WO2012127960A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2012127960A1
WO2012127960A1 PCT/JP2012/054036 JP2012054036W WO2012127960A1 WO 2012127960 A1 WO2012127960 A1 WO 2012127960A1 JP 2012054036 W JP2012054036 W JP 2012054036W WO 2012127960 A1 WO2012127960 A1 WO 2012127960A1
Authority
WO
WIPO (PCT)
Prior art keywords
impurity region
region
impurity
type
conductivity type
Prior art date
Application number
PCT/JP2012/054036
Other languages
English (en)
French (fr)
Other versions
WO2012127960A9 (ja
Inventor
久保 俊次
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to KR1020137026404A priority Critical patent/KR101898751B1/ko
Priority to JP2013505851A priority patent/JP5702460B2/ja
Priority to US13/985,552 priority patent/US8963199B2/en
Priority to CN201280013855.7A priority patent/CN103443927B/zh
Publication of WO2012127960A1 publication Critical patent/WO2012127960A1/ja
Publication of WO2012127960A9 publication Critical patent/WO2012127960A9/ja
Priority to US14/594,034 priority patent/US9257551B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66689Lateral DMOS transistors, i.e. LDMOS transistors with a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device including a high breakdown voltage field effect transistor and a method for manufacturing such a semiconductor device.
  • LED Light Emitting Diode
  • Integrated Circuits Integrated Circuits
  • power supply control ICs power supply control ICs.
  • an n-channel field effect transistor having an N-type well applied to the high voltage side (high side) will be described.
  • An N-type well is formed from the main surface of the semiconductor substrate (P-type) to a predetermined depth, and a P-type well is formed from the surface to a predetermined depth.
  • An N-type source region is formed in the P-type well from the surface to a predetermined depth.
  • an N-type drain region is formed so as to surround the P-type well from the surface thereof to a predetermined depth.
  • a gate electrode is formed on the P-type well portion and the N-type well portion sandwiched between the source region and the drain region with a gate insulating film interposed therebetween.
  • the P-type well has a P-type back gate contact region extending from the surface to a predetermined depth in order to keep the threshold voltage to be applied to the gate electrode for forming the channel at a constant voltage. Is formed.
  • the N-type source region and the P-type back gate contact region are alternately arranged in one direction (gate width direction).
  • references disclosing high withstand voltage field effect transistors include, for example, Japanese Patent Application Laid-Open No. 05-267652 (Patent Document 1), Japanese Patent Application Laid-Open No. 2008-10628 (Patent Document 2) and Japanese Patent Application Laid-Open No. 11-307663 ( There exists patent document 3).
  • the conventional semiconductor device has the following problems.
  • an N-type impurity region having an impurity concentration lower than the impurity concentration of the N-type impurity region so as to surround each N-type impurity region of the source region and the drain region in order to prevent hot carriers and relax the electric field. -Impurity regions are formed.
  • the impurity concentration of the N-impurity region is lower than the impurity concentration of the P-type back gate contact region, but the N-impurity region is formed deeper than the back gate contact region. For this reason, the N ⁇ impurity region is positioned as a high resistance region between the P type back gate contact region and the P type well region. Then, even if 0V is applied to the back gate contact region and the potential of the P-type well is fixed to 0V, the potential of the P-type well may float.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device in which the junction breakdown caused by the parasitic bipolar transistor is suppressed.
  • a method for manufacturing a semiconductor device is provided.
  • a semiconductor device includes a first conductivity type semiconductor substrate having a main surface, a first conductivity type first impurity region, a second conductivity type second impurity region, and a second conductivity type.
  • a third impurity region of conductivity type, a fourth impurity region of first conductivity type, a fifth impurity region of second conductivity type, and an electrode portion are provided.
  • the first impurity region of the first conductivity type is formed over a predetermined depth from the main surface of the semiconductor substrate and has a first impurity concentration.
  • the second impurity region of the second conductivity type is formed from the surface of the first impurity region to a predetermined depth so as to be surrounded from the side and below by the first impurity region, and has a second impurity concentration.
  • the third impurity region of the second conductivity type is formed from the surface of the second impurity region to a predetermined depth so as to be surrounded from the side and below by the second impurity region, and is a third impurity concentration higher than the second impurity concentration. Has an impurity concentration.
  • the fourth impurity region of the first conductivity type is formed from the surface of the first impurity region to a predetermined depth so as to be surrounded from the side and below by the first impurity region, and is in direct contact with the first impurity region.
  • the fourth impurity concentration is higher than the one impurity concentration.
  • the fifth impurity region of the second conductivity type is formed from the main surface of the semiconductor substrate to a predetermined depth with a distance from the first impurity region.
  • the electrode portion is formed on a region sandwiched between the second impurity region and the fifth impurity region.
  • a plurality of fourth impurity regions are formed. The plurality of fourth impurity regions are arranged at intervals in a direction intersecting the direction of the current flowing between the second impurity region and the fifth impurity region by applying a predetermined voltage to the electrode portion.
  • a semiconductor device includes a first conductivity type semiconductor substrate having a main surface, a first conductivity type first impurity region, a second conductivity type second impurity region, A second impurity type third impurity region, a first conductivity type fourth impurity region, an isolation region, a second conductivity type fifth impurity region, and an electrode portion are provided.
  • the first impurity region of the first conductivity type is formed over a predetermined depth from the main surface of the semiconductor substrate and has a first impurity concentration.
  • the second impurity region of the second conductivity type is formed from the surface of the first impurity region to a predetermined depth so as to be surrounded from the side and below by the first impurity region, and has a second impurity concentration.
  • the third impurity region of the second conductivity type is formed over a predetermined depth from the surface of the second impurity region so as to be surrounded from the side and below by the second impurity region, and is in direct contact with the first impurity region.
  • the third impurity concentration is higher than the two impurity concentration.
  • the fourth impurity region of the first conductivity type is formed from the surface of the first impurity region to a predetermined depth so as to be surrounded from the side and below by the first impurity region, and is a fourth impurity concentration higher than the first impurity concentration. Has an impurity concentration.
  • the isolation region is formed between the third impurity region and the fourth impurity region, and electrically isolates the third impurity region and the fourth impurity region.
  • the fifth impurity region of the second conductivity type is formed from the main surface of the semiconductor substrate to a predetermined depth with a distance from the first impurity region.
  • the electrode portion is formed on a region sandwiched between the second impurity region and the fifth impurity region.
  • a semiconductor device manufacturing method includes the following steps.
  • a first conductivity type semiconductor substrate having a main surface is prepared.
  • a first impurity region of the first conductivity type having a first impurity concentration is formed from the main surface of the semiconductor substrate to a predetermined depth.
  • a second impurity region of the second conductivity type having a second impurity concentration is formed from the surface of the first impurity region to a predetermined depth so as to be surrounded by the first impurity region from the side and from below.
  • the first impurity region has a fourth impurity concentration higher than the first impurity concentration over a predetermined depth from the surface of the first impurity region so as to be surrounded from the side and the lower side by the first impurity region, and is in direct contact with the first impurity region.
  • a fourth impurity region of one conductivity type is formed.
  • a fifth conductivity region of the second conductivity type is formed from the main surface of the semiconductor substrate to a predetermined depth with a distance from the first impurity region.
  • An electrode portion is formed on a region sandwiched between the second impurity region and the fifth impurity region.
  • the second impurity region is formed by implanting a second conductivity type impurity obliquely with respect to the surface of the semiconductor substrate through a predetermined implantation mask.
  • a direction intersecting the direction of the current flowing between the first impurity region and the fifth impurity region by applying a predetermined voltage to the electrode portions of the plurality of fourth impurity regions. Are formed at intervals.
  • a manufacturing method of a semiconductor device includes the following steps.
  • a first conductivity type semiconductor substrate having a main surface is prepared.
  • a first impurity region of the first conductivity type having a first impurity concentration is formed from the main surface of the semiconductor substrate to a predetermined depth.
  • a second impurity region of the second conductivity type having a second impurity concentration is formed from the surface of the first impurity region to a predetermined depth so as to be surrounded by the first impurity region from the side and from below.
  • the first impurity region has a fourth impurity concentration higher than the first impurity concentration over a predetermined depth from the surface of the first impurity region so as to be surrounded from the side and the lower side by the first impurity region, and is in direct contact with the first impurity region.
  • a fourth impurity region of one conductivity type is formed.
  • An isolation region that electrically isolates the third impurity region and the fourth impurity region is formed between the third impurity region and the fourth impurity region.
  • a fifth conductivity region of the second conductivity type is formed from the main surface of the semiconductor substrate to a predetermined depth with a distance from the first impurity region.
  • An electrode portion is formed on a region sandwiched between the second impurity region and the fifth impurity region.
  • the operation of the parasitic bipolar transistor can be suppressed and the junction breakdown can be prevented.
  • a method of manufacturing a semiconductor device According to a method of manufacturing a semiconductor device according to one embodiment and another embodiment of the present invention, it is possible to easily manufacture a semiconductor device in which the operation of a parasitic bipolar transistor is suppressed and junction breakdown can be prevented. Can do.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along a cross-sectional line III-III shown in FIG. 2 in the same embodiment.
  • FIG. 4 is a cross-sectional view taken along a cross-sectional line IV-IV shown in FIG. 2 in the same embodiment.
  • FIG. 5 is a cross-sectional view taken along a cross-sectional line VV shown in FIG. 2 in the same embodiment.
  • FIG. 3 is a cross-sectional view taken along a cross-sectional line III-III shown in FIG. 2 in the same embodiment.
  • FIG. 4 is a cross-sectional view taken along a cross-sectional line IV-IV shown in FIG. 2 in the same embodiment.
  • FIG. 5 is a cross-sectional view taken along a cross-sectional line VV shown in FIG. 2 in the same embodiment.
  • FIG. 3 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device in the embodiment
  • (A) is a cross-sectional view corresponding to a cross-sectional line III-III shown in FIG. 2
  • (B) is a cross-sectional view
  • 4 is a cross-sectional view taken along a cross-sectional line corresponding to the cross-sectional line VV shown in FIG. 2
  • (C) is a cross-sectional view taken along a cross-sectional line corresponding to the cross-sectional line IV-IV shown in FIG.
  • FIG. 7 is a cross-sectional view showing a step performed after the step shown in FIG.
  • (A) is a cross-sectional view taken along a cross-sectional line corresponding to the cross-sectional line III-III shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line VV shown in FIG. 2, and (C) is a cross-sectional view taken along a cross-sectional line IV-IV shown in FIG.
  • FIG. 8 is a cross-sectional view showing a step performed after the step shown in FIG. 7 in the embodiment, (A) is a cross-sectional view taken along a cross-sectional line corresponding to the cross-sectional line III-III shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line VV shown in FIG.
  • FIG. 9 is a cross-sectional view showing a step performed after the step shown in FIG. 8 in the embodiment
  • (A) is a cross-sectional view taken along a cross-sectional line corresponding to the cross-sectional line III-III shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line VV shown in FIG. 2
  • (C) is a cross-sectional view taken along a cross-sectional line IV-IV shown in FIG.
  • FIG. 10 is a cross-sectional view showing a step performed after the step shown in FIG.
  • (A) is a cross-sectional view taken along a cross-sectional line corresponding to cross-sectional line III-III shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line VV shown in FIG. 2, and (C) is a cross-sectional view taken along a cross-sectional line IV-IV shown in FIG.
  • FIG. 11 is a cross-sectional view showing a step performed after the step shown in FIG. 10 in the embodiment
  • (A) is a cross-sectional view taken along a cross-sectional line corresponding to the cross-sectional line III-III shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line VV shown in FIG.
  • FIG. 12 is a cross-sectional view showing a step performed after the step shown in FIG. 11 in the same embodiment
  • (A) is a cross-sectional view taken along a cross-sectional line corresponding to the cross-sectional line III-III shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line VV shown in FIG. 2
  • (C) is a cross-sectional view taken along a cross-sectional line IV-IV shown in FIG. It is a top view of the semiconductor device concerning a comparative example.
  • FIG. 14 is a sectional view taken along a sectional line XIV-XIV shown in FIG.
  • FIG. 14 is a cross-sectional view taken along a cross-sectional line XV-XV shown in FIG.
  • FIG. 14 is a sectional view taken along a sectional line XVI-XVI shown in FIG. 13.
  • It is a graph which shows the impurity concentration profile for demonstrating the problem in the semiconductor device which concerns on a comparative example.
  • It is sectional drawing which shows the parasitic bipolar transistor for demonstrating the problem in the semiconductor device which concerns on a comparative example.
  • It is a graph which shows the measurement result of the drain voltage and drain current for demonstrating the problem in the semiconductor device which concerns on a comparative example.
  • it is a graph which shows the measurement result of drain voltage and drain current.
  • FIG. 22 is a cross sectional view taken along a cross sectional line XXII-XXII shown in FIG. 21 in the embodiment.
  • FIG. 22 is a cross sectional view taken along a cross sectional line XXIII-XXIII shown in FIG. 21 in the embodiment.
  • FIG. 22 is a cross sectional view taken along a cross sectional line XXIV-XXIV shown in FIG. 21 in the embodiment.
  • FIG. 26 is a cross sectional view taken along a cross sectional line XXVI-XXVI shown in FIG. 25 in the embodiment.
  • FIG. 26 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device in the embodiment, taken along a cross-sectional line corresponding to cross-sectional line XXVI-XXVI shown in FIG. 25.
  • FIG. 26 is a cross-sectional view showing a step performed after the step shown in FIG. 27 in the embodiment, and is a cross-sectional view taken along a cross-sectional line corresponding to cross-sectional line XXVI-XXVI shown in FIG.
  • FIG. 26 is a cross-sectional view showing a process performed at the trace of the process shown in FIG. 28 in the embodiment, and is a cross-sectional view taken along a cross-sectional line corresponding to cross-sectional line XXVI-XXVI shown in FIG.
  • FIG. 31 is a sectional view taken along a sectional line XXXI-XXXI shown in FIG. 30 in the embodiment.
  • FIG. 31 is a cross sectional view taken along a cross sectional line XXXII-XXXII shown in FIG. 30 in the embodiment.
  • FIG. 31 is a cross sectional view taken along a cross sectional line XXXIII-XXXIII shown in FIG. 30 in the same embodiment.
  • FIG. 31 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device in the embodiment, (A) is a cross-sectional view taken along a cross-sectional line XXXI-XXXI shown in FIG. 30, and (B) 30 is a cross-sectional view taken along a cross-sectional line XXXII-XXXII shown in FIG. 30, and (C) is a cross-sectional view taken along a cross-sectional line XXXIII-XXXIII shown in FIG.
  • FIG. 35 is a cross-sectional view showing a step performed after the step shown in FIG.
  • FIG. 34 in the embodiment (A) is a cross-sectional view taken along a cross-sectional line XXXI-XXXI shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line XXXII-XXXII shown in FIG. 30, and (C) is a cross-sectional view taken along a cross-sectional line XXXIII-XXXIII shown in FIG. 30.
  • FIG. 36 is a cross-sectional view showing a step performed after the step shown in FIG. 35 in the embodiment, (A) is a cross-sectional view taken along a cross-sectional line XXXI-XXI shown in FIG.
  • FIG. 37 is a cross-sectional view showing a step performed after the step shown in FIG. 36 in the embodiment
  • A is a cross-sectional view taken along a cross-sectional line XXXI-XXXI shown in FIG.
  • FIG. 38 is a cross-sectional view showing a step performed after the step shown in FIG. 37 in the embodiment, (A) is a cross-sectional view taken along a cross-sectional line XXXI-XXXI shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line XXXII-XXXII shown in FIG. 30, and (C) is a cross-sectional view taken along a cross-sectional line XXXIII-XXXIII shown in FIG. 30.
  • FIG. 38 is a cross-sectional view showing a step performed after the step shown in FIG. 37 in the embodiment, (A) is a cross-sectional view taken along a cross-sectional line XXXI-XXXI shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line XXXII-XXXII shown in FIG. 30, and (C) is a cross-sectional view taken along a cross
  • FIG. 39 is a cross-sectional view showing a step performed after the step shown in FIG. 38 in the embodiment
  • (A) is a cross-sectional view taken along a cross-sectional line XXXI-XXXI shown in FIG. ) Is a cross-sectional view taken along a cross-sectional line XXXII-XXXII shown in FIG. 30, and
  • (C) is a cross-sectional view taken along a cross-sectional line XXIII-XXXIII shown in FIG. 30.
  • FIG. 41 is a cross sectional view taken along a cross sectional line XLI-XLI shown in FIG. 40 in the embodiment.
  • FIG. 41 is a cross sectional view taken along a cross sectional line XLII-XLII shown in FIG. 40 in the embodiment.
  • FIG. 41 is a cross sectional view taken along a cross sectional line XLIII-XLIII shown in FIG. 40 in the embodiment. It is a top view of the semiconductor device which concerns on Embodiment 6 of this invention.
  • FIG. 45 is a cross sectional view taken along a cross sectional line XLV-XLV shown in FIG. 44 in the embodiment.
  • FIG. 45 is a cross sectional view taken along a cross sectional line XLVI-XLVI shown in FIG. 44 in the embodiment.
  • FIG. 45 is a cross sectional view taken along a cross sectional line XLVII-XLVI shown in FIG.
  • FIG. 49 is a cross sectional view taken along a cross sectional line XLIX-XLIX shown in FIG. 48 in the embodiment. It is a top view of the semiconductor device which concerns on Embodiment 8 of this invention.
  • FIG. 51 is a cross sectional view taken along a cross sectional line LI-LI shown in FIG. 50 in the embodiment.
  • FIG. 51 is a cross sectional view taken along a cross sectional line LII-LII shown in FIG. 50 in the embodiment.
  • FIG. 51 is a cross sectional view taken along a cross sectional line LIII-LIII shown in FIG. 50 in the embodiment.
  • a semiconductor device applied as a control IC for a power supply or the like has a mode of controlling a plurality of different voltages.
  • FIG. 1 in this type of semiconductor device, in terms of circuit, an N-channel high breakdown voltage field effect transistor TNH that controls a relatively high voltage and an N-channel that controls a relatively low voltage.
  • a high-voltage field-effect transistor TNL of a type is connected in series.
  • an N-type well is formed in order to electrically isolate a source region from a semiconductor substrate.
  • an N-type well is not formed in an N-channel field effect transistor (low-side field effect transistor) that controls a low voltage.
  • Embodiment 1 a first example of a semiconductor device including a high-side field effect transistor will be described.
  • isolation regions BRU and BRS defining element formation regions for forming a source region and a drain region, respectively, in predetermined regions of a P-type semiconductor substrate SUB. Is formed.
  • Isolation regions BRU and BRS are formed of, for example, a LOCOS (LoCal Oxidation of Silicon) oxide film.
  • an N-type well NW having a relatively low impurity concentration (about 1 ⁇ 10 16 / cm 3 ) is formed from the surface to a predetermined depth.
  • the portion of the N-type well NW sandwiched between the isolation region BRS and the isolation region BRU has a predetermined depth from the surface of the N-type well so as to be surrounded by the N-type well NW from the side and below.
  • the portion of the N-type well NW located inside the isolation region BRU has a predetermined impurity concentration (3) from the surface of the N-type well to a predetermined depth so as to be surrounded by the N-type well NW from the side and below.
  • a P-type well PW is formed as a back gate region having about ⁇ 10 17 / cm 3 .
  • the P-type well PW has a relatively low impurity concentration (about 1 ⁇ 10 18 / cm 3 ) over a predetermined depth from the surface of the P-type well so as to be surrounded by the P-type well PW from the side and the lower side.
  • An N-type source region NS is formed.
  • the portion of the N-type source region NS has a relatively high impurity concentration (1 ⁇ 10 5) over a predetermined depth from the surface of the portion of the N-type source region NS so as to be surrounded by the N-type source region from the side and below.
  • N + type source region NNS having about 19 / cm 3 ) is formed.
  • the P-type well PW has a relatively high impurity concentration (1 ⁇ 10 19 / cm 3) over a predetermined depth from the surface of the P-type well PW so as to be surrounded by the P-type well PW from the side and the lower side.
  • P + type impurity region BCR as a back gate contact region is formed.
  • the portion of the N-type drain region ND has a relatively high impurity concentration over a predetermined depth from the surface of the portion of the N-type drain region ND so as to be surrounded by the N-type drain region ND from the side and below.
  • N + type drain region NND having about 1 ⁇ 10 19 / cm 3 is formed.
  • a gate electrode G is formed on the P-type well PW portion and the N-type well NW portion sandwiched between the N-type source region NS and the N-type drain region ND with the gate insulating film GZ interposed therebetween. ing.
  • An interlayer insulating film DF is formed so as to cover the gate electrode G.
  • Contact holes CHS, CHD, and CHB are formed so as to penetrate the interlayer insulating film DF.
  • a contact plug CPS electrically connected to the N + type source region NNS is formed in the contact hole CHS.
  • a contact plug CPD electrically connected to the N + type drain region NND is formed in the contact hole CHD.
  • a contact plug CPB electrically connected to the P + type impurity region BCR is formed in the contact hole CHB.
  • a metal wiring MLS electrically connected to the contact plug CPS is formed, and a metal wiring MLD electrically connected to the contact plug CPD is formed. Further, a metal wiring MLB that is electrically connected to the contact plug CPB is formed.
  • the N-type source region NS and the P-type well PW intersect with the direction in which current flows between the N-type source region NS and the N-type drain region ND (substantially orthogonal). ) Are alternately arranged in the direction.
  • the gate electrode G is formed so as to surround the N-type source regions NS and the P-type well PW that are alternately arranged.
  • the N-type source region NS is formed in a portion of the P-type well PW located immediately below the N + -type source region NNS, and is located immediately below the P + -type impurity region BCR. It is not formed in the portion of the P-type well PW. For this reason, the P + type impurity region BCR as the back gate contact region is in direct contact with the portion of the P type well PW.
  • a source region, a drain region, and the like are respectively formed in predetermined regions in the P-type semiconductor substrate SUB by, for example, LOCOS method.
  • Isolation regions BRU and BRS that define element formation regions for formation are formed.
  • a photoresist (not shown) is formed so as to expose the region of the semiconductor substrate SUB surrounded by the separation region BRS.
  • the photoresist mask for example, phosphorus is implanted into the exposed region of the semiconductor substrate SUB with a predetermined implantation energy, so that FIG. 7A, FIG. 7B, and FIG. As shown, an N-type well NW is formed from the surface of the semiconductor substrate SUB to a predetermined depth. Thereafter, the photoresist is removed.
  • a photoresist (not shown) is formed so as to expose a portion of the N-type well NW sandwiched between the isolation region BRS and the isolation region BRU.
  • phosphorus is implanted into the exposed portion of the N-type well NW with a predetermined implantation energy, whereby FIGS. 8 (A), 8 (B), and 8 (C).
  • An N-type drain region ND is formed from the surface of the N-type well NW to a predetermined depth. Thereafter, the photoresist is removed.
  • a photoresist (not shown) is formed so as to expose a predetermined region in the N-type well NW surrounded by the isolation region BRU.
  • boron is implanted into a predetermined region of the N-type well NW exposed with a predetermined implantation energy, whereby FIG. 8A, FIG. 8B, and FIG.
  • a P-type well PW that becomes a back gate region is formed from the surface to a predetermined depth.
  • the P-type well PW is surrounded by the N-type well NW from the side and the lower side thereof, thereby becoming a region electrically isolated from the semiconductor substrate SUB. Thereafter, the photoresist is removed.
  • a gate insulating film GZ (see FIG. 9) is formed on the exposed surface of the N-type well NW or the like, and a conductive film (not shown) is formed on the gate insulating film.
  • the conductive film is subjected to a predetermined photoengraving process and processing, so that a P-type well PW and an N-type are formed as shown in FIGS. 9A, 9B, and 9C.
  • a gate electrode G is formed on a portion of the N-type well NW and a portion of the P-type well PW sandwiched between the drain regions ND with a gate insulating film GZ interposed therebetween.
  • the P + type impurity region BCR (FIG. 10B) of the portion of the P type well PW that is not covered with the gate electrode G and exposed.
  • the photoresist RM is formed so as to cover the region in which the N + type source region NNS (see FIG. 3) is to be formed.
  • phosphorus is obliquely implanted at an inclination angle of about 45 ° with respect to the surface of the semiconductor substrate SUB, thereby extending a predetermined depth from the exposed surface of the P-type well PW.
  • N-type source region NS is formed. Thereafter, the photoresist RM is removed.
  • an insulating film such as a silicon oxide film is formed so as to cover the gate electrode G.
  • anisotropic etching is performed on the entire surface of the insulating film, so that FIG.
  • an insulating film spacer SS is formed on the side wall of the gate electrode G.
  • the photoresist is covered so as to cover the region where the P + type impurity region BCR (see FIG. 4) is to be formed and to expose the region where the N + type source region NNS (see FIG. 4) is to be formed. (Not shown) is formed.
  • the N-type source region NS is surrounded by the N-type source region NS from the side and the lower side.
  • the N + type source region NNS is formed from the surface of the N type source region NS to a predetermined depth.
  • an N + -type drain region NND is formed from the surface to a predetermined depth.
  • a photoresist is exposed so as to expose a region where the P + type impurity region BCR (see FIG. 4) is to be formed and cover a region where the N + type source region NNS (see FIG. 4) is to be formed. (Not shown) is formed.
  • boron is implanted with a predetermined implantation energy using the photoresist as a mask, thereby forming a P + type impurity region BCR as a back gate contact region. Thereafter, the photoresist is removed.
  • an interlayer insulating film DF is formed so as to cover the gate electrode G and the like.
  • contact holes CHS, CHD, and CHB (see FIG. 12) exposing the N + type source region NNS, the N + type drain region NND, and the P + type impurity region BCR are formed in the interlayer insulating film DF.
  • a contact plug CPS electrically connected to the N + type source region NNS is formed in the contact hole CHS exposing the N + type source region NNS.
  • a contact plug CPD electrically connected to the N + type drain region NND is formed in the contact hole CHD exposing the N + type drain region NND.
  • a contact plug CPB electrically connected to the P + type impurity region BCR is formed in the contact hole CHB exposing the P + type impurity region BCR.
  • a predetermined conductive film (not shown) is formed on the surface of the interlayer insulating film DF.
  • a metal wiring MLS electrically connected to the contact plug CPS is formed, and a metal electrically connected to the contact plug CPD is formed.
  • a wiring MLD is formed.
  • a metal wiring MLB that is electrically connected to the contact plug CPB is formed.
  • a logic circuit and the like are simultaneously formed on the same semiconductor substrate in addition to the high breakdown voltage field effect transistor. For this reason, for example, a process such as ion implantation is performed simultaneously with an ion implantation process when forming an element such as a logic circuit.
  • the N-type source region NS is formed only in a region immediately below the N + -type source region NNS, and is formed in a region immediately below the P + -type impurity region BCR. It has not been. Therefore, the P + type impurity region BCR as the back gate contact region is in direct contact with the P type well PW as the back gate region. Thereby, the operation of the parasitic bipolar transistor is suppressed, and the junction breakdown of the high-voltage field-effect transistor can be prevented. This will be described with reference to a semiconductor device according to a comparative example.
  • the N-type source region (HNS) is formed in both the region immediately below the N + -type impurity region (NNS) and the region immediately below the P + -type impurity region (BCR). Except for this, the semiconductor device has the same structure as that of the semiconductor device shown in FIG.
  • an N-type well JNW is formed in a predetermined region of a P-type semiconductor substrate JSUB from the surface to a predetermined depth.
  • An N-type drain region JND and a P-type well JPW are formed in predetermined regions of the N-type well JNW from the surface to a predetermined depth.
  • An N-type source region JNS is formed in the P-type well JPW from the surface thereof to a predetermined depth.
  • An N + type source region JNNS is formed at a predetermined depth from the surface of the N type source region JNS.
  • a P + type impurity region JBCR as a back gate contact region is formed in the P type well JPW.
  • an N + type drain region JNDN is formed in a portion of the N type drain region JND from the surface to a predetermined depth.
  • a gate electrode JG is formed on the P-type well JPW portion and the N-type well JNW portion sandwiched between the N-type source region JNS and the N-type drain region JND.
  • the N + type source region JNNS is electrically connected to the metal wiring JMLS via the plug CCPS
  • the N + type drain region JNDD is electrically connected to the metal wiring JMLD via the plug JCPD
  • the P + type impurity region JBCR is Are electrically connected to the metal wiring JMLB via the plug JCPB.
  • the P + -type impurity region JBCR Ions are also implanted into the region located immediately below, and an N-type source region JNS is formed so as to surround the P + type impurity region JBCR. As shown in FIG.
  • the N-type source region JNR includes a P + -type impurity region JBCR as a back gate contact region, It is located as a high resistance region between the P-type well JPW as a back gate region.
  • the potential of the P type well PW may float.
  • a parasitic bipolar transistor having the N-type source region NS as an emitter, the P + type impurity region BCR as a base, and the N-type drain region ND as a collector operates.
  • the N-type source region NS is formed only in a region immediately below the N + -type source region NNS, and is formed in a region immediately below the P + -type impurity region BCR. It has not been. Therefore, the P + type impurity region BCR as the back gate contact region is in direct contact with the P type well PW as the back gate region. Therefore, when 0V is applied to the P + type impurity region BCR, the potential of the P type well PW is surely fixed to 0V without floating. As a result, as shown in FIG. 20, it is possible to prevent the parasitic bipolar transistor from operating and to suppress the drain current from rapidly increasing. As a result, it is possible to prevent the junction breakdown of the high breakdown voltage field effect transistor.
  • the N-type source region NS extends in the gate width direction, and the N-type source region NS and the N-type drain region ND. Can be secured. As a result, it is possible to suppress a decrease in current driving capability as a field effect transistor.
  • Embodiment 2 a second example of a semiconductor device including a high-side field effect transistor will be described.
  • the P + type impurity region BCR as the back gate contact region intersects (substantially orthogonally) the direction (longitudinal) In the direction).
  • An N + type source region NNS is formed so as to surround the P + type impurity region BCR in a plane.
  • Planar means layout (two-dimensional).
  • N-type source region NS is formed in a region located immediately below N + -type source region NNS, and is not formed in a region located directly below P + -type impurity region BCR. Since the configuration other than this is the same as the configuration of the semiconductor device shown in FIGS. 2, 3, 4, and 5, the same members are denoted by the same reference numerals and description thereof will not be repeated.
  • the semiconductor device described above can be manufactured through the same process as that of the semiconductor device according to the first embodiment only by changing the arrangement pattern of the P + type impurity region BCR. That is, through the steps corresponding to FIGS. 10A, 10B, and 10C and the steps corresponding to FIGS. 11A, 11B, and 11C, N-type source region NS, N + -type source region NNS, and P + -type impurity region BCR shown in FIGS. 21, 22, 23, and 24 are formed.
  • the P + type impurity region BCR is formed so as to be in direct contact with the P type well PW, in addition to the effect of suppressing the operation of the parasitic bipolar transistor, the following effect is obtained. can get.
  • the N + type source region NNS is formed so as to surround the P + type impurity region BCR from the side, and the N type source region NS is formed immediately below the N + type source region NNS. .
  • the length in which the N-type source region NS and the N-type drain region ND face each other is further increased.
  • the current driving capability can be further improved as a field effect transistor.
  • Embodiment 3 a third example of a semiconductor device including a high-side field effect transistor will be described.
  • an N + type source region NNS is formed so as to surround the P + type impurity region BCR as a back gate contact region, and the P + type impurity region BCR and the N + type source are formed.
  • a separation region BRN is formed between the region NNS.
  • the N-type source region NS is formed in a region located immediately below the N + -type source region NNS, and is not formed in a region located directly below the P + -type impurity region BCR. Since the configuration other than this is the same as the configuration of the semiconductor device shown in FIGS. 2, 3, 4, and 5, the same members are denoted by the same reference numerals and description thereof will not be repeated.
  • the semiconductor device described above can be manufactured through the same process as that of the semiconductor device according to the first embodiment only by changing the arrangement pattern of the isolation regions.
  • separation regions BRU, BRS, and BRN corresponding to the plane pattern shown in FIG. 25 are formed in predetermined regions in the P-type semiconductor substrate SUB.
  • separation regions BRU, BRS, and BRN corresponding to the plane pattern shown in FIG. 25 are formed in predetermined regions in the P-type semiconductor substrate SUB.
  • an N-type source region NS, an N + -type source region NNS, a P + -type impurity region BCR, and the like are formed.
  • N + type source region NNS via contact plug CPS.
  • Metal wiring MLS electrically connected to N + type drain region NND through contact plug CPD
  • metal wiring MLB electrically connected to P + type impurity region BCR through contact plug CPB. And are formed respectively.
  • the P + type impurity region BCR is formed so as to be in direct contact with the P type well PW, in addition to the effect of suppressing the operation of the parasitic bipolar transistor, the following effect is obtained. can get.
  • the isolation region BRN is formed between the P + type impurity region BCR and the N + type source region NNS.
  • the P + type impurity region BCR and the N + type source region NNS can be electrically separated.
  • a voltage (source potential) applied to the N + type source region NNS is applied to the P + type impurity region BCR. It is possible to apply to a usage in which a certain level is floated with respect to the applied voltage (back gate potential).
  • Embodiment 4 a fourth example of a semiconductor device including a high-side field effect transistor will be described.
  • the N-type source region NS is formed so as to surround the N + -type source region NNS from the side and the lower side.
  • a P + type contact injection region PSAC as a projecting portion reaching the P type well PW from the N + type source region NNS is formed so as to penetrate the N type source region NS. Since the configuration other than this is the same as the configuration of the semiconductor device shown in FIGS. 2, 3, 4, and 5, the same members are denoted by the same reference numerals and description thereof will not be repeated.
  • FIG. 34 (A), FIG. 34 (B) and FIG. 34 (C) the gate electrode G is formed.
  • a region where the P + type impurity region BCR see FIG. 33
  • an N + type source region NNS see FIG. 33.
  • a photoresist (not shown) is formed so as to expose the region where the) will be formed.
  • an N + -type source region NNS and a P + -type impurity region BCR are formed from the surface to a predetermined depth. Further, an N + type drain region NND is formed in the N type drain region ND from the surface to a predetermined depth.
  • an interlayer insulating film DF is formed on the semiconductor substrate SUB so as to cover the gate electrode G.
  • contact holes CHS, CHD, and CHB exposing the N + type source region NNS, the N + type drain region NND, and the P + type impurity region BCR are formed in the interlayer insulating film DF.
  • the contact holes CHB exposing the P + type impurity regions BCR are left, and the other contact holes CHS and CHD are exposed to photoresist. Cover with PMS.
  • boron is implanted at a predetermined energy into the P + type impurity region BCR through the contact hole CHB, so that the P + type contact reaching the P type well PW from the P + type impurity region BCR.
  • An implantation region PSAC is formed. This P + type contact implantation region PSAC has an impurity concentration of about 5 ⁇ 10 18 / cm 3 .
  • metal interconnection MLB electrically connected to P + type impurity region BCR is formed.
  • the P + type impurity region BCR is electrically connected to the P type well PW via the P + type contact injection region PSAC, the operation of the parasitic bipolar transistor can be suppressed. The following effects can be obtained.
  • the N-type source region NS is formed on the side and below the P + -type impurity region BCR, except for the portion where the P + -type contact implantation region PSAC is located.
  • the length in which the N-type source region NS and the N-type drain region ND face each other is longer than the length in the semiconductor device described in the first embodiment.
  • the current drive capability of the field effect transistor can be further improved.
  • Embodiment 5 a first example of a semiconductor device including a low-side field effect transistor will be described.
  • the semiconductor device according to the present embodiment is the same as that of FIG. 2, except that the N-type well NW (see FIG. 2 and the like) is not formed. 3, since it is the same as that of the structure of the semiconductor device shown in FIG. 4, FIG. 5, the same code
  • the semiconductor device described above is manufactured by omitting the step of forming the N-type well NW from the series of manufacturing steps described in the first embodiment. That is, after the process shown in FIGS. 6A, 6B, and 6C, the process shown in FIGS. 8A, 8B, and 8C is changed from the process shown in FIG. A) A semiconductor device is manufactured through the steps shown in FIGS. 12B and 12C.
  • the P + type impurity region BCR is formed so as to be in direct contact with the P type well PW, and the P type well PW is in direct contact with the P type semiconductor substrate SUB.
  • the potential is stable and the operation of the parasitic bipolar transistor can be suppressed.
  • this semiconductor device has an advantageous structure when it is not necessary to electrically isolate the P-type well PW from the semiconductor substrate SUB.
  • Embodiment 6 a second example of a semiconductor device including a low-side field effect transistor will be described.
  • the semiconductor device according to the present embodiment is the same as that of FIG. 21, except that the N-type well NW (see FIG. 1 and the like) is not formed. Since the configuration is the same as that of the semiconductor device shown in FIGS. 22, 23, and 24, the same reference numerals are given to the same members, and the description thereof will not be repeated.
  • the semiconductor device described above is manufactured by omitting the step of forming the N-type well NW among the manufacturing steps described in the second embodiment.
  • the P + type impurity region BCR is formed so as to be in direct contact with the P type well PW, and the P type well PW is in direct contact with the P type semiconductor substrate SUB.
  • the potential is stable and the operation of the parasitic bipolar transistor can be suppressed.
  • the N + type source region NNS is formed so as to surround the P + type impurity region BCR from the side, and the N type source region NS is formed immediately below the N + type source region NNS. Is formed.
  • the length in which the N-type source region NS and the N-type drain region ND face each other is further increased.
  • the current driving capability can be further improved as a field effect transistor.
  • this semiconductor device has an advantageous structure when it is not necessary to electrically isolate the P-type well PW from the semiconductor substrate SUB.
  • Embodiment 7 a third example of a semiconductor device including a low-side field effect transistor will be described.
  • the semiconductor device according to the present embodiment is the same as the semiconductor device shown in FIGS. 25 and 26 except that the N-type well NW (see FIG. 1 and the like) is not formed. Since it is the same as that of a structure, the same code
  • the semiconductor device described above is manufactured by omitting the step of forming the N-type well NW among the manufacturing steps described in the third embodiment.
  • the P + type impurity region BCR is formed so as to be in direct contact with the P type well PW, and the P type well PW is in direct contact with the P type semiconductor substrate SUB.
  • the potential is stable and the operation of the parasitic bipolar transistor can be suppressed.
  • the isolation region BRS is formed between the P + type impurity region BCR and the N + type source region NNS.
  • the P + type impurity region BCR and the N + type source region NNS can be electrically separated.
  • a voltage (source potential) applied to the N + type source region NNS is applied to the P + type impurity region BCR. It is possible to apply to a usage in which a certain level is floated with respect to the applied voltage (back gate potential).
  • Embodiment 8 a fourth example of a semiconductor device including a low-side field effect transistor will be described.
  • the semiconductor device according to the present embodiment is the same as that of FIG. 30, except that the N-type well NW (see FIG. 2 and the like) is not formed. Since it is the same as the configuration of the semiconductor device shown in FIG. 31, FIG. 32 and FIG. 33, the same members are denoted by the same reference numerals and the description thereof will not be repeated.
  • the semiconductor device described above is manufactured by omitting the step of forming the N-type well NW among the manufacturing steps described in the fourth embodiment.
  • the P + type impurity region BCR is formed so as to be in direct contact with the P type well PW, and the P type well PW is in direct contact with the P type semiconductor substrate SUB.
  • the potential is stable and the operation of the parasitic bipolar transistor can be suppressed.
  • the N-type source region NS is formed on the side and the lower side of the P + -type impurity region BCR except for the portion where the P + -type contact implantation region PSAC is located. Is formed.
  • the length in which the N-type source region NS and the N-type drain region ND face each other is longer than the length in the semiconductor device described in the first embodiment. As a result, the current drive capability of the field effect transistor can be further improved.
  • the high-side high breakdown voltage N-type field effect transistor and the low-side high breakdown voltage N-type field effect transistor are individually described.
  • a high-breakdown-voltage N-type field effect transistor and a low-side high-breakdown-voltage N-type field effect transistor may be mounted.
  • the isolation region may be an isolation region by a trench isolation insulating film in addition to the insulating film by the LOCOS method.
  • the present invention is effectively used for a semiconductor device provided with a high withstand voltage field effect transistor such as power supply control.
  • SUB semiconductor substrate BRU isolation region, BRS isolation region, BRN isolation region, NW N-type well, ND N-type drain region, PW P-type well, GZ gate insulating film, G gate electrode, NS N-type source region, SS insulating film Spacer, NND N + type drain region, NNS N + type source region, BCR P + type impurity region, CPS contact plug, CPD contact plug, CPB contact plug, PSAC P + type contact injection region, DF interlayer insulating film, CHS contact hole, CHD contact Hole, CHB contact hole, MLS metal wiring, MLD metal wiring, MLB metal wiring, TNH field effect transistor, TNL field effect transistor, PM photoresist mask, PMS photoresist Mask.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 半導体基板(SUB)における主表面から所定の深さにわたりN型ウェル(NW)が形成され、そのN型ウェル(NW)にはP型ウェル(PW)とN型ドレイン領域(ND)が形成されている。P型ウェル(PW)には、N型ソース領域(NS)、N+型ソース領域(NNS)およびP+型不純物領域(BCR)が形成されている。N型ソース領域(NS)は、N+型ソース領域(NNS)の直下に位置する領域に形成されて、P+型不純物領域(BCR)の直下に位置する領域には形成されておらず、P+型不純物領域(BCR)がP型ウェル(PW)に直接接している。

Description

半導体装置およびその製造方法
 本発明は半導体装置およびその製造方法に関し、特に、高耐圧の電界効果トランジスタを備えた半導体装置と、そのような半導体装置の製造方法とに関するものである。
 LED(Light Emitting Diode)の制御用IC(Integrated Circuit)あるいは電源制御用ICとして、高耐圧の電界効果トランジスタを備えた半導体装置が使われている。そのような高耐圧の電界効果トランジスタとして、高圧側(ハイサイド)に適用される、N型ウェルを備えたnチャネル型の電界効果トランジスタについて説明する。
 半導体基板(P型)における主表面から所定の深さにわたりN型ウェルが形成され、そのN型ウェルには、その表面から所定の深さにわたりP型ウェルが形成されている。P型ウェルには、その表面から所定の深さにわたりN型のソース領域が形成されている。P型ウェルと距離を隔てられたN型ウェルの所定の領域には、その表面から所定の深さにわたり、P型ウェルを取り囲むようにN型のドレイン領域が形成されている。ソース領域とドレイン領域とによって挟まれたP型ウェルの部分およびN型ウェルの部分の上に、ゲート絶縁膜を介在させてゲート電極が形成されている。
 また、P型ウェルには、チャネルを形成するためのゲート電極に印加すべきしきい値電圧を一定の電圧に保持するために、その表面から所定の深さにわたりP型のバックゲートコンタクト領域が形成されている。P型ウェル内では、N型のソース領域とP型のバックゲートコンタクト領域とは、一方向(ゲート幅方向)に交互に配置されている。
 上述したnチャネル型の電界効果トランジスタでは、ゲート電極に所定のしきい値電圧以上の電圧を印加することにより、ゲート電極の直下に位置するP型ウェルの部分にチャネルが形成されて、ソースからドレインに向かって電流が流れることになる。なお、高耐圧の電界効果トランジスタを開示した文献として、たとえば、特開平05-267652号公報(特許文献1)、特開2008-10628号公報(特許文献2)および特開平11-307763号公報(特許文献3)がある。
特開平05-267652号公報 特開2008-10628号公報 特開平11-307763号公報
 しかしながら、従来の半導体装置では次のような問題点があった。電界効果トランジスタでは、ホットキャリア対策と電界緩和のために、ソース領域およびドレイン領域のそれぞれのN型の不純物領域を取り囲むように、そのN型の不純物領域の不純物濃度よりも低い不純物濃度を有するN-不純物領域が形成される。
 このN-不純物領域の不純物濃度は、P型のバックゲートコンタクト領域の不純物濃度よりも低いものの、N-不純物領域はバックゲートコンタクト領域よりも深い位置にまで形成されている。このため、P型のバックゲートコンタクト領域とP型ウェルの領域との間に、N-不純物領域が高抵抗領域として位置することになる。そうすると、バックゲートコンタクト領域に0Vを印加して、P型ウェルの電位を0Vに固定しようとしても、P型ウェルの電位が浮いてしまうことがある。
 P型ウェルの電位が浮いてしまうと、Nチャネル型の電界効果トランジスタのゲート電極に所定の電圧を印加するとともに、ドレイン電極に高い電圧を印加した際に、N型のソース領域をエミッタ、P型のバックゲートコンタクト領域をベース、N型のドレイン領域をコレクタとする寄生バイポーラトランジスタが動作し、ドレイン電流が急増して接合破壊に至ることがある。
 本発明は上記問題点を解決するためになされたものであり、その目的は、寄生バイポーラトランジスタに起因する接合破壊が抑制される半導体装置を提供することであり、他の目的は、そのような半導体装置の製造方法を提供することである。
 本発明の一実施の形態に係る半導体装置は、主表面を有する第1導電型の半導体基板と、第1導電型の第1不純物領域と、第2導電型の第2不純物領域と、第2導電型の第3不純物領域と、第1導電型の第4不純物領域と、第2導電型の第5不純物領域と、電極部とを備えている。第1導電型の第1不純物領域は、半導体基板の主表面から所定の深さにわたり形成され、第1不純物濃度を有する。第2導電型の第2不純物領域は、第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり形成され、第2不純物濃度を有する。第2導電型の第3不純物領域は、第2不純物領域によって側方と下方とから取り囲まれるように第2不純物領域の表面から所定の深さにわたり形成され、第2不純物濃度よりも高い第3不純物濃度を有する。第1導電型の第4不純物領域は、第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり形成されて第1不純物領域に直接接し、第1不純物濃度よりも高い第4不純物濃度を有する。第2導電型の第5不純物領域は、第1不純物領域と距離を隔てて半導体基板の主表面から所定の深さにわたり形成されている。電極部は、第2不純物領域と第5不純物領域によって挟まれた領域の上に形成されている。第4不純物領域は複数形成されている。複数の第4不純物領域は、電極部に所定の電圧を印加することによって第2不純物領域と第5不純物領域との間を流れる電流の方向と交差する方向に間隔を隔てて配置されている。
 本発明の他の実施の形態に係る半導体装置は、主表面を有する第1導電型の半導体基板と、第1導電型の第1不純物領域と、第2導電型の第2不純物領域と、第2導電型の第3不純物領域と、第1導電型の第4不純物領域と、分離領域と、第2導電型の第5不純物領域と、電極部とを備えている。第1導電型の第1不純物領域は、半導体基板の主表面から所定の深さにわたり形成され、第1不純物濃度を有する。第2導電型の第2不純物領域は、第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり形成され、第2不純物濃度を有する。第2導電型の第3不純物領域は、第2不純物領域によって側方と下方とから取り囲まれるように第2不純物領域の表面から所定の深さにわたり形成されて第1不純物領域に直接接し、第2不純物濃度よりも高い第3不純物濃度を有する。第1導電型の第4不純物領域は、第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり形成され、第1不純物濃度よりも高い第4不純物濃度を有する。分離領域は、第3不純物領域と第4不純物領域との間に形成され、第3不純物領域と第4不純物領域とを電気的に分離する。第2導電型の第5不純物領域は、第1不純物領域と距離を隔てて半導体基板の主表面から所定の深さにわたり形成されている。電極部は、第2不純物領域と第5不純物領域によって挟まれた領域の上に形成されている。
 本発明の一実施の形態に係る半導体装置の製造方法は以下の工程を備えている。主表面を有する第1導電型の半導体基板を用意する。半導体基板の主表面から所定の深さにわたり、第1不純物濃度を有する第1導電型の第1不純物領域を形成する。第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり、第2不純物濃度を有する第2導電型の第2不純物領域を形成する。第2不純物領域によって側方と下方とから取り囲まれるように第2不純物領域の表面から所定の深さにわたり、第2不純物濃度よりも高い第3不純物濃度を有する第2導電型の第3不純物領域を形成する。第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり、第1不純物濃度よりも高い第4不純物濃度を有し第1不純物領域に直接接する第1導電型の第4不純物領域を形成する。第1不純物領域と距離を隔てて半導体基板の主表面から所定の深さにわたり、第2導電型の第5不純物領域を形成する。第2不純物領域と第5不純物領域によって挟まれた領域の上に電極部を形成する。第2不純物領域を形成する工程では、所定の注入マスクを介して第2導電型の不純物を半導体基板の表面に対して斜めに注入することによって第2不純物領域を形成する。第4不純物領域を形成する工程では、複数の第4不純物領域を、電極部に所定の電圧を印加することによって第1不純物領域と第5不純物領域との間を流れる電流の方向と交差する方向に間隔を隔てて形成する。
 本発明の他の実施の形態に係る半導体装置の製造方法は以下の工程を備えている。主表面を有する第1導電型の半導体基板を用意する。半導体基板の主表面から所定の深さにわたり、第1不純物濃度を有する第1導電型の第1不純物領域を形成する。第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり、第2不純物濃度を有する第2導電型の第2不純物領域を形成する。第2不純物領域によって側方と下方とから取り囲まれるように第2不純物領域の表面から所定の深さにわたり、第2不純物濃度よりも高い第3不純物濃度を有する第2導電型の第3不純物領域を形成する。第1不純物領域によって側方と下方とから取り囲まれるように第1不純物領域の表面から所定の深さにわたり、第1不純物濃度よりも高い第4不純物濃度を有し第1不純物領域に直接接する第1導電型の第4不純物領域を形成する。第3不純物領域と第4不純物領域との間に、第3不純物領域と第4不純物領域とを電気的に分離する分離領域を形成する。第1不純物領域と距離を隔てて半導体基板の主表面から所定の深さにわたり、第2導電型の第5不純物領域を形成する。第2不純物領域と第5不純物領域によって挟まれた領域の上に電極部を形成する。
 本発明の一実施の形態および他の実施の形態に係る半導体装置によれば、寄生バイポーラトランジスタの動作が抑制されて、接合破壊を防止することができる。
 本発明の一実施の形態および他の実施の形態に係る半導体装置の製造方法によれば、寄生バイポーラトランジスタの動作が抑制されて、接合破壊を防止することができる半導体装置を容易に製造することができる。
本発明の各実施の形態に係る半導体装置において、電界効果トランジスタの接続態様の一例を示す回路図である。 本発明の実施の形態1に係る半導体装置の平面図である。 同実施の形態において、図2に示す断面線III-IIIにおける断面図である。 同実施の形態において、図2に示す断面線IV-IVにおける断面図である。 同実施の形態において、図2に示す断面線V-Vにおける断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す断面図であり、(A)は、図2に示す断面線III-IIIに対応する断面線における断面図であり、(B)は、図2に示す断面線V-Vに対応する断面線における断面図であり、(C)は、図2に示す断面線IV-IVに対応する断面線における断面図である。 同実施の形態において、図6に示す工程の後に行われる工程を示す断面図であり、(A)は、図2に示す断面線III-IIIに対応する断面線における断面図であり、(B)は、図2に示す断面線V-Vに対応する断面線における断面図であり、(C)は、図2に示す断面線IV-IVに対応する断面線における断面図である。 同実施の形態において、図7に示す工程の後に行われる工程を示す断面図であり、(A)は、図2に示す断面線III-IIIに対応する断面線における断面図であり、(B)は、図2に示す断面線V-Vに対応する断面線における断面図であり、(C)は、図2に示す断面線IV-IVに対応する断面線における断面図である。 同実施の形態において、図8に示す工程の後に行われる工程を示す断面図であり、(A)は、図2に示す断面線III-IIIに対応する断面線における断面図であり、(B)は、図2に示す断面線V-Vに対応する断面線における断面図であり、(C)は、図2に示す断面線IV-IVに対応する断面線における断面図である。 同実施の形態において、図9に示す工程の後に行われる工程を示す断面図であり、(A)は、図2に示す断面線III-IIIに対応する断面線における断面図であり、(B)は、図2に示す断面線V-Vに対応する断面線における断面図であり、(C)は、図2に示す断面線IV-IVに対応する断面線における断面図である。 同実施の形態において、図10に示す工程の後に行われる工程を示す断面図であり、(A)は、図2に示す断面線III-IIIに対応する断面線における断面図であり、(B)は、図2に示す断面線V-Vに対応する断面線における断面図であり、(C)は、図2に示す断面線IV-IVに対応する断面線における断面図である。 同実施の形態において、図11に示す工程の後に行われる工程を示す断面図であり、(A)は、図2に示す断面線III-IIIに対応する断面線における断面図であり、(B)は、図2に示す断面線V-Vに対応する断面線における断面図であり、(C)は、図2に示す断面線IV-IVに対応する断面線における断面図である。 比較例に係る半導体装置の平面図である。 図13に示す断面線XIV-XIVにおける断面図である。 図13に示す断面線XV-XVにおける断面図である。 図13に示す断面線XVI-XVIにおける断面図である。 比較例に係る半導体装置における問題点を説明するための、不純物濃度プロファイルを示すグラフである。 比較例に係る半導体装置における問題点を説明するための、寄生バイポーラトランジスタを示す断面図である。 比較例に係る半導体装置における問題点を説明するための、ドレイン電圧とドレイン電流との測定結果を示すグラフである。 同実施の形態において、ドレイン電圧とドレイン電流との測定結果を示すグラフである。 本発明の実施の形態2に係る半導体装置の平面図である。 同実施の形態において、図21に示す断面線XXII-XXIIにおける断面図である。 同実施の形態において、図21示す断面線XXIII-XXIIIにおける断面図である。 同実施の形態において、図21に示す断面線XXIV-XXIVにおける断面図である。 本発明の実施の形態3に係る半導体装置の平面図である。 同実施の形態において、図25に示す断面線XXVI-XXVIにおける断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す断面図であり、図25に示す断面線XXVI-XXVIに対応する断面線における断面図である。 同実施の形態において、図27に示す工程の跡に行われる工程を示す断面図であり、図25に示す断面線XXVI-XXVIに対応する断面線における断面図である。 同実施の形態において、図28に示す工程の跡に行われる工程を示す断面図であり、図25に示す断面線XXVI-XXVIに対応する断面線における断面図である。 本発明の実施の形態4に係る半導体装置の平面図である。 同実施の形態において、図30に示す断面線XXXI-XXXIにおける断面図である。 同実施の形態において、図30に示す断面線XXXII-XXXIIにおける断面図である。 同実施の形態において、図30に示す断面線XXXIII-XXXIIIにおける断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す断面図であり、(A)は、図30に示す断面線XXXI-XXXIに対応する断面線における断面図であり、(B)は、図30に示す断面線XXXII-XXXIIに対応する断面線における断面図であり、(C)は、図30に示す断面線XXXIII-XXXIIIに対応する断面線における断面図である。 同実施の形態において、図34に示す工程の後に行われる工程を示す断面図であり、(A)は、図30に示す断面線XXXI-XXXIに対応する断面線における断面図であり、(B)は、図30に示す断面線XXXII-XXXIIに対応する断面線における断面図であり、(C)は、図30に示す断面線XXXIII-XXXIIIに対応する断面線における断面図である。 同実施の形態において、図35に示す工程の後に行われる工程を示す断面図であり、(A)は、図30に示す断面線XXXI-XXXIに対応する断面線における断面図であり、(B)は、図30に示す断面線XXXII-XXXIIに対応する断面線における断面図であり、(C)は、図30に示す断面線XXXIII-XXXIIIに対応する断面線における断面図である。 同実施の形態において、図36に示す工程の後に行われる工程を示す断面図であり、(A)は、図30に示す断面線XXXI-XXXIに対応する断面線における断面図であり、(B)は、図30に示す断面線XXXII-XXXIIに対応する断面線における断面図であり、(C)は、図30に示す断面線XXXIII-XXXIIIに対応する断面線における断面図である。 同実施の形態において、図37に示す工程の後に行われる工程を示す断面図であり、(A)は、図30に示す断面線XXXI-XXXIに対応する断面線における断面図であり、(B)は、図30に示す断面線XXXII-XXXIIに対応する断面線における断面図であり、(C)は、図30に示す断面線XXXIII-XXXIIIに対応する断面線における断面図である。 同実施の形態において、図38に示す工程の後に行われる工程を示す断面図であり、(A)は、図30に示す断面線XXXI-XXXIに対応する断面線における断面図であり、(B)は、図30に示す断面線XXXII-XXXIIに対応する断面線における断面図であり、(C)は、図30に示す断面線XXXIII-XXXIIIに対応する断面線における断面図である。 本発明の実施の形態5に係る半導体装置の平面図である。 同実施の形態において、図40に示す断面線XLI-XLIにおける断面図である。 同実施の形態において、図40に示す断面線XLII-XLIIにおける断面図である。 同実施の形態において、図40に示す断面線XLIII-XLIIIにおける断面図である。 本発明の実施の形態6に係る半導体装置の平面図である。 同実施の形態において、図44に示す断面線XLV-XLVにおける断面図である。 同実施の形態において、図44に示す断面線XLVI-XLVIにおける断面図である。 同実施の形態において、図44に示す断面線XLVII-XLVIIにおける断面図である。 本発明の実施の形態7に係る半導体装置の平面図である。 同実施の形態において、図48に示す断面線XLIX-XLIXにおける断面図である。 本発明の実施の形態8に係る半導体装置の平面図である。 同実施の形態において、図50に示す断面線LI-LIにおける断面図である。 同実施の形態において、図50に示す断面線LII-LIIにおける断面図である。 同実施の形態において、図50に示す断面線LIII-LIIIにおける断面図である。
 電源等の制御用ICとして適用される半導体装置には、複数の異なる電圧を制御する態様のものがある。図1に示すように、この種の半導体装置では、回路的には、相対的に高い電圧を制御するNチャネル型の高耐圧の電界効果トランジスタTNHと、相対的に低い電圧を制御するNチャネル型の高耐圧の電界効果トランジスタTNLとが、直列に接続されている。
 高い電圧を制御するNチャネル型の電界効果トランジスタ(ハイサイドの電界効果トランジスタ)には、半導体基板に対して、ソース領域を電気的に分離するために、N型ウェルが形成されている。一方、低い電圧を制御するNチャネル型の電界効果トランジスタ(ローサイドの電界効果トランジスタ)には、N型ウェルは形成されていない。
 以下、実施の形態1~4では、ハイサイドの電界効果トランジスタを備えた半導体装置について説明し、実施の形態5~8では、ローサイドの電界効果トランジスタを備えた半導体装置について説明する。
 実施の形態1
 ここでは、ハイサイドの電界効果トランジスタを備えた半導体装置の第1の例について説明する。図2、図3、図4および図5に示すように、P型の半導体基板SUBにおける所定の領域に、ソース領域およびドレイン領域をそれぞれ形成するための素子形成領域を規定する分離領域BRU,BRSが形成されている。分離領域BRU,BRSは、たとえばLOCOS(LoCal Oxidation of Silicon)酸化膜等によって形成されている。
 分離領域BRSによって囲まれた半導体基板SUBの領域には、その表面から所定の深さにわたり、比較的低い不純物濃度(1×1016/cm3程度)を有するN型ウェルNWが形成されている。分離領域BRSと分離領域BRUとによって挟まれたN型ウェルNWの部分には、N型ウェルNWによって側方と下方とから取り囲まれるようにN型ウェルの表面から所定の深さにわたり、比較的高い不純物濃度(3×1016/cm3~6×1016/cm3程度)を有するN型ドレイン領域NDが形成されている。
 分離領域BRUの内側に位置するN型ウェルNWの部分には、N型ウェルNWによって側方と下方とから取り囲まれるようにN型ウェルの表面から所定の深さにわたり、所定の不純物濃度(3×1017/cm3程度)を有するバックゲート領域としてのP型ウェルPWが形成されている。P型ウェルPWには、P型ウェルPWによって側方と下方とから取り囲まれるようにP型ウェルの表面から所定の深さにわたり、比較的低い不純物濃度(1×1018/cm3程度)を有するN型ソース領域NSが形成されている。
 N型ソース領域NSの部分には、N型ソース領域によって側方と下方とから取り囲まれるようにN型ソース領域NSの部分の表面から所定の深さにわたり、比較的高い不純物濃度(1×1019/cm3程度)を有するN+型ソース領域NNSが形成されている。また、P型ウェルPWには、P型ウェルPWによって側方と下方とから取り囲まれるようにP型ウェルPWの表面から所定の深さにわたり、比較的高い不純物濃度(1×1019/cm3程度)を有する、バックゲートコンタクト領域としてのP+型不純物領域BCRが形成
されている。
 さらに、N型ドレイン領域NDの部分には、N型ドレイン領域NDによって側方と下方とから取り囲まれるようにN型ドレイン領域NDの部分の表面から所定の深さにわたり、比較的高い不純物濃度(1×1019/cm3程度)を有するN+型ドレイン領域NNDが形成されている。N型ソース領域NSとN型ドレイン領域NDとによって挟まれた、P型ウェルPWの部分とN型ウェルNWの部分との上には、ゲート絶縁膜GZを介在させてゲート電極Gが形成されている。
 ゲート電極Gを覆うように層間絶縁膜DFが形成されている。その層間絶縁膜DFを貫通するように、コンタクトホールCHS,CHD,CHBが形成されている。コンタクトホールCHS内に、N+型ソース領域NNSに電気的に接続されるコンタクトプラグCPSが形成されている。コンタクトホールCHD内に、N+型ドレイン領域NNDに電気的に接続されるコンタクトプラグCPDが形成されている。コンタクトホールCHB内に、P+型不純物領域BCRに電気的に接続されるコンタクトプラグCPBが形成されている。
 層間絶縁膜DFの表面上には、コンタクトプラグCPSに電気的に接続される金属配線MLSが形成され、また、コンタクトプラグCPDに電気的に接続される金属配線MLDが形成されている。さらに、コンタクトプラグCPBに電気的に接続される金属配線MLBが形成されている。
 本半導体装置では、図2に示されるように、N型ソース領域NSとP型ウェルPWとは、N型ソース領域NSとN型ドレイン領域NDとの間を電流が流れる方向と交差(略直交)する方向に交互に配置されている。ゲート電極Gは、交互に配置されたN型ソース領域NSとP型ウェルPWとを取り囲むように形成されている。
 また、図4および図5に示されるように、N型ソース領域NSは、N+型ソース領域NNSの直下に位置するP型ウェルPWの部分に形成されて、P+型不純物領域BCRの直下に位置するP型ウェルPWの部分には形成されていない。このため、バックゲートコンタクト領域としてのP+型不純物領域BCRが、P型ウェルPWの部分に直接接していることになる。
 次に、上述した半導体装置の製造方法の一例について説明する。まず、図6(A)、図6(B)および図6(C)に示すように、P型の半導体基板SUBにおける所定の領域に、たとえば、LOCOS法により、ソース領域およびドレイン領域等をそれぞれ形成するための素子形成領域を規定する分離領域BRU,BRSが形成される。
 次に、分離領域BRSによって囲まれた半導体基板SUBの領域を露出するように、フォトレジスト(図示せず)が形成される。次に、そのフォトレジストマスクとして、たとえば、リンを所定の注入エネルギにて露出した半導体基板SUBの領域に注入することにより、図7(A)、図7(B)および図7(C)に示すように、半導体基板SUBの表面から所定の深さにわたりN型ウェルNWが形成される。その後、そのフォトレジストが除去される。
 次に、分離領域BRSと分離領域BRUとによって挟まれたN型ウェルNWの部分を露出するように、フォトレジスト(図示せず)が形成される。次に、そのフォトレジストをマスクとして、たとえば、リンを所定の注入エネルギにて露出したN型ウェルNWの部分に注入することにより、図8(A)、図8(B)および図8(C)に示すように、N型ウェルNWの表面から所定の深さにわたりN型ドレイン領域NDが形成される。その後、そのフォトレジストが除去される。
 次に、分離領域BRUによって囲まれたN型ウェルNWにおける所定の領域を露出するように、フォトレジスト(図示せず)が形成される。次に、そのフォトレジストをマスクとして、たとえば、ボロンを所定の注入エネルギにて露出したN型ウェルNWの所定の領域に注入することにより、図8(A)、図8(B)および図8(C)に示すように、その表面から所定の深さにわたり、バックゲート領域となるP型ウェルPWが形成される。このP型ウェルPWは、その側方と下方とからN型ウェルNWによって囲まれていることで、半導体基板SUBに対して電気的に分離された領域となる。その後、そのフォトレジストが除去される。
 次に、露出しているN型ウェルNW等の表面にゲート絶縁膜GZ(図9参照)がされ、そのゲート絶縁膜の上に、導電性膜(図示せず)が形成される。次に、その導電性膜に、所定の写真製版処理および加工を施すことにより、図9(A)、図9(B)および図9(C)に示すように、P型ウェルPWとN型ドレイン領域NDとによって挟まれたN型ウェルNWの部分とP型ウェルPWの一部との上に、ゲート絶縁膜GZを介在させてゲート電極Gが形成される。
 次に、図10(A)、図10(B)および図10(C)に示すように、ゲート電極Gによって覆われず露出したP型ウェルPWの部分のうち、P+型不純物領域BCR(図4参照)が形成されることになる領域を覆い、N+型ソース領域NNS(図3参照)が形成されることになる領域を露出するように、フォトレジストRMが形成される。次に、そのフォトレジストRMをマスクとして、たとえば、半導体基板SUBの表面に対して傾斜角度45°程度にてリンを斜め注入することにより、露出したP型ウェルPWの表面から所定の深さにわたりN型ソース領域NSが形成される。その後、フォトレジストRMが除去される。
 次に、ゲート電極Gを覆うように、たとえば、シリコン酸化膜等の絶縁膜(図示せず)が形成される、次に、その絶縁膜の全面に異方性エッチングを施すことにより、図11(A)、図11(B)および図11(C)に示すように、ゲート電極Gの側壁上に絶縁膜スペーサSSが形成される。次に、P+型不純物領域BCR(図4参照)が形成されることになる領域を覆い、N+型ソース領域NNS(図4参照)が形成されることになる領域を露出するように、フォトレジスト(図示せず)が形成される。
 次に、そのフォトレジストとゲート電極Gとをマスクとして、所定の注入エネルギにて砒素を注入することにより、N型ソース領域NSには、N型ソース領域NSによって側方と下方とから取り囲まれるようにN型ソース領域NSの表面から所定の深さにわたり、N+型ソース領域NNSが形成される。また、N型ドレイン領域NDには、その表面から所定の深さにわたりN+型ドレイン領域NNDが形成される。その後、そのフォトレジストが除去される。
 次に、P+型不純物領域BCR(図4参照)が形成されることになる領域を露出し、N+型ソース領域NNS(図4参照)が形成されることになる領域を覆うように、フォトレジスト(図示せず)が形成される。次に、そのフォトレジストをマスクとして、所定の注入エネルギにてボロンを注入することにより、バックゲートコンタクト領域としてP+型不純物領域BCRが形成される。その後、そのフォトレジストが除去される。
 次に、図12(A)、図12(B)および図12(C)に示すように、ゲート電極G等を覆うように、層間絶縁膜DFが形成される。次に、その層間絶縁膜DFに、N+型ソース領域NNS、N+型ドレイン領域NNDおよびP+型不純物領域BCRをそれぞれ露出するコンタクトホールCHS,CHD,CHB(図12参照)が形成される。次に、N+型ソース領域NNSを露出するコンタクトホールCHS内に、N+型ソース領域NNSに電気的に接続されるコンタクトプラグCPSが形成される。N+型ドレイン領域NNDを露出するコンタクトホールCHD内に、N+型ドレイン領域NNDに電気的に接続されるコンタクトプラグCPDが形成される。P+型不純物領域BCRを露出するコンタクトホールCHB内に、P+型不純物領域BCRに電気的に接続されるコンタクトプラグCPBが形成される。
 次に、層間絶縁膜DFの表面上に所定の導電性膜(図示せず)が形成される。次に、その導電性膜に所定の写真製版処理および加工を施すことにより、コンタクトプラグCPSに電気的に接続される金属配線MLSが形成され、また、コンタクトプラグCPDに電気的に接続される金属配線MLDが形成される。さらに、コンタクトプラグCPBに電気的に接続される金属配線MLBが形成される。こうして、半導体装置の主要部分が形成される。
 なお、高耐圧の電界効果トランジスタを備えた半導体装置では、同じ半導体基板上に、高耐圧の電界効果トランジスタの他に、ロジック回路等も同時に形成される。このため、たとえば、イオン注入等の工程では、ロジック回路等の素子を形成する際のイオン注入工程と同時に行われることになる。
 上述した、高耐圧の電界効果トランジスタを備えた半導体装置では、N型ソース領域NSは、N+型ソース領域NNSの直下の領域にだけ形成されて、P+型不純物領域BCRの直下の領域には形成されていない。このため、バックゲートコンタクト領域としてのP+型不純物領域BCRは、バックゲート領域としてのP型ウェルPWに直接接することになる。これにより、寄生バイポーラトランジスタの動作が抑制されて、高耐圧の電界効果トランジスタの接合破壊を防止することができる。このことについて、比較例に係る半導体装置を交えて説明する。
 比較例に係る半導体装置では、N+型不純物領域(NNS)の直下の領域と、P+型不純物領域(BCR)の直下の領域との双方にN型ソース領域(HNS)が形成されている点を除いて、図1等に示される半導体装置の構造と同様の構造を備えている。
 図13、図14、図15および図16に示すように、比較例に係る半導体装置では、P型の半導体基板JSUBにおける所定の領域に、その表面から所定の深さにわたりN型ウェルJNWが形成されている。そのN型ウェルJNWにおけるそれぞれ所定の領域に、その表面から所定の深さにわたりN型ドレイン領域JNDとP型ウェルJPWとが形成されている。P型ウェルJPWに、その表面から所定の深さにわたりN型ソース領域JNSが形成されている。
 N型ソース領域JNSの部分に、その表面から所定の深さにわたりN+型ソース領域JNNSが形成されている。また、P型ウェルJPWに、バックゲートコンタクト領域としてのP+型不純物領域JBCRが形成されている。さらに、N型ドレイン領域JNDの部分に、その表面から所定の深さにわたり、N+型ドレイン領域JNNDが形成されている。N型ソース領域JNSとN型ドレイン領域JNDとによって挟まれた、P型ウェルJPWの部分とN型ウェルJNWの部分との上には、ゲート電極JGが形成されている。
 N+型ソース領域JNNSは、プラグJCPSを介して金属配線JMLSに電気的に接続され、N+型ドレイン領域JNNDは、プラグJCPDを介して金属配線JMLDに電気的に接続され、P+型不純物領域JBCRは、プラグJCPBを介して金属配線JMLBに電気的に接続されている。
 比較例に係る半導体装置では、ホットキャリア対策等のためのN型ソース領域JNSを形成するイオン注入工程では、高耐圧の電界効果トランジスタとしてのゲート幅を確保するために、P+型不純物領域JBCRの直下に位置する領域にもイオンが注入されて、P+型不純物領域JBCRを取り囲むようにN型ソース領域JNSが形成されている。図17に示すように、このN型ソース領域JNRの不純物濃度は、P+型不純物領域の不純物濃度よりも低いものの、N型ソース領域JNRは、バックゲートコンタクト領域としてのP+型不純物領域JBCRと、バックゲート領域としてのP型ウェルJPWとの間に高抵抗領域として位置する。
 このため、P+型不純物領域JBCRに0Vを印加して、P型ウェルPWの電位を0Vに固定しようとしても、P型ウェルPWの電位が浮いてしまうことがある。図18に示すように、P型ウェルPWの電位が浮いてしまうと、N型ソース領域NSをエミッタ、P+型不純物領域BCRをベース、N型ドレイン領域NDをコレクタとする寄生バイポーラトランジスタが動作することがある。
 すなわち、図19に示すように、電界効果トランジスタのゲート電極Gに所定の電圧を印加するとともに、ドレイン電極に印加する電圧を上げていくと、ある電圧値を越えた時点で寄生ポーラトランジスタが動作し、ドレイン電流が急増してしまう。その結果、電界効果トランジスタが接合破壊されることがある。
 比較例に係る半導体装置に対して、上述した半導体装置では、N型ソース領域NSは、N+型ソース領域NNSの直下の領域にだけ形成されて、P+型不純物領域BCRの直下の領域には形成されていない。このため、バックゲートコンタクト領域としてのP+型不純物領域BCRは、バックゲート領域としてのP型ウェルPWに直接接することになる。このため、P+型不純物領域BCRに0Vを印加すると、P型ウェルPWの電位は浮くことなく確実に0Vに固定される。これにより、図20に示すように、寄生バイポーラトランジスタの動作するのを阻止して、ドレイン電流が急増するのを抑制することができる。その結果、高耐圧の電界効果トランジスタの接合破壊を防止することができる。
 また、斜めイオン注入によってN型ソース領域NSを形成することで、図2および図4に示すように、N型ソース領域NSはゲート幅方向に広がり、N型ソース領域NSとN型ドレイン領域NDとが対向する長さを確保することができる。その結果、電界効果トランジスタとして、電流駆動能力が下がるのを抑制することができる。
 実施の形態2
 ここでは、ハイサイドの電界効果トランジスタを備えた半導体装置の第2の例について説明する。図21、図22、図23および図24に示すように、P型ウェルPWには、バックゲートコンタクト領域としてのP+型不純物領域BCRは、電流が流れる方向と交差(略直交)する方向(長手方向)に間隔を隔てて形成されている。そのP+型不純物領域BCRを平面的に取り囲むように、N+型ソース領域NNSが形成されている。平面的とはレイアウト的(2次元)にという意味である。N型ソース領域NSは、N+型ソース領域NNSの直下に位置する領域に形成されて、P+型不純物領域BCRの直下に位置する領域には形成されていない。なお、これ以外の構成については、図2、図3、図4および図5に示す半導体装置の構成と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、半導体装置の製造方法について説明する。上述した半導体装置は、P+型不純物領域BCRの配置パターンを変更するだけで、基本的に実施の形態1に係る半導体装置と同様の工程を経て製造することができる。すなわち、図10(A)、図10(B)および図10(C)に対応する工程と、図11(A)、図11(B)および図11(C)に対応する工程とを経て、図21、図22、図23および図24に示される、N型ソース領域NS、N+型ソース領域NNSおよびP+型不純物領域BCRが形成される。
 上述した半導体装置では、P+型不純物領域BCRがP型ウェルPWに直接接するように形成されていることにより、寄生バイポーラトランジスタの動作を抑制することができる効果に加えて、次のような効果が得られる。
 すなわち、上述した半導体装置では、P+型不純物領域BCRをその側方から取り囲むようにN+型ソース領域NNSが形成されて、そのN+型ソース領域NNSの直下にN型ソース領域NSが形成されている。これにより、実施の形態1に係る半導体装置と比べて、N型ソース領域NSとN型ドレイン領域NDとが対向する長さがさらに長くなる。その結果、電界効果トランジスタとして、電流駆動能力をさらに向上させることができる。
 実施の形態3
 ここでは、ハイサイドの電界効果トランジスタを備えた半導体装置の第3の例について説明する。図25および図26に示すように、P型ウェルPWには、バックゲートコンタクト領域としてのP+型不純物領域BCRを取り囲むようにN+型ソース領域NNSが形成され、P+型不純物領域BCRとN+型ソース領域NNSとの間に分離領域BRNが形成されている。N型ソース領域NSはN+型ソース領域NNSの直下に位置する領域に形成されて、P+型不純物領域BCRの直下に位置する領域には形成されていない。なお、これ以外の構成については、図2、図3、図4および図5に示す半導体装置の構成と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、半導体装置の製造方法について説明する。上述した半導体装置は、分離領域の配置パターンを変更するだけで、基本的に実施の形態1に係る半導体装置と同様の工程を経て製造することができる。
 まず、図27に示すように、P型の半導体基板SUBにおける所定の領域に、図25に示される平面パターンに対応した分離領域BRU,BRS,BRNがそれぞれ形成される。次に、図7(A)、図7(B)および図7(C)に対応する工程から、図11(A)、図11(B)および図11(C)に対応する工程を経て、図28に示すように、N型ソース領域NS、N+型ソース領域NNSおよびP+型不純物領域BCR等が形成される。
 その後、図12(A)、図12(B)および図12(C)に対応する工程を経て、図29に示すように、コンタクトプラグCPSを介してN+型ソース領域NNSに電気的に接続される金属配線MLSと、コンタクトプラグCPDを介してN+型ドレイン領域NNDに電気的に接続される金属配線MLDと、コンタクトプラグCPBを介してP+型不純物領域BCRに電気的に接続される金属配線MLBとがそれぞれ形成される。
 上述した半導体装置では、P+型不純物領域BCRがP型ウェルPWに直接接するように形成されていることにより、寄生バイポーラトランジスタの動作を抑制することができる効果に加えて、次のような効果が得られる。
 すなわち、上述した半導体装置では、P+型不純物領域BCRとN+型ソース領域NNSとの間に分離領域BRNが形成されている。これにより、P+型不純物領域BCRとN+型ソース領域NNSとを電気的に分離することができ、たとえば、N+型ソース領域NNSに印加される電圧(ソース電位)を、P+型不純物領域BCRに印加される電圧(バックゲート電位)に対して、一定レベル浮かして使用する用途にも適用することが可能になる。
 実施の形態4
 ここでは、ハイサイドの電界効果トランジスタを備えた半導体装置の第4の例について説明する。図30、図31、図32および図33に示すように、N型ソース領域NSは、N+型ソース領域NNSを側方と下方とから取り囲むように形成されている。さらに、そのN型ソース領域NSを貫通するように、N+型ソース領域NNSからP型ウェルPWに達する、突出部としてのP+型コンタクト注入領域PSACが形成されている。なお、これ以外の構成については、図2、図3、図4および図5に示す半導体装置の構成と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、半導体装置の製造方法について説明する。まず、図6(A)、図6(B)および図6(C)に対応する工程から、図9(A)、図9(B)および図9(C)に対応する工程を経て、図34(A)、図34(B)および図34(C)に示すように、ゲート電極Gが形成される。次に、ゲート電極Gによって覆われず露出したP型ウェルPWの部分のうち、P+型不純物領域BCR(図33参照)が形成されることになる領域と、N+型ソース領域NNS(図33参照)が形成されることになる領域とを露出するように、フォトレジスト(図示せず)が形成される。
 次に、そのフォトレジスをマスクとして、たとえば、半導体基板の表面に対して傾斜角度45°程度にてリンを斜め注入することにより、図35(A)、図35(B)および図35(C)に示すように、露出したP型ウェルPWの表面から所定の深さにわたりN型ソース領域NSが形成される。その後、フォトレジストが除去される。次に、図11(A)、図11(B)および図11(C)に対応する工程を経て、図36(A)、図36(B)および図36(C)に示すように、ゲート電極Gの側壁上に絶縁膜スペーサSSが形成される。また、N型ソース領域NSには、その表面から所定の深さにわたり、N+型ソース領域NNSとP+型不純物領域BCRとがそれぞれ形成される。さらに、N型ドレイン領域NDには、その表面から所定の深さにわたりN+型ドレイン領域NNDが形成される。
 次に、図37(A)、図37(B)および図37(C)に示すように、ゲート電極Gを覆うように、半導体基板SUBの上に層間絶縁膜DFが形成される。次に、その層間絶縁膜DFに、N+型ソース領域NNS、N+型ドレイン領域NNDおよびP+型不純物領域BCRをそれぞれ露出するコンタクトホールCHS,CHD,CHBが形成される。
 次に、図38(A)、図38(B)および図38(C)に示すように、P+型不純物領域BCRを露出するコンタクトホールCHBを残して、他のコンタクトホールCHS,CHDをフォトレジストPMSによって覆う。次に、フォトレジストPMSをマスクとして、コンタクトホールCHBを介してP+型不純物領域BCRへ、所定のエネルギにてボロンを注入することにより、P+型不純物領域BCRからP型ウェルPWへ達するP+型コンタクト注入領域PSACが形成される。このP+型コンタクト注入領域PSACは、5×1018/cm3程度の不純物濃度を有する。
 次に、図12(A)、図12(B)および図12(C)に対応する工程を経て、図39(A)、図39(B)および図39(C)に示すように、コンタクトプラグCPSを介してN+型ソース領域NNSに電気的に接続される金属配線MLSと、コンタクトプラグCPDを介してN+型ドレイン領域NNDに電気的に接続される金属配線MLDと、コンタクトプラグCPBを介してP+型不純物領域BCRに電気的に接続される金属配線MLBとがそれぞれ形成される。
 上述した半導体装置では、P+型不純物領域BCRがP+型コンタクト注入領域PSACを介してP型ウェルPWに電気的に接続されていることにより、寄生バイポーラトランジスタの動作を抑制することができる効果に加えて、次のような効果が得られる。
 すなわち、上述した半導体装置では、P+型不純物領域BCRの側方と下方には、P+型コンタクト注入領域PSACが位置する部分を除いて、N型ソース領域NSが形成されている。これにより、N型ソース領域NSとN型ドレイン領域NDとが対向する長さが、実施の形態1において説明した半導体装置における長さよりも長くなる。その結果、電界効果トランジスタの電流駆動能力をさらに向上させることができる。
 実施の形態5
 ここでは、ローサイドの電界効果トランジスタを備えた半導体装置の第1の例について説明する。図40、図41、図42および図43に示すように、本実施の形態に係る半導体装置は、N型ウェルNW(図2等参照)が形成されていない点を除いて、図2、図3、図4および図5に示す半導体装置の構成と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。上述した半導体装置は、実施の形態1において説明した一連の製造工程のうち、N型ウェルNWを形成する工程を省くことで製造される。すなわち、図6(A)、図6(B)および図6(C)に示す工程を経た後、図8(A)、図8(B)および図8(C)に示す工程から図12(A)、図12(B)および図12(C)に示す工程を経て半導体装置が製造される。
 上述した半導体装置では、P+型不純物領域BCRがP型ウェルPWに直接接するように形成され、さらに、P型ウェルPWがP型の半導体基板SUBに直接接していることで、P型ウェルPWの電位が安定し、寄生バイポーラトランジスタの動作を抑制することができる。特に、本半導体装置は、P型ウェルPWを半導体基板SUBに対して電気的に分離する必要がない場合に有利な構造とされる。
 実施の形態6
 ここでは、ローサイドの電界効果トランジスタを備えた半導体装置の第2の例について説明する。図44、図45、図46および図47に示すように、本実施の形態に係る半導体装置は、N型ウェルNW(図1等参照)が形成されていない点を除いて、図21、図22、図23および図24に示す半導体装置の構成と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。上述した半導体装置は、実施の形態2において説明した製造工程のうち、N型ウェルNWを形成する工程を省くことで製造される。
 上述した半導体装置では、P+型不純物領域BCRがP型ウェルPWに直接接するように形成され、さらに、P型ウェルPWがP型の半導体基板SUBに直接接していることで、P型ウェルPWの電位が安定し、寄生バイポーラトランジスタの動作を抑制することができる。
 また、実施の形態2において説明したように、P+型不純物領域BCRをその側方から取り囲むようにN+型ソース領域NNSが形成されて、そのN+型ソース領域NNSの直下にN型ソース領域NSが形成されている。これにより、実施の形態5に係る半導体装置と比べて、N型ソース領域NSとN型ドレイン領域NDとが対向する長さがさらに長くなる。その結果、電界効果トランジスタとして、電流駆動能力をさらに向上させることができる。特に、本半導体装置は、P型ウェルPWを半導体基板SUBに対して電気的に分離する必要がない場合に有利な構造とされる。
 実施の形態7
 ここでは、ローサイドの電界効果トランジスタを備えた半導体装置の第3の例について説明する。図48および図49に示すように、本実施の形態に係る半導体装置は、N型ウェルNW(図1等参照)が形成されていない点を除いて、図25および図26に示す半導体装置の構成と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。上述した半導体装置は、実施の形態3において説明した製造工程のうち、N型ウェルNWを形成する工程を省くことで製造される。
 上述した半導体装置では、P+型不純物領域BCRがP型ウェルPWに直接接するように形成され、さらに、P型ウェルPWがP型の半導体基板SUBに直接接していることで、P型ウェルPWの電位が安定し、寄生バイポーラトランジスタの動作を抑制することができる。
 また、実施の形態3において説明したように、上述した半導体装置では、P+型不純物領域BCRとN+型ソース領域NNSとの間に分離領域BRSが形成されている。これにより、P+型不純物領域BCRとN+型ソース領域NNSとを電気的に分離することができ、たとえば、N+型ソース領域NNSに印加される電圧(ソース電位)を、P+型不純物領域BCRに印加される電圧(バックゲート電位)に対して、一定レベル浮かして使用する用途にも適用することが可能になる。
 実施の形態8
 ここでは、ローサイドの電界効果トランジスタを備えた半導体装置の第4の例について説明する。図50、図51、図52および図53に示すように、本実施の形態に係る半導体装置は、N型ウェルNW(図2等参照)が形成されていない点を除いて、図30、図31、図32および図33に示す半導体装置の構成と同様なので、同一部材には同一符号を付しその説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法について説明する。上述した半導体装置は、実施の形態4において説明した製造工程のうち、N型ウェルNWを形成する工程を省くことで製造される。
 上述した半導体装置では、P+型不純物領域BCRがP型ウェルPWに直接接するように形成され、さらに、P型ウェルPWがP型の半導体基板SUBに直接接していることで、P型ウェルPWの電位が安定し、寄生バイポーラトランジスタの動作を抑制することができる。
 また、実施の形態4において説明したように、上述した半導体装置では、P+型不純物領域BCRの側方と下方には、P+型コンタクト注入領域PSACが位置する部分を除いて、N型ソース領域NSが形成されている。これにより、N型ソース領域NSとN型ドレイン領域NDとが対向する長さが、実施の形態1において説明した半導体装置における長さよりも長くなる。その結果、電界効果トランジスタの電流駆動能力をさらに向上させることができる。
 なお、上述した各実施の形態では、ハイサイドの高耐圧のN型の電界効果トランジスタと、ローサイドの高耐圧のN型の電界効果トランジスタとを個々に説明したが、同一基板上に、ハイサイドの高耐圧のN型の電界効果トランジスタとローサイドの高耐圧のN型の電界効果トランジスタとが搭載された半導体装置でもよい。また、分離領域としては、LOCOS法による絶縁膜の他に、トレンチ分離絶縁膜による分離領域でもよい。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本発明は、電源制御等の、高耐圧の電界効果トランジスタを備えた半導体装置に有効に利用される。
 SUB 半導体基板、BRU 分離領域、BRS 分離領域、BRN 分離領域、NW N型ウェル、ND N型ドレイン領域、PW P型ウェル、GZ ゲート絶縁膜、G ゲート電極、NS N型ソース領域、SS 絶縁膜スペーサ、NND N+型ドレイン領域、NNS N+型ソース領域、BCR P+型不純物領域、CPS コンタクトプラグ、CPD コンタクトプラグ、CPB コンタクトプラグ、PSAC P+型コンタクト注入領域、DF 層間絶縁膜、CHS コンタクトホール、CHD コンタクトホール、CHB コンタクトホール、MLS 金属配線、MLD 金属配線、MLB 金属配線、TNH 電界効果トランジスタ、TNL 電界効果トランジスタ、PM フォトレジストマスク、PMS フォトレジストマスク。

Claims (14)

  1.  主表面を有する第1導電型の半導体基板と、
     前記半導体基板の前記主表面から所定の深さにわたり形成され、第1不純物濃度を有する第1導電型の第1不純物領域と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり形成され、第2不純物濃度を有する第2導電型の第2不純物領域と、
     前記第2不純物領域によって側方と下方とから取り囲まれるように前記第2不純物領域の表面から所定の深さにわたり形成され、前記第2不純物濃度よりも高い第3不純物濃度を有する第2導電型の第3不純物領域と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり形成されて前記第1不純物領域に直接接し、前記第1不純物濃度よりも高い第4不純物濃度を有する第1導電型の第4不純物領域と、
     前記第1不純物領域と距離を隔てて前記半導体基板の前記主表面から所定の深さにわたり形成された第2導電型の第5不純物領域と、
     前記第2不純物領域と前記第5不純物領域によって挟まれた領域の上に形成された電極部と
    を備え、
     前記第4不純物領域は複数形成され、
     複数の前記第4不純物領域は、前記電極部に所定の電圧を印加することによって前記第2不純物領域と前記第5不純物領域との間を流れる電流の方向と交差する方向に間隔を隔てて配置された、半導体装置。
  2.  前記第3不純物領域は複数形成され、
     複数の前記第3不純物領域と複数の前記第4不純物領域とは、前記電流の方向と交差する方向に交互に配置され、
     前記第2不純物領域は、前記第3不純物領域の直下の領域から前記第4不純物領域の側方の領域に延在するように形成された、請求項1記載の半導体装置。
  3.  前記第3不純物領域は、間隔を隔てて配置された前記第4不純物領域を平面的に取り囲む態様で形成された、請求項1記載の半導体装置。
  4.  前記第2不純物領域は、前記第4不純物領域を側方と下方とから取り囲むように形成され、
     前記第4不純物領域は、前記第2不純物領域を貫通して前記第1不純物領域に達する第1導電型の突出部を含む、請求項1記載の半導体装置。
  5.  前記第1不純物領域および前記第5不純物領域を側方と下方とから取り囲むように、前記半導体基板の前記主表面から所定の深さにわたり形成された第2導電型の第6不純物領域を備えた、請求項1記載の半導体装置。
  6.  主表面を有する第1導電型の半導体基板と、
     前記半導体基板の前記主表面から所定の深さにわたり形成され、第1不純物濃度を有する第1導電型の第1不純物領域と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり形成され、第2不純物濃度を有する第2導電型の第2不純物領域と、
     前記第2不純物領域によって側方と下方とから取り囲まれるように前記第2不純物領域の表面から所定の深さにわたり形成されて前記第1不純物領域に直接接し、前記第2不純物濃度よりも高い第3不純物濃度を有する第2導電型の第3不純物領域と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり形成され、前記第1不純物濃度よりも高い第4不純物濃度を有する第1導電型の第4不純物領域と、
     前記第3不純物領域と前記第4不純物領域との間に形成され、前記第3不純物領域と前記第4不純物領域とを電気的に分離する分離領域と、
     前記第1不純物領域と距離を隔てて前記半導体基板の前記主表面から所定の深さにわたり形成された第2導電型の第5不純物領域と、
     前記第2不純物領域と前記第5不純物領域によって挟まれた領域の上に形成された電極部と
    を備えた、半導体装置。
  7.  前記第1不純物領域および前記第5不純物領域を側方と下方とから取り囲むように、前記半導体基板の前記主表面から所定の深さにわたり形成された第2導電型の第6不純物領域を備えた、請求項6記載の半導体装置。
  8.  主表面を有する第1導電型の半導体基板を用意する工程と、
     前記半導体基板の前記主表面から所定の深さにわたり、第1不純物濃度を有する第1導電型の第1不純物領域を形成する工程と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり、第2不純物濃度を有する第2導電型の第2不純物領域を形成する工程と、
     前記第2不純物領域によって側方と下方とから取り囲まれるように前記第2不純物領域の表面から所定の深さにわたり、前記第2不純物濃度よりも高い第3不純物濃度を有する第2導電型の第3不純物領域を形成する工程と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり、前記第1不純物濃度よりも高い第4不純物濃度を有し前記第1不純物領域に直接接する第1導電型の第4不純物領域を形成する工程と、
     前記第1不純物領域と距離を隔てて前記半導体基板の前記主表面から所定の深さにわたり、第2導電型の第5不純物領域を形成する工程と、
     前記第2不純物領域と前記第5不純物領域によって挟まれた領域の上に電極部を形成する工程と
    を備え、
     前記第2不純物領域を形成する工程では、所定の注入マスクを介して第2導電型の不純物を前記半導体基板の表面に対して斜めに注入することによって前記第2不純物領域を形成し、
     前記第4不純物領域を形成する工程では、複数の前記第4不純物領域を、前記電極部に所定の電圧を印加することによって前記第1不純物領域と前記第5不純物領域との間を流れる電流の方向と交差する方向に間隔を隔てて形成する、半導体装置の製造方法。
  9.  前記第3不純物領域を形成する工程では、前記第3不純物領域は複数形成され、
     前記第3不純物領域を形成する工程および前記第4不純物領域とを形成する工程では、複数の前記第3不純物領域と複数の前記第4不純物領域とは、前記電流の方向と交差する方向に交互に配置され、
     前記第2不純物領域を形成する工程では、前記第2不純物領域は、前記第3不純物領域の直下の領域から前記第4不純物領域の側方の領域に延在するように形成された、請求項8記載の半導体装置の製造方法。
  10.  前記第3不純物領域を形成する工程では、前記第3不純物領域は、間隔を隔てて配置された前記第4不純物領域を平面的に取り囲む態様で形成された、請求項8記載の半導体装置の製造方法。
  11.  前記第2不純物領域を形成する工程では、前記第2不純物領域は、前記第4不純物領域を側方と下方とから取り囲むように形成され、前記第4不純物領域を形成する工程では、前記第2不純物領域を貫通して前記第1不純物領域に達する第1導電型の突出部を形成する工程を含む、請求項8記載の半導体装置の製造方法。
  12.  前記第1不純物領域および前記第5不純物領域を側方と下方とから取り囲むように前記半導体基板の前記主表面から所定の深さにわたり、第2導電型の第6不純物領域を形成する工程を備えた、請求項8記載の半導体装置の製造方法。
  13.  主表面を有する第1導電型の半導体基板を用意する工程と、
     前記半導体基板の前記主表面から所定の深さにわたり、第1不純物濃度を有する第1導電型の第1不純物領域を形成する工程と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり、第2不純物濃度を有する第2導電型の第2不純物領域を形成する工程と、
     前記第2不純物領域によって側方と下方とから取り囲まれるように前記第2不純物領域の表面から所定の深さにわたり、前記第2不純物濃度よりも高い第3不純物濃度を有する第2導電型の第3不純物領域を形成する工程と、
     前記第1不純物領域によって側方と下方とから取り囲まれるように前記第1不純物領域の表面から所定の深さにわたり、前記第1不純物濃度よりも高い第4不純物濃度を有し前記第1不純物領域に直接接する第1導電型の第4不純物領域を形成する工程と、
     前記第3不純物領域と前記第4不純物領域との間に、前記第3不純物領域と前記第4不純物領域とを電気的に分離する分離領域を形成する工程と、
     前記第1不純物領域と距離を隔てて前記半導体基板の前記主表面から所定の深さにわたり、第2導電型の第5不純物領域を形成する工程と、
     前記第2不純物領域と前記第5不純物領域によって挟まれた領域の上に電極部を形成する工程と
    を備えた、半導体装置の製造方法。
  14.  前記第1不純物領域および前記第5不純物領域を側方と下方とから取り囲むように前記半導体基板の前記主表面から所定の深さにわたり、第2導電型の第6不純物領域を形成する工程を備えた、請求項13記載の半導体装置の製造方法。
PCT/JP2012/054036 2011-03-18 2012-02-21 半導体装置およびその製造方法 WO2012127960A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137026404A KR101898751B1 (ko) 2011-03-18 2012-02-21 반도체장치 및 그 제조방법
JP2013505851A JP5702460B2 (ja) 2011-03-18 2012-02-21 半導体装置およびその製造方法
US13/985,552 US8963199B2 (en) 2011-03-18 2012-02-21 Semiconductor device and method for manufacturing same
CN201280013855.7A CN103443927B (zh) 2011-03-18 2012-02-21 半导体装置及其制造方法
US14/594,034 US9257551B2 (en) 2011-03-18 2015-01-09 Semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011061018 2011-03-18
JP2011-061018 2011-03-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/985,552 A-371-Of-International US8963199B2 (en) 2011-03-18 2012-02-21 Semiconductor device and method for manufacturing same
US14/594,034 Continuation US9257551B2 (en) 2011-03-18 2015-01-09 Semiconductor device and method for manufacturing same

Publications (2)

Publication Number Publication Date
WO2012127960A1 true WO2012127960A1 (ja) 2012-09-27
WO2012127960A9 WO2012127960A9 (ja) 2013-07-25

Family

ID=46879123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054036 WO2012127960A1 (ja) 2011-03-18 2012-02-21 半導体装置およびその製造方法

Country Status (5)

Country Link
US (2) US8963199B2 (ja)
JP (1) JP5702460B2 (ja)
KR (1) KR101898751B1 (ja)
CN (1) CN103443927B (ja)
WO (1) WO2012127960A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212156A (ja) * 2013-04-17 2014-11-13 セイコーエプソン株式会社 半導体装置及びその製造方法
JP2018046165A (ja) * 2016-09-14 2018-03-22 富士電機株式会社 半導体装置
JP2019117883A (ja) * 2017-12-27 2019-07-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
WO2021182211A1 (ja) * 2020-03-13 2021-09-16 ローム株式会社 半導体装置およびその製造方法
WO2021182236A1 (ja) * 2020-03-13 2021-09-16 ローム株式会社 半導体装置およびその製造方法
WO2023189438A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 半導体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007575A1 (fr) * 2013-06-24 2014-12-26 St Microelectronics Sa Procede de fabrication d’un transistor bipolaire vertical compatible avec les procedes de fabrication cmos
US9911845B2 (en) * 2015-12-10 2018-03-06 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage LDMOS transistor and methods for manufacturing the same
US10362482B2 (en) * 2016-12-21 2019-07-23 T-Mobile Usa, Inc. Network operation and trusted execution environment
CN110021663B (zh) * 2018-01-09 2023-08-15 联华电子股份有限公司 半导体元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232224A (ja) * 1999-02-10 2000-08-22 Matsushita Electronics Industry Corp 半導体装置及びその製造方法
JP2007067127A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP2009239096A (ja) * 2008-03-27 2009-10-15 Renesas Technology Corp 半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537684B1 (en) 1991-10-15 1998-05-20 Texas Instruments Incorporated Improved performance lateral double-diffused MOS transistor and method of fabrication thereof
JPH08186254A (ja) * 1994-12-28 1996-07-16 Toyota Central Res & Dev Lab Inc 絶縁ゲート型半導体装置およびその製造方法
JP3120389B2 (ja) 1998-04-16 2000-12-25 日本電気株式会社 半導体装置
JP2001015741A (ja) * 1999-06-30 2001-01-19 Toshiba Corp 電界効果トランジスタ
TW521437B (en) * 2000-10-19 2003-02-21 Sanyo Electric Co Semiconductor device and process thereof
KR100456691B1 (ko) * 2002-03-05 2004-11-10 삼성전자주식회사 이중격리구조를 갖는 반도체 소자 및 그 제조방법
JP2004228466A (ja) * 2003-01-27 2004-08-12 Renesas Technology Corp 集積半導体装置およびその製造方法
JP2005158952A (ja) * 2003-11-25 2005-06-16 Toshiba Corp 半導体装置及びその製造方法
JP2006066439A (ja) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2008010628A (ja) * 2006-06-29 2008-01-17 Sanyo Electric Co Ltd 半導体装置及びその製造方法
WO2010098472A1 (ja) 2009-02-26 2010-09-02 日立金属株式会社 角度検出装置及び位置検出装置
CN102484069A (zh) * 2009-09-07 2012-05-30 罗姆股份有限公司 半导体装置及其制造方法
KR101715762B1 (ko) * 2010-08-11 2017-03-14 삼성전자주식회사 반도체 소자
JP5641131B2 (ja) * 2011-03-17 2014-12-17 富士電機株式会社 半導体装置およびその製造方法
US9443839B2 (en) * 2012-11-30 2016-09-13 Enpirion, Inc. Semiconductor device including gate drivers around a periphery thereof
JP2014138091A (ja) * 2013-01-17 2014-07-28 Fuji Electric Co Ltd 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232224A (ja) * 1999-02-10 2000-08-22 Matsushita Electronics Industry Corp 半導体装置及びその製造方法
JP2007067127A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP2009239096A (ja) * 2008-03-27 2009-10-15 Renesas Technology Corp 半導体装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212156A (ja) * 2013-04-17 2014-11-13 セイコーエプソン株式会社 半導体装置及びその製造方法
JP2018046165A (ja) * 2016-09-14 2018-03-22 富士電機株式会社 半導体装置
JP2019117883A (ja) * 2017-12-27 2019-07-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
WO2021182211A1 (ja) * 2020-03-13 2021-09-16 ローム株式会社 半導体装置およびその製造方法
WO2021182236A1 (ja) * 2020-03-13 2021-09-16 ローム株式会社 半導体装置およびその製造方法
US11984502B2 (en) 2020-03-13 2024-05-14 Rohm Co., Ltd. Semiconductor device with suppression of decrease of withstand voltage, and method for manufacturing the semiconductor device
WO2023189438A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
US8963199B2 (en) 2015-02-24
US9257551B2 (en) 2016-02-09
WO2012127960A9 (ja) 2013-07-25
KR20140012123A (ko) 2014-01-29
CN103443927B (zh) 2016-12-07
CN103443927A (zh) 2013-12-11
US20150115360A1 (en) 2015-04-30
JP5702460B2 (ja) 2015-04-15
KR101898751B1 (ko) 2018-09-13
JPWO2012127960A1 (ja) 2014-07-24
US20140015006A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5702460B2 (ja) 半導体装置およびその製造方法
KR100953333B1 (ko) 수직형과 수평형 게이트를 갖는 반도체 소자 및 제조 방법
KR100531924B1 (ko) 반도체장치
JP4772843B2 (ja) 半導体装置及びその製造方法
KR101572476B1 (ko) 반도체 소자 및 그 제조 방법
KR101418398B1 (ko) 필드 형성층을 구비하는 고전압 반도체소자 및 그 제조방법
US8350322B2 (en) Semiconductor device and method for manufacturing the same
KR101463076B1 (ko) 레벨 시프트 소자들을 구비하는 고압 반도체소자 및 그의제조방법
US8492225B2 (en) Integrated trench guarded schottky diode compatible with powerdie, structure and method
US9543217B2 (en) Semiconductor device and method of manufacturing semiconductor device
KR101015531B1 (ko) 정전기 보호 소자 및 그 제조 방법
JP2008192985A (ja) 半導体装置、及び半導体装置の製造方法
CN108257950B (zh) 高压集成电路的高电压终端结构
JP2008084996A (ja) 高耐圧トランジスタ、これを用いた半導体装置及び高耐圧トランジスタの製造方法
TWI575741B (zh) 高壓半導體裝置及其製造方法
JP3523458B2 (ja) 高アバランシェ耐量mosfet、及びその製造方法
US10418479B2 (en) Semiconductor device and method of manufacturing semiconductor device
US20180342577A1 (en) Semiconductor device and method of manufacturing the same
KR101212267B1 (ko) 고전압 숏키 다이오드
JP5407256B2 (ja) 半導体装置
JP2007134500A (ja) 双方向半導体装置
JP4193604B2 (ja) 半導体装置およびその製造方法
KR100628873B1 (ko) 서지보호회로를 구비한 반도체장치
EP3261126A1 (en) High-voltage semiconductor device and method for manufacturing the same
KR20140004589A (ko) 반도체 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505851

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985552

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137026404

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760349

Country of ref document: EP

Kind code of ref document: A1