重なるように位置補正を行いながら、前記カメラの撮影視野における前記解析帯の位置を補正することが望ましい。
 記解析部は、前記カメラの撮影視野における前記鋳型内に注がれる注湯部の溶湯幅を監視し、前記注湯部の溶湯幅によって、前記スパウトの開度を補正するとともに、前記注湯部の溶湯幅が0となると、異常信号を発信してもよい。
 前記解析部は、前記解析帯の上限まで湯面が上昇したと判定した場合に、前記スパウトを閉じる方向に制御し、その後所定時間後に湯面が下降したと判定されない場合には異常信号を前記制御部に送ってもよい。
 前記ピークは、解析帯の長手方向に溶湯部と非溶湯部の境界が形成され、当該境界で白黒の変化率に傾斜がない場合を変化率100%とし、当該境界以外の部位で白または黒の変化がない場合を変化率0%とした場合に、前記基準値が50%~80%の範囲で設定されてもよい。
 前記スパウトの開度には上限が設定されてもよい。前記タンディッシュ内の湯面高さによって、前記スパウトの開度を補正してもよい。
 第1の発明によれば、湯面高さを解析する画像解析を用い、所定の幅を有する解析帯を設定し、解析帯の幅内での溶湯部と非溶湯部の二値データ(白黒)の色の変化率により湯面位置を認定するため、湯面の波立ちや湯はねなどの影響を受けにくく、正確に湯面高さを知ることができる。
 ここで、二値データの変化率とは、白黒の二値データを、解析帯の長手方向の長さh(幅方向に垂直であって湯面の変動方向)に対して、解析帯の幅全体でそれぞれの長手方向位置(dh)において色の変化の微分値を解析し、これにより求められる変化率である。例えば、湯面の波立ち等がなく、湯面がある高さで一定である場合における、溶湯位置と非溶湯位置との境界では、変化率は最大(100%)となる。また、溶湯部または非溶湯部の内部であって、変化がない場合には最低(0%)となる。
 また、一定間隔で画像データを解析し、所定時間内の複数の画像データを平均化して、ピークを算出することで、瞬間的な溶湯の飛沫等の影響を小さくし、より正確な湯面高さを知ることができる。
 また、カメラの撮影視野における二値化後の溶湯部の一部の溶湯部形状を認識し、溶湯部形状に対応するパターン形状と溶湯部形状とを比較して、常に溶湯部形状とパターン形状とが重なるように位置補正を行う。すなわち、カメラの撮影視野における解析帯の位置を適切な位置に補正することができる。したがって、設備からの振動や、鋳型の摩耗、鋳型の変更などに伴う、解析位置のずれを自動で補正し、常に一定の条件で湯面を検出することができる。
 また、カメラの撮影視野における鋳型内に注がれる注湯部の一部を監視することで、スパウトの詰まり、カメラの異常、カメラと監視部との間に障害物が生じた場合などの異常を検知することができる。また、注湯部の幅によって、スパウトの開度を補正することで、より正確な湯面調整を行うことができる。
 また、解析帯の上限まで湯面が上昇したと判定した場合に、スパウトを閉じる方向に制御し、その後所定時間後に湯面が下降したと判定されない場合に異常信号を発することで、溶湯の鋳型からのオーバーフローを確実に防止することができる。
 また、二値データの変化率の基準値として50%~80%の範囲で設定され、当該基準値を超える位置を湯面と認定することで(すなわち、ピークが50%~100%の範囲ないし80%~100%の範囲の場合に当該ピーク位置を湯面高さと認定することで)、湯面の波立ち等の影響を受けにくく、より正確に湯面位置を検出することができる。
 また、スパウトの開度に上限が設定されることで、鋳型内部への溶湯の出湯量を制限し、湯面変動のハンチングや溶湯の鋳型からのオーバーフローを防止することができる。また、タンディッシュ内の溶湯量に応じてスパウトの開度を補正することで、より正確な湯面調整を行うことができる。
 第2の発明は、液面制御方法であって、液体が注がれる液体保持部と、前記液体保持部に液体を注ぐ注入部と、前記注入部の開度を調節する開度調整部と、前記液体保持部の内部の液体の液面を撮影するカメラと、前記カメラで撮影された画像を解析する解析部と、前記解析部で解析された情報に基づき、前記注入部の開度を調節する制御部と、を具備する液体移送装置を用い、前記解析部は、前記カメラで撮影された液面画像に対し、所定の幅を有し、前記液面を含む液面の上下動方向に解析帯を設定し、前記解析帯の画像を液体部と非液体部とに二値化して、前記解析帯の長手方向に対する二値データの変化率を求め、算出された変化率のピークが所定の基準値以上である位置の内、最も低い位置を液面高さと認定し、前記制御部は、前記液面高さと基準液面高さとを比較して、前記注入部の開度を調整することを特徴とする液面制御方法である。
 第2の発明によれば、金属鋳造に限らず、液体の湯面を制御することが必要な状況において、確実に液面の高さを制御することができる。
 第3の発明は、第1の発明にかかる金属鋳塊製造方法により製造された銅合金製の鋳塊を圧延および伸線加工することによって得られる0.03mmΦ以下の径の極細銅合金線であって、伸線時の1破断あたりの伸線量が15kg以上であることを特徴とする極細銅合金線である。
 第3の発明によれば、品質のよい極細銅合金線を得ることができる。
 本発明によれば、例えば鋳型内部の溶湯の湯面を精度よく監視するとともに、湯面を正確に制御可能な金属鋳塊製造方法等を提供することができる。
連続鋳造圧延装置1を示す図。 図1のA部拡大図。 図2のカメラ25からのC矢視図。 カメラ25による画像を示す概念図であり、(a)は二値化画像、(b)は各解析枠等の設定後の画像。 二値データの変化率を示す概念図。 解析帯35の位置補正方法を示す図。 湯面制御工程を示すフローチャート。 湯面変化およびスパウト開度変化を示す図で(a)は本発明による結果を示す図、(b)は従来の方法による結果を示す図。
 以下、図面を参照しながら、本発明の実施形態について説明する。図1は、連続鋳造圧延装置1を示す概略図である。なお、以下の説明では、連続鋳造圧延装置の例として、回転移動鋳型を用いた銅合金の連続鋳造の例を示すが、本発明はこれに限られない。例えば、本発明は、他の金属に対しても当然に適用可能である。また、たとえば一対のベルトにより構成されるいわゆるツインベルト式(回転)移動鋳型等などの他の連続鋳造方法にも適用可能である。連続鋳造圧延装置1は、主に、シャフト炉3、樋5、タンディッシュ7、ホイール11等からなる回転移動鋳型、圧延機17、巻取機23等から構成される。
 シャフト炉3は、例えば電気銅の地金等を還元性雰囲気で溶解する。シャフト炉3で溶解された溶湯は、樋5を介してタンディッシュ7内に連続的に導かれる。タンディッシュ7内の溶湯は、スパウト9を介して、ベルト15およびホイール11により構成された回転移動鋳型内に注湯される。ベルト15は、複数のターンロール13によって移動し、ホイール11の外周の一部を覆う。ホイール11の外周に形成された凹部(図示せず)とベルトで囲まれた空間が鋳型となる。
 鋳型に注湯された溶湯は、当該鋳型内で冷却固化されて鋳塊19となる。鋳塊19は、鋳型から連続的に引き出されて、圧延機17で連続圧延されて線材21となる。線材21は、巻取機23で巻き取られる。
 ここで、本発明における鋳塊とは、本実施形態のように、連続して溶湯から直接凝固させて得られる鋳造品の全てを指す。すなわち、連続して得られる鋳造品であれば、その形態によらずすべて鋳塊と称する。
 図2は、図1のA部拡大図であり、鋳型への溶湯の注湯部近傍を示す図である。前述の通り、ターンロール13によってベルト15がホイール11の外周面に密着されて、ベルト15とホイール11外周面との空間が鋳型となる。鋳型へは、タンディッシュ7からスパウト9を介して溶湯29aが注湯される。ホイール11は、回転しながら(図中矢印B方向)連続的に内部の溶湯を冷却固化する。したがって、溶湯29aは連続的に鋳型内部へ注湯される。
 鋳型内部の溶湯の湯面27は、カメラ25により常に監視される(図中矢視C方向)。カメラ25は例えばCCDカメラである。湯面27は、略一定の速度で回転するホイール11で連続的に鋳造される量と、注湯される溶湯29aの量とのバランスによって変動する。特に、本実施形態のように、回転移動鋳型は、スパウト9の内径に対する湯面の面積が小さい(湯面の面積が、スパウト内径の約5~30倍程度)。このため、スパウト9からの出湯量のわずかな変化によっても、湯面が大きく変動する恐れがある。
 図3は、図2におけるカメラ25による撮影方向から見た鋳型近傍の概略図である。カメラ25は、鋳造作業等に影響を及ぼさない範囲で、鋳型の斜め上方から湯面を撮影する。すなわち、カメラ25は、鋳型の内部の湯面27を含む、出湯部の溶湯29aや、溶湯の飛沫等の溶湯29b等を撮影する。
 図4は、図3のD部の画像であって、カメラ25の撮影視野の概念図であり、図4(a)は、溶湯部と非溶湯部とを二値化した画像を示し、図4(b)は、各解析枠等を重ね合わせた状態を示す画像である。
 カメラ25により撮影された画像では、溶湯の輝度が極めて高い。このため、解析部(図示省略)により、カメラ25で撮影された画像が二値化されると、図4(a)に示すように、溶湯29a、29b、湯面27(図3)が、それぞれ、溶湯部31a、31b、31cとして白色となり、他の部位が非溶湯部33として黒色で判断される。
 また、図4(b)に示すように、解析部は、得られた画像に対して、解析帯35、溶湯パターン37、注湯監視部43等の各種解析枠等を設定する。解析帯35は、湯面(溶湯部31c)を含み、湯面の変動方向が長手方向(図中矢印E方向)となるように所定の幅で設定される。解析帯35の幅は、解析帯35の一部に出湯部(溶湯部31a)にかからないような範囲でできるだけ広くなるように設定される。
 解析帯35内部では、解析部によって二値データの変化率が算出される。ピーク表示部41では、算出された二値データの変化率のピークが表示される。すなわち、解析帯35の長手方向のそれぞれの位置における変化率を解析帯35に垂直な方向(図中矢印F方向)に表示する。
 図5は、解析帯35およびピーク表示部41の拡大図であり、横軸をE方向(図4(b))、縦軸をF方向(図4(b))とした図である。解析帯35の内部では、2値化されたデータが解析される。解析部は、溶湯部31c(白色部)と、非溶湯部33(黒色部)との境界を算出する。例えば、解析帯35内部において、図中左側(湯面が低い側)から、長手方向右側に向けて、微小範囲(dh)における色の変化率を微分して算出する。図に示す例では、湯面近傍で大きなピーク45が得られる。なお、ピーク45は、湯面の低い側からの色の変化として、白から黒への変化について変化率を算出する。すなわち、黒から白への変化部はピークとして算出しない。したがって、溶湯部(白)から非溶湯部(黒)となる境界のみを湯面として認識し、非溶湯部(例えば鋳型の影)と溶湯部との境界は湯面とは認識しない。
 実際には、湯面は多少の波立ちがあるため、解析帯35の幅全体において湯面が一定とはならない場合がある。また、本発明では、0.1秒ごとに画像を解析し、例えば6点(0.6秒間)の移動平均によりピークを算出する。したがって、解析帯35の幅全体における湯面は、常に一定とはならず、ピーク45としては100%とならない場合がある。
 本発明では、ピーク45が閾値47を超える位置の中で、最も湯面の低い側を湯面と認定する。すなわち、図5の例では、G位置を湯面と認識する。ここで、閾値47としては、50~80%と設定される。50%未満では、溶湯の波や飛沫を湯面と誤認識する恐れがあり、また、80%以上では、湯面の波立ち等によって湯面自体を認識できない恐れがあるためである。
 このようにすることで、湯面の波立ちの影響をできるだけ小さくすることができる。また、飛沫などの溶湯部31bは、ピークが閾値を超えることがなく、湯面の誤認識を防止することができる。以上のようにして、解析帯35内部の湯面位置を算出することができる。
 また、図4(b)に示すように、出湯部である溶湯部31c内部において、例えば帯状の注湯監視部43が設定される。注湯監視部43はスパウト開度を調整して出湯量を絞った際にも、常に溶湯が位置する部位に設定される。すなわち、通常時には、注湯監視部43の内部には、監視中、常に溶湯部(白色)が存在する。
 注湯監視部43は、注湯部における溶湯部31aの溶湯幅(図中N)を監視する。注湯監視部43で得られた注湯部における溶湯部31aの溶湯幅の情報によって、スパウトから出湯される溶湯量が計算される。例えば、事前に試験等で得られた溶湯幅と出湯量との関係式から、出湯量を予測することができる。
 なお、万が一スパウトが詰まることで溶湯が注湯されなくなったり、カメラ異常や、カメラの前に障害物等が映り込むことで、正確な湯面監視ができない状況となると、注湯監視部43において、溶湯部31aの溶湯幅が0となる。この場合には、監視部は異常と認識して、異常信号を発信する。具体的には、作業者等に異常を知らせるための警報を発信したりライトを点灯させて、鋳造装置を安全に制御する。
 また、解析部は溶湯パターン37を記憶する。溶湯パターン37は、鋳型内部の溶湯部31cの先端部のカメラ画像視野における形状と一致する。すなわち、溶湯パターン37は、少なくとも常に溶湯があるべき部位の白色部の形状の一部である。解析部は、溶湯パターン37をパターン制御範囲39内部の所定の位置に設定する。
 図6は、溶湯パターンによる制御を示す概念図である。図6(a)に示すように、溶湯パターン37は、溶湯部31cの先端側(低湯面側)の先端形状と一致する。解析部は、パターン制御範囲39内において、溶湯パターン37と一致する溶湯部(白色部)を探し、当該部位に溶湯パターン37を配置する。この際、解析帯35等の他の解析枠は、溶湯パターン37の位置に応じて設定される。
 図6(b)は、図6(a)の状態から溶湯部31cの位置がずれた状態(図中矢印H方向)を示す図である。このような状況としては、例えば、カメラや鋳型の振動の影響や、鋳型のサイズ変更や鋳型の摩耗等に伴う湯面(鋳型)位置の変動の影響を受ける場合である。図6(b)に示すように、溶湯部31cの位置が変動することで、解析帯35内部における湯面の算出ができなくなる。
 これに対し、本発明では、図6(c)に示すように、パターン制御範囲39内部において、常に溶湯パターン37の位置を溶湯部31cに追従させるため、溶湯部31cの位置が変動しても、この溶湯部31cの位置に応じて解析帯35等の解析枠の位置が常に適切な位置に補正される(図中矢印I方向)。したがって、溶湯部31cの位置変動によらず、常に正確な湯面位置を把握することができる。
 なお、パターン制御範囲39は、溶湯パターン37の位置の誤認識がない範囲で設定される。例えば、図4(a)に示すように、溶湯部31cの先端部形状は、溶湯部31a先端部形状と近似する。このため、パターン制御範囲を設定せず、またはパターン制御範囲が大きすぎると、溶湯パターン37の位置を溶湯部31aの先端位置と誤認識する恐れがある。このため、パターン制御範囲39は、溶湯パターン37が移動する可能性のある範囲(溶湯部31aが映り込まない範囲)であらかじめ設定される。
 本発明では、上述のようにカメラの振動等の影響を受けることがないため、カメラを鋳造装置の近くに配置することができる。このため、撮影視野の光量を十分確保することができる。このため、シャッタースピードを上げることができる。このため、振動による画像ブレの影響をより小さくすることができる。また、溶湯部の近くで撮影することで、高い解像度を得ることができる。
 次に、本発明の湯面制御方法を用いた金属鋳塊製造工程を説明する。図7は湯面制御の工程を示すフローチャートである。まず、解析部は解析帯および閾値を設定する(ステップS1)。解析帯の幅および長さと、閾値は、例えば記憶部に記憶された情報を読み出せばよい。
 次いで、溶湯を鋳型に注湯してカメラによる解析を開始する。まず、溶湯部先端形状のパターンを認識し、解析帯や注湯監視部等の位置を設定する(ステップS2)。この状態で、解析帯内部の白黒の変化率を算出しピークを解析する(ステップS3)。なお、ピークの算出としては、例えば6点の移動平均を取る。また、ピークの解析毎にステップS2を実施してもよい。
 次に、解析部は、算出されたピークと閾値とを比較し、最も湯面の低い側の閾値よりも高いピーク位置を湯面高さと認定する(ステップS4)。
 湯面高さが湯面上限よりも高い場合には(ステップS5)、スパウトの開度を絞り、所定時間後(例えば2秒後)の湯面位置を検出し(ステップS6)、湯面高さが湯面上限よりも低くならない場合には、異常信号を発信する(ステップS14)。湯面高さが上限よりも下がった場合には、ステップS13に進む。
 湯面高さが湯面上限よりも低かった場合には、湯面高さと基準湯面高さを比較し(ステップS8)、湯面高さと基準湯面高さとの差から、スパウト開度制御量を算出する(ステップS9)。なお、スパウト開度制御はPID制御のゲインを最適化して、ハンチング等を防止する。
 スパウト開度が上限以上となる場合には(ステップS10)、スパウト開度を上限値に設定し(ステップS11)、スパウトが上限以上に開くことを防止する。
 次いで、算出されたスパウト開度制御量に基づいて、制御部はスパウトの開度を制御する(ステップS12)。制御部は、例えばサーボモータを用いた電動シリンダにより、スパウトに設けられるストッパーを上下させて、スパウトの開度を調整する。なお、電動シリンダは、例えば200N程度の高トルクのものであり、かつ、0.02mm程度の高分解能を有するものが望ましい。
 また、注湯監視部において、注湯部が非溶湯部であると認定されると(ステップS13)、異常信号を発信する。以上を繰り返し、湯面位置の算出とスパウト開度を制御して湯面を所定の位置に一定にすることができる。
 なお、鋳型内の湯面高さに応じたスパウトの開度調整を行う際(ステップS12)、前述した注湯監視部43により得られる注湯部における溶湯幅によって、スパウト開度の微調整(開度の補正)を行ってもよい。
 例えば、解析部によって、スパウトの基準開度に対する基準注湯部溶湯幅を記憶しておき、注湯監視部43により得られた溶湯幅と比較する。予想される溶湯幅よりも得られた実際の溶湯幅が狭い場合には、スパウトにノロが堆積したり、溶湯の流れがスムーズでない等の問題が考えられる。逆に、予想される溶湯幅よりも得られた実際の溶湯幅が広い場合には、スパウトその他の耐火材の摩耗や欠け等が生じている恐れが考えられる。
 そこで解析部は、実際の溶湯幅が想定される溶湯幅と異なる場合(あるいは、スパウトの開度を調整した場合における溶湯幅の変化量が想定される変化量と異なる場合)には、スパウトの開度をわずかに調整する。具体的には、想定される溶湯幅に対して実際の溶湯幅が狭い場合には、スパウト開度をわずかに開く方向に補正する。同様に、想定される溶湯幅に対して実際の溶湯幅が広い場合には、スパウト開度をわずかに閉じる方向に補正する。なお、この制御は、前述の鋳型内湯面高さによる制御と常に同じタイミングで行ってもよく、または、所定の間隔で行ってもよい。
 また、タンディッシュから出湯される溶湯量は、タンディッシュ内の湯面高さにも依存する。すなわち、タンディッシュ内湯面高さが高ければ、同じスパウト開度であっても、より多くの溶湯が出湯される。したがって、前述のように、ノロの体積やスパウトの設置状態、出湯部付近の耐火材の摩耗などによる出湯量の変動以外に、タンディッシュ内の湯面高さ(溶湯量)によっても、出湯量(溶湯幅)が変動する。
 そこで、解析部は、タンディッシュ内の湯面高さを監視し、タンディッシュ内の湯面高さに応じて、スパウト開度の微調整(開度の補正)を行ってもよい。例えば、解析部によって、タンディッシュ内の基準湯面高さに対する実際の湯面高さを検出し、スパウトの開度をわずかに調整してもよい。
 具体的には、基準湯面高さよりも実際の湯面高さが低い場合には、スパウト開度をわずかに開く方向に補正する。同様に、基準湯面高さよりも実際の湯面高さが高い場合には、スパウト開度をわずかに閉じる方向に補正する。なお、この制御は、前述の鋳型内の湯面高さによる制御と常に同じタイミングで行ってもよく(例えばステップS12の前または後)、または、所定の間隔(例えば図7のフローに対して数サイクルに1回)で行ってもよい。
 なお、タンディッシュ内の湯面高さは、タンディッシュ内の溶湯量(重量)で把握することができる。例えば、タンディッシュ全体の重量をロードセルにより監視し、得られた重量からタンディッシュ内の溶湯量を算出することができる。したがって、タンディッシュ内の溶湯量に応じた湯面高さを知ることができる。
 なお、出湯部の溶湯幅によるスパウト開度補正および、タンディッシュ内湯面高さによるスパウト開度補正は、それぞれ一方のみであってもよく、両者を組み合わせてもよい。また、それらをPID制御により制御してもよい。
 また、スパウト開度に対する出湯部溶湯幅が、あらかじめ設定された所定範囲内にないと判断すると、異常信号を発信してもよい。または、あるスパウト開度においてタンディッシュ内溶湯量に対する出湯量が、あらかじめ設定された所定範囲内にないと、異常信号を発信してもよい。すなわち、スパウトの詰まりや割れ等の異常によって、スパウト開度の調整による出湯量の調整が困難となった場合には、異常信号を発信してもよい。
 図8(a)は、本発明により制御した湯面変動とスパウト開度の変化を示す図であり、横軸は時間、図中Jは湯面変動を示し、図中Kはスパウト開度制御を示す。図に示すように、本発明では、湯面変動が極めて小さく、湯面変動幅を±10mm以内に収めることができる。
 これに対し、図8(b)は、従来の制御方法によって制御した湯面変動とスパウト開度の変化を示す図であり、横軸は時間、図中Lは湯面変動を示し、図中Mはスパウト開度制御を示す。従来の制御方法(本発明の解析帯のように湯面を検出する解析部に幅を設定するものではなく、複数点(時間)のデータの移動平均を取るものではないもの)では、湯面変動が大きく、湯面変動としては±50mm程度であった。
 本発明によれば、極めて安定した湯面を得ることができる。このため、鋳造トラブルの発生を防止でき、また、湯面変動に伴う鋳塊の品質ばらつきを抑えることができる。特に、解析帯が所定の幅を有し、解析帯内部全体で湯面算出を行うとともに、所定回数の移動平均によって湯面を認定するため、局所的な湯面の波立ちや飛沫等の影響を小さくし、より正確な湯面位置を検出することができる。
 また、湯面パターンを認識し、湯面の解析を行う解析帯の位置を常に適切な位置に配置するため、振動の影響や鋳型の摩耗等の影響を受けることがない。また、鋳型サイズを変更した場合でも、その都度カメラ位置等を設定する必要がない。
 また、注湯部の溶湯を常に監視し、注湯部が非溶湯部と判断すると異常と判断するため、スパウト詰まり等の異常を検出できるとともに、カメラの異常や、カメラ前に作業者等が映り込んだ場合に、誤作動を起こすことがない。
 また、湯面が湯面上限を超えた場合には、スパウト開度を絞り、所定時間以上湯面上限よりも高い湯面が継続された場合には、異常として判断するため、溶湯の鋳型からのオーバーフローを防止することができる。また、スパウトの開度に上限が設定されるため、溶湯が過剰に注湯されて、湯面のハンチングが生じることを防止することができる。
 本発明の湯面制御方法で製造された鋳塊(湯面変動は図8(a))を用いて、荒引線を製造し、さらに伸線加工を実施して、その品質を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 銅合金としては、タフピッチ銅(JIS C1100)、無酸素銅(JIS C1020)、0.7wt%錫入り銅合金(機ひも線)を対象とした。荒引線渦流探傷は、30トンの荒引線に対し、渦流探傷を施し、荒引線の表面傷を連続探傷したものである。L欠陥、M欠陥、S欠陥は得られた探傷の検出強度に応じて、傷深さにランク付けを行ったものであり、L欠陥が最も大きな欠陥を示す。
 また、0.03mmΦ伸線性は、100kgの伸線加工を行った際に、一破断当たりでの伸線量(kg/Br)の平均を示すものである。すなわち、破断せずに伸線加工を行うことができた伸線量を示す。これは、連続鋳造圧延装置1にて製造した荒引線を母材とし、汎用連続伸線機にて2.6mmφへ伸線加工し、引き続き複数回の伸線加工を経て0.03mmφとする最終工程に関する評価方法である。
 表より、本発明による荒引き線は欠陥が少なく、L欠陥は検出されなかった。また、欠陥が少なく組織が均一なため、その後の伸線加工において、一破断あたりの伸線量が15kg以上となった。特に、無酸素銅、0.7wt%錫入り銅合金では、一破断あたりの伸線量として、20kg以上を確保することができた。
 これに対し、従来の湯面管理(図8(b))で製造された鋳塊を用いたものは、荒引線において多くの欠陥が生じ、いずれの品種も伸線性は10kg程度となった。これは、湯面変動に伴い、酸化物の巻きこみや、表層のチル層厚さが不均一となり、また、粗大粒やミクロ欠陥等の影響を受けたためと考えられる。
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 たとえば、本実施例では、金属鋳造時の鋳型内部での溶湯の湯面高さの制御について説明したが、本発明はこれに限られず、あらゆる液体の液面高さの検出および制御に適用可能である。例えば、薬品等を混合、移送する装置等において、注入部から液体を液体保持部に注ぐ際、液体保持部内の液面を検出して、注入部の開度を調整することができる。
 この場合、液体保持部の内部の液体の液面をカメラで撮影し、カメラで撮影された画像を前述したものと同様の解析部で解析して液面高さを認定し、制御部によって、基準液面高さとなるように、注入部の開度を調整すればよい。また、二値化を行うために、カメラとして液温を把握することが可能な赤外線カメラを用いてもよい。すなわち、液体の温度で液体部と非液体部とを二値化すればよい。また、液面基準高さは、常に一定ではなく、基準液面が所定速度で変化するように制御することもできる。この基準液面の最適位置は、連続鋳造開始前の鋳型およびスパウトのセット誤差などに日々左右されるため、鋳造開始の直後、例えば鋳型温度などの他の立ち上がり条件が安定する5分間程度の内に、所定時間ずつ複数パターンで湯面変動を調べ、最も安定する位置を決定すればよい。このサーチ機能を、プログラマブルコントローラーに追加しておくことが望ましい。なお、湯面変動の定量化については、所定時間内で取得した湯面位置データの標準偏差を用いる方法がある。
1………連続鋳造圧延装置
3………シャフト炉
5………樋
7………タンディッシュ
9………スパウト
11………ホイール
13………ターンロール
15………ベルト
17………圧延機
19………鋳塊
21………線材
23………巻取機
25………カメラ
27………湯面
29a、29b………溶湯
31a、31b、31c………溶湯部
33………非溶湯部
35………解析帯
37………溶湯パターン
39………パターン制御範囲
41………ピーク表示部
43………注湯監視部
45………ピーク
47………閾値
 

Claims (10)

  1.  金属鋳塊の製造方法であって、
     鋳型と、
     前記鋳型にタンディッシュ内の溶湯を注ぐスパウトと、
     前記スパウトの開度を調節するストッパーと、
     前記鋳型の内部の溶湯の湯面を撮影するカメラと、
     前記カメラで撮影された画像を解析する解析部と、
     前記解析部で解析された情報に基づき、前記スパウトの開度を調節する制御部と、を具備する製造装置を用い、
     前記解析部は、前記カメラで撮影された湯面画像に対し、所定の幅を有し、前記湯面を含み湯面の上下動方向に解析帯を設定し、前記解析帯の内部の画像を溶湯部と非溶湯部とに二値化して、前記解析帯の長手方向に対する二値データの変化率を求め、算出された変化率のピークが所定の基準値以上である位置の内、最も低い位置を湯面高さと認定し、
     前記制御部は、前記湯面高さと基準湯面高さとを比較して、前記スパウトの開度を調整することを特徴とする金属鋳塊製造方法。
  2.  前記解析部は、一定間隔で画像データを解析し、所定時間内の複数の画像データを平均化して、前記ピークを算出することを特徴とする請求項1記載の金属鋳塊製造方法。
  3.  前記解析部は、前記カメラの撮影視野における二値化後の溶湯部の一部の溶湯部形状を認識し、前記溶湯部形状に対応するパターン形状と前記溶湯部形状とを比較して、常に前記溶湯部形状と前記パターン形状とが重なるように位置補正を行いながら、前記カメラの撮影視野における前記解析帯の位置を補正することを特徴とする請求項1記載の金属鋳塊製造方法。
  4.  前記解析部は、前記カメラの撮影視野における前記鋳型内に注がれる注湯部の溶湯幅を監視し、前記注湯部の溶湯幅によって、前記スパウトの開度を補正するとともに、前記注湯部の溶湯幅が0となると、異常信号を発信することを特徴とする請求項1記載の金属鋳塊製造方法。
  5.  前記解析部は、前記解析帯の上限まで湯面が上昇したと判定した場合に、前記スパウトを閉じる方向に制御し、その後所定時間後に湯面が下降したと判定されない場合には異常信号を発信することを特徴とする請求項1記載の金属鋳塊製造方法。
  6.  前記ピークは、解析帯の長手方向に溶湯部と非溶湯部の境界が形成され、当該境界で白黒の変化率に傾斜がない場合を変化率100%とし、当該境界以外の部位で白または黒の変化がない場合を変化率0%とした場合に、前記基準値が50%~80%の範囲で設定されることを特徴とする請求項1記載の金属鋳塊製造方法。
  7.  前記スパウトの開度には上限が設定されることを特徴とする請求項1記載の金属鋳塊製造方法。
  8.  前記タンディッシュ内の湯面高さによって、前記スパウトの開度を補正することを特徴とする請求項1記載の金属鋳塊製造方法。
  9.  液面制御方法であって、
     液体が注がれる液体保持部と、
     前記液体保持部に液体を注ぐ注入部と、
     前記注入部の開度を調節する開度調整部と、
     前記液体保持部の内部の液体の液面を撮影するカメラと、
     前記カメラで撮影された画像を解析する解析部と、
     前記解析部で解析された情報に基づき、前記注入部の開度を調節する制御部と、を具備する液体移送装置を用い、
     前記解析部は、前記カメラで撮影された液面画像に対し、所定の幅を有し、前記液面を含む液面の上下動方向に解析帯を設定し、前記解析帯の画像を液体部と非液体部とに二値化して、前記解析帯の長手方向に対する二値データの変化率を求め、算出された変化率のピークが所定の基準値以上である位置の内、最も低い位置を液面高さと認定し、
     前記制御部は、前記液面高さと基準液面高さとを比較して、前記注入部の開度を調整することを特徴とする液面制御方法。
  10.  請求項1から請求項8のいずれかに記載の金属鋳塊製造方法により製造された銅合金製の鋳塊を圧延および伸線加工することによって得られる0.03mmΦ以下の径の極細銅合金線であって、伸線時の1破断あたりの伸線量が15kg以上であることを特徴とする極細銅合金線。
     
PCT/JP2011/070698 2011-03-31 2011-09-12 金属鋳塊製造方法、液面制御方法、極細銅合金線 WO2012132052A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180068797.3A CN103402672B (zh) 2011-03-31 2011-09-12 金属铸块制造方法、液面控制方法、极细铜合金线
JP2012504599A JP5065540B1 (ja) 2011-03-31 2011-09-12 金属鋳塊製造方法、液面制御方法、極細銅合金線
US13/499,908 US8509942B2 (en) 2011-03-31 2011-09-12 Method for producing metal ingot, method for controlling liquid surface, and ultrafine copper alloy wire
HK14103366.4A HK1190360A1 (en) 2011-03-31 2014-04-08 Metal ingot manufacturing method, liquid level control method, and extra fine copper alloy wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011077344 2011-03-31
JP2011-077344 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132052A1 true WO2012132052A1 (ja) 2012-10-04

Family

ID=46929861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070698 WO2012132052A1 (ja) 2011-03-31 2011-09-12 金属鋳塊製造方法、液面制御方法、極細銅合金線

Country Status (5)

Country Link
JP (1) JP5065540B1 (ja)
CN (1) CN103402672B (ja)
HK (1) HK1190360A1 (ja)
MY (1) MY158167A (ja)
WO (1) WO2012132052A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218017A (ja) * 2011-04-07 2012-11-12 Furukawa Electric Co Ltd:The 金属鋳塊製造方法
JP2017159334A (ja) * 2016-03-10 2017-09-14 日立金属株式会社 銅合金材の製造装置および製造方法
CN116385354A (zh) * 2023-02-15 2023-07-04 北京瓦特曼智能科技有限公司 圆形钢坯的偏移越界检测方法、设备及介质
JP7494688B2 (ja) 2020-09-30 2024-06-04 株式会社プロテリアル 銅線の製造方法および銅荒引線の製造方法
US12030116B2 (en) 2020-07-23 2024-07-09 Novelis Inc. Monitoring casting environment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263149B (zh) * 2021-05-12 2022-07-19 燕山大学 一种双辊薄带振动铸轧检测及控制熔池液位的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210946A (ja) * 1990-01-16 1991-09-13 Sumitomo Electric Ind Ltd ベルト式連続鋳造機の湯面検出方法
JPH07266014A (ja) * 1994-03-31 1995-10-17 Mitsubishi Materials Corp 溶湯湯面レベル検出方法
JPH09239524A (ja) * 1996-03-12 1997-09-16 Towa Kiko Kk 自動注湯方法
JP2001099694A (ja) * 1999-09-29 2001-04-13 Dainippon Screen Mfg Co Ltd 液面高さ検出装置および塗布装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011362A1 (en) * 1988-05-16 1989-11-30 Nippon Steel Corporation Injector for high speed thin continuous casting machine and pouring control method
FR2675410A1 (fr) * 1991-04-16 1992-10-23 Realisa Tech Et Procede et appareillage pour la detection preventive des defauts susceptibles d'affecter la coulee d'un metal liquide.
CN1115025A (zh) * 1994-09-08 1996-01-17 田陆 用流柱落点法测控液态金属的液位
KR100721919B1 (ko) * 2004-12-28 2007-05-28 주식회사 포스코 쌍롤식 박판주조공정에서 탕면높이의 강인한 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210946A (ja) * 1990-01-16 1991-09-13 Sumitomo Electric Ind Ltd ベルト式連続鋳造機の湯面検出方法
JPH07266014A (ja) * 1994-03-31 1995-10-17 Mitsubishi Materials Corp 溶湯湯面レベル検出方法
JPH09239524A (ja) * 1996-03-12 1997-09-16 Towa Kiko Kk 自動注湯方法
JP2001099694A (ja) * 1999-09-29 2001-04-13 Dainippon Screen Mfg Co Ltd 液面高さ検出装置および塗布装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218017A (ja) * 2011-04-07 2012-11-12 Furukawa Electric Co Ltd:The 金属鋳塊製造方法
JP2017159334A (ja) * 2016-03-10 2017-09-14 日立金属株式会社 銅合金材の製造装置および製造方法
US12030116B2 (en) 2020-07-23 2024-07-09 Novelis Inc. Monitoring casting environment
JP7494688B2 (ja) 2020-09-30 2024-06-04 株式会社プロテリアル 銅線の製造方法および銅荒引線の製造方法
CN116385354A (zh) * 2023-02-15 2023-07-04 北京瓦特曼智能科技有限公司 圆形钢坯的偏移越界检测方法、设备及介质
CN116385354B (zh) * 2023-02-15 2023-09-29 北京瓦特曼智能科技有限公司 圆形钢坯的偏移越界检测方法、设备及介质

Also Published As

Publication number Publication date
CN103402672B (zh) 2015-08-12
CN103402672A (zh) 2013-11-20
HK1190360A1 (en) 2014-07-04
JP5065540B1 (ja) 2012-11-07
MY158167A (en) 2016-09-15
JPWO2012132052A1 (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5065540B1 (ja) 金属鋳塊製造方法、液面制御方法、極細銅合金線
JP5755438B2 (ja) 金属の鋳造機のコントロール装置及び方法
JP5764431B2 (ja) 金属鋳塊製造方法、金属鋳塊製造装置
KR100752693B1 (ko) 고속 연속 주조장치 및 그 작동방법
JP5154997B2 (ja) 連続鋳造におけるブレークアウト予知方法
JP4259164B2 (ja) 連続鋳造鋳片の品質監視装置及び品質監視方法
JP5098528B2 (ja) 連続鋳造鋳片の欠陥検出方法及び連続鋳造鋳片の処理方法
US8509942B2 (en) Method for producing metal ingot, method for controlling liquid surface, and ultrafine copper alloy wire
JP7494688B2 (ja) 銅線の製造方法および銅荒引線の製造方法
JP3103498B2 (ja) 連続鋳造におけるブレイクアウトの予知および防止方法
JP5718132B2 (ja) 金属鋳塊製造方法
JP6104751B2 (ja) 真空アーク溶解法によるインゴットの製造方法
KR101277701B1 (ko) 몰드 내의 탕면 레벨 제어장치 및 방법
JP3944398B2 (ja) 連続鋳造機における鋳型内湯面レベル制御方法
CN113263149B (zh) 一种双辊薄带振动铸轧检测及控制熔池液位的装置及方法
JP2914990B2 (ja) 湯面異常状況検出方法および湯面異常防止方法並びにその防止装置
JP3093586B2 (ja) 連続鋳造鋳片の縦割れ検知方法
JP4325451B2 (ja) 連続鋳造鋳片の表面欠陥検知方法およびその除去方法
JP5029391B2 (ja) ブルーム鋳片の連続鋳造方法
EP4185423A1 (en) Monitoring casting environment
JP2005111522A (ja) 双ドラム式ストリップキャスト連鋳装置のドラム圧下制御方法
JPH05305408A (ja) 連続鋳造における欠落鋳造方法
JP4735269B2 (ja) 連続鋳片の製造方法
KR20130002500A (ko) 몰드파우더 공급 장치 및 이를 이용한 몰드파우더 공급 방법
JPH0815645B2 (ja) 連続鋳造の割れ性ブレークアウト防止方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012504599

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13499908

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862187

Country of ref document: EP

Kind code of ref document: A1