WO2010098472A1 - 角度検出装置及び位置検出装置 - Google Patents

角度検出装置及び位置検出装置 Download PDF

Info

Publication number
WO2010098472A1
WO2010098472A1 PCT/JP2010/053170 JP2010053170W WO2010098472A1 WO 2010098472 A1 WO2010098472 A1 WO 2010098472A1 JP 2010053170 W JP2010053170 W JP 2010053170W WO 2010098472 A1 WO2010098472 A1 WO 2010098472A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor
detection device
magnet
angle detection
Prior art date
Application number
PCT/JP2010/053170
Other languages
English (en)
French (fr)
Inventor
京平 相牟田
正裕 三田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/203,385 priority Critical patent/US8587295B2/en
Priority to JP2011501685A priority patent/JP5267652B2/ja
Publication of WO2010098472A1 publication Critical patent/WO2010098472A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing

Definitions

  • the present invention relates to a highly accurate and compact angle detection device and position detection device having excellent output linearity.
  • the throttle valve opening sensor of a gasoline engine detects the rotation angle of a throttle valve whose rotation angle (mechanical angle) is within about 90 °, and this uses a potentiometer system.
  • the potentiometer system uses a brush attached to a rotating shaft of a valve and a fixed resistor, and the resistance between the brush and the end of the resistor is caused by the brush rotating with the rotating shaft sliding on the resistor. The rotation angle is obtained from the change in value.
  • the potentiometer system has a simple circuit, but has a problem of signal instability due to a change with time of the sliding portion. Therefore, a non-contact angle sensor that detects the rotation angle of the rotating shaft by detecting the direction of the magnetic flux emitted from the magnet attached to the rotating shaft with a magnetic sensor has been proposed.
  • Japanese Patent Application Laid-Open No. 2008-281556 includes a magnet rotor having a two-pole magnet and a magnetic sensor for detecting the direction of magnetic flux from the two-pole magnet, and the two-pole magnet is in a direction perpendicular to the rotation axis of the magnet rotor.
  • the magnetic sensor has a plurality of spin-valve giant magnetoresistive elements (a fixed layer whose magnetization direction is fixed and a free layer whose magnetization direction rotates according to the direction of magnetic flux)
  • a magnetic sensor is disposed with respect to the magnet rotor so that the magnetic sensitive surface has a magnetic sensitive surface, the magnetic sensitive surface intersects with the magnetic flux, and the amplitude magnitudes of magnetic flux density components orthogonal in the magnetic sensitive surface are different.
  • An angle detection device is disclosed. This angle detection device has high sensor output linearity and can detect the rotation angle with high accuracy. However, it is required to detect a further minute rotation angle with high accuracy, and it is necessary to further improve the output linearity.
  • Japanese Patent Publication No. 7-19619 includes a permanent magnet attached to a detected shaft via a holding member, and a magnetoresistive element facing the holding member at a predetermined interval.
  • An angle sensor that obtains a rotation angle of a detected shaft by detection and has an permanent sensor and a magnetoresistive element arranged only in a specific radial direction of the axis of the detected shaft is disclosed. However, since this angle sensor detects the strength of the magnetic field but not the direction of the magnetic flux, it cannot detect the rotation angle or the amount of movement with high accuracy.
  • an object of the present invention is to further improve the linearity of the output of a magnetic sensor in a limited rotation angle or position range, and to provide a device that can detect a minute angle or position with high accuracy and is suitable for miniaturization. It is.
  • the angle detection device of the present invention comprises a magnet rotor having a multipole segment magnet, and a magnetic sensor for detecting the direction of magnetic flux from the multipole segment magnet,
  • the multi-pole segment magnet has a plurality of magnetic poles arranged along the rotation direction of the magnet rotor
  • the magnetic sensor has a magnetosensitive surface having a plurality of spin-valve giant magnetoresistive elements (a fixed layer having a fixed magnetization direction and a free layer whose magnetization direction rotates in accordance with the direction of magnetic flux).
  • the magnetic sensor is positioned with respect to the magnet rotor so that the magnetic sensitive surface intersects the magnetic flux and the magnitude of the amplitude of the magnetic flux density components orthogonal in the magnetic sensitive surface is different.
  • the multipole segment magnet is preferably arc-shaped or rectangular.
  • B // 0 corresponds to the amplitude of the magnetic flux density component in the rotation direction (circumferential direction) of the magnet rotor (the amplitude of the 0-P value (zero to peak) as shown in the formula)
  • B ⁇ 0 corresponds to the amplitude of the magnetic flux density component orthogonal to B // 0 .
  • B ⁇ eff0 corresponds to the amplitude of the magnetic flux density component when B ⁇ 0 is projected onto the magnetic sensor substrate surface (ie, the magnetosensitive surface), and B // eff0 corresponds to the magnetic sensor substrate surface (ie, the magnetosensitive surface). This corresponds to the amplitude of the magnetic flux density component when B // 0 is projected, but is the same as B // 0 .
  • the sensor bridge of the spin valve type giant magnetoresistive effect element is arranged so as to detect B ⁇ eff0 and B // eff0 in order to output an angle signal.
  • B ⁇ eff0 and B // eff0 can be measured with a gauss meter at a position corresponding to the center of the magnetic sensor after the magnetic sensor is removed from the angle detection device.
  • the distance between the center of the magnetic sensor and the rotation axis of the magnet rotor is larger than the rotation radius of the magnet rotor (corresponding to the distance between the rotation axis of the magnet rotor and the outermost periphery of the rotating magnet)
  • the plurality of spin-valve giant magnetoresistive elements constitute a sensor bridge that is bridge-connected,
  • the pinned layer magnetization direction of the spin-valve giant magnetoresistive effect element on the side electrically adjacent to the sensor bridge is antiparallel,
  • the magnetic sensitive surface of the magnetic sensor is inclined with respect to the rotational axis of the magnet rotor.
  • the distance between the center of the magnetic sensing surface of the magnetic sensor and the rotation axis of the magnet rotor is less than or equal to the rotation radius of the magnet rotor;
  • the plurality of spin-valve giant magnetoresistive elements constitute a sensor bridge that is bridge-connected,
  • the pinned layer magnetization direction of the spin-valve giant magnetoresistive effect element on the side electrically adjacent to the sensor bridge is antiparallel,
  • the magnetic sensitive surface of the magnetic sensor is inclined with respect to the rotational axis of the magnet rotor.
  • the angle detection device that obtains an angle signal from a magnetic sensor
  • the distance between the center of the magnetic sensing surface of the magnetic sensor and the rotation axis of the magnet rotor is larger than the rotation radius of the magnet rotor
  • the plurality of spin-valve giant magnetoresistive elements constitute a sensor bridge that is bridge-connected,
  • the pinned layer magnetization direction of the spin-valve giant magnetoresistive effect element on the side electrically adjacent to the sensor bridge is antiparallel,
  • the center of the magnetic sensitive surface of the magnetic sensor is separated from the magnet rotor in the direction of the rotation axis.
  • the distance between the center of the magnetic sensing surface of the magnetic sensor and the rotation axis of the magnet rotor is less than or equal to the rotation radius of the magnet rotor;
  • the plurality of spin-valve giant magnetoresistive elements constitute a sensor bridge that is bridge-connected, The pinned layer magnetization direction of the spin-valve giant magnetoresistive effect element on the side electrically adjacent to the sensor bridge is antiparallel, The center of the magnetic sensitive surface of the magnetic sensor is separated from the magnet rotor in the direction of the rotation axis.
  • the position detection device of the present invention comprises a linear mover having a multipolar rectangular magnet, and a magnetic sensor for detecting the direction of magnetic flux from the multipolar rectangular magnet,
  • the multipolar rectangular magnet has a plurality of magnetic poles along a linear moving direction of the linear mover
  • the magnetic sensor includes a plurality of spin-valve giant magnetoresistive elements (a magnetoresistive element having a fixed layer and a free layer, the fixed layer magnetization direction being fixed, and the free layer magnetization direction rotating in accordance with the direction of magnetic flux. Element) having a magnetosensitive surface,
  • the magnetic sensor is positioned with respect to the linear mover so that the magnetic sensitive surface intersects the magnetic flux and the magnitude of the amplitude of the magnetic flux density components orthogonal in the magnetic sensitive surface is different.
  • the magnetic sensor has two sensor bridges in which a plurality of spin-valve giant magnetoresistive effect elements are bridge-connected, one sensor bridge and the other sensor bridge.
  • the magnetization directions of the fixed layers are orthogonal to each other in the magnetosensitive plane.
  • ⁇ orthogonal '' refers to FIG. 2, the fixed layer magnetization direction of the magnetoresistive effect element between Vccx and Vx1 in one sensor bridge X01, and Vccy and Vy1 in the other sensor bridge Y01. It means that the pinned layer magnetization direction of the magnetoresistive effect element is between.
  • the magnetic sensitive surfaces of both sensor bridges are parallel, and the two magnetic sensitive surfaces are arranged in one plane.
  • the angle detection device of the present invention has a multi-pole segment magnet instead of a ring magnet, the angle detection device has excellent output linearity and is downsized.
  • the displacement sensor of the lens barrel of the camera, the accelerator pedal of the automobile, the throttle valve It can be used for an opening sensor, a sensor such as a joint of a robot, a torque sensor (a torque is obtained from a relationship between a minute detection angle and a torque), and the like.
  • it is suitable for detecting an angle within a limited range (for example, within ⁇ 20 °) such as the operating angle (swinging angle) of the swinging member.
  • a position sensor that detects displacement in a minute region
  • a swing motor linear motor or ⁇ stage for driving a semiconductor device or a measurement device
  • a steering device a tilt detection device
  • a mirror drive device image reading device or scanner
  • the position detecting device of the present invention has a multipolar rectangular magnet, it has excellent output linearity and is miniaturized, and a position sensor, swing motor (semiconductor device or measuring device) that detects linear motion in a minute region.
  • a position sensor, swing motor semiconductor device or measuring device
  • FIG. 1 (a) is a cross-sectional view taken along line AA of FIG. It is a top view which shows the magnetic sensor used for the angle detection apparatus and position detection apparatus of this invention.
  • FIG. 2 (a) is a diagram showing a sensor bridge X01 of a spin-valve giant magnetoresistive element in the magnetic sensor of FIG. 2 (a).
  • FIG. 3 (a) is a view showing a sensor bridge Y01 of a spin valve type giant magnetoresistive element in the magnetic sensor of FIG. 2 (a).
  • 5 is a top view showing an angle detection device of Reference Example 1.
  • FIG. 3 (a) is a side view showing the eyelid angle detection device.
  • 4 is a graph showing the output of the angle detection device shown in FIG. 4 is a graph showing a detection angle and an angle detection error of the angle detection device shown in FIG.
  • FIG. 4 is a top view showing an angle detection device in arrangement A.
  • 4 is a side view showing an angle detection device in arrangement A.
  • FIG. 6 is a top view showing an angle detection device of arrangement B.
  • FIG. FIG. 4 is a side view showing an angle detection device of arrangement B.
  • FIG. 5 (a) is a graph showing the output of the angle detection device shown in FIG.
  • FIG. 5 (a) is a graph showing a detection angle and an angle detection error of the angle detection device shown in FIG.
  • FIG. 10 is a partial cross-sectional top view showing an angle detection device of Reference Example 2.
  • FIG. 8 (a) is a longitudinal sectional view showing the angle detection device for the eyelid.
  • 5 is a graph showing the relationship between sensor output and rotation angle in the angle detection device of Reference Example 2.
  • 6 is a graph showing a relationship between a detection angle and an angle detection error and a rotation angle in the angle detection device of Reference Example 2.
  • 10 is a partial cross-sectional top view showing an angle detection device of Reference Example 3.
  • FIG. 10 (a) is a longitudinal sectional view showing the angle detection device for the eyelid.
  • FIG. 5 is a graph showing the relationship between sensor output and rotation angle in the angle detection device of Reference Example 3.
  • 6 is a graph showing a relationship between a detection angle, an angle detection error, and a rotation angle in the angle detection device of Reference Example 3.
  • 1 is a partial cross-sectional top view showing an angle detection apparatus of Example 1.
  • FIG. FIG. 12 (a) is a side view showing the angle detection device for the eyelid.
  • 4 is a graph showing the relationship between sensor output and rotation angle in the angle detection device of Example 1.
  • 5 is a graph showing a relationship between a detection angle, an angle detection error, and a rotation angle in the angle detection device according to the first embodiment.
  • FIG. 5 is a partial cross-sectional top view showing an angle detection device of Example 2.
  • FIG. 14 (a) is a side view showing the angle detection device for the eyelid.
  • 6 is a graph showing a relationship between a sensor output and a rotation angle in the angle detection device of Example 2.
  • 6 is a graph showing a relationship between a detection angle, an angle detection error, and a rotation angle in the angle detection device according to the second embodiment.
  • FIG. 5 is a partial cross-sectional top view showing an angle detection device of Example 3.
  • FIG. 16 (a) is a side view showing the angle detection device for the eyelid. 5 is a graph showing the relationship between sensor output and rotation angle in the angle detection device of Example 3.
  • 6 is a graph showing a relationship between a detection angle, an angle detection error, and a rotation angle in the angle detection device of Example 3.
  • FIG. 6 is a partial cross-sectional top view showing an angle detection device of Example 4.
  • FIG. FIG. 18 (a) is a side view showing the eyelid angle detection device.
  • 5 is a graph showing the relationship between sensor output and rotation angle in the angle detection device of Example 4.
  • 6 is a graph showing a relationship between a detection angle, an angle detection error, and a rotation angle in the angle detection device of Example 4.
  • FIG. 10 is a top view showing a moving distance detection device according to a fifth embodiment.
  • FIG. 20 (a) is a side view showing the movement distance detecting device for the bag. 10 is a graph showing the relationship between sensor output and movement distance in the movement distance detection device of Example 5.
  • FIG. 10 is a graph showing a relationship between a detection distance and a movement distance detection error and a movement distance in the movement distance detection device of Example 5.
  • 9 is a graph showing the relationship between sensor output and movement distance in the movement distance detection device of Example 6.
  • 14 is a graph showing the relationship between a detection distance and a movement distance detection error and a movement distance in the movement distance detection device of Example 6.
  • FIG. 10 is a top view showing an angle detection device of Example 7.
  • FIG. 22 (a) is a side view showing the eyelid angle detection device.
  • 14 is a graph showing the relationship between sensor output and movement distance in the angle detection device of Example 7.
  • 14 is a graph showing the relationship between a detection distance and a movement distance detection error and a movement distance in the angle detection device of Example 7.
  • FIG. 10 is a top view showing an angle detection device of Example 8.
  • FIG. 24 (a) is a side view showing the eyelid angle detection device.
  • An angle detection device and a position detection device include a multipole segment magnet or a multipole rectangular magnet, and a magnetic sensor using a plurality of spin-valve giant magnetoresistive elements to detect the direction of magnetic flux from the magnet. And are required.
  • a magnetic sensor using a plurality of spin-valve giant magnetoresistive elements to detect the direction of magnetic flux from the magnet. And are required.
  • an output corresponding to the angle can be directly obtained from the magnetic sensor using the spin valve type giant magnetoresistive element. Therefore, it is not necessary to convert the output signal into an angle signal, and the structure of the angle detection device can be simplified.
  • Each spin-valve giant magnetoresistive element has a fixed layer magnetization direction aligned in one direction, that is, a direction including both parallel and antiparallel directions.
  • One period of rotation is required for Hall sensors that detect the magnitude of magnetic flux density (magnetic sensors that use Hall elements) and spin valve sensors that detect the direction of magnetic flux (magnetic sensors that use spin-valve magnetoresistive elements).
  • One cycle of output is obtained corresponding to the magnetic field. If the output waveform can be an ideal triangular wave, an electrical angle of up to ⁇ 90 ° can be detected. However, since the magnetic field intensity by the magnet rotor is approximately sine wave, the output of the Hall sensor is also approximately sine wave, the linearity region is narrow, and the angle detection error is large.
  • the spin valve sensor can adjust the output waveform according to the positional relationship between the magnet rotor and the spin valve sensor, as will be described later, and can obtain a wide linearity region, thereby suppressing an angle detection error. .
  • An arc segment magnet or a rectangular magnet is used for the magnet rotor.
  • the arc segment magnet is preferably formed by dividing the ring magnet.
  • the arc segment magnet has a plurality of magnetic poles on the convex outer surface. Magnetization may be either polar anisotropy or radial anisotropy, but polar anisotropy is preferred.
  • the segment magnet and the rectangular magnet are preferably magnetized on the SNS or NSN 3 poles or the NS 2 poles.
  • FIGS. 1 (a) and 1 (b) show the positional relationship between the magnetic flux F of the two-pole disk magnet 11a and the magnetic sensor 2a.
  • the magnetization direction of the disk-shaped magnet 11a is the X direction.
  • the magnetic sensor 2a in the surface of the disk-shaped magnet 11a on the X axis separated by r 1 receives the magnetic flux B ⁇ .
  • the rotation angle ⁇ m is 90 °
  • the magnetic sensor 2a receives the magnetic flux B // .
  • the Z direction is the rotational axis direction of the disk-shaped magnet 11a.
  • Fig. 1 (b) shows the arrangement of three magnetic sensors.
  • the magnetic sensor 2a ' is located at a sensor arrangement angle ⁇ ' and is inclined by ⁇ 'with respect to the XY plane.
  • the center of the magnetic sensor 2a ' is h' away from a plane passing through the center of the disk-shaped magnet 11a and perpendicular to the rotation axis.
  • the direction of the magnetic flux is inclined by ⁇ ' from the X direction.
  • the shaft axis is the center O of the magnet rotor.
  • Fig. 2 (a) shows the arrangement of the spin valve type giant magnetoresistive effect element (also simply referred to as "magnetoresistance effect element”) in the magnetic sensor 2a.
  • one magnetic sensor 2a incorporates eight magnetoresistive effect elements whose fixed layer magnetization direction is any of the X direction, the Y direction, the ⁇ X direction, and the ⁇ Y direction. Yes.
  • the thick arrow in the figure represents the magnetization direction of the fixed layer in one magnetoresistive element.
  • magnetoresistive effect element pairs 22a, 22b, 22c and 22d made of two magnetoresistive effect elements having the same fixed layer magnetization direction are provided in one package 25.
  • the pinned layer magnetization direction of the magnetoresistive effect elements 22a and 22d matches the radial direction of the magnet rotor of FIG. 5, and the pinned layer magnetization direction of the magnetoresistive effect elements 22b and 22c matches the rotation direction of the magnet rotor of FIG. To do.
  • Fig. 2 (a) two magnetoresistive elements with the same fixed layer magnetization direction are paired, but one magnetoresistive effect can be obtained even if eight magnetoresistive elements are formed on one substrate. Eight individual substrates on which elements are formed may be used. Also, the pinned layer magnetization direction of the magnetoresistive effect element can be determined by using a self-pinned spin valve type giant magnetoresistive effect element.
  • the magnetoresistive element with the X and ⁇ X directions as the fixed layer magnetization directions constitutes the sensor bridge X01 shown in FIG. 2 (b), and the Y and ⁇ Y directions are fixed.
  • the magnetoresistive effect element having the layer magnetization direction constitutes a sensor bridge Y01 shown in FIG. 2 (c).
  • the X direction and the ⁇ X direction, and the Y direction and the ⁇ Y direction are antiparallel, and the X direction and the ⁇ X direction are orthogonal to the Y direction and the ⁇ Y direction.
  • the fixed layer magnetization direction of the sensor bridges X01 and Y01 is determined by a highly accurate method such as a lithography method.
  • the fixed layer magnetization direction of the sensor bridge X01 matches the radial direction of the magnet rotor, and the fixed layer magnetization direction of the sensor bridge Y01 matches the rotation direction of the magnet rotor.
  • the sensor bridge X01 is inclined by ⁇ around the fixed layer magnetization direction of the sensor bridge Y01.
  • the magnetosensitive surface of the magnetic sensor (the surface of the substrate on which the fixed layers of a plurality of magnetoresistive elements are formed)
  • the center of The center of the magnetosensitive surface is the center 26 of the package 25 surrounded by a plurality of magnetoresistive elements.
  • a constant DC voltage Vccx is applied, and output voltages Vx1 and Vx2 are obtained from the midpoint of the bridge connection.
  • One of the outputs of the sensor bridges X01 and Y01 is used for angle detection. For example, when the sensor bridge X01 is used for angle detection, the sensor bridge Y01 is used for fail-safe or temperature compensation.
  • the magnetic sensor 2a shown in FIGS. 2 (a) to 2 (c) has six terminals 23 (formed from a lead frame) connected to the magnetoresistive effect element, and is integrally molded with resin. Yes. Gndx1, Gndx2, Gndy1, and Gndy2 are ground electrodes.
  • Reference example 1 As shown in FIGS. 3 (a) and 3 (b), in the coordinate system (X, Y, Z) with the center O of the permanent magnet 11a as the origin, the outer circumference (X, 0, 0) of the permanent magnet 11a A magnetic sensor 2a having a structure in which the spin valve giant magnetoresistive effect elements shown in FIGS. 2 (a) to 2 (c) are bridge-connected is disposed.
  • the magnetic sensing surface of the magnetic sensor 2a is perpendicular to the rotation axis of the permanent magnet 11a, and the fixed layer magnetization direction of the magnetic sensor 2a is parallel to the Y axis.
  • Magnetic flux components B X , B Y , and B Z in the X, Y, and Z directions that are generated when the permanent magnet 11a is rotated by an angle ⁇ m are expressed by Expression (1).
  • ⁇ m is the rotation angle of the permanent magnet 11a
  • is the line connecting the center O of the permanent magnet 11a and the center of the magnetic sensor 2a and the XY plane Is the angle formed by.
  • the spatial magnetic flux density amplitude ratio K 0 is expressed by equation (3). (However, B // 0 is the amplitude of the B //, B ⁇ 0 is the amplitude of the B ⁇ .)
  • the Y direction component B // eff of the magnetic flux density effectively received by the spin valve type giant magnetoresistive effect element in the magnetic sensor, the component B ⁇ eff in the direction orthogonal thereto, and the effective magnetic flux density amplitude ratio K eff It is expressed by equation (4).
  • B // EFF0 is the amplitude of the B // eff
  • B ⁇ eff0 is the amplitude of the B ⁇ eff
  • is the angle of inclination in which the magnetization directions of pinned layers of the magnetic sensors 2a and the rotating shaft.
  • Equation (4) shows that an arbitrary effective magnetic flux density amplitude ratio can be obtained by tilting the magnetic sensor by ⁇ .
  • 50.4 °
  • the effective magnetic flux density amplitude ratio K eff between B ⁇ eff and B // eff is 1.27.
  • the output of the magnetic sensor is substantially a triangular wave, and the linearity region (region in which the sensor output changes linearly) greatly increases.
  • FIG. 5 (a) and 5 (b) show an arrangement A in which the magnetic sensitive surface of the magnetic sensor 2a is inclined by ⁇ with respect to a line connecting the center O of the permanent magnet 11a and the center of the magnetic sensor 2a.
  • FIG. 5C and FIG. 5D show an arrangement B in which the magnetic sensing surface of the magnetic sensor 2a is rotated by 90 ° in the arrangement A.
  • FIG. 7 is a graph showing the relationship between the effective magnetic flux density amplitude ratio K eff and the angle detection error in the arrangement A and the arrangement B, and shows K eff that minimizes the angle detection error.
  • Data for arrangement A is indicated by black circles ( ⁇ )
  • data for arrangement B is indicated by white circles ( ⁇ ).
  • Reference example 2 shows a dipole magnet that can output an electrical angle of one cycle with respect to a mechanical angle of one cycle, but it is advantageous to increase the number of magnets in order to detect minute angles with high accuracy.
  • 8 (a) and 8 (b) show the angle detection device of Reference Example 2.
  • FIG. This angle detector includes a ring magnet 11b magnetized to 16 poles so as to generate a polar anisotropic magnetic field from the outer peripheral surface, a magnet rotor comprising a shaft 13b fixed to a through-hole of the ring magnet 11b, and a ring magnet And a magnetic sensor 2a disposed at a position separated from the outer peripheral surface of 11b.
  • FIG. 10 (a) and FIG. 10 (b) show an angle detection apparatus of Reference Example 3 including a multipolar ring magnet 11b ′ magnetized in eight poles.
  • r 0 16 mm
  • r 1 4 mm
  • r 2 10 mm
  • t 8 mm.
  • K 0 was 1.3
  • the magnetic sensor 2a outputs a four-cycle signal reflecting the number of poles of the magnet with respect to one cycle of rotation of the multipolar ring magnet 11b ', one of which is a substantially triangular wave. It was.
  • FIG. 11 (b) when the angle detection error was evaluated using one cycle of this signal, it was within ⁇ 0.2 ° in the ⁇ 15 ° region.
  • the highly accurate and small-sized angle detection device of the present invention includes a multipolar arc segment magnet having a shape obtained by cutting out a part of a ring magnet.
  • 12 (a) and 12 (b) show a magnet rotor in which a multipolar arc segment magnet 11c (cut out from the ring magnet of Reference Example 2) having a pair of S poles on both sides of the N pole is provided on the shaft 13c.
  • the angle detection apparatus which comprises is shown.
  • the width of each S pole in the multipolar arc segment magnet 11c is about half of the width of the N pole, and two polar anisotropic magnetic flux flows from the N pole to the S pole are formed.
  • Fig. 13 (a) shows sensor output
  • Fig. 13 (b) shows angle detection error.
  • the angle detection error suppressed to the same extent as in Reference Example 2 was obtained in Example 1.
  • An angle detection device having a multipolar arc segment magnet is suitable for detecting a minute rotation angle because it only has to swing the multipolar arc segment magnet within a minute angle range to be measured. There is no need to provide a space for providing an angle detector, and the size and weight can be reduced as compared with an angle detection device including a ring magnet. Since the angle detection device of the present invention having a multipolar arc segment magnet uses a linear region of sensor output at a limited rotation angle, it is different from the angle detection device that detects the rotation angle over the entire 360 ° range. Further, since the multipole arc segment magnet 11c occupies only a small space, the angle detection device of the first embodiment has been downsized.
  • Example 2 14 (a) and 14 (b) show a magnet rotor having a multipolar arc segment magnet 11d having one N pole and one S pole each having the same width on a shaft 13d, and a magnetic sensor 2a inclined by ⁇ .
  • FIG. 15 (a) shows the sensor output
  • FIG. 15 (b) shows the angle detection error.
  • Example 2 an angle detection error suppressed to the same extent as in Example 1 was obtained. Similar to Example 1, the angle detection device of Example 2 was also downsized.
  • Example 3 16 (a) and 16 (b) show a magnet in which a multipolar arc segment magnet 11e having a pair of S poles on both sides of the N pole (extracted from a ring magnet magnetized to 12 poles) is provided on the shaft 13e.
  • 2 shows an angle detection device including a rotor and a magnetic sensor 2a inclined by ⁇ .
  • the width of each S pole in the multipolar arc segment magnet 11e is about half of the width of the N pole, and two polar anisotropic magnetic flux flows from the N pole to the S pole were formed.
  • r 0 20 mm
  • r 1 4 mm
  • r 2 15 mm
  • t 3 mm.
  • FIG. 17 (a) shows the sensor output
  • FIG. 17 (b) shows the angle detection error.
  • FIG. 17 (b) shows the angle detection error.
  • Example 4 The angle detection device shown in FIGS. 18 (a) and 18 (b) is the same as in Example 1 except that a multipolar rectangular segment magnet (simply called a multipolar rectangular magnet) is used instead of the multipolar arc segment magnet.
  • a multipolar rectangular segment magnet (simply called a multipolar rectangular magnet) is used instead of the multipolar arc segment magnet.
  • the width of each S pole is about half of the width of the N pole, and the flow of polar anisotropic magnetic flux from the N pole to the S pole Two were formed.
  • a part of the shaft 13f is cut out flat, and a multipolar rectangular magnet 11f is fixed to the flat portion.
  • r 3 is the distance between the flat part of the shaft and the center of rotation.
  • r 4 is the distance between the center of the outer surface of the multipolar rectangular magnet 11f and the center of the magnetic sensor 2a (when the center of the multipolar rectangular magnet 11f is on the line connecting the rotation center of the shaft and the center of the magnetic sensor 2a).
  • d is the length of the multipolar rectangular magnet 11f in the short direction
  • w is the length of the multipolar rectangular magnet 11f in the longitudinal direction.
  • the multipolar rectangular magnet 11f is practical because it is easy to manufacture.
  • Fig. 19 (a) shows sensor output
  • Fig. 19 (b) shows angle detection error.
  • the magnetic flux density is slightly distorted because the distance between the multipolar rectangular magnet 11f and the magnetic sensor 2a changes due to the rotation of the multipolar rectangular magnet 11f.
  • FIG. 19 (b) IV the linearity of the sensor output is ensured, and the angle could be detected with high accuracy in the rotation angle range of ⁇ 7 °. Similar to Example 1, the angle detection device of Example 4 was also downsized.
  • the magnetic sensor may be tilted by ⁇ or moved by h in the Z direction.
  • FIGS. 20 (a) and 20 (b) show a position (movement distance) detection device including a multipolar rectangular magnet 11f having the same shape as that of the fourth embodiment and a magnetic sensor 2a that moves linearly with respect to the same.
  • Keff the position (movement distance) detection device
  • d 3 mm
  • w 15 mm
  • r 1 3 mm
  • h 0 mm
  • t 3 mm
  • FIG. 21 (a) shows the sensor output
  • FIG. 21 (b) shows the movement distance degree detection error.
  • Example 4 the distance between the multipolar rectangular magnet and the magnetic sensor changed due to the rotation of the multipolar rectangular magnet, and the magnetic flux density was slightly distorted, but in this example, the distance between the multipolar rectangular magnet that moves linearly and the magnetic sensor Is constant, and a magnetic flux density distribution with little distortion was obtained.
  • the linearity of the sensor output is ensured as in the case of the minute angle detection, and the linear displacement amount can be detected with an accuracy of ⁇ 50 ⁇ m in the 3 mm moving range.
  • the position detection device of Example 5 was also downsized.
  • FIG. 21 (c) shows the sensor output
  • FIG. 21 (d) shows the movement distance degree detection error.
  • the moving distance detector of Example 6 was able to detect the amount of linear displacement with an accuracy of ⁇ 1 ⁇ m within a moving range of 2 mm. Similar to Example 1, the position detection device of Example 6 was also downsized.
  • FIG. 24 (a) and FIG. 24 (b) are composed of a nonmagnetic disk 14a having a recess on the outer periphery, a multipolar rectangular magnet 11h fixed to the recess, and a rotating shaft 13a that supports the nonmagnetic disk 14a.
  • An angle detection device comprising a magnet rotor and a magnetic sensor 2a spaced apart from a multipolar rectangular magnet 11h in the axial direction of a shaft 13a is shown.
  • the magnetic sensor 2a When the shaft 13a makes one revolution, the magnetic sensor 2a outputs two signals of one cycle reflecting the number of poles of the multipolar rectangular magnet, one of which is almost a triangular wave. As a result, the angle detection error could be suppressed to the same extent as in Example 4.
  • the angle detection device according to the eighth embodiment is also downsized.
  • sensor outputs Vx and Vy obtained from the angle detection device shown in FIGS. 12 (a) and 12 (b) have output waveforms shown in FIG.
  • the value C (T) obtained from the sensor outputs Vx and Vy by the following equation (5) is constant regardless of Vx and Vy, but if there is a failure such as a break in the magnetic sensor 2a, the output waveform is distorted and C ( T) is not constant.
  • C (T) is a function of temperature that changes the rate of change in resistance of the magnetoresistive effect element, temperature correction is also possible. Furthermore, since the amplitude of the output of each sensor bridge can be known without depending on the rotation angle using Equation (5), temperature compensation can also be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Signal Processing (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 多極セグメント磁石を有する磁石回転子と、前記多極セグメント磁石からの磁束の方向を検出する磁気センサとを具備する角度検出装置であって、前記多極セグメント磁石は前記磁石回転子の回転方向に沿って配列された複数の磁極を有し、前記磁気センサは、複数のスピンバルブ型巨大磁気抵抗効果素子(磁化方向が固定された固定層と、磁化方向が磁束の方向に応じて回転する自由層とを有する)を有する感磁面を有し、前記感磁面が磁束と交差して、前記感磁面内で直交する磁束密度成分同士の振幅の大きさが異なるように、前記磁気センサが前記磁石回転子に対して位置決めされている角度検出装置。

Description

角度検出装置及び位置検出装置
 本発明は優れた出力直線性を有する高精度で小型の角度検出装置及び位置検出装置に関する。
 ガソリンエンジンのスロットルバルブ開度センサは、回転角(機械角)が約90°以内のスロットルバルブの回転角を検出するが、これにはポテンショメータ方式が使用されている。ポテンショメータ方式は、バルブの回転軸に取り付けられたブラシと固定された抵抗体とを用い、回転軸とともに回転するブラシが抵抗体を摺動することによるブラシと抵抗体の端部との間の抵抗値の変化から回転角を求める。ポテンショメータ方式は回路が簡便である反面、摺動部の経時変化に伴う信号の不安定さが問題になる。そこで、回転軸に取り付けた磁石から出た磁束の方向を磁気センサで検出することにより、回転軸の回転角を検知する非接触式の角度センサが提案された。
 特開2008-281556号は、2極磁石を有する磁石回転子と、2極磁石からの磁束の方向を検出する磁気センサとを具備し、2極磁石は磁石回転子の回転軸線と直交する方向に着磁されており、磁気センサは複数のスピンバルブ型巨大磁気抵抗効果素子(磁化方向が固定された固定層と、磁化方向が磁束の方向に応じて回転する自由層とを有する)を有する感磁面を有し、前記感磁面が磁束と交差して、前記感磁面内で直交する磁束密度成分同士の振幅の大きさが異なるように、磁気センサが磁石回転子に対して配置されている角度検出装置を開示している。この角度検出装置は高いセンサ出力の直線性(リニアリティー)を有し、高い精度で回転角を検出できる。しかし、さらに微小な回転角を高精度に検出することが求められ、出力直線性を更に向上する必要がある。
 特公平7-119619号は、被検出軸に保持部材を介して取り付けられた永久磁石と、保持部材に所定の間隔で対向する磁気抵抗素子とを具備し、永久磁石の磁界を磁気抵抗素子で検出することにより被検出軸の回転角を求める角度センサであって、永久磁石及び磁気抵抗素子を被検出軸の軸芯の特定の半径方向にのみ配置した角度センサを開示している。しかし、この角度センサは磁場の強さを検知するが磁束の方向を検知するものではないので、回転角又は移動量を高精度に検出することはできない。
 以上の通り従来の回転角又は移動量の検出装置では、高精度の前提となる出力の直線性が不十分であり、さらなる高精度化が望まれている。その上、カメラのレンズ鏡筒のように限られたスペースしかない用途では、高精度に回転角又は移動距離を検出する装置を小型化するという要望もある。
 従って本発明の目的は、限られた回転角又は位置範囲における磁気センサの出力の直線性を更に向上し、微小な角度又は位置を高精度に検出し得るとともに小型化に適する装置を提供することである。
 本発明の角度検出装置は、多極セグメント磁石を有する磁石回転子と、前記多極セグメント磁石からの磁束の方向を検出する磁気センサとを具備し、
 前記多極セグメント磁石は前記磁石回転子の回転方向に沿って配列された複数の磁極を有し、
 前記磁気センサは、複数のスピンバルブ型巨大磁気抵抗効果素子(磁化方向が固定された固定層と、磁化方向が磁束の方向に応じて回転する自由層とを有する)を有する感磁面を有し、
 前記感磁面が磁束と交差して、前記感磁面内で直交する磁束密度成分同士の振幅の大きさが異なるように、前記磁気センサが前記磁石回転子に対して位置決めされていることを特徴とする。
 上記角度検出装置において、前記多極セグメント磁石はアーク状又は矩形状であるのが好ましい。
 前記感磁面内で直交する実効磁束密度の振幅比Keff=B⊥eff0/B//eff0は0.6~0.9又は1.1~1.5であるのが好ましい。磁気センサの中心において、B//0は磁石回転子の回転方向(円周方向)における磁束密度成分の振幅(数式に示すように0-P値(zero to peak)の振幅)に相当し、B⊥0はB//0に直交する磁束密度成分の振幅に相当する。B⊥eff0は磁気センサの基板面(すなわち感磁面)にB⊥0を投影したときの磁束密度成分の振幅に相当し、B//eff0は磁気センサの基板面(すなわち感磁面)にB//0を投影したときの磁束密度成分の振幅に相当するが、B//0と同じになる。スピンバルブ型巨大磁気抵抗効果素子のセンサブリッジは角度信号を出力するために、B⊥eff0及びB//eff0を検知するように配置する。B⊥eff0及びB//eff0は、角度検出装置から磁気センサを取り除いた後、磁気センサの中心に相当する位置でガウスメータにより測定することができる。
 磁気センサより角度信号を得る上記角度検出装置の一例では、
 前記磁気センサの中心と前記磁石回転子の回転軸線の距離が前記磁石回転子の回転半径(前記磁石回転子の回転軸線と回転する磁石の最外周との距離に相当する)より大きく、
 前記複数のスピンバルブ型巨大磁気抵抗効果素子がブリッジ接続されたセンサブリッジを構成しており、
 前記センサブリッジで電気的に隣り合う辺のスピンバルブ型巨大磁気抵抗効果素子の固定層磁化方向が反平行であり、
 前記磁気センサの感磁面が前記磁石回転子の回転軸線に対して傾いている。
 磁気センサより角度信号を得る上記角度検出装置の別の例では、
 前記磁気センサの感磁面の中心と前記磁石回転子の回転軸線の距離が前記磁石回転子の回転半径以下であり、
 前記複数のスピンバルブ型巨大磁気抵抗効果素子がブリッジ接続されたセンサブリッジを構成しており、
 前記センサブリッジで電気的に隣り合う辺のスピンバルブ型巨大磁気抵抗効果素子の固定層磁化方向が反平行であり、
 前記磁気センサの感磁面が前記磁石回転子の回転軸線に対して傾いている。
 磁気センサより角度信号を得る上記角度検出装置のさらに別の例では、
 前記磁気センサの感磁面の中心と前記磁石回転子の回転軸線の距離が前記磁石回転子の回転半径より大きく、
 前記複数のスピンバルブ型巨大磁気抵抗効果素子がブリッジ接続されたセンサブリッジを構成しており、
 前記センサブリッジで電気的に隣り合う辺のスピンバルブ型巨大磁気抵抗効果素子の固定層磁化方向が反平行であり、
 前記磁気センサの感磁面の中心が前記磁石回転子からその回転軸線方向に離れている。
 磁気センサより角度信号を得る上記角度検出装置のさらに別の例では、
 前記磁気センサの感磁面の中心と前記磁石回転子の回転軸線の距離が前記磁石回転子の回転半径以下であり、
 前記複数のスピンバルブ型巨大磁気抵抗効果素子がブリッジ接続されたセンサブリッジを構成しており、
 前記センサブリッジで電気的に隣り合う辺のスピンバルブ型巨大磁気抵抗効果素子の固定層磁化方向が反平行であり、
 前記磁気センサの感磁面の中心が前記磁石回転子からその回転軸線方向に離れている。
 本発明の位置検出装置は、多極矩形磁石を有する直線可動子と、前記多極矩形磁石からの磁束の方向を検知する磁気センサとを具備し、
 前記多極矩形磁石は前記直線可動子の直線的移動方向に沿って複数の磁極を有し、
 前記磁気センサは、複数のスピンバルブ型巨大磁気抵抗効果素子(固定層と自由層を有し、固定層磁化方向が固定されており、自由層磁化方向が磁束の方向に応じて回転する磁気抵抗素子)を有する感磁面を有し、
 前記感磁面が磁束と交差して、前記感磁面内で直交する磁束密度成分同士の振幅の大きさが異なるように、前記磁気センサが前記直線可動子に対して位置決めされていることを特徴とする。
 本発明の位置検出装置において、前記感磁面内で直交する実効磁束密度の振幅比Keff=B⊥eff0/B//eff0は0.5~0.9又は1.1~1.6であるのが好ましい。
 本発明の角度検出装置及び位置検出装置のいずれかにおいて、前記磁気センサは複数のスピンバルブ型巨大磁気抵抗効果素子をブリッジ接続したセンサブリッジを2個有し、一方のセンサブリッジと他方のセンサブリッジは固定層磁化方向が感磁面内で互いに直交しているのが好ましい。ここで「直交」とは、図2を参照すると、一方のセンサブリッジX01内のVccxとVx1との間の磁気抵抗効果素子の固定層磁化方向と、他方のセンサブリッジY01内のVccyとVy1との間の磁気抵抗効果素子の固定層磁化方向とが直交していることを意味する。双方のセンサブリッジの感磁面は平行であり、かつ双方の感磁面は一つの面内に配置されているのが好ましい。
 本発明の角度検出装置はリング磁石の代わりに多極セグメント磁石を有するので、優れた出力直線性を有するとともに小型化されており、カメラのレンズ鏡筒の変位センサ、自動車のアクセルペダル、スロットルバルブ開度センサ、ロボットの関節等のセンサ、トルクセンサ(微小検出角度とトルクとの関係からトルクを求める)等に用いることができる。特に揺動部材の動作角度(揺動角度)のように限られた範囲の角度(例えば±20°以内)の検出に好適である。また、微小領域の変位を検知するポジションセンサ、揺動モータ(半導体装置や測定装置の駆動用リニアモータやθステージ)、操舵装置、傾斜検出装置、ミラー駆動装置(画像読取装置やスキャナ)の位置検出に用いることができる。
 また本発明の位置検出装置は多極矩形磁石を有するので、優れた出力直線性を有するとともに小型化されており、微小領域の直線運動を検知するポジションセンサ、揺動モータ(半導体装置や測定装置の駆動用リニアモータやθステージ)、操舵装置、傾斜検出装置、ミラー駆動装置(画像読取装置やスキャナ)の位置検出に用いることができる。また、カメラのレンズ鏡筒のリニア変位センサ、自動車のアクセルペダル、スロットルバルブ開度センサ、ロボットの関節等のセンサ、トルクセンサ(微小検出角度とトルクとの関係からトルクを求める)等に用いることができる。
磁石の磁束と磁気センサとの位置関係を示す上面図である。 図1(a) のA-A断面図である。 本発明の角度検出装置及び位置検出装置に用いる磁気センサを示す上面図である。 図2(a) の磁気センサにおけるスピンバルブ型巨大磁気抵抗効果素子のセンサブリッジX01を示す図である。 図2(a) の磁気センサにおけるスピンバルブ型巨大磁気抵抗効果素子のセンサブリッジY01を示す図である。 参考例1の角度検出装置を示す上面図である。 図3(a) の角度検出装置を示す側面図である。 図3に示す角度検出装置の出力を示すグラフである。 図3に示す角度検出装置の検出角度及び角度検出誤差を示すグラフである。 配置Aの角度検出装置を示す上面図である。 配置Aの角度検出装置を示す側面図である。 配置Bの角度検出装置を示す上面図である。 配置Bの角度検出装置を示す側面図である。 図5(a) に示す角度検出装置の出力を示すグラフである。 図5(a) に示す角度検出装置の検出角度及び角度検出誤差を示すグラフである。 実効磁束密度振幅比Keffと角度検出誤差との関係を示すグラフである。 参考例2の角度検出装置を示す部分断面上面図である。 図8(a) の角度検出装置を示す縦断面図である。 参考例2の角度検出装置において、センサ出力と回転角との関係を示すグラフである。 参考例2の角度検出装置において、検出角度及び角度検出誤差と回転角との関係を示すグラフである。 参考例3の角度検出装置を示す部分断面上面図である。 図10(a) の角度検出装置を示す縦断面図である。 参考例3の角度検出装置において、センサ出力と回転角との関係を示すグラフである。 参考例3の角度検出装置において、検出角度及び角度検出誤差と回転角との関係を示すグラフである。 実施例1の角度検出装置を示す部分断面上面図である。 図12(a) の角度検出装置を示す側面図である。 実施例1の角度検出装置において、センサ出力と回転角との関係を示すグラフである。 実施例1の角度検出装置において、検出角度及び角度検出誤差と回転角との関係を示すグラフである。 実施例2の角度検出装置を示す部分断面上面図である。 図14(a) の角度検出装置を示す側面図である。 実施例2の角度検出装置において、センサ出力と回転角との関係を示すグラフである。 実施例2の角度検出装置において、検出角度及び角度検出誤差と回転角との関係を示すグラフである。 実施例3の角度検出装置を示す部分断面上面図である。 図16(a) の角度検出装置を示す側面図である。 実施例3の角度検出装置において、センサ出力と回転角との関係を示すグラフである。 実施例3の角度検出装置において、検出角度及び角度検出誤差と回転角との関係を示すグラフである。 実施例4の角度検出装置を示す部分断面上面図である。 図18(a) の角度検出装置を示す側面図である。 実施例4の角度検出装置において、センサ出力と回転角との関係を示すグラフである。 実施例4の角度検出装置において、検出角度及び角度検出誤差と回転角との関係を示すグラフである。 実施例5の移動距離検出装置を示す上面図である。 図20(a) の移動距離検出装置を示す側面図である。 実施例5の移動距離検出装置において、センサ出力と移動距離との関係を示すグラフである。 実施例5の移動距離検出装置において、検出距離及び移動距離検出誤差と移動距離との関係を示すグラフである。 実施例6の移動距離検出装置において、センサ出力と移動距離との関係を示すグラフである。 実施例6の移動距離検出装置において、検出距離及び移動距離検出誤差と移動距離との関係を示すグラフである。 実施例7の角度検出装置を示す上面図である。 図22(a) の角度検出装置を示す側面図である。 実施例7の角度検出装置において、センサ出力と移動距離との関係を示すグラフである。 実施例7の角度検出装置において、検出距離及び移動距離検出誤差と移動距離との関係を示すグラフである。 実施例8の角度検出装置を示す上面図である。 図24(a) の角度検出装置を示す側面図である。
 本発明の角度検出装置及び位置検出装置は、多極セグメント磁石又は多極矩形磁石と、前記磁石からの磁束の方向を検出するために複数のスピンバルブ型巨大磁気抵抗効果素子を用いた磁気センサとを必須とする。磁石の限られた回転角範囲で出力直線性を示すように磁気センサの配置を設定することにより、スピンバルブ型巨大磁気抵抗効果素子を用いた磁気センサから角度に対応した出力が直接得られる。従って、出力信号を角度信号に変換する必要がなく、角度検出装置の構造を簡単化できる。各スピンバルブ型巨大磁気抵抗効果素子は固定層磁化方向を一方向、すなわち平行方向と反平行方向の両方を含む方向に揃えている。
 磁束密度の大きさを検出するホールセンサ(ホール素子を用いた磁気センサ)や、磁束の方向を検出するスピンバルブセンサ(スピンバルブ型磁気抵抗効果素子を用いた磁気センサ)では、1周期の回転磁場に対応して1周期の出力を得る。出力波形を理想的な三角波にできれば、最大±90°の電気角を検出することができる。しかし、磁石回転子による磁場強度はほぼ正弦波であるので、ホールセンサの出力もほぼ正弦波となり、リニアリティー領域が狭く、角度検出誤差も大きい。これに対して、スピンバルブセンサは後述するように、磁石回転子とスピンバルブセンサとの位置関係によって出力波形を調整でき、広いリニアリティー領域を得ることができるので、角度検出誤差を抑えることができる。
 磁石回転子にはアークセグメント磁石又は矩形磁石を用いる。アークセグメント磁石はリング磁石を分割した形状であるのが好ましい。アークセグメント磁石の凸状外面に複数の磁極を有する。着磁は極異方性又はラジアル異方性のいずれでも良いが、極異方性が好ましい。セグメント磁石及び矩形磁石は、SNS又はNSNの3極又はNSの2極に着磁したものが好ましい。
 図1(a) 及び図1(b) は2極の円板状磁石11aの磁束Fと磁気センサ2aとの位置関係を示す。円板状磁石11aの磁化方向はX方向である。円板状磁石11aの回転角θmが0°のとき、円板状磁石11aの表面からr1だけ離れたX軸上にある磁気センサ2aは磁束Bを受ける。回転角θmが90°であると、磁気センサ2aは磁束B//を受ける。Z方向は円板状磁石11aの回転軸線方向である。
 図1(b) は3通りの磁気センサの配置を示す。磁気センサ2aの中心はZ=0のX-Y平面上に位置し、その感磁面はX-Y平面に対してχだけ傾斜している。磁気センサ2a’は、センサ配置角φ’の位置にあり、X-Y平面に対してχ’だけ傾斜している。磁気センサ2a’の中心は、円板状磁石11aの中心を通りかつ回転軸線に垂直な平面からh’離れている。磁気センサ2a’の位置において、磁束の方向はX方向からε’だけ傾いている。磁気センサ2a”は、その中心が円板状磁石11aの回転軸線上にあり(φ”=90°)、感磁面がX-Y平面に平行(χ”=180°、及びε”=180°)である。アークセグメント磁石をシャフトに設けた場合、シャフトの軸芯が磁石回転子の中心Oとなる。
 図2(a) は磁気センサ2a内のスピンバルブ型巨大磁気抵抗効果素子(単に「磁気抵抗効果素子」ともいう)の配置を示す。図2(a) に示す通り、1つの磁気センサ2aに、X方向,Y方向,-X方向及び-Y方向のいずれかを固定層磁化方向とした8個の磁気抵抗効果素子が内蔵されている。図中の太い矢印は1個の磁気抵抗効果素子における固定層磁化方向を表す。図2(a) に示す例では、固定層磁化方向が同じ2個の磁気抵抗効果素子からなる磁気抵抗効果素子対22a,22b,22c及び22dが1つのパッケージ25に設けられている。磁気抵抗効果素子22a及び22dの固定層磁化方向は図5の磁石回転子の半径方向と一致し、磁気抵抗効果素子22b及び22cの固定層磁化方向は図5の磁石回転子の回転方向と一致する。
 図2(a) に示す例では固定層磁化方向が同じ2個の磁気抵抗効果素子を対にしているが、8つの磁気抵抗効果素子を一つの基板に形成しても、1つの磁気抵抗効果素子を形成した個別の基板を8枚用いても良い。またセルフピン構造のスピンバルブ型巨大磁気抵抗効果素子を用いて、磁気抵抗効果素子の固定層磁化方向を決定することもできる。
 8個の磁気抵抗効果素子のうち、X方向及び-X方向を固定層磁化方向とする磁気抵抗効果素子は図2(b) に示すセンサブリッジX01を構成し、Y方向及び-Y方向を固定層磁化方向とする磁気抵抗効果素子は図2(c) に示すセンサブリッジY01を構成する。X方向及び-X方向、並びにY方向及び-Y方向はそれぞれ反平行であり、X方向及び-X方向は、Y方向及び-Y方向と直交する。センサブリッジX01、Y01の固定層磁化方向はリソグラフィ法等の高精度な方法により定める。センサブリッジX01の固定層磁化方向は磁石回転子の半径方向と一致し、センサブリッジY01の固定層磁化方向は磁石回転子の回転方向と一致する。センサブリッジX01はセンサブリッジY01の固定層磁化方向を軸としてχだけ傾斜している。
 φ=0°のとき、磁石回転子の厚さ方向中心を通り、かつ回転軸に垂直な平面上に、磁気センサの感磁面(複数の磁気抵抗効果素子の固定層を形成した基板の面に相当する)の中心を設置する。感磁面の中心は複数の磁気抵抗効果素子に囲まれたパッケージ25の中心26である。図2(b) のセンサブリッジ回路では一定の直流電圧Vccxを印加し、ブリッジ接続の中点から出力電圧Vx1及びVx2を得る。センサブリッジX01、Y01のいずれか一方の出力を角度検出に用いる。例えばセンサブリッジX01を角度検出に使用する場合、センサブリッジY01はフェールセーフや温度補償に使用する。
 図2(a)~図2(c) に示す磁気センサ2aは、磁気抵抗効果素子と接続した6本の端子23(リードフレームから形成される)を有し、樹脂で一体的にモールドされている。Gndx1、Gndx2、Gndy1及びGndy2は接地電極である。
参考例1
 図3(a) 及び図3(b) に示すように、永久磁石11aの中心Oを原点とする座標系(X,Y,Z)において、永久磁石11aの外周(X,0,0)に、図2(a)~図2(c) に示すスピンバルブ型巨大磁気抵抗効果素子がブリッジ接続された構造を有する磁気センサ2aを配置する。磁気センサ2aの感磁面は永久磁石11aの回転軸に対して垂直であり、磁気センサ2aの固定層磁化方向はY軸に平行である。永久磁石11aが角度θmだけ回転したときに発生するX,Y及びZ方向の磁束成分BX,BY、BZは式(1) で表される。
Figure JPOXMLDOC01-appb-M000001
(ただし、mは永久磁石11aを近似した磁気モーメントであり、θmは永久磁石11aの回転角であり、φは永久磁石11aの中心Oと磁気センサ2aの中心とを結ぶ線とX-Y平面とがなす角である。)
 Y軸に平行な成分BYをB//とし、Y軸に直交する成分をBと表すと、B//及びBは式(2) で表される。
Figure JPOXMLDOC01-appb-M000002
 空間磁束密度振幅比K0は式(3) で表される。
Figure JPOXMLDOC01-appb-M000003
(ただし、B//0はB//の振幅であり、B⊥0はBの振幅である。)
 Z=0の場合、B//とBはともにX-Y平面内に存在する(BZ=0)。Z≠0の場合(センサ配置角=φ)、磁気センサ2aの中心では、X-Y平面からεだけ傾いた平面(ε面)における回転磁場は空間磁束密度振幅比K0を有する。
 φ=0°の場合式(2) は簡略化され、空間磁束密度振幅比K0=B⊥0/B//0=2で90°位相の異なる磁束を受けることとなり、センサ出力は正弦波ではなく、図4(a) に示すように頂点が凸の三角状の波形となる。このとき、磁気センサ内のスピンバルブ型巨大磁気抵抗効果素子が実効的に受ける磁束密度のY方向成分B//eff、それに直交する方向の成分B⊥eff、及び実効磁束密度振幅比Keffは式(4) で表される。
Figure JPOXMLDOC01-appb-M000004
(ただし、B//eff0はB//effの振幅であり、B⊥eff0はB⊥effの振幅であり、χは磁気センサ2aの固定層磁化方向を回転軸とした傾斜角である。)
 式(4) は、磁気センサをχだけ傾けることにより任意の実効磁束密度振幅比が得られることを示す。例えばχ=50.4°のとき、B⊥effとB//effの実効磁束密度振幅比Keffは1.27となる。このとき磁気センサの出力はほぼ三角波となり、リニアリティー領域(センサ出力が直線状に変化する領域)が格段に増大する。図5(a) に示す角度検出装置においてχ=50°とした場合のセンサ出力及び角度検出誤差の測定結果を図6に示す。図4と図6を比較すると、傾斜角χ=50°とする方(図6)が角度検出誤差を低減できることが分る。
 図5(a) 及び図5(b) は永久磁石11aの中心Oと磁気センサ2aの中心とを結ぶ線に対して磁気センサ2aの感磁面をχだけ傾けた配置Aを示し、図5(c) 及び図5(d) は配置Aにおいて磁気センサ2aの感磁面を90°回転させた配置Bを示す。図7は、配置A及び配置Bにおいて実効磁束密度振幅比Keffと角度検出誤差との関係を示すグラフであり、角度検出誤差が最小となるKeffを示す。配置Aのデータは黒丸(●)で示し、配置Bのデータは白丸(○)で示す。微小ダイポールで近似可能な磁石(側面近傍でK0=2)において、磁石回転子の回転軸線上では(φ=90°)空間磁束密度振幅比は1となるので、Keff=1.27となる配置Aは実現できず、配置Bだけ実現できる。一方、磁石の側面(φ=0°)では上述したようにK0=2であるため、配置A及び配置Bの双方を構成できる。配置Bでは磁気センサ2aが受ける磁束が低下するため、磁石側面近傍に磁気センサを設置する場合には配置Bより配置Aの方が好ましい。
参考例2
 参考例1は一周期の機械角に対して一周期の電気角の出力が得られる2極磁石を示したが、微小な角度を高精度に検出するためには磁石を多極化するのが有利である。図8(a) 及び図8(b) は参考例2の角度検出装置を示す。この角度検出装置は、外周面から極異方性の磁場を発生するよう16極に着磁したリング磁石11b及びリング磁石11bの貫通孔に固着されたシャフト13bからなる磁石回転子と、リング磁石11bの外周面から離隔した位置に配置された磁気センサ2aとを具備する。リング磁石11bの半径r0=20 mm、リング磁石11bの外周面から磁気センサ2a中心までの距離r1=4 mm、リング磁石11bの孔の内径r2=15 mm、及びZ方向(磁石回転子の回転軸線方向)におけるリング磁石11bの厚さt=4 mmであった。
 K0が約1.3であるため、傾斜及びZ方向の軸方向変位は行わなかった。このように、多極リング磁石は微小ダイポールで近似可能な2極磁石と異なり、磁石外周側面(φ=0°)においてK0=2とはならない。図9(a) に示すように、シャフト13bが一回転すると、磁気センサ2aは磁石の極数を反映した8周期の信号を2つ出力し、その一方はほぼ三角波であった。この信号の1周期を使用して回転角に応じた検出角度と理想的な角度との差(角度検出誤差)を求めたところ、図9(b) に示すように±6°の領域で±0.1°以内の角度検出精度が得られた。このように、1周期の回転角に対する磁気センサ2aの1周期を狭くすることにより、角度検出誤差を低減することができ、微小角度領域の角度検出を高精度に行うことができる。
参考例3
 図10(a) 及び図10(b) は8極に着磁した多極リング磁石11b’を具備する参考例3の角度検出装置を示す。r0=16 mm、r1=4 mm、r2=10 mm、及びt=8 mmであった。K0が1.3であるため、傾斜及び軸方向変位は行わなかった[図5(b) でh=0、χ=0]。図11(a) に示すように、磁気センサ2aは多極リング磁石11b’の一周期の回転に対して磁石の極数を反映した4周期の信号を出力し、その一方はほぼ三角波であった。図11(b) に示すように、この信号の1周期を使用して角度検出誤差を評価したところ、±15°の領域で±0.2°以内であった。
実施例1
 高精度で小型の本発明の角度検出装置は、リング磁石の一部を切り出した形状を有する多極アークセグメント磁石を有する。図12(a) 及び図12(b) は、N極の両側に一対のS極を有する多極アークセグメント磁石11c(参考例2のリング磁石から切り出した)をシャフト13cに設けた磁石回転子を具備する角度検出装置を示す。多極アークセグメント磁石11cにおける各S極の幅はN極の幅の約半分であり、N極からS極への極異方性の磁束の流れが2つ形成される。磁石回転子の回転円周は多極アークセグメント磁石11cの外周面の曲率半径r0に相当し、r0=20 mm、r1=4 mm、r2=15 mm、及びt=3 mmであった。
 図13(a) はセンサ出力を示し、図13(b) は角度検出誤差を示す。図13(b) から明らかなように、実施例1では参考例2と同程度に抑制された角度検出誤差が得られた。多極アークセグメント磁石11cの回転に伴いθmが大きい領域で磁場が減少したが、検出角度領域での磁場は十分に大きいので、磁気センサ2aの動作に影響はなかった。磁気センサ2aの出力の二乗和は一定であるので、フェールセーフや温度変化による出力振幅補正等に利用できる。多極アークセグメント磁石を具備する角度検出装置は、測定すべき微小角度範囲内で多極アークセグメント磁石を揺動すれば良いので、微小な回転角を検出するのに好適であり、シャフトに磁石を設けるスペースの余裕がなくても良く、リング磁石を具備する角度検出装置より小型軽量化できる。多極アークセグメント磁石を具備する本発明の角度検出装置は限られた回転角でのセンサ出力の直線領域を利用するので、360°の全範囲にわたって回転角を検知する角度検出装置と異なる。また多極アークセグメント磁石11cは小さなスペースしか占めないので、実施例1の角度検出装置は小型化されていた。
実施例2
 図14(a) 及び図14(b) は、同じ幅のN極及びS極を1つずつ有する多極アークセグメント磁石11dをシャフト13dに設けた磁石回転子と、χだけ傾斜した磁気センサ2aとを具備する角度検出装置を示す。Keffを1.3にするため、χ=60°とした。他の条件は実施例1と同じである。図15(a) はセンサ出力を示し、図15(b) は角度検出誤差を示す。図15(b) から明らかなように、実施例2では実施例1と同程度に抑制された角度検出誤差が得られた。実施例1と同様に、実施例2の角度検出装置も小型化されていた。
実施例3
 図16(a) 及び図16(b) は、N極の両側に一対のS極を有する多極アークセグメント磁石11e(12極に着磁したリング磁石から切り出した)をシャフト13eに設けた磁石回転子と、χだけ傾斜した磁気センサ2aとを具備する角度検出装置を示す。多極アークセグメント磁石11eにおける各S極の幅はN極の幅の約半分であり、N極からS極への極異方性の磁束の流れが2つ形成された。Keffを1.3にするため、χ=23°とした。r0=20 mm、r1=4 mm、r2=15 mm、及びt=3 mmであった。図17(a) はセンサ出力を示し、図17(b) は角度検出誤差を示す。図17(b) から明らかなように、±9°の回転角範囲で高精度な検出角度がえられ、リニアリティー領域が広いことが分かる。実施例1と同様に、実施例3の角度検出装置も小型化されていた。
実施例4
 多極アークセグメント磁石の代わりに多極矩形セグメント磁石(単に多極矩形磁石という)を用いた以外実施例1と同様にして、図18(a) 及び図18(b) に示す角度検出装置を作製した。N極の両側に一対のS極を有する多極矩形磁石11fにおいて、各S極の幅はN極の幅の約半分であり、N極からS極への極異方性の磁束の流れが2つ形成された。シャフト13fは一部が平坦に切り欠かれており、その平坦部に多極矩形磁石11fが固着されている。r3=17 mm、d=3 mm、r4=4 mm、w=15 mm、及びt=3 mmであった。r3はシャフトの平坦部と回転中心との距離である。r4は多極矩形磁石11fの外面中心と磁気センサ2aの中心との距離(シャフトの回転中心と磁気センサ2aの中心とを結ぶ線上に多極矩形磁石11fの中心がある場合)である。dは多極矩形磁石11fの短手方向の長さであり、wは多極矩形磁石11fの長手方向の長さである。多極矩形磁石11fは製造が容易であるので、実用的である。
 図19(a) はセンサ出力を示し、図19(b) は角度検出誤差を示す。図19(a) から明らかなように、多極矩形磁石11fの回転により多極矩形磁石11fと磁気センサ2aとの距離が変化するため、磁束密度が僅かに歪んだ。しかし、図19(b) から明らかなように、センサ出力のリニアリティーは確保されており、±7°の回転角範囲で高精度に角度を検出できた。実施例1と同様に、実施例4の角度検出装置も小型化されていた。
 実施例1~4における条件の一部を変更しても、検出精度の低下は僅かであり、変更前に近い高精度な角度検出装置が得られる。例えば、実施例4で磁気センサをχだけ傾けてもZ方向にhだけ移動させても良い。
実施例5
 実施例4の多極矩形磁石を微小に直線運動させると、直線変位量を検出できる。図20(a) 及び図20(b) は実施例4と同形状の多極矩形磁石11fと、それに対して直線運動する磁気センサ2aとを具備する位置(移動距離)検出装置を示す。Keffを1.3に調整するために、d=3 mm、w=15 mm、r1=3 mm、h=0 mm、及びt=3 mmとした。図21(a) はセンサ出力を示し、図21(b) は移動距離度検出誤差を示す。実施例4では多極矩形磁石の回転により多極矩形磁石と磁気センサとの距離が変化し、磁束密度が僅かに歪んだが、本実施例では直線運動する多極矩形磁石と磁気センサとの距離が一定であるため、歪みの少ない磁束密度分布が得られた。また微小角度検出の際と同様にセンサ出力のリニアリティーも確保されており、3 mmの移動範囲において±50 μmの精度で直線変位量を検出することができた。実施例1と同様に、実施例5の位置検出装置も小型化されていた。
実施例6
 図20(a) 及び図20(b) に示す移動距離検出装置において、Keffを1.4に調整するために、d=3 mm、w=10 mm、r1=3.5 mm、h=0 mm、及びt=3 mmとした。図21(c) はセンサ出力を示し、図21(d) は移動距離度検出誤差を示す。実施例6の移動距離検出装置は2 mmの移動範囲において±1 μmの精度で直線変位量を検出することができた。実施例1と同様に、実施例6の位置検出装置も小型化されていた。
実施例7
 実施例5の多極矩形磁石の形状及び磁気センサ2aの軸方向変位量hを図22(a) 及び図22(b) に示すように変更し、同様にセンサ出力及び移動距離検出誤差を解析した。d=3 mm、w=30 mm、r1=5 mm、及びt=10 mmであった。Keffを1.3に調整するために、軸方向変位量hを6 mmとした。解析結果を図23(a) 及び図23(b) に示す。図23(b) から明らかなように、±5 mmの移動距離範囲内で検出距離は高精度であった。実施例1と同様に、実施例7の位置検出装置も小型化されていた。
実施例8
 図24(a) 及び図24(b) は、外周に凹部を有する非磁性円板14aと、凹部に固定された多極矩形磁石11hと、非磁性円板14aを支持する回転シャフト13aとからなる磁石回転子と、多極矩形磁石11hからシャフト13aの軸方向に離隔した磁気センサ2aとを具備する角度検出装置を示す。多極矩形磁石11hはw>d、かつd=tの条件を満たす形状を有し、2極に着磁されている。シャフト13aが一回転すると、磁気センサ2aは多極矩形磁石の極数を反映した1周期の信号を2つ出力し、その一方はほぼ三角波であった。これにより、実施例4と同程度に角度検出誤差を抑制できた。また実施例4と同様に、実施例8の角度検出装置も小型化されていた。
実施例9
 K0=1の場合、固定層磁化方向が直交する2つのセンサブリッジX01、Y02を有する磁気センサ2aから、磁石の1回転により90°位相が異なる1周期のセンサ出力Vx、Vyが得られる。例えば、図12(a) 及び図12(b) に示す角度検出装置から得られるセンサ出力Vx、Vyは図13に示す出力波形を有する。センサ出力Vx、Vyから下記式(5) により得られる値C(T)はVx及びVyによらず一定であるが、磁気センサ2a内に断線等の故障があると出力波形が歪み、C(T)は一定でなくなる。これを利用して、磁気センサ2aの故障を監視する(フェールセーフ機能を持たせる)ことができる。またC(T)は磁気抵抗効果素子の抵抗変化率を変化させる温度の関数であるため、温度補正も可能となる。さらに式(5) を用いて回転角に依存することなく各センサブリッジの出力の振幅を知ることができるので、温度補償を行うこともできる。
Figure JPOXMLDOC01-appb-M000005

Claims (7)

  1. 多極アークセグメント磁石を有する磁石回転子と、前記多極セグメント磁石からの磁束の方向を検出する磁気センサとを具備する角度検出装置であって、
     前記多極セグメント磁石は前記磁石回転子の回転方向に沿って配列された複数の磁極を有し、
     前記磁気センサは、複数のスピンバルブ型巨大磁気抵抗効果素子(磁化方向が固定された固定層と、磁化方向が磁束の方向に応じて回転する自由層とを有する)を有する感磁面を有し、
     前記感磁面が磁束と交差して、前記感磁面内で直交する磁束密度成分同士の振幅の大きさが異なるように、前記磁気センサが前記磁石回転子に対して位置決めされていることを特徴とする角度検出装置。
  2. 請求項1に記載の角度検出装置において、前記多極セグメント磁石がアーク状又は矩形状であることを特徴とする角度検出装置。
  3. 請求項1又は2に記載の角度検出装置において、前記感磁面内で直交する実効磁束密度の振幅比Keff=B⊥eff0/B//eff0が0.6~0.9又は1.1~1.5であることを特徴とする角度検出装置。
  4. 請求項1~3のいずれかに記載の角度検出装置において、前記磁気センサは複数のスピンバルブ型巨大磁気抵抗効果素子をブリッジ接続したセンサブリッジを2個有し、一方のセンサブリッジと他方のセンサブリッジは固定層磁化方向が感磁面内で互いに直交していることを特徴とする角度検出装置。
  5. 多極矩形磁石を有する直線可動子と、前記多極矩形磁石からの磁束の方向を検知する磁気センサとを具備する位置検出装置であって、
     前記多極矩形磁石は前記直線可動子の直線的移動方向に沿って複数の磁極を有し、
     前記磁気センサは、複数のスピンバルブ型巨大磁気抵抗効果素子(固定層と自由層を有し、固定層磁化方向が固定されており、自由層磁化方向が磁束の方向に応じて回転する磁気抵抗素子)を有する感磁面を有し、
     前記感磁面が磁束と交差して、前記感磁面内で直交する磁束密度成分同士の振幅の大きさが異なるように、前記磁気センサが前記直線可動子に対して位置決めされていることを特徴とする位置検出装置。
  6. 請求項5に記載の位置検出装置において、前記感磁面内で直交する実効磁束密度の振幅比Keff=B⊥eff0/B//eff0が0.5~0.9又は1.1~1.6であることを特徴とする位置検出装置。
  7. 請求項5又は6に記載の位置検出装置において、前記磁気センサは複数のスピンバルブ型巨大磁気抵抗効果素子をブリッジ接続したセンサブリッジを2個有し、一方のセンサブリッジと他方のセンサブリッジは固定層磁化方向が感磁面内で互いに直交していることを特徴とする位置検出装置。
PCT/JP2010/053170 2009-02-26 2010-02-26 角度検出装置及び位置検出装置 WO2010098472A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/203,385 US8587295B2 (en) 2009-02-26 2010-02-26 Angle detection apparatus and position detection apparatus
JP2011501685A JP5267652B2 (ja) 2009-02-26 2010-02-26 角度検出装置及び位置検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-043980 2009-02-26
JP2009043980 2009-02-26

Publications (1)

Publication Number Publication Date
WO2010098472A1 true WO2010098472A1 (ja) 2010-09-02

Family

ID=42665676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053170 WO2010098472A1 (ja) 2009-02-26 2010-02-26 角度検出装置及び位置検出装置

Country Status (3)

Country Link
US (1) US8587295B2 (ja)
JP (1) JP5267652B2 (ja)
WO (1) WO2010098472A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058249A (ja) * 2010-09-13 2012-03-22 Lg Innotek Co Ltd トルク・インデックスセンサ
JP2014044121A (ja) * 2012-08-27 2014-03-13 Denso Corp 開度検出装置
JP2015045506A (ja) * 2013-08-27 2015-03-12 アルプス電気株式会社 回転検出装置
JP2015049046A (ja) * 2013-08-29 2015-03-16 アルプス電気株式会社 角度検出装置
JP2015078856A (ja) * 2013-10-15 2015-04-23 株式会社デンソー 回転角センサ
JP2015081881A (ja) * 2013-10-24 2015-04-27 日立金属株式会社 車両用検出装置
CN104764397A (zh) * 2014-01-08 2015-07-08 阿尔卑斯电气株式会社 磁场旋转检测传感器以及磁编码器
KR20150141247A (ko) * 2014-06-09 2015-12-18 대성전기공업 주식회사 레인지 로터리 센서 유니트
JP2016095209A (ja) * 2014-11-13 2016-05-26 日本精工株式会社 回転装置
KR101774580B1 (ko) * 2010-12-21 2017-09-04 엘지이노텍 주식회사 스티어링 시스템의 토크 센서
KR101774581B1 (ko) * 2010-12-21 2017-09-04 엘지이노텍 주식회사 스티어링 시스템의 토크 센서
JP2018508769A (ja) * 2015-02-04 2018-03-29 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 自動磁気流量記録デバイス
JP2023075705A (ja) * 2021-11-19 2023-05-31 Tdk株式会社 回転角度センサとこれを用いたパークロックセンサ

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704933B2 (en) * 2014-09-02 2020-07-07 Infineon Technologies Ag Integrated angle sensing device
US10677617B2 (en) * 2007-05-30 2020-06-09 Infineon Technologies Ag Shaft-integrated angle sensing device
DE102011005066B4 (de) * 2011-03-03 2024-08-08 Robert Bosch Gmbh Sensoranordnung
KR101898751B1 (ko) 2011-03-18 2018-09-13 르네사스 일렉트로닉스 가부시키가이샤 반도체장치 및 그 제조방법
DE102012214916A1 (de) * 2012-08-22 2014-03-20 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln an einem drehbewegten Bauteil
FR3007845B1 (fr) * 2013-07-01 2015-07-31 Ntn Snr Roulements Capteur de detection d’un champ magnetique periodique emis par un codeur
JP2015045529A (ja) * 2013-08-27 2015-03-12 Tdk株式会社 回転磁界センサ
WO2015073651A1 (en) 2013-11-13 2015-05-21 Brooks Automation, Inc. Method and apparatus for brushless electrical machine control
US10348172B2 (en) 2013-11-13 2019-07-09 Brooks Automation, Inc. Sealed switched reluctance motor
WO2015073647A1 (en) 2013-11-13 2015-05-21 Brooks Automation, Inc. Sealed robot drive
TWI695447B (zh) 2013-11-13 2020-06-01 布魯克斯自動機械公司 運送設備
KR102158101B1 (ko) 2014-01-29 2020-09-21 엘지이노텍 주식회사 센서 모듈, 및 이를 포함하는 모터
JP6209486B2 (ja) * 2014-05-13 2017-10-04 双葉電子工業株式会社 角度検出装置および角度検出装置を利用したサーボ装置
US10704926B2 (en) * 2014-09-02 2020-07-07 Infineon Technologies Ag Shaft-integrated angle sensing device
JP6899297B2 (ja) * 2017-09-22 2021-07-07 東洋電装株式会社 スロットル装置
US11199424B2 (en) 2018-01-31 2021-12-14 Allegro Microsystems, Llc Reducing angle error in a magnetic field angle sensor
DE102018130723A1 (de) * 2018-12-03 2020-06-04 Infineon Technologies Ag Erfassung eines Drehwinkels
JP6954326B2 (ja) 2019-06-05 2021-10-27 Tdk株式会社 位置検出装置
JP7063307B2 (ja) 2019-06-05 2022-05-09 Tdk株式会社 磁気センサおよび磁気センサシステム
US11175359B2 (en) 2019-08-28 2021-11-16 Allegro Microsystems, Llc Reducing voltage non-linearity in a bridge having tunneling magnetoresistance (TMR) elements
JP7406362B2 (ja) * 2019-12-12 2023-12-27 東洋電装株式会社 ポジションセンサ及びポジション検出方法
US11467233B2 (en) 2020-03-18 2022-10-11 Allegro Microsystems, Llc Linear bridges having nonlinear elements
US11408948B2 (en) 2020-03-18 2022-08-09 Allegro Microsystems, Llc Linear bridge having nonlinear elements for operation in high magnetic field intensities
DE102020121895A1 (de) 2020-08-20 2022-02-24 Bourns, Inc. Sensor zum Erfassen einer Position
DE102020133041A1 (de) 2020-12-10 2022-06-15 Infineon Technologies Ag Ein magnetoresistives Winkelsensorsystem und ein Fahrzeug umfassend ein magnetoresistives Winkelsensorsystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023179A (ja) * 2004-07-08 2006-01-26 Tdk Corp 磁気式位置検出装置
JP2008281556A (ja) * 2007-04-13 2008-11-20 Hitachi Metals Ltd 角度検出装置、バルブ装置および非接触式ボリューム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773395B1 (fr) * 1998-01-05 2000-01-28 Commissariat Energie Atomique Capteur angulaire lineaire a magnetoresistances
US7005958B2 (en) * 2002-06-14 2006-02-28 Honeywell International Inc. Dual axis magnetic sensor
US20040017187A1 (en) * 2002-07-24 2004-01-29 Van Ostrand Kent E. Magnetoresistive linear position sensor
US7537388B2 (en) * 2003-10-22 2009-05-26 Ntn Corporation Bearing assembly with built-in absolute encoder
JP2006276983A (ja) * 2005-03-28 2006-10-12 Yamaha Corp ポインティングデバイス用の磁気センサ
DE102005024879B4 (de) * 2005-05-31 2018-12-06 Infineon Technologies Ag Verfahren zum Bestimmen von Restfehler-Kompensationsparametern für einen magnetoresistiven Winkelsensor und Verfahren zum Verringern eines Restwinkelfehlers bei einem magnetoresistiven Winkelsensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023179A (ja) * 2004-07-08 2006-01-26 Tdk Corp 磁気式位置検出装置
JP2008281556A (ja) * 2007-04-13 2008-11-20 Hitachi Metals Ltd 角度検出装置、バルブ装置および非接触式ボリューム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200609A (ja) * 2010-09-13 2016-12-01 エルジー イノテック カンパニー リミテッド トルク・インデックスセンサ
JP2012058249A (ja) * 2010-09-13 2012-03-22 Lg Innotek Co Ltd トルク・インデックスセンサ
KR101774581B1 (ko) * 2010-12-21 2017-09-04 엘지이노텍 주식회사 스티어링 시스템의 토크 센서
KR101774580B1 (ko) * 2010-12-21 2017-09-04 엘지이노텍 주식회사 스티어링 시스템의 토크 센서
JP2014044121A (ja) * 2012-08-27 2014-03-13 Denso Corp 開度検出装置
JP2015045506A (ja) * 2013-08-27 2015-03-12 アルプス電気株式会社 回転検出装置
JP2015049046A (ja) * 2013-08-29 2015-03-16 アルプス電気株式会社 角度検出装置
JP2015078856A (ja) * 2013-10-15 2015-04-23 株式会社デンソー 回転角センサ
WO2015056439A1 (ja) * 2013-10-15 2015-04-23 株式会社デンソー 回転角センサ
JP2015081881A (ja) * 2013-10-24 2015-04-27 日立金属株式会社 車両用検出装置
CN104764397A (zh) * 2014-01-08 2015-07-08 阿尔卑斯电气株式会社 磁场旋转检测传感器以及磁编码器
KR20150141247A (ko) * 2014-06-09 2015-12-18 대성전기공업 주식회사 레인지 로터리 센서 유니트
KR101653444B1 (ko) * 2014-06-09 2016-09-02 대성전기공업 주식회사 레인지 로터리 센서 유니트
JP2016095209A (ja) * 2014-11-13 2016-05-26 日本精工株式会社 回転装置
JP2018508769A (ja) * 2015-02-04 2018-03-29 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 自動磁気流量記録デバイス
JP2023075705A (ja) * 2021-11-19 2023-05-31 Tdk株式会社 回転角度センサとこれを用いたパークロックセンサ

Also Published As

Publication number Publication date
JP5267652B2 (ja) 2013-08-21
JPWO2010098472A1 (ja) 2012-09-06
US20120038348A1 (en) 2012-02-16
US8587295B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
JP5267652B2 (ja) 角度検出装置及び位置検出装置
US7808234B2 (en) Rotational angle detection device with a rotating magnet and a four-pole auxiiliary magnet
US8659289B2 (en) Rotating field sensor
JP4900835B2 (ja) 角度検出装置、バルブ装置および非接触式ボリューム
US10648787B2 (en) Rotating field sensor
US8604780B2 (en) Rotating field sensor
US8909489B2 (en) Rotating field sensor
JP6698859B2 (ja) 回転可能な構成部品の角度位置を検出する装置
JP4319153B2 (ja) 磁気センサ
JP5801566B2 (ja) 回転角度検出装置
US20160169707A1 (en) Rotating field sensor
JP2002506530A (ja) 角度測定用の角度センサ及び方法
US20130015862A1 (en) Rotation angle sensor
JP4947250B2 (ja) 角度検出装置
US11360286B2 (en) Magnetic sensor, magnetic encoder, and lens position detection device
WO2021039417A1 (ja) 位置検知回路、位置検知システム、磁石部材、位置検知方法及びプログラム
US20090146651A1 (en) Rotation angle sensor
US10746571B2 (en) Condition determination apparatus and method, physical quantity information generation apparatus, and angle sensor
JP2019190872A (ja) エンコーダ
US20220003533A1 (en) Correction apparatus for angle sensor, and angle sensor
US20230384129A1 (en) Correction apparatus for angle sensor, and angle sensor
JP6455314B2 (ja) 回転検出装置
JP4737371B2 (ja) 回転角度検出装置
JP4737372B2 (ja) 回転角度検出装置
WO2022113463A1 (ja) 位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501685

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13203385

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10746351

Country of ref document: EP

Kind code of ref document: A1