WO2012130809A1 - Siege d'aeronef equipe d'une bande de renfort pour amortir les chocs - Google Patents

Siege d'aeronef equipe d'une bande de renfort pour amortir les chocs Download PDF

Info

Publication number
WO2012130809A1
WO2012130809A1 PCT/EP2012/055345 EP2012055345W WO2012130809A1 WO 2012130809 A1 WO2012130809 A1 WO 2012130809A1 EP 2012055345 W EP2012055345 W EP 2012055345W WO 2012130809 A1 WO2012130809 A1 WO 2012130809A1
Authority
WO
WIPO (PCT)
Prior art keywords
seat
reinforcing strip
seat according
aircraft
thread
Prior art date
Application number
PCT/EP2012/055345
Other languages
English (en)
Inventor
Benjamin Jacob SAADA
Jean-Charles Marcel SAMUELIAN
Vincent TEJEDOR
Original Assignee
Expliseat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Expliseat filed Critical Expliseat
Priority to CN201280017048.2A priority Critical patent/CN103476674B/zh
Priority to EP12710731.6A priority patent/EP2691301B1/fr
Priority to US14/008,051 priority patent/US9327835B2/en
Priority to JP2014501564A priority patent/JP6038877B2/ja
Priority to CA2827991A priority patent/CA2827991C/fr
Priority to BR112013024471-2A priority patent/BR112013024471B1/pt
Priority to RU2013148140/11A priority patent/RU2587131C2/ru
Publication of WO2012130809A1 publication Critical patent/WO2012130809A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/68Seat frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/70Upholstery springs ; Upholstery
    • B60N2/7011Upholstery springs ; Upholstery of substantially two-dimensional shape, e.g. hammock-like, plastic shells, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0619Arrangements of seats, or adaptations or details specially adapted for aircraft seats with energy absorbing means specially adapted for mitigating impact loads for passenger seats, e.g. at a crash
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0647Seats characterised by special upholstery or cushioning features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0649Seats characterised by special features for reducing weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • B64D25/02Supports or holding means for living bodies
    • B64D25/04Seat modifications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/42Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
    • B60N2/4207Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces
    • B60N2/4214Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces longitudinal
    • B60N2/4221Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces longitudinal due to impact coming from the front
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention belongs to the field of manufacture of aircraft cabin fittings, for general aviation, commercial aviation, helicopters or military aviation. It relates more particularly to the production of an aircraft seat supporting one or more passengers and equipped with shock absorbing means for the passenger in the back seat (front impact), or at the seat ( shock down).
  • Aircraft seat volume is a concern that addresses the increased number of passengers transported each year.
  • By reducing the unit volume of the seats it is possible to reduce the spacing between two rows of seats and to increase the number of passengers that can take place in aircraft, or conversely, to increase the space for each passenger or for the goods.
  • a better filling of the aircraft makes it possible, with a constant flow of passengers on an airline, to reduce the number of flights: the fuel saved reduces the amount of greenhouse gas emissions by the same amount.
  • the shape of the seat combines the comfort of the passenger, including the backrest, and possibly the seat, flexible (s), and the mechanical strength of the skeleton, in order to meet the standards in force in the carriage of passengers by air. It dissociates the structural resistance, provided by a single rigid element forming the skeleton, and the seat and the backrest of the passenger, made of a flexible material.
  • the object of the invention is therefore to provide the aircraft seat according to the invention damping means of the passenger placed behind the seat, in the event of a frontal impact of the aircraft, the head of the passenger being behind tilting against the back of the seat back in front of him.
  • a damping means placed at the level of the seat makes it possible to restrain the passenger in the event of an impact towards the bottom of the aircraft.
  • the main object of the invention is a seat for aircraft whose mechanical strength of its structure is provided by a skeleton, including in particular voids at the seat and possibly the backrest.
  • the invention comprises a reinforcement strip of energy absorbing textile, located, in a first embodiment of the invention, slightly set back from the backrest, and placed behind the latter, to cushion the tilting of the head of the rear passenger in the event of a violent frontal impact of the aircraft.
  • a single reinforcing tape can be placed at the seat to cushion the impact down, very important in the case of helicopters.
  • the seat can be equipped with these two bands.
  • the energy absorbing textile consists of a single-strand structure knitting.
  • the knitting it is advantageous for the knitting to be of the jersey stitch type.
  • a variant of this first embodiment is to use several son in parallel for knitting.
  • the energy absorbing textile is woven with weft yarns and warp yarns.
  • the weft yarns and the warp yarns have approximately the same strength.
  • the wire is in fact a stretched elastic wire surrounded by a loose but high tenacity yarn.
  • the stretched elastic yarn is advantageous for the stretched elastic yarn to be made of polyamide (for example Nylon®).
  • the materials used to form the energy-absorbing textile of the reinforcing strip are from the group consisting of polyetherimide fibers, polyetherketone fibers, high molecular weight polyethylene fibers, meta and para-aramid fibers, natural fibers (flax, hemp, jute ...) and polyamide fibers.
  • FIGS. 7A and 7B views relating to a variant of the yarn used for weaving the reinforcement strip of the seat according to the invention.
  • the seat according to the invention is formed of a skeleton 1, which can be molded, formed or assembled according to the choice of material, and two flexible parts forming the backrest 2 and possibly the seat 3.
  • a seat for the transport of passengers by aircraft fulfills several functions: dynamic resistance to shocks and strong acceleration, passenger seat and backrest, support for various accessories (foldable shelf, magazine rack, armrests, ). Each of these functions corresponds to a seat element that can be separately optimized to reduce the volume and total weight of the seat.
  • the first function of the seat is structural resistance. This function is in the case of the invention provided by a skeleton. Skeleton means the rigid part of the seat that gives it structural strength: the backrest 2, the seat 3 and the securing points of the accessories do not play this role.
  • the skeleton of a seat is usually articulated, but perhaps lightened by becoming rigid.
  • This figure 1 shows a minimal skeleton 1 of the seat, formed of a hollow tubular structure. The attachment points are located on the part of the seat linked to the floor of the aircraft.
  • the two central vertical bars 9 in the center of the folder can be directly connected to the attachment points of the seat to the floor of the aircraft in the case of a non-articulated file, to minimize the weight of the skeleton.
  • This attachment to the floor of the aircraft can take place directly, for example by insertion of the two lower bars 10 of the skeleton 1 in rails formed in the floor of the aircraft, or indirectly, by attachment to a rigid intermediate structure. The latter is stowed to the floor of the aircraft.
  • a rigid aircraft structure makes it easier to install and maintain the seats.
  • the second function of the seat is the reception of the passenger.
  • the backrest 2 and seat 3 of the seat are the parts directly in contact with the passenger and may not participate in the structural strength of the seat. These parts are attached to the seat structure itself, but can be much thinner, to minimize the total weight of the seat.
  • the backrest 2, and possibly the seat 3, are made using a flexible material. A high-tenacity polyester weave, for example, may be suitable.
  • the mesh of the fabric provides an ergonomic shape, particularly marking the hollow of the back and hips.
  • Figure 2 shows the addition of the backrest 2 and the seat 3 to the skeleton 1 of the seat. These parts are very light, made of a flexible material such as weaving of polyester fibers.
  • a strip of flexible material 4 is added behind the backrest 2 because the material constituting the latter does not sufficiently dampen the passenger in case of violent shock.
  • An identical band (not shown) may optionally be added under the seat 3 if the seat must withstand significant shocks down.
  • Figure 3 shows the same seats, still in exploded view, but seen from behind. It includes the skeleton 1, the backrest 2, the seat 3, and the reinforcing strip 4 placed behind the backrest 2. It is provided with a display 8 that can be used to place, among other things, magazines or instructions of security.
  • the main technical feature of the invention is the use of the reinforcing strip 4 which must be much more deformable than the backrest 2, and also much more resistant.
  • the backrest 2 must have a void in the middle of the skeleton 1 or have a concave rear face to provide a space for the deformation of the reinforcing strip 4 during the impact.
  • the principle of producing the fabric constituting the reinforcing strip 4, and the band possibly added under the seat, is to combine a very strong fiber with little stretch, that is to say of high tenacity or breaking strength. , to an elastic shaping, in order to amortize, without shock, a shock.
  • the textile is deformed to match the shape of the object to stop, namely the head of the passenger on the seat behind the seat on the back of which is placed the reinforcement strip considered.
  • the textile resists the object in a uniform way, thus absorbing the shock. Indeed, the energy transferred during the shock is spread over the entire contact area between the textile and the object, not only at the point of impact. The pressure exerted greatly decreases, limiting the constraints that the object undergoes.
  • the chosen fiber is agglomerated into yarns to allow textile shaping.
  • Several fibers can be agglomerated within a single wire.
  • the simplest yarn is composed only of
  • PEEK polyethercetone
  • nylon polyamide
  • natural fibers flax, hemp or jute
  • polyethylene polyethylene
  • Toughness measures the force that must be exerted in traction to break a fiber. The higher the toughness, the more resistant the fiber is to tensile forces important. If the textile has to have additional qualities, it is possible to mix several fibers in the same thread, adding, for example,
  • Nomex meta-aramid fibers
  • Knitting uses only one thread for the textile surface, while weaving mixes several weft and warp threads.
  • the weave can be used to mix several types of yarn, but limits the strength of the textile, because the thread discontinuities are points of weakness of the textile.
  • Knitting ensures excellent mechanical strength to the resulting textile, but limits the possibilities of shaping. Indeed, the knitted fabric can not be cut and sewn to other parts of textiles, without the mechanical performance of the knit are altered.
  • the jersey type mesh makes it possible to obtain a relatively deformable textile.
  • the jersey point is to make a row at the place, then a row upside down.
  • the wire 10 is wrapped around itself, from one line to another, the loops leaving large gaps in the textile surface.
  • the son loops When a tension is exerted on the knitted fabric, the son loops can be deformed, imparting a certain elasticity to the assembly. If the voltage is high, and exceeds the mesh deformation possibilities, the yarn is stressed in tension, and the tenacity of the yarn is brought into play. The fact that a single yarn is used for the entirety of the knit prevents the textile from tearing from a breaking point of the wire, or at the interface between two wires.
  • an alternative embodiment of the knit shown in Figure 1 is to knit several son 20 in parallel for the same textile.
  • the mesh remains the same, but instead of using only one thread, several threads constitute each mesh.
  • Each of the yarns 20 is continuous over the entire surface of the textile, but the properties of the yarns can be combined. In particular, the fire resistance, the mechanical strength or the water-repellency is thought.
  • This variant is simpler to implement than to mix fibers within the same single wire, but does not mix so intimately different fibers.
  • the use of fine threads makes it possible to increase the interactions between each fiber. There again, the jersey stitch can be used.
  • the other alternative of the main idea, according to the invention is to weave together different threads which are the weft threads 40 and the warp threads 50.
  • the weft 40 and warp threads 50 may be different, but it must be ensured that the mechanical strength of each of these weft threads 40 and warp thread 50 is equivalent.
  • one direction may be preferred over the other.
  • the weaving can be relatively loosely and allow a certain clearance between the weft son 40 and warp 50. This game gives elasticity to the bonded textile, only rearrangement between the son and not to the elasticity of the fibers constituting the son.
  • An exemplary embodiment may be a plain weave where the weft and the warp are
  • polyamide nylon
  • natural fibers lm, hemp or jute
  • high-weight polyethylene yarn
  • a central wire 60 is used which is elastic, while another high tenacity wire 62 surrounds it very broadly.
  • the elastic thread 60 may be, for example, a nylon thread
  • the high tenacity yarn 62 can be
  • polyamide nylon
  • natural fibers lm, hemp or jute
  • high-weight polyethylene yarn a polyamide (nylon), natural fibers (lm, hemp or jute) or a high-weight polyethylene yarn
  • the high tenacity yarn 62 is wrapped or twisted around the elastic yarn 60 which is central.
  • the elastic thread 60 placed in the center, stretches, while the high-tenacity thread 62 at the periphery deforms, approaching the elastic thread 60.
  • the tension exceeds the possibilities of deformation of the elastic wire 60, which is in the center, the high-tenacity yarn 62 is then stretched and then gives a very strong mechanical strength to the fabric thus formed.
  • the cushioning of the head of a passenger on the back of the back of the front seat is all the more effective, the textile part is elastic.
  • the cushioning of the passenger is at the seat of the seat, and is more effective than the band added under the seat is elastic.
  • the cushioning is based on a transfer of the kinetic energy of the passage in elastic energy of the textile part.
  • the shock of the passenger is minimized, ie the force transmitted to the passenger to go from the cruising speed to the stop, spreading the cushioning over a time range as large as possible.
  • a sufficiently low elasticity constant which amounts to having a fairly elastic fabric, therefore allows the impact to be spread out over time and to minimize the feeling felt by the passenger.
  • the textile can therefore withstand the shock of a passenger running at full speed, in the case of an aircraft crash, by frontal impact, or during a downward impact in the case of the band located under the seat.
  • the breaking strength is generally low for elastic fibers. Elasticity is achieved by allowing individual filaments to slide relative to each other, within a single thread. The weak cohesion between the filaments is a problem, in the breaking strength because the individual filaments dissociate at low force levels. The use of very high threads
  • ® toughness such as aramid fibers (Kevlar or
  • Molecular weight allows to combine these contradictory characteristics of elasticity and tenacity, and this thanks to the shape of the elastic knit, or to the use of a mixed weaving.
  • the knitting is a shaping of the wire mesh, using only one thread for all the textile.
  • the use of a single large wire guarantees the mechanical strength of the assembly, avoiding the breaking points of the wire.
  • the jersey stitch used makes it possible to obtain this elasticity by its structure, independently of the elasticity of the yarn.
  • the use of a combination weave an elastic yarn and a loose high tenacity yarn makes it possible to achieve the same result.
  • the use of an elastic structure and a high tenacity yarn makes it possible to combine a low deceleration for the passenger and an excellent mechanical strength of the textile part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Woven Fabrics (AREA)
  • Seats For Vehicles (AREA)
  • Knitting Of Fabric (AREA)

Abstract

Le siège selon l'invention permet d'amortir, en cas de choc frontal de l'aéronef, le basculement subit d'un passager se trouvant sur un siège placé derrière le siège selon l'invention. Le dossier (2) du siège selon l'invention est équipé d'une bande de renfort (4) placée à l'arrière du dossier (2). L'assise (3) peut également être équipée d'une seconde bande de renfort placée sous l'assise (3). Cette bande de renfort (4) est constituée d'un textile tricoté ou tissé. Dans le cas du tricot, le fil utilisé est à ténacité importante, le point de tricotage pouvant être avantageusement le point de jersey. Dans le cas du tissage, les fils de trame et de chaîne doivent avoir approximativement la même ténacité. Application à l'amortissement des passagers dans les aéronefs, en cas de choc frontal, ou de choc vers le bas.

Description

SIEGE D'AERONEF EQUIPE D'UNE BANDE DE RENFORT POUR AMORTIR LES CHOCS
DESCRIPTION DOMAINE TECHNIQUE
La présente invention appartient au domaine de la fabrication d'aménagements de cabines d'aéronefs, pour l'aviation générale, l'aviation commerciale, les hélicoptères ou l'aviation militaire. Elle concerne plus particulièrement la réalisation d'un siège d'aéronef supportant un ou plusieurs passagers et équipé de moyens d'amortissement de chocs pour le passager se trouvant sur le siège de derrière (choc avant) , ou au niveau de l'assise (choc vers le bas) .
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Le volume des sièges des aéronefs est une préoccupation qui cherche à répondre à l'augmentation du nombre de passagers transportés chaque année. En réduisant le volume unitaire des sièges, il est possible de diminuer l'espacement entre deux rangées de sièges et d'augmenter le nombre de passagers pouvant prendre place au sein d'aéronefs, ou à l'inverse, d'augmenter l'espace dévolu à chaque passager ou celui dévolu aux marchandises. Un meilleur remplissage de l'avion permet, à flux de passagers constant sur une ligne aérienne de diminuer le nombre de vols : le carburant économisé réduit d'autant les rejets de gaz à effet de serre.
La diminution du volume des sièges ne doit pas diminuer la sécurité des passagers transportés. Les normes de sécurité relatives aux sièges d'aéronefs sont drastiques, notamment en termes de résistance aux chocs .
Cette contrainte qu'est la résistance et l'amortissement du passager en cas de chocs, a longtemps conduit à réaliser des sièges d'aéronefs destinés aux passagers à l'aide d'une structure en métal et de coussins déformables. La structure, constituée d'un grand nombre de pièces métalliques, est particulièrement résistante en cas de chocs. Mais ces structures sont denses et rendent les sièges assez lourds. Les coussins déformables, situés au niveau de l'assise et du dossier, permettent un bon amorti du passager. Mais ils sont également assez denses et accroissent le poids total du siège.
La complexité de ce type de sièges soulève plusieurs problèmes, lors de sa fabrication, de son entretien, ou pour le suivi des différentes pièces. Plus le nombre de pièces composant le siège d'aéronef est élevé, plus la logistique et le processus de fabrication de ce siège sont complexes et coûteux. Les fixations de ces différentes pièces entre elles sont souvent métalliques (typiquement en acier inoxydable), pour satisfaire aux normes de sécurité, et alourdissent le siège. Enfin, au niveau de la conception du siège, chaque pièce devant satisfaire les normes de sécurité, une diminution du nombre de pièces limite les tests à pratiquer et donc, le temps total nécessaire à la certification du siège. Une réduction du nombre de pièces permet ainsi une diminution du volume et du poids du siège. Par ailleurs, ces sièges intègrent historiquement des fonctions coûteuses, en poids et en valeur, qui ne sont plus adaptées aux configurations des cabines actuelles. L'inclinaison du dossier, par exemple, n'est plus utilisable quand l'espace entre les rangées de sièges est réduit.
Un squelette de siège, de faible poids, combiné à un dossier flexible, permet de remédier à ces inconvénients. La forme du siège allie le confort du passager, notamment par le dossier, et éventuellement l'assise, flexible(s), et la résistance mécanique du squelette, afin de respecter les normes en vigueur dans le transport de passagers par voie aérienne. Elle dissocie la résistance structurale, assurée par un élément rigide unique formant le squelette, et l'assise et le dossier du passager, réalisés dans un matériau flexible .
Néanmoins, la contrainte d'amortissement du passager dans de bonnes conditions de sécurité doit toujours être respectée. Le but de l'invention est donc de doter le siège d'aéronef selon l'invention de moyens d'amortissement du passager placé derrière le siège, en cas de choc frontal de l'aéronef, la tête de ce passager se trouvant derrière basculant contre l'arrière du dossier du siège se trouvant devant lui. De même, un moyen d'amortissement placé au niveau de l'assise permet de retenir le passager en cas de choc vers le bas de l'aéronef. RESUME DE L ' INVENTION
A cet effet, l'objet principal de l'invention est un siège pour aéronef dont la résistance mécanique de sa structure est assurée par unn squelette, comportant en particulier des vides au niveau de l'assise et éventuellement du dossier.
Selon l'invention, il comprend une bande de renfort en textile absorbeur d'énergie, située, dans une première réalisation de l'invention, légèrement en retrait par rapport au dossier, et placée derrière ce dernier, pour amortir le basculement de la tête du passager de derrière en cas de choc frontal violent de l'aéronef. Une même bande de renfort peut être placée au niveau de l'assise pour amortir les chocs vers le bas, très important dans le cas d'hélicoptères. Le siège peut être équipé de ces deux bandes.
Dans l'une des deux principales réalisations selon l'invention, le textile absorbeur d'énergie est constitué d'un tricotage de structure à un seul fil .
Dans ce cas, il est avantageux que le tricotage soit du type point de jersey.
Une variante de cette première réalisation est d'utiliser plusieurs fils en parallèle pour le tricotage.
Dans la deuxième réalisation principale de l'invention, le textile absorbeur d'énergie est tissé avec des fils de trame et des fils de chaîne.
Il est préférable que les fils de trame et les fils de chaîne aient approximativement la même résistance . Dans une variante de cette deuxième réalisation principale selon l'invention, le fil est constitué en fait d'un fil tendu élastique entouré d'un fil lâche mais à haute ténacité.
Dans ce cas de variante utilisant le fil tendu élastique entouré d'un fil lâche à haute ténacité, il est avantageux que le fil tendu élastique soit en polyamide (par exemple Nylon ®) .
Les matériaux utilisés pour constituer le textile absorbeur d'énergie de la bande de renfort sont du groupe constitué par les fibres de polyéthérimide, les fibres de polyéthercétone, les fibres de polyéthylène à haut poids moléculaire, les fibres de méta- et para-aramide, les fibres naturelles (lin, chanvre, jute...) et les fibres en polyamide.
LISTE DES FIGURES
L'invention et ses différentes caractéristiques techniques seront mieux comprises à la lecture de la description suivante illustrée de huit figures qui sont les suivantes :
-figure 1, en vue cavalière, de côté et légèrement par devant, un siège selon l'invention ;
-figure 2, le même siège que la figure 1 avec la même orientation, mais en vue éclatée ;
-figure 3, le même siège que celui des deux figures précédentes, en vue cavalière et vue de derrière, toujours en vue éclatée ;
-figure 4, schéma du tricotage utilisé pour la bande de renfort du siège selon l'invention ; -figure 5, une variante du tricotage utilisé pour la bande de renfort du siège selon 1 ' invention ;
-figure 6, un schéma du tissage utilisé pour la bande de renfort du siège selon l'invention, et
-figures 7A et 7B, de vues relatives à une variante du fil utilisé pour le tissage de la bande de renfort du siège selon l'invention. DESCRIPTION DETAILLEE DE L ' INVENTION
En référence à la figure 1, le siège selon l'invention est formé d'un squelette 1, qui peut être moulé, formé ou assemblé selon le choix du matériau, et deux parties flexibles formant le dossier 2 et éventuellement l'assise 3. Un siège pour le transport de passagers par aéronef remplit plusieurs fonctions : résistance dynamique aux chocs et aux fortes accélérations, assise et dossier du passager, support de divers accessoires (tablette pliable, range-revues, accoudoirs, ...) . Chacune de ces fonctions correspond à un élément du siège que l'on peut optimiser séparément pour réduire le volume et le poids total du siège.
La première fonction du siège est la résistance structurale. Cette fonction est dans le cas de l'invention assurée par un squelette. Par squelette, on entend la partie rigide du siège qui lui confère la résistance structurale : le dossier 2, l'assise 3 ainsi que les points d'arrimage des accessoires ne jouent pas ce rôle. Le squelette d'un siège est usuellement articulé, mais peut-être allégé en devenant rigide. Cette figure 1 montre un squelette 1 minimal du siège, formé d'une structure tubulaire creuse. Les points d'attache sont situés sur la partie du siège liée au plancher de l'aéronef. Dans le cas d'un siège à trois places, comme représenté sur la figure 1, les deux barres verticales centrales 9 au centre du dossier peuvent être directement reliées aux points d'attache du siège au plancher de l'aéronef dans le cas d'un dossier non articulé, afin de minimiser le poids du squelette.
Cette fixation au plancher de l'aéronef peut avoir lieu directement, par exemple par insertion des deux barres inférieures 10 du squelette 1 dans des rails aménagés dans le plancher de l'aéronef, ou indirectement, par fixation sur une structure intermédiaire rigide. Cette dernière est arrimée au plancher de l'aéronef. L'utilisation d'une structure d'aéronef rigide permet de faciliter la pose et l'entretien des sièges.
La seconde fonction du siège est l'accueil du passager. Le dossier 2 et l'assise 3 du siège sont les parties directement en contact avec le passager et peuvent ne pas participer à la résistance structurale du siège. Ces parties sont fixées sur la structure du siège proprement dite, mais peuvent être beaucoup plus fines, afin de minimiser le poids total du siège. Le dossier 2, et éventuellement l'assise 3, sont réalisés à l'aide d'un matériau flexible Un tissage de polyester à haute ténacité par exemple peut convenir. Le maillage du tissu permet d'obtenir une forme ergonomique, marquant en particulier le creux du dos et des hanches. La figure 2 montre l'ajout du dossier 2 et de l'assise 3 au squelette 1 du siège. Ces parties sont très légères, constituées d'un matériau flexible tel un tissage de fibres de polyester. Une bande en matériau flexible 4, dont la réalisation sera détaillée ci-après, aux propriétés différentes et constituée d'un textile absorbeur d'énergie est ajoutée derrière le dossier 2 car le matériau constituant ce dernier ne permet pas d'amortir suffisamment le passager en cas de choc violent. Une bande identique (non représentée) peut éventuellement être ajoutée sous l'assise 3 si le siège doit résister à des chocs importants vers le bas.
Sur les figures 1 et 2, on a également fait figurer des accessoires arrimés au squelette 1 du siège. On pense en particulier à des porte-gobelet 5 et 6, des accoudoirs 7.
La figure 3 montre les mêmes sièges, toujours en vue éclatée, mais vus de derrière. On y retrouve le squelette 1, le dossier 2, l'assise 3, et la bande de renfort 4 placée derrière le dossier 2. Elle est munie d'un présentoir 8 pouvant servir à placer, entre autres, des magazines ou des instructions de sécurité.
La caractéristique technique principale de l'invention est l'utilisation de la bande de renfort 4 qui doit être beaucoup plus déformable que le dossier 2, et également beaucoup plus résistante. Le dossier 2 doit présenter un vide au milieu du squelette 1 ou présenter une face arrière concave pour ménager un espace pour la déformation de la bande renfort 4, lors du choc. Le principe de la réalisation du tissu constituant la bande de renfort 4, et la bande éventuellement ajoutée sous l'assise, est de combiner une fibre très résistante et peu extensible, c'est-à-dire de haute ténacité ou résistance à la rupture, à une mise en forme élastique, afin de pouvoir amortir, sans heurt, un choc. Lors de ce dernier, le textile se déforme pour épouser la forme de l'objet à arrêter, à savoir la tête du passager se trouvant sur le siège placé derrière le siège sur le dossier duquel est placée la bande de renfort considérée. Le textile résiste à l'objet de façon uniforme, amortissant ainsi le choc. En effet, l'énergie transférée lors du choc se répartit sur toute la surface de contact entre le textile et l'objet, et non uniquement au niveau du point d'impact. La pression exercée diminue grandement, limitant les contraintes que subit l'objet.
La fibre choisie est agglomérée en fils pour permettre une mise en forme textile. Plusieurs fibres peuvent être agglomérées au sein d'un même fil. Le fil le plus simple n'est composé que de fibres à
® haute ténacité, telles des fibres para-aramide (Kevlar
® ® ou Twaron ) , des fibres polyetherimide (Ultem ) ,
® ®
polyethercetone (PEEK ) , polyamide (Nylon ) , les fibres naturelles (lin, chanvre ou jute) ou encore poléthylène
® ® a haut poids moléculaire (Dyneema ou Spectra ) . La ténacité mesure la force qu'il faut exercer en traction pour rompre une fibre. Plus la ténacité est élevée, plus la fibre résiste à des forces de traction importantes. Si le textile doit avoir des qualités supplémentaires, il est possible de mêler plusieurs fibres dans le même fil, en y ajoutant, par exemple,
®
des fibres meta-aramide (Nomex ) pour la résistance au feu .
Une fois le fil constitué, ce dernier est mis en forme pour donner un textile. Deux grandes techniques sont possibles, c'est-à-dire le tricotage ou le tissage. Le tricotage n'utilise qu'un seul fil pour la surface textile, alors que le tissage mêle plusieurs fils de trame et de chaîne. Le tissage peut être utilisé pour mêler plusieurs types de fils, mais limite la résistance du textile, car les discontinuités de fils sont des points de faiblesse du textile.
Le tricotage permet d'assurer une excellente résistance mécanique au textile résultant, mais limite les possibilités de mise en forme. En effet, le textile tricoté ne peut pas être coupé et cousu à d'autres parties de textiles, sans que les performances mécaniques du tricot ne soient altérées.
En référence à la figure 4, dans le cas du tricot, la maille de type jersey permet d'obtenir un textile relativement déformable. Le point de jersey consiste à effectuer un rang à l'endroit, puis un rang à l'envers. Le fil 10 est enroulé autour de lui-même, d'une ligne à l'autre, les boucles laissant de larges espaces vides dans la surface textile.
Quand une tension est exercée sur le textile tricoté, les boucles de fils peuvent se déformer, conférant une certaine élasticité à l'ensemble. Si la tension est importante, et excède les possibilités de déformation des mailles, le fil est sollicité en traction, et la ténacité du fil est mise en jeu. Le fait qu'un seul fil soit utilisé pour l'intégralité du tricot évite que le textile ne se déchire à partir d'un point de rupture du fil, ou à l'interface entre deux fils.
En référence à la figure 5, une variante de mise en œuvre du tricot, représentée à la figure 1, consiste à tricoter plusieurs fils 20 en parallèle pour le même textile. La maille reste la même, mais au lieu de n'utiliser qu'un seul fil, plusieurs fils constituent chaque maille. Chacun des fils 20 est continu sur toute la surface du textile, mais les propriétés des fils peuvent se combiner. On pense, en particulier, à la résistance au feu, la résistance mécanique ou le caractère hydrofuge. Cette variante est plus simple à mettre en œuvre que de mêler des fibres au sein d'un même fil unique, mais ne mêle pas aussi intimement les différentes fibres. L'utilisation des fils fins permet d'augmenter les interactions entre chaque fibre. Là, encore, le point de jersey peut être utilisé .
En référence à la figure 6, l'autre alternative de l'idée principale, selon l'invention, consiste à tisser ensemble différents fils qui sont les fils de trame 40 et les fils de chaîne 50. Les fils de trame 40 et de chaîne 50 peuvent être différents, mais il faut veiller à ce que la résistance mécanique de chacun de ces fils de trame 40 et de chaîne 50 soit équivalente. Toutefois, une direction peut être privilégiée par rapport à l'autre. Le tissage peut être relativement lâche et permettre un certain jeu entre les fils de trame 40 et de chaîne 50. Ce jeu donne une élasticité au textile lié, uniquement au réarrangement entre les fils et non à l'élasticité des fibres constituant les fils. Un exemple de réalisation peut être une armure toile où la trame et la chaîne sont
® ® symétriques, en fils para-aramide (Kevlar ou Twaron ),
® ® polyétherimide (Ultem ) , polyéthercétone (PEEK ) ,
®
polyamide (Nylon ), les fibres naturelles (lm, chanvre ou jute) ou encore en fils poléthylène à haut poids
® ®
moléculaire (Dyneema ou Spectra ) .
Pour augmenter l'élasticité du tissage, il peut être judicieux d'utiliser à nouveau deux fils pour constituer la trame et deux fils pour constituer la chaîne. En référence à la figure 7A, on utilise un fil central 60 qui est élastique, tandis qu'un autre fil à haute ténacité 62 l'entoure de façon très large. Le fil élastique 60 peut être, par exemple, un fil de nylon
(polyamide 6-6) . Le fil à haute ténacité 62 peut être
® ® un fil en para-aramide (Kevlar ou Twaron ),
® ® polyétherimide (Ultem ) , polyéthercétone (PEEK ) ,
®
polyamide (Nylon ), les fibres naturelles (lm, chanvre ou jute) ou encore un fil poléthylène à haut poids
® ®
moléculaire (Dyneema ou Spectra ) . Le fil a haute ténacité 62 est enroulé ou entortillé autour du fil élastique 60 qui est central. En référence à la figure 7B, quand une tension est exercée sur le tissu, le fil élastique 60, placé au centre, s'étire, tandis que le fil à haute ténacité 62 en périphérie se déforme, se rapprochant du fil élastique 60. Si la tension excède les possibilités de déformation du fil élastique 60, qui se trouve au centre, le fil à haute ténacité 62 est alors tendu et confère alors une très forte résistance mécanique au tissu ainsi constitué.
MISE EN ŒUVRE ET AVANTAGES
Lors d'un choc frontal de l'aéronef, l'amorti de la tête d'un passager sur l'arrière du dossier du siège de devant est d'autant plus efficace, que la partie textile est élastique. De même, lors d'un choc vers le bas, l'amorti du passager se fait au niveau de l'assise du siège, et est d'autant plus efficace que la bande ajoutée sous l'assise est élastique. En effet, l'amorti repose sur un transfert de l'énergie cinétique du passage en énergie élastique de la partie textile. On minimise le choc du passager, c'est-à-dire la force transmise au passager pour passer de la vitesse de croisière à l'arrêt, en étalant l'amorti sur une plage de temps aussi importante que possible. Une constante d'élasticité suffisant faible, ce qui revient à avoir un textile assez élastique, permet donc d'étaler dans le temps le choc et de minimiser le ressenti par le passager. La ténacité des fibres utilisées pour constituer le fil ou les fils, divisée par la densité linéaire des fibres, définit la résistance du textile, qui ne se déchire pas lors du choc. Le textile peut donc supporter le choc d'un passager lancé à pleine vitesse, dans le cas d'un crash aéronautique de l'aéronef, par choc frontal, ou lors d'un choc vers le bas dans le cas de la bande située sous l'assise.
La résistance à la rupture est en général faible pour les fibres élastiques. L'élasticité s'obtient en permettant à des filaments individuels de coulisser les uns par rapport aux autres, au sein d'un même fil. La faible cohésion entre les filaments est un problème, lors de la résistance à la rupture car les filaments individuels se désolidarisent à des niveaux de force faible. L'utilisation de fils à très haute
® ténacité, tels que des fibres aramides (Kevlar ou
® ®
Twaron ) , polyetherimide (Ultem ) , polyethercetone
® ®
(PEEK ) , polyamide (Nylon ) , les fibres naturelles
(lin, chanvre ou jute) ou encore poléthylène à haut
® ®
poids moléculaire (Dyneema ou Spectra ), permet d'allier ces caractéristiques contradictoires d'élasticité et de ténacité, et ceci grâce à la forme du tricot élastique, ou à l'utilisation d'un tissage mixte. Le tricot est une mise en forme du fil en mailles, n'utilisant qu'un seul fil pour tout le textile. L'utilisation d'un fil unique de grande taille garantit la tenue mécanique de l'ensemble, en évitant les points de rupture du fil. Le point de jersey utilisé permet d'obtenir cette élasticité de par sa structure, indépendamment de l'élasticité du fil. Alternativement, l'utilisation d'un tissage combinant un fil élastique et un fil à haute ténacité lâche permet d'aboutir au même résultat. L'utilisation d'une structure élastique et d'un fil à haute ténacité permet d'allier une faible décélération pour le passager et une excellente tenue mécanique de la partie textile.

Claims

REVENDICATIONS
1) Siège pour aéronef dont la résistance mécanique de la structure assurée par un squelette (1), caractérisé en ce qu'il comprend une bande de renfort (4) en textile absorbeur d'énergie, pour amortir le mouvement brutal du corps d'un passager, en cas de choc violent de l'aéronef.
2) Siège selon la revendication 1, comportant en particulier un vide au niveau du dossier
(2) ,
caractérisé en ce que la bande de renfort (4) en textile absorbeur d'énergie est située légèrement en retrait par rapport au dossier (2) du siège (1) et placée derrière ce dernier, pour amortir le basculement de la tête d'un passager se trouvant sur le siège de derrière, en cas de choc frontal violent de 1 ' aéronef .
3) Siège selon l'une des revendications 1 ou 2, comportant en particulier un creux au niveau de l'assise ( 3 ) ,
caractérisé en ce que la bande de renfort (4) en textile absorbeur d'énergie est située légèrement en dessous de l'assise (3), pour amortir le corps du passager se trouvant sur le siège, en cas de choc violent vers le bas de l'aéronef.
4) Siège selon la revendication 1, caractérisé en ce que le textile absorbeur d'énergie de la bande de renfort (4) est constitué d'un tricotage de structure à un seul fil (10) . 5) Siège selon la revendication 4, caractérisé en ce que le tricotage est du type en point de jersey.
6) Siège selon la revendication 4 ou 5, caractérisé en ce que le tricotage est constitué de plusieurs fils en parallèle (20) .
7) Siège selon la revendication 1, caractérisé en ce que le textile absorbeur d'énergie de la bande de renfort (4) est tissé avec des fils de trame (40) et des fils de chaîne (50) .
8) Siège selon la revendication 7, caractérisé en ce que qu'on utilise des fils de trame (40) et des fils de chaîne (50) qui ont approximativement la même résistance à la rupture.
9) Siège selon la revendication 7 ou 8, caractérisé en ce que le fil utilisé pour constituer le fil de trame (40) et de chaîne (50) est constitué en fait d'un fil élastique (60) tendu et entouré d'un fil à haute ténacité (62), mais lâche.
10) Siège selon la revendication 9, caractérisé en ce que le fil élastique (60) qui est tendu est en polyamide.
11) Siège selon l'une quelconque des revendications précédentes, caractérisé en ce que le textile absorbeur d'énergie de la bande de renfort (4) est constitué de fil (s) en un matériau faisant partie du groupe réunissant les fibres polyéthérimide, les fibres polyéthercétones , les fibres polyéthylène à haut poids moléculaire, les fibres méta- et para-aramide, les fibres naturelles et les fibres en polyamide.
PCT/EP2012/055345 2011-03-30 2012-03-26 Siege d'aeronef equipe d'une bande de renfort pour amortir les chocs WO2012130809A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280017048.2A CN103476674B (zh) 2011-03-30 2012-03-26 配备有用于吸收冲击的加强带状物的飞机座椅
EP12710731.6A EP2691301B1 (fr) 2011-03-30 2012-03-26 Siege d'aeronef equipe d'une bande de renfort pour amortir les chocs
US14/008,051 US9327835B2 (en) 2011-03-30 2012-03-26 Airplane seat provided with a reinforcing strip for absorbing impacts
JP2014501564A JP6038877B2 (ja) 2011-03-30 2012-03-26 衝撃を吸収するための補強ストリップを備える航空機用シート
CA2827991A CA2827991C (fr) 2011-03-30 2012-03-26 Siege d'aeronef equipe d'une bande de renfort pour amortir les chocs
BR112013024471-2A BR112013024471B1 (pt) 2011-03-30 2012-03-26 assento para aeronave
RU2013148140/11A RU2587131C2 (ru) 2011-03-30 2012-03-26 Кресло летательного аппарата, оборудованное усилительной лентой для амортизации ударов

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1100937 2011-03-30
FR1100937A FR2973336A1 (fr) 2011-03-30 2011-03-30 Siege d'aeronef a dossier flexible
FR1101840A FR2973337B1 (fr) 2011-03-30 2011-06-16 Siege d'aeronef a dossier flexible
FR1101840 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012130809A1 true WO2012130809A1 (fr) 2012-10-04

Family

ID=44785900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/055345 WO2012130809A1 (fr) 2011-03-30 2012-03-26 Siege d'aeronef equipe d'une bande de renfort pour amortir les chocs

Country Status (9)

Country Link
US (1) US9327835B2 (fr)
EP (1) EP2691301B1 (fr)
JP (1) JP6038877B2 (fr)
CN (1) CN103476674B (fr)
BR (1) BR112013024471B1 (fr)
CA (1) CA2827991C (fr)
FR (2) FR2973336A1 (fr)
RU (1) RU2587131C2 (fr)
WO (1) WO2012130809A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154667A1 (fr) 2013-03-26 2014-10-02 Expliseat Dossier de siege de vehicule comportant une zone fragilisee apte a se dechirer
US9809139B2 (en) 2013-03-26 2017-11-07 Expliseat Vehicle seat equipped with a fold-down element, such as a tray

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001711B1 (fr) * 2013-02-07 2016-03-04 Expliseat Siege de vehicule comportant une zone deformable en cas de choc
CN104648673B (zh) * 2015-02-07 2017-03-29 江苏中陆航星航空工业有限公司 一种能量吸收式飞机座椅
US10220737B2 (en) * 2016-04-01 2019-03-05 Ford Global Technologies, Llc Kinematic back panel
DE102017113577B4 (de) 2016-06-27 2023-07-13 Lisa Dräxlmaier GmbH Fahrzeugsitz
FR3055611B1 (fr) * 2016-09-08 2018-09-28 Zodiac Seats France Siege d'aeronef muni d'une zone d'absorption d'energie integree dans le baquet
GB2561344B (en) * 2017-04-03 2020-02-26 Tangerine Ltd Occupant Support Device For a Seat
US10766622B2 (en) 2017-10-23 2020-09-08 Yaborã Indústria Aeronáutica S.A. Lightweight vehicle passenger seat assemblies
CN113195303B (zh) * 2018-08-03 2023-09-19 伊利诺斯工具制品有限公司 具有动能管理织物的载荷承载表面
RU188465U1 (ru) * 2018-11-15 2019-04-15 Евгений Станиславович Фокин 1 спасательное кресло фокина для летательных аппаратов
CN109502027B (zh) * 2018-12-17 2023-10-20 航宇救生装备有限公司 一种轻型抗冲击侧壁座椅
US10669030B1 (en) * 2019-04-23 2020-06-02 B/E Aerospace, Inc. Seat pan diaphragm
US10899457B2 (en) * 2019-04-30 2021-01-26 B/E Aerospace, Inc. Composite seat assemblies including high performance fibers
DE102019132557A1 (de) * 2019-11-29 2021-06-02 Airbus Operations Gmbh Fahrzeugsitz mit netzartiger Struktur in einer Sitzschale
US11827359B2 (en) * 2022-04-01 2023-11-28 B/E Aerospace, Inc. Devices for HIC reduction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB817264A (en) * 1956-10-15 1959-07-29 Baynes Aircraft Interiors Ltd Improvements in or relating to aircraft seats
US4375300A (en) * 1980-11-20 1983-03-01 Uop Inc. Framing system for aircraft passenger seat
US5787562A (en) * 1995-03-27 1998-08-04 Burns Aerospace Corporation Quick replacement seat bottom diaphragm and method
US20060186723A1 (en) * 2005-02-18 2006-08-24 Eric Kawabata Troop seat
US20080290715A1 (en) * 2007-05-22 2008-11-27 Fullerton James A Modular passenger seat for an aircraft

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US324839A (en) 1885-08-25 Car-seat rest and fire-escape
US2725096A (en) * 1953-12-09 1955-11-29 Granby Melville Deck chair canvas
US3744843A (en) 1969-01-17 1973-07-10 American Seating Co Vehicle chair unit
GB8331260D0 (en) 1983-11-23 1983-12-29 Toll I C Aircraft seats
BR8603369A (pt) * 1986-07-17 1988-03-15 Embraer Aeronautica Sa Assento de poltronas de passageiros em avioes
US4994317A (en) * 1988-12-21 1991-02-19 Springs Industries, Inc. Flame durable fire barrier fabric
ATE134300T1 (de) * 1990-10-23 1996-03-15 Davband Pty Ltd Rückenunterstützung für einen stuhl oder sitz
JPH06299435A (ja) * 1991-02-08 1994-10-25 Masahiko Kanbayashi 衝撃荷重吸収ベルト
JPH0769110A (ja) * 1991-02-21 1995-03-14 Ignaz Vogel Gmbh & Co Kg Fahrzeugsitze 乗客用シート
DE4222222C2 (de) * 1992-07-07 1994-06-16 Deutsche Lufthansa Fluggastsitz
JP3352136B2 (ja) 1993-03-15 2002-12-03 タカタ株式会社 インフレータブルシートベルト装置
JPH0891171A (ja) * 1994-09-21 1996-04-09 Yutaro Inoue シートベルト及びウエビング
RU2095289C1 (ru) * 1996-01-10 1997-11-10 Товарищество с ограниченной ответственностью "Ротофлекс" Кресло летательного аппарата
US5882072A (en) 1996-12-16 1999-03-16 The Boeing Company Reduced head impact seat system
US6485098B1 (en) * 1998-10-30 2002-11-26 Indiana Mills & Manufacturing, Inc. Restraint system for a school bus seat
GB9824704D0 (en) * 1998-11-12 1999-01-06 Mgr Foamtex Ltd Aircraft seats
US6561580B1 (en) * 1999-01-21 2003-05-13 Bergey Karl H Energy-absorbing aircraft seat
DE19916593C2 (de) * 1999-04-13 2003-06-12 Fast Ag Grenchen Fluggastsitz
US20010029140A1 (en) 2000-03-09 2001-10-11 Toray Industires, Inc. Seat belt webbing and passenger-holding device using the same
JP2001253314A (ja) * 2000-03-09 2001-09-18 Toray Ind Inc シートベルトウェビング
ITTO20020097A1 (it) * 2002-02-01 2003-08-01 Petra Italia S A S Di Marina B Sedile per veicolo.
EP1350447A1 (fr) * 2002-04-02 2003-10-08 André Leguen Module d'assise ergonomique et siège équipé d'un tel module
JP3392129B1 (ja) * 2002-04-23 2003-03-31 富美子 竹村 手芸用ひも及びこれを用いた手芸品
US7731294B2 (en) * 2002-09-03 2010-06-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Seat
FR2851524B1 (fr) * 2003-02-21 2005-05-06 Faurecia Sieges Automobile Dossier de siege de vehicule automobile.
JP4175162B2 (ja) * 2003-04-11 2008-11-05 東レ株式会社 シートベルト用ウェビングおよびその製造方法
JP4245403B2 (ja) * 2003-05-06 2009-03-25 株式会社デルタツーリング 座席構造
GB2407968B (en) 2003-11-11 2005-10-05 Antony Charlton Gohl Travel baby support
JP2005306159A (ja) * 2004-04-20 2005-11-04 Toyota Motor Corp 乗物用シート
DE202004008069U1 (de) * 2004-05-13 2004-07-29 Tricon Aktiengesellschaft Flugzeugsitz mit integriertem Handgepäckfach
US7866606B2 (en) * 2005-08-18 2011-01-11 Lme, Inc. Aircraft crashworthy energy absorber system
GB0606991D0 (en) * 2006-04-06 2006-05-17 Virgin Atlantic Airways Ltd Vehicle seat assembly
US7954762B2 (en) 2006-05-17 2011-06-07 The Boeing Company Lightweight aircraft passenger seat with composite construction
CN201201715Y (zh) * 2008-05-12 2009-03-04 严宏生 一种飞机客舱
GB0905538D0 (en) 2009-03-31 2009-05-13 Cobra Uk Automotive Products D Aircraft seat
US8267471B2 (en) * 2009-08-24 2012-09-18 Honda Motor Co., Ltd. Passive energy absorbing seat
EP2499046A4 (fr) * 2009-11-12 2014-04-23 Be Aerospace Inc Sièges d'aéronef et dispositif d'assise
US20130026803A1 (en) * 2011-07-27 2013-01-31 Zodiac Aerospace Airbag module on seat back
US8684043B2 (en) * 2012-04-12 2014-04-01 Gessner Holding Ag Textile substrate with water and water vapor dissipating properties
US20130341975A1 (en) * 2012-06-26 2013-12-26 David W. Schneider Airbag arrangement for seats arranged in tandem
JP5879319B2 (ja) * 2013-10-01 2016-03-08 富士重工業株式会社 車両用シート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB817264A (en) * 1956-10-15 1959-07-29 Baynes Aircraft Interiors Ltd Improvements in or relating to aircraft seats
US4375300A (en) * 1980-11-20 1983-03-01 Uop Inc. Framing system for aircraft passenger seat
US5787562A (en) * 1995-03-27 1998-08-04 Burns Aerospace Corporation Quick replacement seat bottom diaphragm and method
US20060186723A1 (en) * 2005-02-18 2006-08-24 Eric Kawabata Troop seat
US20080290715A1 (en) * 2007-05-22 2008-11-27 Fullerton James A Modular passenger seat for an aircraft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154667A1 (fr) 2013-03-26 2014-10-02 Expliseat Dossier de siege de vehicule comportant une zone fragilisee apte a se dechirer
US9796475B2 (en) 2013-03-26 2017-10-24 Expliseat Vehicle seat backrest having a weakened area that is able to tear
US9809139B2 (en) 2013-03-26 2017-11-07 Expliseat Vehicle seat equipped with a fold-down element, such as a tray

Also Published As

Publication number Publication date
CA2827991C (fr) 2019-04-02
US9327835B2 (en) 2016-05-03
FR2973337A1 (fr) 2012-10-05
FR2973336A1 (fr) 2012-10-05
EP2691301A1 (fr) 2014-02-05
CN103476674A (zh) 2013-12-25
RU2587131C2 (ru) 2016-06-10
FR2973337B1 (fr) 2016-09-02
RU2013148140A (ru) 2015-05-10
BR112013024471A2 (pt) 2017-11-07
CN103476674B (zh) 2016-11-09
CA2827991A1 (fr) 2012-10-04
US20140015290A1 (en) 2014-01-16
JP2014510668A (ja) 2014-05-01
EP2691301B1 (fr) 2015-07-22
BR112013024471B1 (pt) 2021-05-18
JP6038877B2 (ja) 2016-12-07

Similar Documents

Publication Publication Date Title
EP2691301B1 (fr) Siege d'aeronef equipe d'une bande de renfort pour amortir les chocs
EP2978632B1 (fr) Dossier de siege de vehicule comportant une zone fragilisee apte a se dechirer
EP2540620B1 (fr) Pale de rotor, et aéronef
EP2670662B1 (fr) Siege ultraleger pour aeronef
JP4554362B2 (ja) 座席構造
FR2935682A1 (fr) Struture d'ensemble de siege pour aeronef et fuselage adapte
EP2763874B1 (fr) Arrimage textile de ceinture de securite
WO2014122173A1 (fr) Siege de vehicule comportant une zone deformable en cas de choc
EP0923403B1 (fr) Sangle amortisseuse de securite
EP2657385A1 (fr) Armature textile de renfort et procede de fabrication
FR3022863A1 (fr) Systeme elastique de bloquage d'une tablette de siege de vehicule, en particulier d'aeronef
EP3704396B1 (fr) Absorbeur d'énergie pour siège d'aéronef
WO2014128418A1 (fr) Procédé de tissage d'un tissu en relief, métier à tisser pour réaliser le procédé et préforme utilisant un tel tissu en relief
FR2779399A1 (fr) Filet de retenue a fixer dans l'habitacle d'une voiture particuliere
EP3354571B1 (fr) Siège d'aéronef muni d'une zone d'absorption d'énergie intégrée dans le baquet
FR3143469A1 (fr) Système de siège de véhicule comprenant un dossier en composite à armature alvéolaire
FR3132109A1 (fr) Renfort textile pour matériau composite et matériau composite obtenu
FR2960886A1 (fr) Complexe textile aramide anti-vandalisme resistant a la perforation et a la laceration pour sieges de transport en commun
BE403818A (fr)
BE547284A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12710731

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2827991

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014501564

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14008051

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012710731

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013148140

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024471

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013024471

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013024471

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130924