WO2012128009A1 - プリント配線板用銅箔及びそれを用いた積層体 - Google Patents

プリント配線板用銅箔及びそれを用いた積層体 Download PDF

Info

Publication number
WO2012128009A1
WO2012128009A1 PCT/JP2012/055113 JP2012055113W WO2012128009A1 WO 2012128009 A1 WO2012128009 A1 WO 2012128009A1 JP 2012055113 W JP2012055113 W JP 2012055113W WO 2012128009 A1 WO2012128009 A1 WO 2012128009A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
printed wiring
copper
alloy
Prior art date
Application number
PCT/JP2012/055113
Other languages
English (en)
French (fr)
Inventor
秀樹 古澤
田中 幸一郎
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201280013729.1A priority Critical patent/CN103430635B/zh
Priority to KR1020137027052A priority patent/KR101487124B1/ko
Publication of WO2012128009A1 publication Critical patent/WO2012128009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to a copper foil for a printed wiring board and a laminate using the same, and more particularly to a copper foil for a flexible printed wiring board and a laminate using the same.
  • a printed wiring board is made by bonding an insulating substrate to a copper foil, or depositing a Ni alloy or the like on the insulating substrate and then forming a copper layer by electroplating to form a copper-clad laminate, and then etching the copper foil or copper layer surface.
  • it is manufactured through a process of forming a conductor pattern. For this reason, the copper foil or copper layer for printed wiring boards is required to have adhesion and etching properties with an insulating substrate.
  • Adhesiveness here means that the formed circuit does not peel from the insulating substrate. For this reason, the roughening process which forms an unevenness
  • a method of directly performing a chromate treatment or the like on a copper foil without performing a roughening treatment is also known (Patent Document 1).
  • Etchability means that metal derived from surface treatment does not remain in the insulating part between circuits, and that the tailing of the circuit is small. If metal remains in the insulating part between the circuits, a short circuit occurs between the circuits. In the etching for forming the circuit, the circuit is etched from the upper surface to the lower side (insulating substrate side), and the cross section of the circuit becomes a trapezoid. If the difference between the upper and lower bases of the trapezoid (hereinafter referred to as “tailing”) is small, the space between circuits can be narrowed, and a high-density wiring board can be obtained. If the skirting is large, the circuit is short-circuited if the space between the circuits is narrowed, so that a high-density mounting substrate cannot be manufactured.
  • Etching proceeds in two directions, the thickness direction and the planar direction of the copper foil or copper layer. Since the etching rate in the plate thickness direction is lower than that in the plane direction, the circuit cross section becomes trapezoidal. For this reason, in order to obtain a circuit with a small footing, the thickness of the copper foil or the copper layer may be reduced to shorten the etching time (Patent Document 2).
  • the thickness of the photoresist also affects the etching time.
  • a dry film resist having a thickness of 3 ⁇ m or more is used. If the resist is thick, the etching solution is not sufficiently supplied to the opening, and the etching proceeds in the plane direction rather than the thickness direction of the copper foil or the copper layer, so that a circuit having a sufficient width cannot be formed. Therefore, when forming a thin line circuit, a liquid resist is widely used. Since the thickness of the liquid resist is about 1 ⁇ m, the etching solution is more sufficiently supplied to the opening than when a dry film resist is used.
  • Patent Documents 3 and 4 there is a method of forming a metal or its alloy layer whose etching rate is slower than that of copper on the etching surface side of the copper foil in order to reduce the tailing.
  • These candidate metals are Ni, Co and the like. A layer of several tens of nanometers formed by adhering a large amount of these to the etching surface of the copper foil or copper layer suppresses the lateral etching at the top of the circuit and forms a circuit with a small tail.
  • the thickness of the copper foil In order to cope with the fine pitch of the wiring circuit, the thickness of the copper foil must be reduced in order to reduce the bottom of the circuit.
  • a method of imparting conductivity by depositing a nickel alloy or the like on a resin film such as polyimide by sputtering and then performing copper plating is suitable for forming a fine wiring pattern. Since this method can easily change the thickness of the copper layer formed by plating, it is a material suitable for the fine pitch of the wiring circuit. However, since it takes time to form the copper layer, there is a problem that the manufacturing cost is high.
  • the etching in the planar direction proceeds until the etching in the thickness direction of the copper foil is completed, and the circuit having a cross-sectional shape with a large tailing is only used. Can't get. Since the current concentrates on the upper surface of the circuit with a narrow width, heat is generated and there is a possibility of disconnection in some cases. In addition, it is expected that it will be difficult to mount an IC chip.
  • the thickness of the copper foil can be reduced and the etching time can be shortened.
  • the thinner the copper foil the more difficult it is to handle in the CCL manufacturing process, which adversely affects product yield.
  • the cross-sectional area of the circuit is reduced, so that there is a possibility that a necessary amount of conductivity cannot be ensured.
  • Ni, Co layers, etc. on the etched surface of copper foil may not be able to cope with the narrow pitch of circuit patterns that are expected to advance in the future.
  • these metals need to be attached in large amounts. Since these metal layers have ferromagnetism, they may adversely affect electronic devices. Therefore, it is necessary to remove these layers by soft etching after circuit formation etching and resist removal, which increases the number of manufacturing steps.
  • a dry film resist is thermocompression bonded to the etching surface of the copper foil or copper layer
  • physical adhesion can be obtained, and the liquid resist is applied to the etching surface by spin coating or a similar method.
  • the compatibility with the surface treatment applied to the etched surface is not always good, and the resist may be easily peeled off.
  • the etching surface is roughened by pretreatment, and physical adhesion is often secured.
  • this invention makes it a subject to provide the copper foil for printed wiring boards which can manufacture the circuit of the cross-sectional shape with small tailing suitable for fine pitch formation with favorable manufacturing efficiency, and a laminated board using the same. To do.
  • a copper foil for a printed wiring board provided with a copper foil base material and a coating layer covering at least a part of the surface of the copper foil base material.
  • the layer is laminated in order from the surface of the copper foil base material, the first layer made of at least one of Pt, Pd, and Au, and one or more of Ni, Co, Sn, Zn, Cu, and Cr
  • Au is 200 to 2000 ⁇ g / dm 2
  • Pt is 200 to 2000 ⁇ g / dm 2
  • Pd is 120 to 1200 ⁇ g / dm 2
  • Ni is 5 to 1500 ⁇ g / dm 2
  • Co is 5 ⁇ 1500 ⁇ g / dm 2
  • Sn is 5 ⁇ 1200 ⁇ g / dm
  • Zn is 5 ⁇ 1200 ⁇ g / dm 2
  • Cu is 5 ⁇ 1500 ⁇ g / dm 2
  • Cr is 5 ⁇ 80 ⁇ g / dm 2 coating
  • f (F) ⁇ 5% and g (G) ⁇ 5% are satisfied.
  • Au is 400 ⁇ 1000 ⁇ g / dm 2
  • Pt is 400 ⁇ 1050 ⁇ g / dm 2
  • Pd is present at a coverage of 240 ⁇ 600 ⁇ g / dm 2 .
  • At least one of Ni, Co, Sn, Zn, Cu and Cr is made of Ni alloy, and the Ni alloy is Ni.
  • the Ni alloy is Ni.
  • g (x) is the atomic concentration of Ni.
  • Ni alloy, Ni-V alloy coating amount is composed of 5 ⁇ 1500 ⁇ g / dm 2 of Ni and 5 ⁇ 500 ⁇ g / dm 2 V
  • Ni-Sn alloy coating amount is composed of 5 to 1500 [mu] g / dm 2 of Ni and 5 ⁇ 500 ⁇ g / dm 2 Sn
  • Ni-Cu alloy coating amount comprising of from 5 to 1500 [mu] g / dm 2 Ni
  • Ni-Mn alloy coating amount is composed of 5 ⁇ 1500 [mu] g / dm 2 of Ni and 5 ⁇ 500 ⁇ g / dm 2 Mn, coated It is a Ni—Zn—Cu alloy containing 5 to 1000 ⁇ g / dm 2 of Ni and 5 to 500
  • a rust prevention treatment layer composed of a chromium layer or a chromate layer and / or a silane treatment layer is formed on the outermost layer.
  • the present invention provides a process for preparing a rolled copper foil or an electrolytic copper foil composed of the copper foil of the present invention, and a laminate of the copper foil and the resin substrate with the coating layer of the copper foil as an etching surface. And forming a copper circuit by etching the laminate using a ferric chloride aqueous solution or a cupric chloride aqueous solution and removing unnecessary portions of copper. It is.
  • the present invention is a laminate of the copper foil of the present invention and a resin substrate.
  • the present invention is a laminate including a copper layer and a resin substrate, the laminate including the coating layer of the present invention that covers at least part of the surface of the copper layer.
  • the resin substrate is a polyimide substrate.
  • the present invention is a printed wiring board made from the laminate of the present invention.
  • a copper foil for a printed wiring board and a laminated board using the copper foil which are suitable for fine pitching and can produce a circuit having a cross-sectional shape with a small footing with good production efficiency.
  • TEM image It is an example (TEM image) of the coating layer formed in the island shape on a copper foil base material. It is an example (TEM image) of the coating layer formed in the island shape on a copper foil base material. It is the outline
  • EF etching factor
  • the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
  • Rolled copper foil is often used for applications that require flexibility.
  • copper foil base material In addition to high-purity copper such as tough pitch copper and oxygen-free copper, which are usually used as conductor patterns for printed wiring boards, for example, Sn-containing copper, Ag-containing copper, Cr, Zr or Mg are added as the copper foil base material It is also possible to use a copper alloy such as a copper alloy, a Corson copper alloy to which Ni, Si and the like are added. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.
  • the thickness of the copper foil base material that can be used in the present invention is not particularly limited, and may be appropriately adjusted to a thickness suitable for a printed wiring board.
  • the thickness can be about 5 to 100 ⁇ m.
  • it is 30 ⁇ m or less, preferably 20 ⁇ m or less, and typically about 5 to 20 ⁇ m.
  • the copper foil base material used in the present invention is not particularly limited, but for example, a material not subjected to roughening treatment may be used.
  • the surface is generally roughened by special plating with irregularities on the order of ⁇ m, and the physical anchor effect provides adhesion to the resin.
  • a smooth foil is considered to have good characteristics, and a roughened foil may work in a disadvantageous direction.
  • the roughening process process is abbreviate
  • the coating layer is formed in at least one part of the surface on the opposite side (circuit formation plan side) of the copper foil base material with the insulating substrate.
  • the coating layer is composed of a layer made of at least one of Pt, Pd, and Au and a layer made of one or more metals other than the above three, which are sequentially laminated from the surface of the copper foil base material.
  • the metal other than Pt, Pd, and Au include one or more of Ni, Co, Sn, Zn, Cu, and Cr.
  • Ni alloys such as Ni—V, Ni—Sn, Ni—Cu, Ni—Zn, Ni—Mn, and Ni—Cu—Zn may be used.
  • the bottom of the formed circuit is reduced.
  • the copper foil is not thin, it is possible to form a circuit with a small trailing edge, and thus a high-density mounting substrate can be formed.
  • the noble metal by covering the noble metal with a dissimilar metal, adhesion with the liquid resist is ensured, whereby a pre-treatment process that has been conventionally performed can be omitted, and a fine wiring pattern can be stably formed.
  • the thickness of the coating layer is 3 to 25 nm, preferably 5 to 15 nm. When the thickness of the coating layer is less than 3 nm, resist stripping resistance deteriorates, and when it exceeds 25 nm, the initial etching property deteriorates.
  • a method of forming a coating layer on a copper foil base material there is a method of forming a coating layer by performing sputtering in plasma while transporting the copper foil base material by a continuous transport method such as a reel-to-reel method.
  • a continuous transport method such as a reel-to-reel method.
  • the metal particles that have reached the surface of the copper foil substrate by sputtering can be diffused for a short time on the surface, and the amount of metal particles attached is small, the formed layer becomes an island shape, which is small. Adversely affects etching properties.
  • the coating layer when the coating layer is formed in an island shape, it is preferable that part or all of the noble metal layer has a major axis diameter of 1 nm or more when the cross section is observed with a transmission electron microscope.
  • the “major axis diameter” indicates the longest diameter of the island-shaped portion.
  • FIGS an example (TEM image) of a coating layer formed in an island shape on a copper foil base is shown in FIGS.
  • the form of the coating is affected by the state of oxidation on the copper foil side and the pretreatment, and if the surface of the copper foil is cleaned, it is coated in “layered” rather than “island”. Furthermore, it is coated in a “layered” manner by increasing the coating amount.
  • the coating layer of the present invention may be island-shaped or layered.
  • the coating layer can be identified by the presence of each detected peak by performing argon sputtering from the surface layer with a surface analyzer such as XPS or AES and performing chemical analysis in the depth direction.
  • a surface analyzer such as XPS or AES
  • the coating layer according to the present invention is any one of Pt, Pd and Au in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS.
  • the atomic concentration (%) is f (x) and the atomic concentration of one or more metals other than the above three is g (x), f (x), g (x ) Satisfying G ⁇ F, f (F) ⁇ 1%, and g (G) ⁇ 1%, respectively, where f (F) and g (G) are the first maximum values. If f (F) is less than 1%, it is difficult to form a rectangular circuit pattern.
  • g (G) is less than 1%, the adhesion of the etched surface to the resist may be poor. Further, it is preferable that f (F) ⁇ 5% and g (G) ⁇ 5%. Moreover, when the layer which consists of 1 or more types of metals other than Pt, Pd, and Au is comprised by Ni alloy, g (G) shows the atomic concentration of Ni. The “first maximum value” indicates a maximum value that initially exists when observed from the surface of the coating layer in the depth direction.
  • the amount of adhesion of Pt is 200 to 2000 ⁇ g / dm 2 , and more preferably 400 to 1050 ⁇ g / dm 2 .
  • the adhesion amount of Pd is 120 ⁇ 1200 ⁇ g / dm 2, and more preferably 240 ⁇ 600 ⁇ g / dm 2.
  • the coating layer is composed of Au is a coating weight of 200 ⁇ 2000 ⁇ g / dm 2 of Au, and more preferably 400 ⁇ 1000 ⁇ g / dm 2.
  • the coating amount of Pt of the coating layer is less than 200 ⁇ g / dm 2
  • the coating amount of Pd of the coating layer is less than 120 ⁇ g / dm 2
  • the coating amount of Au of the coating layer is less than 200 ⁇ g / dm 2
  • the effect is obtained. not enough.
  • the coating amount of Pt in the coating layer is 2000 ⁇ g / dm 2
  • the coating amount of Pd in the coating layer is 1200 ⁇ g / dm 2
  • the deposition amount of Au in the coating layer exceeds 2000 ⁇ g / dm 2
  • initial etching properties are obtained. Adversely affect.
  • Ni is 5 to 1500 ⁇ g / dm 2 , preferably 30 to 1500 ⁇ g / dm 2 , more preferably 70 to 500 ⁇ g / dm 2 , or Co 5 to 1500 ⁇ g / dm 2 , preferably 30 to 1500 ⁇ g / dm 2 , more preferably 70 to 500 ⁇ g / dm 2 , or Sn 5 to 1200 ⁇ g / Dm 2 , preferably 30 to 1200 ⁇ g / dm 2 , more preferably 60 to 800 ⁇ g / dm 2 , or Zn 5 to 1200 ⁇ g / dm 2 , preferably 30 to 1200 ⁇ g / dm 2 , more preferably 60 to 800 ⁇ g / dm 2 .
  • the coating amount of Ni in the coating layer is less than 5 ⁇ g / dm 2
  • the coating amount of Co in the coating layer is less than 5 ⁇ g / dm 2
  • the deposition amount of Sn in the coating layer is less than 5 ⁇ g / dm 2
  • the deposition amount of Zn in the coating layer is 5 [mu] g / dm less than 2
  • the adhesion amount is less than 5 [mu] g / dm 2 of Cu coating layer
  • the adhesion amount of Cr in the coating layer is less than 5 [mu] g / dm 2
  • respective effects are not sufficient.
  • the Ni adhesion amount of the coating layer is 1500 ⁇ g / dm 2
  • the Co adhesion amount of the coating layer is 1500 ⁇ g / dm 2
  • the Sn adhesion amount of the coating layer is 1200 ⁇ g / dm 2
  • the Zn adhesion amount of the coating layer is 1200 ⁇ g. / Dm 2 , if the coating amount of Cu in the coating layer is 1500 ⁇ g / dm 2
  • the coating amount of Cr in the coating layer exceeds 80 ⁇ g / dm 2 , the initial etching properties are adversely affected.
  • Ni alloy, Ni-V alloy coating amount is composed of 5 ⁇ 1500 ⁇ g / dm 2 of Ni and 5 ⁇ 500 ⁇ g / dm 2 V, the coating amount of 5 ⁇ 1500 ⁇ g / dm 2 Ni and 5 ⁇ 500 ⁇ g / dm Ni-Sn alloy of two of Sn, the amount of the coating consists of 5 ⁇ 1500 ⁇ g / dm Ni-Cu alloy containing 2 of Ni, the coating amount of 5 ⁇ 1500 ⁇ g / dm 2 of Ni and 5 ⁇ 500 ⁇ g / dm 2 Zn Ni-Zn alloy, the coating weight of 5 ⁇ 1500 ⁇ g / dm of two of Ni and 5 ⁇ 500 ⁇ g / dm 2 Mn Ni -Mn alloy, Ni coating amount of 5 ⁇ 1000 ⁇ g / dm 2 and 5 ⁇ 500 ⁇ g / dm 2 Alternatively, a Ni—Zn—Cu alloy containing Zn may be used. If the coating amount of each metal element is less than the above range
  • a base layer may be provided between the copper foil base material and the coating layer from the viewpoint of heat discoloration resistance as long as the initial etching property is not adversely affected.
  • the underlayer nickel, nickel alloy, cobalt, silver, and manganese are preferable.
  • the method for providing the underlayer may be either a dry method or a wet method.
  • a rust prevention treatment layer composed of a chromium layer or a chromate layer and / or a silane treatment layer can be further formed on the outermost layer on the coating layer.
  • the copper foil for printed wiring boards according to the present invention can be formed by a sputtering method. That is, at least a part of the surface of the copper foil base material is coated with the coating layer by a sputtering method. Specifically, a layer made of at least one of Pt, Pd, and Au having a lower etching rate than copper on the etching surface side of the copper foil and one or more metals other than the above three by sputtering. A layer consisting of is formed.
  • the coating layer is not limited to the sputtering method, and may be formed by, for example, a wet plating method such as electroplating or electroless plating.
  • a printed wiring board (PWB) can be manufactured according to a conventional method using the copper foil according to the present invention. Below, the example of the manufacturing method of a printed wiring board is shown.
  • a laminated body is manufactured by bonding a copper foil and an insulating substrate.
  • the insulating substrate on which the copper foil is laminated is not particularly limited as long as it has characteristics applicable to a printed wiring board.
  • paper base phenolic resin, paper base epoxy resin, synthetic fiber for rigid PWB Use cloth base epoxy resin, glass cloth / paper composite base epoxy resin, glass cloth / glass non-woven composite base epoxy resin, glass cloth base epoxy resin, etc., use polyester film, polyimide film, etc. for FPC I can do things.
  • a prepreg in which a base material such as glass cloth is impregnated with a resin and the resin is cured to a semi-cured state is prepared. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing.
  • a polyimide film or a polyester film and a copper foil can be bonded using an epoxy or acrylic adhesive (three-layer structure).
  • a polyimide varnish (polyamic acid varnish), which is a polyimide precursor, is applied to a copper foil and heated to form an imidization or on a polyimide film
  • a laminating method in which a thermoplastic polyimide is applied to the substrate, a copper foil is overlaid thereon, and heated and pressed.
  • an anchor coating material such as thermoplastic polyimide in advance before applying the polyimide varnish.
  • the laminate according to the present invention can be used for various printed wiring boards (PWB) and is not particularly limited.
  • PWB printed wiring boards
  • the laminate according to the present invention is not limited to the above-described copper-clad laminate obtained by attaching a copper foil to a resin, and is a metalizing material in which a copper layer is formed on the resin by sputtering or plating. Also good.
  • a resist is applied to the surface of the coating layer formed on the copper foil of the laminate produced as described above, the pattern is exposed with a mask, and developed to form a resist pattern.
  • the adhesion with the liquid resist is improved, There is no need to pre-treat the surface of the coating layer.
  • the coating layer exposed at the opening of the resist pattern is removed using a reagent.
  • the reagent one containing hydrochloric acid, sulfuric acid or nitric acid as a main component is preferably used for reasons such as availability.
  • the noble metal layer Since the noble metal layer is very thin, it diffuses moderately with the copper of the copper foil base material due to the thermal history at the time of manufacture, and the copper atoms that have reached the vicinity of the outermost layer by this diffusion are heated in the atmosphere or in the resist drying process. Is oxidized to produce copper oxide. Since the copper oxide in the noble metal / copper alloy layer formed by diffusion is easily dissolved by an acid, the noble metal is removed at the same time. Therefore, even a noble metal layer having corrosion resistance can be easily removed from the exposed portion of the opening of the resist pattern. Next, the laminate is immersed in an etching solution.
  • the coating layer containing at least one of platinum, palladium, and gold that suppresses etching is in a position close to the resist portion on the copper foil, and the etching of the copper foil on the resist side is performed by this coating layer.
  • Etching of the copper circuit pattern proceeds substantially vertically by etching of the copper away from the coating layer at a rate faster than the rate at which the neighborhood is etched. As a result, unnecessary portions of copper are removed, and then the etching resist is removed and removed to expose the circuit pattern.
  • the etching rate of the coating layer is sufficiently smaller than that of copper, so that the etching factor is improved.
  • etching solution a cupric chloride aqueous solution, a ferric chloride aqueous solution, or the like can be used. Moreover, you may form a heat resistant layer in advance on the copper foil base-material surface before forming a coating layer.
  • the circuit on the copper foil surface of the printed wiring board formed by etching from the coating layer side is not usually formed with two long side surfaces perpendicular to the insulating substrate. From the surface of the foil downward, that is, toward the resin layer, it is formed to spread toward the end (generation of sagging).
  • the two long side surfaces each have an inclination angle ⁇ with respect to the surface of the insulating substrate. It is important to reduce the circuit pitch as much as possible for miniaturization of circuit patterns that are currently required (fine pitch). However, when the inclination angle ⁇ is small, the sagging increases and the circuit The pitch becomes wider.
  • the inclination angle ⁇ is usually not completely constant in each circuit and circuit. If the variation in the tilt angle ⁇ is large, the circuit quality may be adversely affected. Therefore, in the circuit on the copper foil surface of the printed wiring board formed by etching from the coating layer side, the two long side surfaces each have an inclination angle ⁇ of 65 to 90 ° with respect to the insulating substrate surface, In addition, it is desirable that the standard deviation of tan ⁇ in the same circuit is 1.0 or less.
  • the etching factor is preferably 1.5 or more, and more preferably 2.5 or more when the circuit pitch is 50 ⁇ m or less.
  • Example 1 Examples 1 to 79
  • a rolled copper foil (C1100 made by Nikko Metal) having a thickness of 12 ⁇ m was prepared.
  • the surface roughness (Rz) of the rolled copper foil was 0.10 ⁇ m.
  • the thin oxide film adhering to the surface of the copper foil was removed by reverse sputtering, and the following various targets were sputtered with the following apparatus and conditions to form a coating layer.
  • the thickness of the coating layer was changed by adjusting the film formation time.
  • the simple substance of the various metals used for sputtering used the thing of purity 3N.
  • the thin oxide film previously attached to the surface opposite to the coating layer was removed from the copper foil provided with the coating layer by reverse sputtering, and a Ni layer and a Cr layer were sequentially formed.
  • a polyimide film with an adhesive manufactured by Nikkan Kogyo Co., Ltd., CISV1215) was laminated on the copper foil that had been subjected to the surface treatment by the above procedure by a hot press at a pressure of 7 kgf / cm 2 and 160 ° C. for 40 minutes.
  • the adhesion amount of Au, Pd, and Pt in the coating layer was measured by atomic absorption spectrometry by dissolving the surface-treated copper foil sample with aqua regia, diluting the solution.
  • the sample was dissolved in a mixed solution of HNO 3 (2% by weight) and HCl (5% by weight), and the metal concentration in the solution was determined using an ICP emission spectroscopic analyzer (SII Nanotechnology).
  • the amount of metal per unit area ( ⁇ g / dm 2 ) was calculated by quantitative determination using SFC-3100).
  • the amounts of Cu and Ni deposited were the analysis values obtained when a film was formed on a Ti foil under the same conditions.
  • XPS measuring device UUV-PHI, Model 5600MC
  • Achieving vacuum 3.8 ⁇ 10 ⁇ 7
  • X-ray Monochromatic AlK ⁇ or non-monochromatic MgK ⁇
  • X-ray output 300 W
  • angle between sample and detector 45 °
  • Ion beam ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm ⁇ 3 mm, sputtering rate 2.0 nm / min (SiO 2 conversion)
  • circuit shape by etching The etched surface of the copper foil was degreased with acetone and immersed in sulfuric acid (100 g / L) for 30 seconds to remove the surface contamination and the oxide layer. Next, a liquid resist (manufactured by Tokyo Ohka Kogyo Co., Ltd., OFPR-800LB) was dropped onto the etching surface using a spin coater and dried. The resist thickness after drying was adjusted to 1 ⁇ m. Thereafter, 10 circuits were printed by an exposure process, and an etching process for removing unnecessary portions of the copper foil was performed under the following conditions.
  • the etching factor is the distance of the length of sagging from the intersection of the vertical line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when sagging at the end (when sagging occurs) Is a ratio of a to the thickness b of the copper foil: b / a, and the larger the value, the larger the inclination angle, and the etching residue does not remain and the sagging is small. It means to become.
  • FIG. 3 shows a surface photograph of a part of the circuit pattern, a schematic diagram of a cross section in the width direction of the circuit pattern at the part, and an outline of an etching factor calculation method using the schematic diagram.
  • the inclination angle ⁇ was calculated by calculating the arc tangent using a and the thickness b of the copper foil measured in the above procedure.
  • the measurement range was a circuit length of 600 ⁇ m, and an etching factor of 12 points, its standard deviation, and an average value of the inclination angle ⁇ were adopted as a result.
  • FIGS. 4 and 5 show photographs from the upper part of the circuit where the resist is not stripped with alkali after etching.
  • FIG. 4 shows a healthy part (a part where the resist and the copper base material are not peeled)
  • FIG. 5 shows an abnormal part (a part where the resist and the copper base material are partly peeled). If the resist is in close contact with the base material, the metallic luster can be confirmed through the resist as shown in FIG. 4, and the circuit can be confirmed to be a straight line. On the other hand, if the resist and the substrate are peeled off during etching, the metallic luster cannot be confirmed over the resist as in the portion surrounded by the dotted line in FIG.
  • Example 2 Examples 80 to 82
  • Metallizing CCL with a copper layer thickness of 12 ⁇ m Nikko Metal Macinas, copper layer side Ra 0.01 ⁇ m, tie coat layer metal adhesion Ni 1780 ⁇ g / dm 2 , Cr 360 ⁇ g / dm 2
  • Pd Ni—V alloy
  • Example 3 Comparative Example 1
  • the circuit was formed and evaluated after producing the laminated body which does not surface-treat on an etching surface in the procedure of Example 1.
  • FIG. 1 Comparative Example 1
  • Example 4 Comparative Examples 2-31
  • a circuit was prepared and evaluated in the same procedure as in Example 1.
  • Example 5 Comparative Example 32
  • a rolled copper foil having a thickness of 12 ⁇ m was prepared by roughening the adhesion surface with the insulating substrate and applying Ni plating to the etching surface according to Japanese Patent Laid-Open No. 2002-176242. These were etched by the procedure of Example 1.
  • Example 6 Comparative Example 33
  • Pd and Ni—V alloy were vapor-deposited on the metalizing CCL by the procedure of Example 2, and the etching property was evaluated.
  • the measurement results of Examples 1 to 6 are shown in Tables 1 to 8.
  • FIG. 6 shows a depth profile by XPS after sputtering in Example 28.
  • FIG. 72 Even in Example 72 in which the copper base material was made of metallizing CCL, a circuit with a small footing could be formed.
  • a laminated body is formed by a so-called casting method in which a polyimide film with an adhesive is laminated on a copper foil by a hot press. It is clear that this also occurs in the same manner for a laminate produced by applying a thermoplastic polyimide to the substrate and overlaying a copper foil thereon and heating and pressing.
  • Comparative Examples 1 and 32 did not form a noble metal layer of Au, Pt, or Pd, and Comparative Example 33 had a small amount of noble metal attached and a small etching factor.
  • the noble metal layer first layer
  • a layer of a different kind of metal second layer
  • the coating amount of any metal in the coating layer was not appropriate, so that the etching factor was small or the resist was peeled off during the etching process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 ファインピッチ化に適した、裾引きが小さい断面形状の回路を良好な製造効率で製造可能なプリント配線板用銅箔及びそれを用いた積層板を提供する。プリント配線板用銅箔は、銅箔基材と、該銅箔基材表面の少なくとも一部を被覆する被覆層とを備えたプリント配線板用銅箔であって、前記被覆層が、銅箔基材表面から順に積層した、Pt、Pd、及び、Auの少なくともいずれか1種からなる第1の層及びNi、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属からなる第2の層で構成され、前記被覆層には、Auが200~2000μg/dm2、Ptが200~2000μg/dm2、Pdが120~1200μg/dm2、Niが5~1500μg/dm2、Coが5~1500μg/dm2、Snが5~1200μg/dm2、Znが5~1200μg/dm2、Cuが5~1500μg/dm2、Crが5~80μg/dm2の被覆量で存在し、前記被覆層の厚さが3~25nmであり、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のPt、Pd、及びAuのいずれか1種以上の原子濃度(%)をf(x)、Ni、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属の原子濃度をg(x)とし、区間[0、15]におけるf(x)、g(x)の第一の極大値をそれぞれf(F)、g(G)とすると、G≦F、f(F)≧1%、g(G)≧1%を満たす。

Description

プリント配線板用銅箔及びそれを用いた積層体
 本発明は、プリント配線板用銅箔及びそれを用いた積層体に関し、特にフレキシブルプリント配線板用の銅箔及びそれを用いた積層体に関する。
 プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。
 プリント配線板は銅箔に絶縁基板を接着、もしくは絶縁基板上にNi合金等を蒸着させた後に電気めっきで銅層を形成させて銅張積層板とした後に、エッチングにより銅箔または銅層面に導体パターンを形成するという工程を経て製造されるのが一般的である。そのため、プリント配線板用の銅箔または銅層には絶縁基板との接着性やエッチング性が要求される。
 ここでの接着性とは、形成された回路が絶縁基板から剥離しないことを言う。このため、銅箔または銅層の樹脂との接着面側には凹凸を形成する粗化処理や、必要に応じてさらにNiめっきやクロメート等の処理が施されるのが一般的である。または、表皮効果等の観点から、粗化処理を行わずにクロメート処理等を銅箔に直接施す方法も知られている(特許文献1)。
 また、エッチング性とは回路間の絶縁部に表面処理由来の金属が残存しないこと、回路の裾引きが小さいことをいう。回路間の絶縁部に金属が残存していれば、回路間で短絡が起こってしまう。また、回路形成のエッチングでは、回路上面から下(絶縁基板側)に向かって、末広がりにエッチングされ、回路の断面は台形になる。この台形の上底と下底との差(以下「裾引き」と呼ぶ)が小さければ、回路間のスペースを狭くでき、高密度配線基板が得られる。裾引きが大きければ、回路間のスペースを狭くすると回路が短絡するので、高密度実装基板を製造することができない。
 エッチングは銅箔または銅層の板厚方向及び平面方向の2方向に進行する。板厚方向のエッチング速度が平面方向のそれよりも低いので、回路断面は台形になる。このため、裾引きが小さい回路を得るためには、銅箔または銅層の厚みを薄くしてエッチング時間を短くすれば良い(特許文献2)。
 銅箔または銅層の他にもフォトレジストの厚みもエッチング時間に影響する。通常、FPC用途であれば厚みが3μm以上のドライフィルムレジストが用いられる。レジストが厚いと開口部にエッチング液が十分に供給されず、エッチングは銅箔または銅層の厚み方向よりも平面方向に進み、十分な幅を有する回路が形成できない。そこで、細線回路を形成する場合には、液体レジストが広く使用されている。液体レジストの厚みは1μm程度なので、ドライフィルムレジストを使用した場合よりも開口部にエッチング液が十分に供給される。
 また、裾引きを小さくするために、銅箔のエッチング面側に銅よりもエッチング速度が遅い金属又はその合金層を形成する方法がある(特許文献3、4)。これらの候補金属はNi、Co等である。これらを銅箔または銅層のエッチング面に多量に付着させて形成した数10nmの層で回路上部の横方向のエッチングが抑制され、裾引きが小さい回路が形成される。
 プリント配線板の配線回路のファインピッチ化が進展に伴い、回路間隔も小さくなっていくので、回路の裾引きは小さくなければならない。非特許文献1によれば、回路幅(L、単位はμm)と回路間隔(S、単位はμm)は年々狭まる傾向にあり、フレキシブルプリント配線板に関しては2012年にはL/S=25/25に達するとのことである。配線回路のファインピッチ化に対応するためには、回路の裾引きを小さくするべく銅箔の厚みを薄くしなければならない。しかしながら、銅箔の厚みが薄くなると製造時の取り扱いが困難になるため、電解銅箔や圧延銅箔で対応できる配線パターンはL/S=25/25が限界と言われている。銅箔のエッチング面にNi、Co等の金属層を形成しても、このような回路パターンに対応するのは困難であると予想される。
 ポリイミド等の樹脂フィルム上にニッケル合金等をスパッタリングで蒸着させることで導電性を付与し、その後銅めっきを施す方法(メタライジング法)は微細配線パターンを形成するのに適している。この方法はめっきで形成した銅層の厚さを容易に変えることが可能なため、配線回路のファインピッチ化に適した素材である。しかしながら、銅層を形成するめっきに時間を要するため、製造コストが高いという問題点がある。
特開2006-222185号公報 特開2000-269619号公報 特開平6-81172号公報 特開2002-176242号公報
2009年度版 日本実装技術ロードマップ プリント配線板編
 銅箔から回路を形成する方法(サブトラクティブ法)では、従来の厚みでは、銅箔の板厚方向のエッチングが完了するまでに平面方向のエッチングが進行し、裾引きが大きな断面形状の回路しか得ることができない。幅が狭くなった回路上面では電流が集中するので発熱し、場合によっては断線する可能性がある。また、ICチップを搭載するのが困難になると予想される。
 回路断面の裾引きを小さくするためには、銅箔の厚みを薄くし、エッチング時間を短くすれば良い。しかしながら、銅箔が薄くなるほどCCL製造工程での取り扱いが困難になり、製品歩留まりに悪影響を与える。また、特許文献2のように銅層が薄くなると、回路の断面積が減少するので、必要な導電量を確保できない可能性がある。
 銅箔のエッチング面にNi、Co層等を設ける技術は、今後進展すると予想される回路パターンの狭ピッチ化には対応できない可能性がある。また、先行技術ではこれらの金属は多量に付着させる必要がある。これらの金属層は強磁性を有するため、電子機器に悪影響を及ぼす可能性がある。従って、回路形成のエッチング、レジスト除去後に、ソフトエッチングでこれらの層を除去する必要があり、製造工程が増えてしまう。
 また、銅箔または銅層のエッチング面にドライフィルムレジストを熱圧着させて物理的な密着力が得られる場合とは異なり、液体レジストはスピンコート若しくはそれに準ずる方法でエッチング面に塗工される。一般的に液体レジストは銅との密着を想定しているので、エッチング面に施された表面処理との相性が良いとは限らず、レジストが容易に剥離する場合がある。液体レジストを用いる場合は前処理でエッチング面を粗し、物理的な密着力を確保する場合が多い。
 そこで、本発明は、ファインピッチ化に適した、裾引きが小さい断面形状の回路を良好な製造効率で製造可能なプリント配線板用銅箔及びそれを用いた積層板を提供することを課題とする。
 従来、ファインピッチの回路をサブトラクティブ法で形成するためには銅箔の厚みを薄くする必要があった。また、裾引きが小さい断面形状の回路を形成するためには、銅箔のエッチング面に強磁性を有するNiやCoを多量に付着させ、数10nmの厚みの層を形成する必要があった。これに対し、本発明者らは鋭意検討の結果、微量の貴金属を銅箔のエッチング面に付着させた場合に、形成された回路の裾引きが小さくなることを見出した。これにより、銅箔の厚みが薄くなくても裾引きが小さい回路を形成することが可能となるため、高密度実装基板の形成が可能となる。さらに貴金属を異種金属で覆うことによって、液体レジストとの密着性が確保され、これにより、従来行われていた前処理の工程が省略可能となるとともに、安定して微細配線パターンが形成できることを見出した。
 以上の知見を基礎として完成した本発明は一側面において、銅箔基材と、銅箔基材表面の少なくとも一部を被覆する被覆層とを備えたプリント配線板用銅箔であって、被覆層が、銅箔基材表面から順に積層した、Pt、Pd、及び、Auの少なくともいずれか1種からなる第1の層及びNi、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属からなる第2の層で構成され、被覆層には、Auが200~2000μg/dm2、Ptが200~2000μg/dm2、Pdが120~1200μg/dm2、Niが5~1500μg/dm2、Coが5~1500μg/dm2、Snが5~1200μg/dm2、Znが5~1200μg/dm2、Cuが5~1500μg/dm2、Crが5~80μg/dm2の被覆量で存在し、被覆層の厚さが3~25nmであり、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のPt、Pd、及びAuのいずれか1種以上の原子濃度(%)をf(x)、Ni、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属の原子濃度をg(x)とし、区間[0、15]におけるf(x)、g(x)の第一の極大値をそれぞれf(F)、g(G)とすると、G≦F、f(F)≧1%、g(G)≧1%を満たすプリント配線板用銅箔である。
 本発明に係るプリント配線板用銅箔の一実施形態においては、f(F)≧5%、g(G)≧5%を満たす。
 本発明に係るプリント配線板用銅箔の別の実施形態においては、Auが400~1000μg/dm2、Ptが400~1050μg/dm2、Pdが240~600μg/dm2の被覆量で存在する。
 本発明に係るプリント配線板用銅箔の更に別の実施形態においては、Ni、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属が、Ni合金で構成され、Ni合金がNi-V、Ni-Sn、Ni-Cu、Ni-Zn、Ni-Mn及びNi-Cu-Znのいずれかで、g(x)がNiの原子濃度である。
 本発明に係るプリント配線板用銅箔の更に別の実施形態においては、Ni合金が、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のVからなるNi-V合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のSnからなるNi-Sn合金、被覆量が5~1500μg/dm2のNiを含むNi-Cu合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のZnからなるNi-Zn合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のMnからなるNi-Mn合金、被覆量が5~1000μg/dm2のNi及び5~500μg/dm2のZnを含むNi-Zn-Cu合金である。
 本発明に係るプリント配線板用銅箔の更に別の実施形態においては、最表層に、クロム層若しくはクロメート層、及び/又は、シラン処理層で構成された防錆処理層が形成されている。
 本発明は、別の一側面において、本発明の銅箔で構成された圧延銅箔又は電解銅箔を準備する工程と、銅箔の被覆層をエッチング面として銅箔と樹脂基板との積層体を作製する工程と、積層体を塩化第二鉄水溶液又は塩化第二銅水溶液を用いてエッチングし、銅の不必要部分を除去して銅の回路を形成する工程とを含む電子回路の形成方法である。
 本発明は、更に別の一側面において、本発明の銅箔と樹脂基板との積層体である。
 本発明は、更に別の一側面において、銅層と樹脂基板との積層体であって、銅層の表面の少なくとも一部を被覆する本発明の被覆層を備えた積層体である。
 本発明に係る積層体の一実施形態においては、樹脂基板がポリイミド基板である。
 本発明は、更に別の一側面において、本発明の積層体を材料としたプリント配線板である。
 本発明によれば、ファインピッチ化に適した、裾引きが小さい断面形状の回路を良好な製造効率で製造可能なプリント配線板用銅箔及びそれを用いた積層板を提供することができる。
銅箔基材上の島状に形成された被覆層の例(TEM像)である。 銅箔基材上の島状に形成された被覆層の例(TEM像)である。 回路パターンの一部の表面写真、当該部分における回路パターンの幅方向の横断面の模式図、及び、該模式図を用いたエッチングファクター(EF)の計算方法の概略である。 健全部(レジストと銅基材が剥離していない部分)を示す写真である。 異常部(レジストと銅基材が一部剥離している部分)を示す写真である。 実施例28のスパッタ後のXPSによるデプスプロファイルである。
(銅箔基材)
 本発明に用いることのできる銅箔基材の形態に特に制限はないが、典型的には圧延銅箔や電解銅箔の形態で用いることができる。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。屈曲性が要求される用途には圧延銅箔を適用することが多い。
 銅箔基材の材料としてはプリント配線板の導体パターンとして通常使用されるタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
 本発明に用いることのできる銅箔基材の厚さについても特に制限はなく、プリント配線板用に適した厚さに適宜調節すればよい。例えば、5~100μm程度とすることができる。但し、ファインパターン形成を目的とする場合には30μm以下、好ましくは20μm以下であり、典型的には5~20μm程度である。
 本発明に使用する銅箔基材は、特に限定されないが、例えば、粗化処理をしないものを用いても良い。従来は特殊めっきで表面にμmオーダーの凹凸を付けて表面粗化処理を施し、物理的なアンカー効果によって樹脂との接着性を持たせるケースが一般的であるが、一方でファインピッチや高周波電気特性は平滑な箔が良いとされ、粗化箔では不利な方向に働くことがある。また、粗化処理をしないものであると、粗化処理工程が省略されるので、経済性・生産性向上の効果がある。
(1)被覆層の構成
 銅箔基材の絶縁基板との接着面の反対側(回路形成予定面側)の表面の少なくとも一部には、被覆層が形成されている。被覆層は、銅箔基材表面から順に積層した、Pt、Pd、及び、Auの少なくともいずれか1種からなる層及び前記3種以外の1種以上の金属からなる層で構成されている。Pt、Pd、及び、Au以外の金属としては、Ni、Co、Sn、Zn、Cu及びCrの何れか1種以上を挙げることができる。また、Pt、Pd、及び、Au以外の金属としては、Ni-V、Ni-Sn、Ni-Cu、Ni-Zn、Ni-Mn及びNi-Cu-Zn等のNi合金を用いてもよい。このように、微量の貴金属を銅箔のエッチング面に付着させると、形成された回路の裾引きが小さくなる。これにより、銅箔の厚みが薄くなくても裾引きが小さい回路を形成することが可能となるため、高密度実装基板の形成が可能となる。さらに貴金属を異種金属で覆うことによって、液体レジストとの密着性が確保され、これにより、従来行われていた前処理の工程が省略可能となるとともに、安定して微細配線パターンが形成できる。被覆層の厚さは3~25nm、好ましくは5~15nmである。被覆層の厚さが3nm未満ではレジスト剥離耐性が劣化し、25nm超では初期エッチング性が劣化する。
 銅箔基材への被覆層の形成方法として、リール・ツー・リール方式等の連続搬送方式で銅箔基材を搬送しながらプラズマ中でスパッタリングを行うことで被覆層を形成する方法がある。このような方法では、スパッタリングにより銅箔基材表面に到達した金属粒子が当該表面で拡散できる時間が短く、金属粒子の付着量が少ない場合、形成された層が島状になり、それが小さければエッチング性に悪影響を与える。このため、被覆層が島状に形成されている場合は、その断面を透過型電子顕微鏡によって観察した時に、貴金属層の一部または全部が1nm以上の長軸径を有するのが好ましい。ここで、「長軸径」とは、当該島状部分の最も長い径を示す。参考に、銅箔基材上の島状に形成された被覆層の例(TEM像)を、図1及び2に示す。
 また、被覆の形態は銅箔側の酸化の状態、前処理の影響を受け、銅箔表面が清浄されていれば、「島状」ではなく、「層状」に被覆される。さらに、被覆量を増やすことによっても「層状」に被覆される。本発明の被覆層は、このように島状であっても層状であってもよい。
(2)被覆層の同定
 被覆層の同定はXPS、若しくはAES等表面分析装置にて表層からアルゴンスパッタし、深さ方向の化学分析を行い、夫々の検出ピークの存在によって同定することができる。
(3)被覆層表面の原子濃度
 本発明に係る被覆層は、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のPt、Pd及びAuのいずれか1種以上の原子濃度(%)をf(x)とし、前記3種以外の1種以上の金属の原子濃度をg(x)とすると、区間[0、15]におけるf(x)、g(x)の第一の極大値をそれぞれf(F)、g(G)とすると、G≦F、f(F)≧1%、g(G)≧1%を満たす。f(F)が1%未満では、矩形の回路パターンの形成が困難となる。また、g(G)が1%未満では、エッチング面のレジストとの密着力が不良となるおそれがある。また、f(F)≧5%、g(G)≧5%であるのが好ましい。また、Pt、Pd及びAu以外の1種以上の金属からなる層がNi合金で構成されている場合、g(G)はNiの原子濃度を示す。「第一の極大値」とは、被覆層表面から深さ方向へ向かって観察したときに、初めに存在する極大値を示す。
(4)付着量
 被覆層がPtで構成されている場合は、Ptの付着量が200~2000μg/dm2であり、400~1050μg/dm2であるのがより好ましい。被覆層がPdで構成されている場合は、Pdの付着量が120~1200μg/dm2であり、240~600μg/dm2であるのがより好ましい。被覆層がAuで構成されている場合は、Auの付着量が200~2000μg/dm2であり、400~1000μg/dm2であるのがより好ましい。被覆層のPtの付着量が200μg/dm2未満、被覆層のPdの付着量が120μg/dm2未満、及び、被覆層のAuの付着量が200μg/dm2未満であると、それぞれ効果が十分でない。一方、被覆層のPtの付着量が2000μg/dm2、被覆層のPdの付着量が1200μg/dm2、及び、被覆層のAuの付着量が2000μg/dm2を超えると、それぞれ初期エッチング性に悪影響を及ぼす。
 また、Pt、Pd、及び、Au以外の金属がNi、Co、Sn、Zn、Cu及びCrの何れか1種以上で構成されている場合、Niが5~1500μg/dm2、好ましくは30~1500μg/dm2、さらに好ましくは70~500μg/dm2、またはCoが5~1500μg/dm2、好ましくは30~1500μg/dm2、さらに好ましくは70~500μg/dm2、またはSnが5~1200μg/dm2、好ましくは30~1200μg/dm2、さらに好ましくは60~800μg/dm2、またはZnが5~1200μg/dm2、好ましくは30~1200μg/dm2、さらに好ましくは60~800μg/dm2、またはCuが5~1500μg/dm2、またはCrが5~80μg/dm2の被覆量で存在するのが好ましい。被覆層のNiの付着量が5μg/dm2未満、被覆層のCoの付着量が5μg/dm2未満、被覆層のSnの付着量が5μg/dm2未満、被覆層のZnの付着量が5μg/dm2未満、被覆層のCuの付着量が5μg/dm2未満、被覆層のCrの付着量が5μg/dm2未満であると、それぞれ効果が十分でない。一方、被覆層のNiの付着量が1500μg/dm2、被覆層のCoの付着量が1500μg/dm2、被覆層のSnの付着量が1200μg/dm2、被覆層のZnの付着量が1200μg/dm2、被覆層のCuの付着量が1500μg/dm2、被覆層のCrの付着量が80μg/dm2を超えると、それぞれ初期エッチング性に悪影響を及ぼす。
 また、Ni合金は、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のVからなるNi-V合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のSnからなるNi-Sn合金、被覆量が5~1500μg/dm2のNiを含むNi-Cu合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のZnからなるNi-Zn合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のMnからなるNi-Mn合金、被覆量が5~1000μg/dm2のNi及び5~500μg/dm2のZnを含むNi-Zn-Cu合金で形成してもよい。各金属元素の被覆量が上記範囲未満であれば、それぞれ効果が十分でない。一方、各金属元素の被覆量が上記範囲を超えれば、それぞれ初期エッチング性に悪影響を及ぼす。
 また、銅箔基材と被覆層との間には、初期エッチング性に悪影響を及ぼさない限り、耐加熱変色性の観点から下地層を設けてもよい。下地層としてはニッケル、ニッケル合金、コバルト、銀、マンガンが好ましい。下地層を設ける方法は乾式、湿式法いずれでも良い。
 被覆層上の最表層には、防錆効果を高めるために、さらに、クロム層若しくはクロメート層、及び/又は、シラン処理層で構成された防錆処理層を形成することができる。また、被覆層と銅箔との間に、さらに加熱処理による酸化を抑制するため、耐酸化性を有する下地層を形成してもよい。
(銅箔の製造方法)
 本発明に係るプリント配線板用銅箔は、スパッタリング法により形成することができる。すなわち、スパッタリング法によって銅箔基材の表面の少なくとも一部を、被覆層により被覆する。具体的には、スパッタリング法によって、銅箔のエッチング面側に銅よりもエッチングレートの低いPt、Pd、及び、Auのいずれか1種以上からなる層及び前記3種以外の1種以上の金属からなる層を形成する。被覆層は、スパッタリング法に限らず、例えば、電気めっき、無電解めっき等の湿式めっき法で形成してもよい。
(プリント配線板の製造方法)
 本発明に係る銅箔を用いてプリント配線板(PWB)を常法に従って製造することができる。以下に、プリント配線板の製造方法の例を示す。
 まず、銅箔と絶縁基板とを貼り合わせて積層体を製造する。銅箔が積層される絶縁基板はプリント配線板に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム等を使用する事ができる。
 貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。
 フレキシブルプリント配線板(FPC)用の場合、ポリイミドフィルム又はポリエステルフィルムと銅箔とをエポキシ系やアクリル系の接着剤を使って接着することができる(3層構造)。また、接着剤を使用しない方法(2層構造)としては、ポリイミドの前駆体であるポリイミドワニス(ポリアミック酸ワニス)を銅箔に塗布し、加熱することでイミド化するキャスティング法や、ポリイミドフィルム上に熱可塑性のポリイミドを塗布し、その上に銅箔を重ね合わせ、加熱加圧するラミネート法が挙げられる。キャスティング法においては、ポリイミドワニスを塗布する前に熱可塑性ポリイミド等のアンカーコート材を予め塗布しておくことも有効である。
 本発明に係る積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。また、本発明に係る積層体は、銅箔を樹脂に貼り付けてなる上述のような銅張積層板に限定されず、樹脂上にスパッタリング、めっきで銅層を形成したメタライジング材であってもよい。
 上述のように作製した積層体の銅箔上に形成された被覆層表面にレジストを塗布し、マスクによりパターンを露光し、現像することによりレジストパターンを形成する。このとき、積層体の被覆層表面には、Pt、Pd、及び、Auの3種以外の1種以上の金属からなる層が形成されているため、液体レジストとの密着性が良好となり、あらかじめ被覆層表面の前処理を行う必要がない。
 続いて、レジストパターンの開口部に露出した被覆層を、試薬を用いて除去する。当該試薬としては、塩酸、硫酸又は硝酸を主成分とするものを用いるのが、入手しやすさ等の理由から好ましい。貴金属層は非常に薄いため、製造時の熱履歴で銅箔基材の銅と適度に拡散し合っており、この拡散によって最表層近傍にまで達した銅原子が大気又はレジストの乾燥工程の加熱で酸化され、酸化銅が生成する。拡散により形成された貴金属/銅の合金層中におけるこの酸化銅は酸で容易に溶解するため、同時に貴金属も除去される。よって耐腐食性がある貴金属層であっても、レジストパターンの開口部に露出した部分から容易に除去することが可能となる。
 次に、積層体をエッチング液に浸漬する。このとき、エッチングを抑制する白金、パラジウム、及び、金のいずれか1種以上を含む被覆層は、銅箔上のレジスト部分に近い位置にあり、レジスト側の銅箔のエッチングは、この被覆層近傍がエッチングされていく速度よりも速い速度で、被覆層から離れた部位の銅のエッチングが進行することにより、銅の回路パターンのエッチングがほぼ垂直に進行する。これにより銅の不必要部分を除去されて、次いでエッチングレジストを剥離・除去して回路パターンを露出することができる。
 積層体に回路パターンを形成するために用いるエッチング液に対しては、被覆層のエッチング速度は、銅よりも十分に小さいためエッチングファクターを改善する効果を有する。エッチング液は、塩化第二銅水溶液、又は、塩化第二鉄水溶液等を用いることができる。
 また、被覆層を形成する前に、あらかじめ銅箔基材表面に耐熱層を形成しておいてもよい。
(プリント配線板の銅箔表面の回路形状)
 上述のように被覆層側からエッチングされて形成されたプリント配線板の銅箔表面の回路は、その長尺状の2つの側面が絶縁基板上に垂直に形成されるのではなく、通常、銅箔の表面から下に向かって、すなわち樹脂層に向かって、末広がりに形成される(ダレの発生)。これにより、長尺状の2つの側面はそれぞれ絶縁基板表面に対して傾斜角θを有している。現在要求されている回路パターンの微細化(ファインピッチ化)のためには、回路のピッチをなるべく狭くすることが重要であるが、この傾斜角θが小さいと、それだけダレが大きくなり、回路のピッチが広くなってしまう。また、傾斜角θは、通常、各回路及び回路内で完全に一定ではない。このような傾斜角θのばらつきが大きいと、回路の品質に悪影響を及ぼすおそれがある。従って、被覆層側からエッチングされて形成されたプリント配線板の銅箔表面の回路は、長尺状の2つの側面がそれぞれ絶縁基板表面に対して65~90°の傾斜角θを有し、且つ、同一回路内のtanθの標準偏差が1.0以下であるのが望ましい。また、エッチングファクターとしては、回路のピッチが50μm以下であるとき、1.5以上であるのが好ましく、2.5以上であるのが更に好ましい。
 以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
(例1:実施例1~79)
 (銅箔への被覆層の形成)
 実施例1~79の銅箔基材として、厚さ12μmの圧延銅箔(日鉱金属製C1100)を用意した。圧延銅箔の表面粗さ(Rz)は0.10μmであった。
 銅箔の表面に付着している薄い酸化膜を逆スパッタにより取り除き、下記の各種ターゲットを以下の装置及び条件でスパッタリングすることにより、被覆層を形成した。被覆層の厚さは成膜時間を調整することにより変化させた。スパッタリングに使用した各種金属の単体は純度が3Nのものを用いた。
・装置:バッチ式スパッタリング装置(アルバック社、型式MNS-6000)
・到達真空度:1.0×10-5Pa
・スパッタリング圧:0.2Pa
・逆スパッタ電力:100W
・スパッタリング電力:50W
・ターゲット:エッチング面用
  Au、Pd、Pt、Ni、Co、Sn、Zn、Cu、Cr(3N)
  Ni-7wt%V、Ni-20wt%Sn、Ni-25wt%Zn、
  Ni-20wt%Mn、Ni-50wt%Cu、
  Ni-64wt%Cu-18wt%Zn
・ターゲット:接着面用
  Ni、Cr(3N)
・成膜速度:各ターゲットについて一定時間約0.2μm成膜し、3次元測定器で厚さを測定し、単位時間当たりのスパッタレートを算出した。
 被覆層を設けた銅箔に対して、被覆層と反対側の表面にあらかじめ付着している薄い酸化被膜を逆スパッタリングによって取り除き、Ni層及びCr層を順に成膜した。
 上記手順で表面処理が施された銅箔に、接着剤付ポリイミドフィルム(ニッカン工業製、CISV1215)を7kgf/cm2の圧力、160℃で40分間の加熱プレスで積層させた。
 <付着量の測定>
 被覆層のAu、Pd、Ptの付着量測定は、王水で表面処理銅箔サンプルを溶解させ、その溶解液を希釈し、原子吸光分析法で行った。これ以外の元素の定量はサンプルをHNO3(2重量%)とHCl(5重量%)とを混合した溶液に溶解し、その溶液中の金属濃度をICP発光分光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SFC-3100)にて定量し、単位面積当たりの金属量(μg/dm2)を算出した。
 また、Cu、Cu-Ni合金をターゲットとした場合のCu及びNiの付着量は、同じ条件でTi箔上に成膜した場合の分析値を用いた。
<XPSによる測定>
 被覆層のデプスプロファイルを作成した際のXPSの稼働条件を以下に示す。
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.0nm/min(SiO2換算)
<透過型電子顕微鏡による測定(1)>
 透過型電子顕微鏡によって、被覆後、被覆層の断面において、特性X線でマッピングしたときに観察される表面処理層の合計厚みを測定した。
・装置:STEM(日立製作所社、型式HD-2000STEM)
・加速電圧:200kV
・倍率:2000000倍
<透過型電子顕微鏡による測定(2)>
 透過型電子顕微鏡によって、被覆後、被覆層の断面において、貴金属層中の島状又は層状部分を観察し、島状部分についてはその長軸径を測定した。測定長は1000nmとした。島状部分の長軸径が0.5nm未満の貴金属粒子は装置の分解能上判定が困難であったから、長軸径が0.5nmを超える貴金属粒子を調査対象とした。
・装置:STEM(日立製作所社、型式HD-2000STEM)
・加速電圧:200kV
・倍率:100000倍
 (エッチングによる回路形状)
 銅箔のエッチング面をアセトンで脱脂し、硫酸(100g/L)に30秒浸漬させて、表面の汚れ及び酸化層を取り除いた。次に、スピンコーターを用いて液体レジスト(東京応化工業製、OFPR-800LB)をエッチング面に滴下し、乾燥させた。乾燥後のレジスト厚みは1μmとなるように調整した。その後、露光工程により10本の回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を以下の条件で実施した。
<エッチング条件(塩化第二鉄、塩化第二銅系)>
・塩化第二鉄水溶液:(FeCl3 3.2mol/L、HCl 1.0mol/L)
・塩化第二銅水溶液:(CuCl2 2.0mol/L、HCl 2.3mol/L)
・液温:50°C
・スプレー圧:0.25MPa
(40μmピッチ回路形成)
・レジストL/S=35μm/5μm
・仕上がり回路ボトム(底部)またはトップ(上部)幅:20μm
・回路上方から観察して確認できる方
 エッチング後、45℃のNaOH水溶液(100g/L)に1分間浸漬させてレジストを剥離した。
<エッチングファクターの測定条件>
 エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。図3に、回路パターンの一部の表面写真と、当該部分における回路パターンの幅方向の横断面の模式図と、該模式図を用いたエッチングファクターの計算方法の概略とを示す。このaは回路上方からのSEM観察により測定し、エッチングファクター(EF=b/a)を算出した。このエッチングファクターを用いることにより、エッチング性の良否を簡単に判定できる。さらに、傾斜角θは上記手順で測定したa及び銅箔の厚さbを用いてアークタンジェントを計算することにより算出した。これらの測定範囲は回路長600μmで、12点のエッチングファクター、その標準偏差及び傾斜角θの平均値を結果として採用した。
<耐レジスト剥離性評価>
 ここで、図4及び5に、エッチング後のアルカリでレジストを剥離していない回路上部からの写真を示す。このうち、図4は健全部(レジストと銅基材が剥離していない部分)を示し、図5は異常部(レジストと銅基材が一部剥離している部分)を示す。レジストが基材と十分に密着していれば、図4のように金属光沢がレジスト越しに確認できるうえ、回路が直線であることが確認できる。一方、レジストと基材がエッチング中に剥離してしまうと、図5の点線で囲まれた部分のようにレジスト越しに金属光沢は確認できず、さらに健全部と比べるとこの部分は回路の直線性が劣っている。このため、本実施例における耐レジスト剥離性評価では、レジストパターン(L/S=35μm/5μm、10本)中に図5のようなレジスト剥離が5箇所までなら◎、6~15箇所までなら○、16~25箇所までなら△、26箇所以上は×とした。
(例2:実施例80~82)
 銅層厚み12μmのメタライジングCCL(日鉱金属製マキナス、銅層側Ra0.01μm、タイコート層の金属付着量Ni1780μg/dm2、Cr360μg/dm2)に例1の手順でPd、Ni-V合金を蒸着させ、エッチング性を評価した。
(例3:比較例1)
 例1の手順でエッチング面に表面処理を行わない積層体を作製した後に回路を形成し、評価した。
(例4:比較例2~31)
 例1と同様の手順で回路を作製し、評価した。
(例5:比較例32)
 絶縁基板との接着面に粗化処理、特開2002-176242号公報に従い、エッチング面にNiめっきを施した厚さ12μmの圧延銅箔を用意した。これらを例1の手順でエッチングした。
(例6:比較例33)
 例2の手順でメタライジングCCLにPd、Ni-V合金を蒸着させ、エッチング性を評価した。
 例1~6の各測定結果を表1~8に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<評価>
 実施例では、いずれもエッチングファクターが大きく且つバラツキもなく、矩形方に近い断面の回路を形成することができた。また、エッチング工程におけるレジスト剥離も少なかった。ここで、図6に、実施例28のスパッタ後のXPSによるデプスプロファイルを示す。
 銅基材をメタライジングCCLとした実施例72でも、裾引きが小さい回路を形成することができた。また、エッチング工程におけるレジスト剥離も少なかった。
 なお、本実施例では上述のように銅箔に接着剤付ポリイミドフィルムを加熱プレスで積層させるという、いわゆるキャスティング法によって積層体を形成しているが、本実施例の上記効果は、ポリイミドフィルム上に熱可塑性のポリイミドを塗布し、その上に銅箔を重ね合わせて加熱加圧するラミネート法で作製した積層体に対しても同様に生じることは明らかである。
 比較例1及び32はAu、Pt、Pdによる貴金属層を形成しておらず、また、比較例33は、貴金属の付着量が少なく、それぞれエッチングファクターが小さかった。
 比較例2~7では貴金属層(第1層)は形成されているが、その表面に異なる種類の金属の層(第2層)を形成していないため、エッチング工程においてレジスト剥離が多かった。
 比較例8~31では被覆層のいずれかの金属の被覆量が適切でないため、エッチングファクターが小さい、又は、エッチング工程においてレジスト剥離が多かった。

Claims (11)

  1.  銅箔基材と、該銅箔基材表面の少なくとも一部を被覆する被覆層とを備えたプリント配線板用銅箔であって、
     前記被覆層が、銅箔基材表面から順に積層した、Pt、Pd、及び、Auの少なくともいずれか1種からなる第1の層及びNi、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属からなる第2の層で構成され、
     前記被覆層には、Auが200~2000μg/dm2、Ptが200~2000μg/dm2、Pdが120~1200μg/dm2、Niが5~1500μg/dm2、Coが5~1500μg/dm2、Snが5~1200μg/dm2、Znが5~1200μg/dm2、Cuが5~1500μg/dm2、Crが5~80μg/dm2の被覆量で存在し、
     前記被覆層の厚さが3~25nmであり、
     XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のPt、Pd、及びAuのいずれか1種以上の原子濃度(%)をf(x)、Ni、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属の原子濃度をg(x)とし、区間[0、15]におけるf(x)、g(x)の第一の極大値をそれぞれf(F)、g(G)とすると、G≦F、f(F)≧1%、g(G)≧1%
    を満たすプリント配線板用銅箔。
  2.  f(F)≧5%、g(G)≧5%を満たす請求項1に記載のプリント配線板用銅箔。
  3.  Auが400~1000μg/dm2、Ptが400~1050μg/dm2、Pdが240~600μg/dm2の被覆量で存在する請求項1又は2に記載のプリント配線板用銅箔。
  4.  前記Ni、Co、Sn、Zn、Cu及びCrの何れか1種以上の金属が、Ni合金で構成され、該Ni合金がNi-V、Ni-Sn、Ni-Cu、Ni-Zn、Ni-Mn及びNi-Cu-Znのいずれかで、g(x)がNiの原子濃度である請求項1~3の何れかに記載のプリント配線板用銅箔。
  5.  前記Ni合金が、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のVからなるNi-V合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のSnからなるNi-Sn合金、被覆量が5~1500μg/dm2のNiを含むNi-Cu合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のZnからなるNi-Zn合金、被覆量が5~1500μg/dm2のNi及び5~500μg/dm2のMnからなるNi-Mn合金、被覆量が5~1000μg/dm2のNi及び5~500μg/dm2のZnを含むNi-Zn-Cu合金である請求項4に記載のプリント配線板用銅箔。
  6.  最表層に、クロム層若しくはクロメート層、及び/又は、シラン処理層で構成された防錆処理層が形成された請求項1~5の何れかに記載のプリント配線板用銅箔。
  7.  請求項1~6のいずれかに記載の銅箔で構成された圧延銅箔又は電解銅箔を準備する工程と、前記銅箔の被覆層をエッチング面として該銅箔と樹脂基板との積層体を作製する工程と、前記積層体を塩化第二鉄水溶液又は塩化第二銅水溶液を用いてエッチングし、銅の不必要部分を除去して銅の回路を形成する工程とを含む電子回路の形成方法。
  8.  請求項1~6の何れかに記載の銅箔と樹脂基板との積層体。
  9.  銅層と樹脂基板との積層体であって、前記銅層の表面の少なくとも一部を被覆する請求項1~6の何れかに記載の被覆層を備えた積層体。
  10.  前記樹脂基板がポリイミド基板である請求項8又は9に記載の積層体。
  11.  請求項8~10の何れかに記載の積層体を材料としたプリント配線板。
PCT/JP2012/055113 2011-03-18 2012-02-29 プリント配線板用銅箔及びそれを用いた積層体 WO2012128009A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280013729.1A CN103430635B (zh) 2011-03-18 2012-02-29 印刷布线板用铜箔及使用它的层叠体
KR1020137027052A KR101487124B1 (ko) 2011-03-18 2012-02-29 프린트 배선판용 구리박 및 그것을 사용한 적층체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011060937A JP5346054B2 (ja) 2011-03-18 2011-03-18 プリント配線板用銅箔及びそれを用いた積層板
JP2011-060937 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012128009A1 true WO2012128009A1 (ja) 2012-09-27

Family

ID=46879167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055113 WO2012128009A1 (ja) 2011-03-18 2012-02-29 プリント配線板用銅箔及びそれを用いた積層体

Country Status (5)

Country Link
JP (1) JP5346054B2 (ja)
KR (1) KR101487124B1 (ja)
CN (1) CN103430635B (ja)
TW (1) TWI419623B (ja)
WO (1) WO2012128009A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105309061A (zh) * 2013-07-04 2016-02-03 Jx日矿日石金属株式会社 电磁波屏蔽用金属箔、电磁波屏蔽材和屏蔽电缆
IT202000010285A1 (it) * 2020-05-07 2021-11-07 Pietro Galliani S P A Dispositivo di protezione individuale

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553295B2 (en) * 2002-06-17 2009-06-30 Iradimed Corporation Liquid infusion apparatus
JP5887287B2 (ja) * 2013-01-04 2016-03-16 Jx金属株式会社 電磁波シールド用金属箔及び電磁波シールド材
JP5887283B2 (ja) * 2013-01-04 2016-03-16 Jx金属株式会社 電磁波シールド用金属箔及び電磁波シールド材
EP3150746A4 (en) 2014-05-30 2018-07-04 JX Nippon Mining & Metals Corporation Metal foil for electromagnetic wave shielding, electromagnetic wave shielding member, and shielded cable
TWI593548B (zh) * 2015-01-09 2017-08-01 Jx Nippon Mining & Metals Corp Attached to the metal substrate
KR102427151B1 (ko) * 2015-08-31 2022-07-28 엘지디스플레이 주식회사 표시 장치
JP6854114B2 (ja) * 2016-01-04 2021-04-07 Jx金属株式会社 表面処理銅箔

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235542A (ja) * 1992-02-19 1993-09-10 Nikko Guurudo Foil Kk 印刷回路用銅箔及びその製造方法
WO2010087268A1 (ja) * 2009-01-29 2010-08-05 日鉱金属株式会社 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法
WO2010147059A1 (ja) * 2009-06-18 2010-12-23 Jx日鉱日石金属株式会社 電子回路及びその形成方法並びに電子回路形成用銅張積層板
WO2011001552A1 (ja) * 2009-06-30 2011-01-06 Jx日鉱日石金属株式会社 プリント配線板用銅箔
WO2011001551A1 (ja) * 2009-06-30 2011-01-06 Jx日鉱日石金属株式会社 プリント配線板用銅箔

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051673A (ja) * 2001-08-06 2003-02-21 Mitsui Mining & Smelting Co Ltd プリント配線板用銅箔及びそのプリント配線板用銅箔を用いた銅張積層板
JP4683640B2 (ja) * 2006-01-31 2011-05-18 Jx日鉱日石金属株式会社 プリント配線基板用銅箔及びそれを用いたプリント配線基板
JP4961023B2 (ja) * 2007-12-21 2012-06-27 Jx日鉱日石金属株式会社 プリント配線板用銅箔
US8358281B2 (en) 2009-12-15 2013-01-22 Apple Inc. Device, method, and graphical user interface for management and manipulation of user interface elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235542A (ja) * 1992-02-19 1993-09-10 Nikko Guurudo Foil Kk 印刷回路用銅箔及びその製造方法
WO2010087268A1 (ja) * 2009-01-29 2010-08-05 日鉱金属株式会社 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法
WO2010147059A1 (ja) * 2009-06-18 2010-12-23 Jx日鉱日石金属株式会社 電子回路及びその形成方法並びに電子回路形成用銅張積層板
WO2011001552A1 (ja) * 2009-06-30 2011-01-06 Jx日鉱日石金属株式会社 プリント配線板用銅箔
WO2011001551A1 (ja) * 2009-06-30 2011-01-06 Jx日鉱日石金属株式会社 プリント配線板用銅箔

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105309061A (zh) * 2013-07-04 2016-02-03 Jx日矿日石金属株式会社 电磁波屏蔽用金属箔、电磁波屏蔽材和屏蔽电缆
IT202000010285A1 (it) * 2020-05-07 2021-11-07 Pietro Galliani S P A Dispositivo di protezione individuale

Also Published As

Publication number Publication date
TW201304627A (zh) 2013-01-16
TWI419623B (zh) 2013-12-11
CN103430635A (zh) 2013-12-04
CN103430635B (zh) 2016-06-29
KR20130136534A (ko) 2013-12-12
KR101487124B1 (ko) 2015-01-28
JP5346054B2 (ja) 2013-11-20
JP2012199291A (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5346054B2 (ja) プリント配線板用銅箔及びそれを用いた積層板
JP5367613B2 (ja) プリント配線板用銅箔
TWI386136B (zh) Copper foil for printed wiring board
JP5386652B1 (ja) キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板、銅張積層板、及び、プリント配線板の製造方法
JP5650023B2 (ja) プリント配線板用銅箔及びそれを用いた積層板
TWI455659B (zh) Printed wiring board with copper foil and the use of its layered body
JP5702942B2 (ja) エッチング性に優れたプリント配線板用銅箔及びそれを用いた積層体
JP5232823B2 (ja) エッチング性に優れたプリント配線板用銅箔及びそれを用いた積層体
JP5524671B2 (ja) エッチング性に優れたプリント配線板用銅箔及び積層体
JP5156784B2 (ja) プリント配線板用銅箔及びそれを用いた積層体
JP5506497B2 (ja) 電送特性の優れた回路を形成するプリント配線板用銅箔及びそれを用いた積層体
JP5406099B2 (ja) エッチング性に優れたプリント配線板用銅箔及び積層体
JP5746876B2 (ja) 電子回路の形成方法
JP5816045B2 (ja) 生産性に優れたプリント配線板用銅箔及びそれを用いた積層板
JP5079883B2 (ja) 耐加熱変色及びエッチング性に優れたプリント配線板用銅箔及びそれを用いた積層体
TWI576024B (zh) Printed wiring board with copper foil and the use of its laminated board
JP2011253855A (ja) プリント配線板用銅箔又は銅層と絶縁基板との積層体、プリント配線板、及び、回路基板の形成方法
JP2011207092A (ja) エッチング性に優れたプリント配線板用銅箔又は銅層と絶縁基板との積層体
JP2011210986A (ja) 耐加熱変色性及びエッチング性に優れたプリント配線板用銅箔及び積層体
JP2011210984A (ja) 耐加熱変色性及びエッチング性に優れたプリント配線板用銅箔及び積層体
JP2011210998A (ja) 耐加熱変色性及びエッチング性に優れたプリント配線板用銅箔及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137027052

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12760159

Country of ref document: EP

Kind code of ref document: A1