WO2012127907A1 - 非線形光学顕微鏡および非線形光学顕微鏡法 - Google Patents

非線形光学顕微鏡および非線形光学顕微鏡法 Download PDF

Info

Publication number
WO2012127907A1
WO2012127907A1 PCT/JP2012/052377 JP2012052377W WO2012127907A1 WO 2012127907 A1 WO2012127907 A1 WO 2012127907A1 JP 2012052377 W JP2012052377 W JP 2012052377W WO 2012127907 A1 WO2012127907 A1 WO 2012127907A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
condensing
light
nonlinear optical
frequency
Prior art date
Application number
PCT/JP2012/052377
Other languages
English (en)
French (fr)
Inventor
圭佑 磯部
緑川 克美
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Priority to DE112012001802.8T priority Critical patent/DE112012001802T5/de
Priority to JP2013505837A priority patent/JP5930220B2/ja
Publication of WO2012127907A1 publication Critical patent/WO2012127907A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Definitions

  • the present invention relates to a technique for improving the spatial resolution of a nonlinear optical microscope.
  • the n-photon excitation fluorescence microscope excites fluorescent molecules by using an excitation wavelength ⁇ n ⁇ n ⁇ ⁇ ex that is approximately n times longer than the excitation wavelength ⁇ ex of the one-photon excitation fluorescence microscope.
  • the signal light intensity by n-photon excitation is proportional to the nth power of the excitation light intensity. For this reason, when the excitation light is condensed by the objective lens (numerical aperture: NA), a signal is generated only in the vicinity of the condensing point where the excitation light intensity is high.
  • the spatial resolution is n 1/2 times [(0.61 ⁇ ⁇ n ) / (n 1/2 ⁇ NA)] compared to the spatial resolution of 0.61 ⁇ n / NA when one-photon excitation is performed at the same wavelength.
  • Nonlinear optical microscopy to detect Signal light generated by nonlinear optical processes (non-degenerate two-photon excitation fluorescence, sum frequency generation process, four-wave mixing process, non-degenerate two-photon absorption, stimulated Raman scattering, etc.) induced by wavelength components of two or more wavelengths
  • Nonlinear optical microscopy to detect is also used. Even in these methods, a signal due to a nonlinear optical process is generated only in the vicinity of a condensing point with high excitation light intensity, so that the spatial resolution can be improved.
  • the spatial resolution is improved as compared with the case of performing one-photon excitation using the same excitation wavelength.
  • the excitation wavelength of n-photon excitation is n times ( ⁇ n ⁇ n ⁇ ⁇ ex ) of the wavelength of one-photon excitation. is there. Therefore, the spatial resolution actually decreases to 1 / n 1/2 times [(0.61 ⁇ n 1/2 ⁇ ⁇ ex ) / NA].
  • the signal light intensity in the nonlinear optical process excited by the wavelength component of two wavelengths or more is proportional to the spatial overlap area of the two wavelengths of excitation light. Therefore, if the beam pointing of the two excitation lights fluctuates, the spatial overlap area changes and the signal light intensity fluctuates.
  • the spatial resolution cannot be increased unless the beam pointing of the excitation light of two wavelengths is stabilized. Therefore, conventionally, various ideas have been applied to stabilize the beam pointing. However, it is difficult to stabilize beam pointing.
  • an object of the present invention is to provide a high-resolution multiphoton excitation microscope with a simple configuration.
  • the focal point centroids of a plurality of excitation lights are position-modulated at a predetermined frequency, and the signal light is A frequency component corresponding to the modulation frequency is extracted.
  • the nonlinear optical microscope according to the present invention includes a first optical system that condenses the first excitation light on the sample, and a second optical that condenses the second excitation light on the sample.
  • System condensing position modulating means for relatively modulating the condensing position of the first excitation light and the second excitation light on the sample at a predetermined modulation frequency, and signal light generated from the sample And signal extracting means for extracting a frequency component corresponding to the modulation frequency.
  • the signal light intensity is proportional to the product of the excitation light intensity
  • the signal intensity fluctuates with modulation of the focal point position.
  • the signal generated from the center of the condensing position is dominant in the component of the signal light that is an even multiple of the modulation frequency. Therefore, the spatial resolution can be improved by extracting a component having an even multiple of the modulation frequency from the signal light.
  • the harmonic component is extracted, the spatial resolution is improved.
  • the signal intensity becomes weaker as the harmonic component is extracted, it is preferable to extract a frequency component twice the modulation frequency.
  • a method of modulating the condensing position of the excitation light a method of moving the centroids of the condensing positions of the plurality of excitation lights linearly in a plane perpendicular to the optical axis, or in a plane perpendicular to the optical axis
  • a spiral moving method, a linear moving method in a direction perpendicular to the optical axis, and a combination thereof are conceivable.
  • the condensing position modulating means fixes the condensing position of the first excitation light, and moves the condensing position of the second excitation light linearly or spirally in a plane perpendicular to the optical axis. Or may be moved linearly in the direction of the optical axis.
  • the condensing position modulation means moves the condensing positions of the first excitation light and the second excitation light together so that the condensing point center of gravity is linear or spiral in a plane perpendicular to the optical axis. Or may move linearly in the direction of the optical axis.
  • a beam pointing modulation unit such as an electro-optic (EO) element, an acousto-optic (AO) element, or a galvano scanner may be used.
  • a wavefront modulation unit capable of controlling the beam divergence angle such as an electro-optic element or a variable mirror may be used.
  • pulsed laser light it is preferable to use pulsed laser light as the excitation light, and it is preferable to provide a time delay optical system for temporally overlapping the condensing positions of the plurality of excitation light.
  • the number of excitation lights may be any number as long as it is two or more, and varies depending on the nonlinear optical process to be observed. Even when three or more excitation lights are used, the spatial resolution is improved by modulating the condensing position centroid of the excitation light. In the case of using a plurality of excitation lights, the position of only one excitation light may be modulated and the condensing position of the other excitation lights may be fixed, or the position of two or more (or all) excitation lights may be modulated. .
  • the present invention can be understood as a nonlinear optical microscope having at least a part of the above means. Moreover, this invention can also be grasped
  • Each of the above means and processes can be combined with each other as much as possible to constitute the present invention.
  • the spatial resolution can be improved.
  • (A) to (c) are diagrams showing incident excitation light intensity, excitation light intensity after TPA (two-photon absorption) and excitation light intensity after SRS (stimulated Raman scattering), respectively, according to the conventional method, and (d) to (f) ) Is a diagram showing incident excitation light intensity, excitation light intensity after TPA, and excitation light intensity after SRS according to the present method.
  • the numerical calculation result which shows the frequency characteristic of the SFG signal at the time of modulating the condensing position of excitation light by 10 kHz by this method.
  • the thick line is the frequency characteristic of the SFG signal at the center position
  • the thin line is the frequency characteristic at the outer position.
  • the nonlinear optical microscope according to the present invention detects signal light in a nonlinear optical process induced by excitation light having two or more wavelengths.
  • a nonlinear optical process induced by excitation light having two or more wavelengths There are several types of such nonlinear optical processes.
  • the principle of the present invention will be described by taking a sum frequency generation (SFG) microscope as an example.
  • the time average light intensity distribution I SFG (r) of the signal light in the SFG microscope is obtained by using the light intensity distributions I ⁇ 1 (r, t) and I ⁇ 2 (r, t) of the two excitation light pulses at the condensing point, It is expressed.
  • the conventional SFG microscope is used in a state in which the two excitation light pulses are focused at a fixed position so that the spatial overlap area is large, and fluctuations are not caused in time.
  • the condensing position of two pulses is temporally modulated, and a signal component fluctuated by the modulation is detected.
  • the fluctuation component of the sum frequency light is set as a measurement object by actively moving the pulse condensing position.
  • the SFG strength at this time is It is expressed.
  • the signal change caused by the condensing position modulation is not a perfect sine wave, components having harmonics of frequencies 4f, 6f, 8f,. Since the higher the harmonic component is, the signal is from a spatially narrower region, so that the resolution can be further improved by extracting the harmonic component.
  • the present invention can also be applied when measuring two-photon absorption (TPA: Two-Photon sorption Absorption) or stimulated Raman scattering (SRS).
  • TPA Two-photon absorption
  • SRS stimulated Raman scattering
  • the frequency f component of the excitation light intensity not subjected to the intensity modulation is measured.
  • 4A shows the incident excitation light intensity
  • FIG. 4B shows the excitation light intensity after TPA
  • FIG. 4C shows the excitation light intensity after SRS.
  • X modulation there is a method (X modulation) in which the center of gravity of the focal point of the excitation light pulse 1 and the excitation light pulse 2 is modulated so as to move on a straight line in a plane perpendicular to the optical axis.
  • the light intensity of each excitation light pulse is It is expressed.
  • ⁇ 1 ⁇ ⁇ 3 or ⁇ 2 ⁇ ⁇ 4 is set.
  • the focal point centroid of the excitation light pulse moves on a straight line in the [ ⁇ 1 ⁇ 3 , ⁇ 2 ⁇ 4 ] T direction.
  • frequency components of 2jf (j is an integer) are detected. By doing so, the spatial resolution in the linear direction in which the condensing point gravity center moves is improved. Also, spatial resolution is improved in the optical axis direction.
  • the focal point centroid may be moved in the same manner as described above.
  • TPEF nondegenerate two-photon excitation fluorescence
  • the molecule absorbs two photons having the frequencies ⁇ 1 and ⁇ 2 simultaneously, and transitions from the ground state to the excited state. Thereafter, fluorescence is emitted from the excited state and transitions to the ground state. The fluorescence emitted at this time is non-degenerate two-photon excitation fluorescence. Since the two-photon excitation fluorescence intensity is proportional to the square of the excitation light intensity, the resolution in the optical axis direction can be obtained by condensing the excitation light tightly. Therefore, 3D imaging is possible without confocal pinholes. Light fading and light damage are also suppressed near the focal point.
  • excitation light In the one-photon excitation fluorescence microscope, ultraviolet light or visible light is used as excitation light, whereas in the two-photon excitation fluorescence microscope, near infrared light is used. Since near-infrared light has small scattering and one-photon absorption in a biological sample, excitation light can reach the deep part of the sample, and deep imaging is possible. Further, since the wavelengths of excitation light and fluorescence are greatly different, separation of excitation light and fluorescence is easy.
  • THG Third harmonic generation
  • CARS Frequency difference omega 1 - [omega] 2 of the two excitation light in the FWM process FWM process is enhanced approaches the Raman frequency W R as shown in FIG. 12 (a).
  • the FWM process enhanced by vibration resonance is called CARS process.
  • CARS intensity frequency difference omega 1 - [omega] 2 of the pump light frequency omega 1 and the frequency omega 2 of the Stokes light becomes stronger closer to the Raman frequency W R. Therefore, with the CARS microscope, vibration contrast derived from the chemical composition and thermodynamic state of the sample can be obtained.
  • SPE Stimulated parametric emission
  • TPA Nondegenerate two-photon absorption
  • the light intensity at the frequency ⁇ 1 decreases by the amount by which the light intensity at the frequency ⁇ 2 decreases.
  • the intensity of the ⁇ 2 excitation light is modulated to measure the signal of the frequency f generated in the ⁇ 1 excitation light.
  • Absorption contrast is obtained with a TPA microscope.
  • SRS Stimulated Raman scattering
  • the horizontal axis of the graph of FIG. 5 represents frequency (kHz), and the vertical axis represents the signal light intensity in arbitrary units on a log scale.
  • excitation light 1 two excitation pulses with a central wavelength of 800 nm (excitation light 1) and a central wavelength of 1015 nm (excitation light 2) having a Gaussian spatial profile with a beam radius of 3 mm (1 / e 2 ) and a focal length of 4.5 mm are obtained. It was assumed that light was collected by the objective lens and SFG was generated.
  • the intensity of the signal at the outer position at a frequency of 2n ⁇ 10 kHz (n is an integer) is indicated by an arrow. From the figure, it can be seen that the frequency component at the center position has a large frequency component that is an even multiple of the modulation frequency f, and the frequency component that is an odd multiple of the modulation frequency f is large at a position away from the center. Further, it can be seen that the even multiple component of the modulation frequency is mainly due to SFG light generated from the center position.
  • the frequency component of 2f is 10 1 to 10 2 times larger in SFG light generated from the center position than SFG light generated from a position away from the center. Furthermore, since the spatial intensity distribution of the excitation light is not a perfect sine wave, higher-order frequency components also appear as distortion components from the sine wave. For this reason, even in the higher-order components, the frequency characteristics are different between the center position and a position away from the center. From the above, it can be seen that SFG light generated in the vicinity of the center position can be specifically extracted by detecting a frequency component that is an even multiple of the modulation frequency.
  • FIG. 6 shows the point spread function obtained by numerical calculation.
  • the upper side of FIG. 6 shows the point image distribution on the xy plane perpendicular to the optical axis, and the lower side of FIG. 6 shows the point image distribution on the xz plane parallel to the optical axis.
  • the condensing position modulation of the excitation light 1 was numerically calculated by modulating the condensing position so as to move spirally. That is, the SFG light intensity is Calculated by
  • f 0 is the angular frequency of the helical rotation
  • f is the modulation frequency of the helical radius
  • f 0 >> f.
  • the spread of the point spread function at the frequency 2f is smaller than that of the conventional method (DC component). Further, the spread of the point image distribution becomes smaller as the frequency to be detected becomes higher. That is, it is shown that the spatial resolution is improved by the present invention. Note that the spread of the point image distribution is small in both the xy plane and the xz plane, and it can be seen that both the horizontal resolution and the vertical resolution are improved.
  • FIG. 7A shows the signal intensity in the optical axis (z) direction for the technique of the present invention and the conventional technique.
  • FIG. 7A shows the signal intensity generated from each depth, the signal intensity generated at the focal point position is the highest, and is generated from other regions.
  • the background light is small enough to be ignored.
  • the intensity of excitation light attenuates with depth as follows.
  • ls scattering length
  • z position in the optical axis direction
  • z 0 position on the sample surface.
  • the intensity obtained by multiplying the signal intensity shown in FIG. 7A by the excitation light intensity corresponding to the depth is the signal intensity generated from each depth.
  • FIG. 7 (b) shows the signal intensity generated from each depth for each of the cases with and without scattering.
  • FIG. 1A shows a conceptual diagram of a system configuration of a nonlinear optical microscope according to the present embodiment.
  • the nonlinear optical microscope according to the present embodiment uses a nonlinear optical process induced by excitation light having two or more wavelengths.
  • Nonlinear optical processes include multiphoton excitation fluorescence, sum frequency generation (second harmonic generation), difference frequency generation, third harmonic generation, four-wave mixing, coherent anti-Stokes scattering, stimulated parametric emission, multiphoton absorption, induction There is Raman scattering.
  • Two laser generators 101 and 102 are used because laser light having two or more wavelengths is used as excitation light for exciting molecules. If a laser beam having two or more wavelengths can be obtained, only one laser generator may be used. For example, if a single laser generator can output a plurality of wavelengths simultaneously, it can be divided and used. Alternatively, only one laser generator may be used to obtain a plurality of different wavelengths using a wavelength converter.
  • the beam position modulation unit 103 is for moving the condensing position of one excitation light (excitation light 1) relative to the condensing position of the other excitation light (excitation light 2).
  • excitation light 1 in order to move the condensing position in a plane perpendicular to the optical axis direction, beam pointing of electro-optic (EO) element, acousto-optic (AO) element, galvano scanner, etc. can be controlled.
  • EO electro-optic
  • AO acousto-optic
  • galvano scanner etc.
  • a simple beam pointing modulation unit may be used.
  • a wavefront modulation unit that can control the beam divergence angle, such as an electro-optical element or a variable mirror, may be used. Further, the condensing position may be moved three-dimensionally using both the beam pointing modulation unit and the wavefront modulation unit. Moreover, since the condensing position of each excitation light should just be moved relatively, you may control the position of several excitation light, respectively.
  • the time delay optical system 104 is used for temporally overlapping the excitation light 1 and the excitation light 2 at the condensing point.
  • Laser scanning microscope 105 extracts a frequency component corresponding to a modulation frequency of position modulation from a signal generated by pointing modulation or wavefront modulation. Specifically, a frequency component that is an even multiple of the modulation frequency is extracted.
  • FIG. 2 shows a specific configuration of the nonlinear optical microscope used in the experiment.
  • a laser pulse is oscillated using a titanium sapphire laser oscillator 11 having a wavelength of 775 nm as a light source.
  • This laser pulse is divided by a thin film polarizing plate (beam splitter) 12, one is used as it is as the excitation light pulse 2, and the other is converted into a wavelength of 1000 nm by the parametric oscillator (wavelength conversion means) 13 and used as the excitation light pulse 1.
  • the excitation light pulse 1 is passed through a galvano scanner (position modulation unit) 14 and the excitation light pulse 2 is passed through a time delay optical system 16 and then spatially superimposed using a dichroic mirror 15.
  • the superposed excitation light pulses 1 and 2 are condensed inside the sample 19 by the objective lens 18.
  • the slide glass on which the sample 19 is fixed can be moved by a three-axis piezo stage, and the sample 19 can be scanned three-dimensionally.
  • the optical signal reflected from the sample 19 is incident on a photomultiplier tube (PMT) 20 after the excitation light is removed by the excitation light cut filter 20 via the dichroic mirror 17 or the like.
  • the optical signal transmitted through the sample 19 is also incident on the photomultiplier tube 24 after the excitation light is removed by the excitation light cut filter 23.
  • a frequency component corresponding to the frequency of position modulation by a galvano scanner is used by using a lock-in amplifier. To extract.
  • the signal extracted by the lock-in amplifier is sent to a computer, for example, where it is displayed and stored.
  • FIG. 8 shows the signal generation distribution in the vicinity of the boundary between the cyan fluorescent protein and the slide glass.
  • FIG. 8A shows the response in the optical axis direction on a linear scale, and the upper right is an enlarged view near the boundary.
  • the thin line shows the result of the conventional method
  • the thick line shows the 2f (2 kHz) component of the present method. It can be seen that the response in the vicinity of the boundary is steeper in this method, and the resolution in the optical axis direction is improved.
  • FIG. 9 is a two-photon fluorescence image of a fluorescent bead having a diameter of 40 nm.
  • FIG. 9A shows an observation result by a conventional method
  • FIG. 9B shows a relative position of the condensing position of the excitation light pulse 1 in the plane perpendicular to the optical axis. Moved linearly. In the drawing, this moving direction corresponds to the vertical direction (Y direction). It can be seen that the resolution in the modulation direction (Y direction) is improved by modulating the condensing position in the Y direction and extracting the frequency component 2f (2 kHz) that is twice the modulation frequency f. Further, since position modulation is not performed in the X direction, the resolution in the X direction is not improved.
  • FIG. 9C shows an observation result when the condensing position of the excitation light pulse 1 is moved in a spiral shape in order to improve the resolution in the X direction.
  • the condensing position of the excitation light pulse 1 is position-modulated as follows.
  • the signal extracted as the observation signal is a component of frequency 2f.
  • Each frequency f 0 of the spiral rotation is set to f 0 > 2f. It can be confirmed from FIG. 9C that the resolution in the plane perpendicular to the optical axis is improved in both the X direction and the Y direction by moving the condensing position in this manner.
  • FWM four-wave mixing
  • Fig. 10 shows the signal generation distribution in the direction perpendicular to the optical axis.
  • the thin line shows the measurement result by the conventional method, and the thick line shows the 2f component by this method.
  • the present method has a sharper change near the boundary, and the resolution in the optical axis direction is improved.
  • the spatial resolution is perpendicular to the optical axis by modulating the condensing position of the excitation light in the nonlinear optical microscope that measures the signal light by the nonlinear optical process and extracting the even multiple of the modulation frequency of the signal light. It is possible to improve both the in-plane direction and the optical axis direction. Further, since signal light generated from other than the condensing point can be suppressed, it becomes possible to image a deeper part than before.
  • Laser generator Beam splitter (thin film polarizing plate) 13 Optical Parametric Oscillator 14 Galvano Scanner (Pointing Modulation Unit) DESCRIPTION OF SYMBOLS 15 Dichroic mirror 16 Time delay stage 17 Dichroic mirror 18 Objective lens 19 Sample 20 Excitation light cut filter 21 Photomultiplier tube 22 Objective lens 23 Excitation light cut filter 24 Photomultiplier tube

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

 複数の励起光による非線形光学過程から生じる信号光を測定する非線形光学顕微鏡において、複数の励起光の集光点の重心を所定の周波数で位置変調し、信号光から変調周波数に応じた周波数成分を抽出する。抽出する周波数成分は、変調周波数の偶数倍とすることが好ましい。また、位置変調方法としては、集光点重心を、光軸に垂直な面内で直線状または螺旋状に移動させたり、光軸方向に直線状に移動させたりする方法が好ましい。

Description

非線形光学顕微鏡および非線形光学顕微鏡法
 本発明は、非線形光学顕微鏡の空間分解能を向上させる手法に関する。
 n光子励起蛍光顕微鏡は、1光子励起蛍光顕微鏡の励起波長λexの約n倍長い励起波長λn≒ n・λexを用いることにより、蛍光分子を励起する。n光子励起による信号光強度は励起光強度のn乗に比例する。そのため、励起光を対物レンズ(開口数:NA)により集光した場合、励起光強度の高い集光点近傍のみで信号が発生する。その結果、同じ波長で1光子励起を行った場合の空間分解能0.61λn/NAに比べて、空間分解能がn1/2倍[(0.61・λn)/(n1/2・NA)]に向上する。
 また、2波長以上の波長成分によって誘起される非線形光学過程(非縮退2光子励起蛍光、和周波発生過程、4光波混合過程、非縮退2光子吸収、誘導ラマン散乱など)により発生する信号光を検出する非線形光学顕微鏡法も利用されている。これらの手法でも、励起光強度の高い集光点近傍のみで非線形光学過程による信号が発生するため、空間分解能を向上させることができる。
国際公開第2005/113772号パンフレット
Stefan W. Hell and Jan Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy Opt. Lett. 19, 780-782 (1994) Christian W. Freudiger, et al., "Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy", Science 322, 1857 (2008)
 n光子励起蛍光顕微鏡では、同じ励起波長を用いて1光子励起を行う場合よりも空間分解能は向上している。しかし、異なる励起波長を用いて同じエネルギー状態に励起し、発生した蛍光を検出する場合には、n光子励起の励起波長は1光子励起の波長のn倍(λn ≒ n・λex)である。したがって、実際には空間分解能が1/n1/2倍[(0.61・n1/2・λex)/NA]に低下してしまう。
 また、2波長以上の波長成分によって励起される非線形光学過程の信号光強度は2波長の励起光の空間的な重なり面積に比例する。したがって、2つの励起光のビームポインティングが揺らぐと、空間的な重なり面積が変化し信号光強度が揺らぐため問題となる。これらの非線形光学顕微鏡では、2波長の励起光のビームポインティングを安定させなければ空間分解能を高めることができない。したがって、従来はビームポインティングを安定させるために様々な工夫が施されてきた。しかしながら、ビームポインティングの安定には困難が伴う。
 このような課題を考慮し、本発明の目的は、簡易な構成でありながら高分解能の多光子励起顕微鏡を提供することにある。
 本発明では、2波長以上の波長成分によって励起される非線形光学過程の信号光を測定する非線形光学顕微鏡において、複数の励起光の集光点重心を所定の周波数で位置変調させ、この信号光から変調周波数に応じた周波数成分を抽出する。
 より具体的には、本発明に係る非線形光学顕微鏡は、第1の励起光を試料上に集光する第1の光学系と、第2の励起光を試料上に集光する第2の光学系と、前記第1の励起光と前記第2の励起光の試料上での集光位置を、所定の変調周波数で相対的に位置変調させる集光位置変調手段と、試料から生じる信号光から、前記変調周波数に応じた周波数成分を抽出する信号抽出手段と、を備える。
 信号光強度は励起光強度の積に比例するため、集光点位置の変調に伴って信号強度に揺らぎが生じる。この際、信号光のうち変調周波数の偶数倍の成分は、集光位置中心から発生した信号が支配的になる。したがって、信号光から変調周波数の偶数倍の成分を抽出することで、空間分解能を向上させることができる。高調波成分を抽出するほど空間分解能は向上するが、高調波成分ほど信号強度が弱くなるため、変調周波数の2倍の周波数成分を抽出することが好ましい。
 また、励起光の集光位置を変調させる方法としては、複数の励起光の集光位置の重心を、光軸に垂直な面内で直線状に移動させる方法、光軸に垂直な面内で螺旋状に移動させる方法、光軸に垂直な方向に直線状に移動させる方法、およびこれらの組合せが考えられる。
 たとえば、前記集光位置変調手段は、第1の励起光の集光位置を固定し、第2の励起光の集光位置を、光軸に垂直な面内で直線状または螺旋状に移動させたり、光軸方向に直線状に移動させたりする、ことが考えられる。
 また、前記集光位置変調手段は、第1の励起光と第2の励起光の集光位置をともに移動させて、集光点重心が、光軸に垂直な面内で直線状または螺旋状に移動したり、光軸方向に直線状に移動したりするようにしても良い。
 励起光の集光位置を光軸に垂直な面内で移動させるには、電気光学(EO)素子・音響光学(AO)素子・ガルバノスキャナーなどのビームポインティング変調ユニットを用いればよい。また、励起光の集光位置を光軸に垂直な方向に移動させるには、電気光学素子・可変ミラーなどのビームの発散角度を制御可能な波面変調ユニットを用いればよい。
 また、本発明において励起光にパルスレーザ光を用いることが好ましく、複数の励起光の集光位置を時間的に重ねるための時間遅延光学系を備えることが好ましい。
 なお、励起光の数は2つ以上であればいくつであっても良く、観測する非線形光学過程に依存して変化する。励起光を3つ以上用いる場合も励起光の集光位置重心を変調させれば、空間分解能が向上する。複数の励起光を用いる場合、1つの励起光のみを位置変調しその他の励起光の集光位置を固定としても良く、また2つ以上(あるいは全て)の励起光を位置変調させてもかまわない。
 本発明は、上記手段の少なくとも一部を有する非線形光学顕微鏡として捉えることができる。また、本発明は、上記処理の少なくとも一部を含む非線形光学顕微鏡法として捉えることもできる。上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。
 本発明に係る非線形光学顕微鏡によれば、空間分解能を向上させることができる。
(a)本実施形態にかかる非線形光学顕微鏡のシステム構成概要図、(b)ポインティング変調ユニットの説明図、(c)波面変調ユニットの説明図。 非線形光学顕微鏡の具体的構成を示す図。 (a)励起光パルスの位置変調を説明する図と、(b)試料の中央および外側から発生する信号光強度を示す図。 (a)~(c)はそれぞれ従来手法による入射励起光強度・TPA(2光子吸収)後の励起光強度・SRS(誘導ラマン散乱)後の励起光強度を示す図、(d)~(f)は本手法による入射励起光強度・TPA後の励起光強度・SRS後の励起光強度を示す図。 本手法によって励起光の集光位置を10kHzで変調させた際のSFG信号の周波数特性を示す数値計算結果。太線が中心位置のSFG信号の周波数特性であり、細線が外側位置の周波数特性。 点像分布を示す数値計算結果であり、上段は光軸に垂直な面内での点像分布を表し、下段は光軸を含む面内での点像分布を表す。 (a)光軸方向の信号光強度プロファイルを示す図、(b)散乱試料の場合の各深さから発生する信号光強度を示す図。 本手法による2光子蛍光顕微鏡の光軸方向の応答を示す図であり、(a)は強度を線形表示し、(b)は強度を対数表示したもの。 蛍光ビーズの2光子蛍光像であり、(a)は従来手法によるもの、(b)は本手法(X変調)によるもの、(c)は本手法(XY変調)によるもの。 本手法による4光波混合顕微鏡の光軸方向の信号光強度プロファイルを示す図。 本手法が適用可能な非線形光学過程の例を説明する図。 本手法が適用可能な非線形光学過程の例を説明する図。
<原理>
 本発明に係る非線形光学顕微鏡は、2波長以上の励起光によって誘起される非線形光学過程の信号光を検出する。このような非線形光学過程にはいくつかの種類があるが、ここでは和周波発生(SFG: Sum Frequency Generation)顕微鏡を例にして、本発明の原理を説明する。
 SFG顕微鏡では、励起光として周波数ω1、ω2を有する2つのパルスを用いる。SFG顕微鏡における信号光の時間平均光強度分布ISFG(r)は、集光点における2つの励起光パルスの光強度分布Iω1(r,t), Iω2(r,t)を用いて、
Figure JPOXMLDOC01-appb-M000001

 と表される。2つの励起光パルスの空間的重なり面積が大きいほど和周波光強度が高く発生分布も狭くなる。2つのパルスの集光位置が時間的に揺らぐと、和周波光の時間平均光強度分布は空間的に広がり、信号光強度にも揺らぎが生じる。従来のSFG顕微鏡では、空間的な重なり面積が大きくなるように2つの励起光パルスの集光位置を固定した状態で使用し、かつ、時間的に揺らぎが生じないようにしている。これに対して、本発明では、2つのパルスの集光位置を時間的に変調し、変調により揺らいだ信号成分を検出する。このように、本発明では、パルスの集光位置を積極的に移動させて、和周波光の揺らぎ成分を測定対象とする。
 例えば図3(a)に示すように、励起光パルス1の位置(実線)をr=+δからr=-δの間を周波数fで周期的に動かし、励起光パルス2の集光位置(破線)はr=0に固定する場合を考える。このときの、SFG強度は、
Figure JPOXMLDOC01-appb-M000002

 と表される。励起光パルス1を1周期(+δ→0→-δ→0→+δ)動かした場合の位置r=0, -δ, +δにおける和周波光強度ISFG(0,t), ISFG(-δ,t), ISFG(+δ,t)は図3(b)に示すようになる。位置r=0において信号は2周期の変化があり、位置r=-δ, +δにおいて信号は1周期の変化がある。すなわち、励起光パルス1の集光位置を周波数fで変調した場合、位置r=0における信号は2fの周波数成分が支配的となり、位置r=-δ, +δにおける信号はfの周波数成分が支配的となる。このように、周波数特性が集光スポットの中心と外側で異なる。そのため、周波数2fの信号を抽出することにより、集光スポットサイズよりも空間的に狭い領域の信号を抽出することが可能となる。また、集光位置変調によって生じる信号の変化は完全な正弦波ではないので、r=0では高調波である周波数4f,6f,8f,...となる成分も生じる。高調波成分になればなるほど空間的に狭い領域からの信号となるので、高調波成分を抽出すれば分解能をより高めることができる。
 2光子吸収(TPA: Two-Photon Absorption)や誘導ラマン散乱(SRS: Stimulated Raman Scattering)を測定する場合にも、本発明は適用できる。これらの非線形光学過程を計測する場合は、励起光強度の変化量を測定する。従来の手法では、周波数ω1, ω2の励起光のうち一方(ω1)を周波数fで時間的に強度が変化するような強度変調を与える。他方の励起光(ω2)の入射強度は一定とするが、ω1の強度変化がTPAやSRS過程を通じてω2の励起光強度に影響を与え、ω2の励起光も周波数fで変化する。このように従来のTPAやSRSでは、強度変調を与えていない方の励起光強度の周波数f成分を測定する。図4(a)は入射励起光強度、図4(b)はTPA後の励起光強度、図4(c)はSRS後の励起光強度を表している。
 これに対して、TPAやSRSに本発明を適用した場合は、強度変調をする必要はなく、一方の励起光の位置を周波数fで変調する。この結果、周波数ω1, ω2の両方の励起光強度に周波数2fで変化する成分が生じるため、この成分を測定する。図4(d)~4(f)のそれぞれは、本発明を適用した場合の入射励起光強度、TPA後の励起光強度、SRS後の励起光強度を表している。本発明によれば、周波数ω1とω2の励起光強度変化を同時に測定可能なので、2つの信号の平均化などにより信号対雑音比も向上させることが可能である。SRSではポンプ光である周波数ω1の励起光強度が減少するときにストークス光である周波数ω2の励起光強度が増加するため、これら2つの励起光を差分検出すれば、強度が2倍になると共に外部環境によるノイズを相殺できるため従来手法よりも感度が向上する。もちろん、従来手法のように励起光を時間的に変調し、さらに集光位置も変調することも可能である。
 ここでは、本発明の原理的な説明を、和周波発生(SFG),2光子吸収(TPA),誘導ラマン散乱(SRS)などを例に説明したが、2波長(以上)の励起光を用いるその他の非線形光学過程を利用する顕微鏡にも適用できることは当業者であれば理解できるであろう。
 また、上記の位置変調は原理を説明するためのものであり、具体的には種々の位置変調方法が採用可能である。
 例えば、励起光パルス1と励起光パルス2の集光点の重心が光軸に垂直な面内で直線上を動くように変調する方法(X変調)がある。この場合、各励起光パルスの光強度は、
Figure JPOXMLDOC01-appb-M000003
 と表される。ここで、δ1≠δ3またはδ2≠δ4とする。また、この条件を満たせばδn=0(n=1,2,3,4)であっても良い。このような変調では、励起光パルスの集光点重心は、[δ13, δ2-δ4]T方向の直線上を移動する。このような変調方式では、2jf(jは整数)の周波数成分を検出する。こうすることで、集光点重心が移動する直線方向についての空間分解能が向上する。また、光軸方向についても空間分解能が向上する。
 また、励起光パルス1と励起光パルス2の集光点の重心が、光軸に垂直な面内で螺旋上を動くように変調する方法(XY変調)がある。この場合、各励起光パルスの光強度は、
Figure JPOXMLDOC01-appb-M000004

 と表される。ここで、δ1≠δ3またはδ2≠δ4、2f < f0とする。また、この条件を満たせばδn=0(n=1,2,3,4)であっても良い。このような変調では、励起光パルスの集光点重心は螺旋状に移動する。このような変調方式では、2jf(jは整数)の周波数成分を検出する。こうすることで、光軸に垂直な面内および光軸方向、すなわち全方向について空間分解能が向上する。
 また、励起光パルス1と励起光パルス2の集光点の重心が、光軸方向で直線上を動くように変調する方法(Z変調)がある。この場合、各励起光パルスの光強度は、
Figure JPOXMLDOC01-appb-M000005

 と表される。ここで、δ1≠δ2とする。また、この条件を満たせばδn=0(n=1,2)であっても良い。このような変調では、励起光パルスの集光点重心は光軸方向の直線上を移動する。このような変調方式では、2jf(jは整数)の周波数成分を検出する。こうすることで、光軸方向の空間分解能が向上する。
 また、上記のX変調とZ変調を組み合わせた変調方法や、XY変調とZ変調を組み合わせた変調方法を採用することも考えられる。
 また、ここでは励起光パルスが2つの場合を例に説明しているが、励起光パルスが3つ以上の場合であっても集光点重心を上記と同様に移動させれば良い。
<本手法が適用可能な非線形光学過程の例>
 以下、本手法が適用可能な非線形光学過程の例を説明する。
 (1)非縮退2光子励起蛍光(nondegenerate two-photon excitation fluorescence: TPEF)
 図11(a)に示すように、分子は、周波数ω1, ω2の2個の光子を同時に吸収し、基底状態から励起状態へ遷移する。その後、励起状態から蛍光を発し,基底状態へ遷移する。このとき発せられる蛍光が非縮退2光子励起蛍光である。2光子励起蛍光強度は励起光強度の2乗に比例するため,励起光をきつく集光することにより光軸方向の分解能が得られる。そのため,共焦点ピンホールなしで3次元イメージングが可能である。光褪色や光損傷も集光点近傍に抑制される。1光子励起蛍光顕微鏡では励起光として紫外光や可視光の励起光を用いるのに対して2光子励起蛍光顕微鏡では近赤外光を用いる。近赤外光は生体試料中における散乱や1光子吸収が小さいため、励起光が試料の深部まで到達でき、深部イメージングが可能である。また、励起光と蛍光の波長が大きく異なることから励起光と蛍光の分離も容易である。
 (2)和周波発生(Sum frequency generation: SFG)と第2高調波発生(Second harmonic generation: SHG)
 2光子励起のSFGとは,図11(b)に示すように周波数ω1, ω2の2個の光子が和の周波数ω312をもつ1個の光子に変換される2次の非線形光学過程であり、反転対称性のない分子・媒質でのみ生じる現象である。そのため、SFG顕微鏡では生体組織中における配向構造や組織構造を可視化することが可能である。
 (3)差周波発生(Difference frequency generation: DFG)
 DFGとは,図11(c)に示すように周波数ω1, ω2の2個の光子が差の周波数ω312をもつ1個の光子に変換される2次の非線形光学過程であり、反転対称性のない分子・媒質でのみ生じる現象である。周波数差をラマン振動数に一致させることにより、試料の化学成分や熱力学的状態に由来する振動コントラストが得られる。
 (4)第3高調波発生(Third harmonic generation: THG)
 3光子励起のSFGとは図11(d)に示すように周波数ω1, ω2, ω3の3個の光子が和の周波数ω4123をもつ1個の光子に変換される3次の非線形光学過程であり、全ての分子・媒質で生じる現象である。ただし、励起光と信号光の波長が大きく異なり屈折率が大きく異なるために、位相整合条件を満たすことが困難である。そのため、一般的に屈折率が一様な分布の媒質中ではTHGは発生せず、屈折率分布が不均一な媒質中(屈折率の異なる媒質の境界)で発生する。入射光である3個の光子の周波数が同じ周波数の場合をTHGと呼ぶ。
 (5)4光波混合(Four-wave mixing: FWM)
 周波数ω1, ω2, ω3の3つの入射場と媒質の相互作用により、新しい周波数ω4123の光が発生する3次の非線形光学過程をFWM過程と呼ぶ。相互作用を行う場の順番により、FWM過程には図11(e)(f)に示す2つの過程がある。非共鳴FWM顕微鏡では、屈折率の分布を測定することが可能である。
 (6)コヒーレント反ストークスラマン散乱(Coherent anti-Stokes Raman scattering: CARS)
 図12(a)のようにFWM過程において2つの励起光の周波数差ω12がラマン振動数WRに近づくとFWM過程が増強される。振動共鳴により増強されたFWM過程をCARS過程と呼ぶ。CARS強度は周波数ω1のポンプ光と周波数ω2のストークス光の周波数差ω12がラマン振動数WRに近づくほど強くなる。そのため、CARS顕微鏡では、試料の化学成分や熱力学的状態に由来する振動コントラストが得られる。
 (7)誘導パラメトリック発光(Stimulated parametric emission: SPE)
 図12(b)のようにFWM過程において2つの励起光の周波数和ω13が電子共鳴振動数Weに近づくとFWM過程が増強される。2光子電子共鳴により増強されたFWM過程をSPE過程と呼ぶ。SPE強度は周波数和ω13が電子共鳴振動数Weに近づくほど強くなる。そのため、SPE顕微鏡では,試料の吸収に基づくコントラストが得られる。
 (8)非縮退2光子吸収(nondegenerate two-photon absorption: TPA)
 TPAは超短光パルスの強度自身に誘起された吸収係数の変化に起因する。TPAは、2個の光子が同時に吸収され、基底状態から励起状態へ遷移する。TPA顕微鏡では吸収による励起光強度の微小な変化量を測定するために、図12(c)に示すように、第1光子と第2光子の周波数が異なる2波長励起を行う。また、一方の周波数(ω2)の光強度のみを周波数fで強度変調し、他方(ω1)は変調せずに用いる。TPAが生じると、励起光強度は周波数ω2の光強度が減少した量だけ周波数ω1の光強度が減少する。従来は、ω2の励起光を強度変調して、ω1の励起光に生じる周波数fの信号を測定するが、上述したように本手法を適用する場合は強度変調を行う必要はない。TPA顕微鏡では吸収コントラストが得られる。
 (9)誘導ラマン散乱(Stimulated Raman scattering: SRS)
 ラマン活性媒質に周波数ω1のポンプ光と周波数ω2のストークス光を入射したとき、ラマン散乱によりポンプ光がストークス光に変換され、ストークス光が増幅される過程がSRS過程である(図12(d))。従来のSRS顕微鏡では、SRSによるストークス光強度とポンプ光強度の微小な変化量を測定するために、TPA顕微鏡と同様に一方の励起光に強度変調を行う。ただし、上述したように本手法を適用する場合は強度変調を行う必要はない。SRS顕微鏡では振動コントラストが得られる。
<数値計算による原理の検証>
 図5に数値計算により周波数f=10kHzで励起光1の集光点を100nm(δ=100nm)変調したときの信号のフーリエ変換を示す。図5のグラフの横軸は周波数(kHz)を表し、縦軸は任意単位の信号光強度をログスケールで表している。
 数値計算は、ビーム半径3mm(1/e2)のガウス型空間プロファイルを有する、中心波長800nm(励起光1)と中心波長1015nm(励起光2)の2つの励起パルスを、焦点距離4.5mmの対物レンズにより集光し、SFGを発生させた場合を仮定した。
 図5において、太線は中心位置(r=0)でのSFG光の周波数成分を示し、細線は中心から離れた外側位置(r=250nm)のSFG光の周波数成分を示す。なお、周波数2n×10kHz(nは整数)における外側位置の信号の強度は矢印で示してある。図から、中心位置の周波数成分は変調周波数fの偶数倍の周波数成分が大きく、中心から離れた位置では変調周波数fの奇数倍の周波数成分が大きいことが分かる。また、変調周波数の偶数倍成分は主に中心位置から生じるSFG光によるものであることが分かる。例えば、2fの周波数成分は、中心位置から生じるSFG光の方が、中心から離れた位置から生じるSFG光よりも101~102倍大きいことが分かる。さらに、励起光の空間強度分布が完全な正弦波ではないので、正弦波からの歪成分として高次の周波数成分も現れている。そのため、高次成分においても中心位置と中心から離れた位置において周波数特性が異なっている。以上から、変調周波数の偶数倍の周波数成分を検出することにより、中心位置付近で生じるSFG光を特異的に抽出できることが分かる。
 図6に数値計算により得られた点像分布関数を示す。図6上側は光軸に垂直なxy面での点像分布を示し、図6下側は光軸に平行なxz面内での点像分布を示している。
 ここで、励起光1の集光位置変調は、光軸に垂直なxy面内における対称性を得るために、集光位置が螺旋状に動くように変調して数値計算を行った。すなわち、SFG光強度は、
Figure JPOXMLDOC01-appb-M000006

 により計算した。ここで、f0は螺旋回転の角周波数、fは螺旋半径の変調周波数であり、f0>>fとする。こうすることで、xy面内における対称性が確保される。
 図6において、従来の手法(DC成分)に比べて、周波数2fの点像分布関数の広がりが小さくなっている。また、検出する周波数が高くなるほど点像分布の広がりが小さくなっている。すなわち、本発明により空間分解能が向上していることが示されている。なお、点像分布の広がりはxy面内においてもxz面内においても小さくなっており、水平分解能および垂直分解能の両方が向上していること分かる。
 また、本発明によれば垂直方向について、集光点以外での信号を抑制できている。したがって、測定対象の表面近傍から発生する背景光を抑制可能であり、従来手法に比べて観察可能な深さが向上する。図7(a)は、光軸(z)方向の信号強度を、本発明の手法と従来の手法について示している。このように、本発明によれば、観察信号が集光点付近に限定されることが分かる。
 観察対象の試料が散乱の無い試料であれば、図7(a)が各深さから発生する信号強度であり、集光点位置で発生する信号強度が最も大きくなり、その他の領域から発生する背景光は十分小さく無視できる。しかしながら、散乱の大きな試料では、励起光強度が深さと共に、以下のように減衰する。
Figure JPOXMLDOC01-appb-M000007

 ここで、ls:散乱長、z:光軸方向の位置、z0:試料表面の位置である。
 したがって、散乱の大きな試料の場合は、図7(a)に示す信号強度に、深さに応じた励起光強度を掛け合わせた強さが、各深さから発生する信号強度となる。図7(b)に、散乱有りと無しの場合のそれぞれについて、各深さから発生する信号強度を示した。散乱有りの試料を観測する場合には、ある深さ以上については、試料表面から発生する信号強度の方が集光点付近から発生する信号強度より強くなってしまい、観察が不可能となる。本発明では、集光点以外から発生する信号強度を十分抑制できているため、観察可能な深さを改善することができる。
<非線形光学顕微鏡のシステム概要>
 図1(a)に、本実施形態にかかる非線形光学顕微鏡のシステム構成の概念図を示す。
 本実施形態にかかる非線形光学顕微鏡では、2波長以上の励起光によって誘起する非線形光学過程を用いる。非線形光学過程としては、多光子励起蛍光、和周波発生(第2高調波発生)、差周波発生、第3高調波発生、4光波混合、コヒーレント反ストークス散乱、誘導パラメトリック発光、多光子吸収、誘導ラマン散乱などがある。
 分子を励起するための励起光として2波長以上のレーザー光を用いるため、2つのレーザー発生装置101,102を用いる。2波長以上のレーザー光を得ることができれば、1台のレーザー発生装置のみを使用しても良い。例えば、1台のレーザー発生装置で同時に複数の波長を出力可能であれば分割して使用できる。また、レーザー発生装置を1つのみとして、波長変換器を用いて異なる複数の波長を得ても良い。
 ビーム位置変調ユニット103は、一方の励起光(励起光1)の集光位置を、他の励起光(励起光2)の集光位置に対して動かすためのものである。図1(b)に示すように集光位置を光軸方向に垂直な平面内で動かすためには、電気光学(EO)素子・音響光学(AO)素子・ガルバノスキャナーなどのビームポインティングを制御可能なビームポインティング変調ユニットを用いればよい。また、図1(c)に示すように集光位置を光軸方向に動かすためには、電気光学素子・可変ミラーなどのビームの発散角度を制御可能な波面変調ユニットを用いればよい。また、ビームポインティング変調ユニットと波面変調ユニットの両方を用いて、集光位置を3次元的に移動させてもかまわない。また、各励起光の集光位置を相対的に移動させられれば良いので、複数の励起光の位置をそれぞれ制御してもかまわない。
 時間遅延光学系104は、励起光1と励起光2を集光点において時間的に重ねるためのものである。
 レーザー走査顕微鏡105は、ポインティング変調または波面変調によって生じる信号から、位置変調の変調周波数に応じた周波数成分を抽出する。具体的には、変調周波数の偶数倍の周波数成分を抽出する。
<装置構成>
 図2に、実験で用いた非線形光学顕微鏡の具体的な構成を示す。ここでは、光源として波長775nmのチタンサファイアレーザー発振器11を用いてレーザーパルスを発振する。薄膜偏光板(ビームスプリッター)12でこのレーザーパルスを分割し、一方をそのまま励起光パルス2として用い、他方をパラメトリック発振器(波長変換手段)13により波長1000nmに変換して励起光パルス1として用いる。
 励起光パルス1についてはガルバノスキャナー(位置変調ユニット)14を通過させた後に、励起光パルス2については時間遅延光学系16を通過させた後に、ダイクロイックミラー15を用いて空間的に重ね合わせる。重ね合わされた励起光パルス1,2は、対物レンズ18により試料19の内部に集光される。なお、試料19が固定されたスライドガラスは3軸ピエゾステージによって移動可能であり、試料19を3次元的に走査可能である。
 試料19から反射された光信号は、ダイクロイックミラー17等を介して、励起光カットフィルター20により励起光を除去した後に、光電子増倍管(PMT: Photomultiplier Tube)20に入射される。また、試料19を透過した光信号も、励起光カットフィルター23により励起光を除去した後に、光電子増倍管24に入射される。PMT20、24において検出された信号から特定の周波数成分を抽出するためのディジタル信号処理を省略する目的で、本実験例ではロックインアンプを用いて、ガルバノスキャナーによる位置変調の周波数に応じた周波数成分を抽出する。ロックインアンプによって抽出された信号は、例えばコンピュータに送られて表示・記憶等の処理が成される。
・実験結果1
 本発明の手法によって光軸方向の分解能が向上していることを確認するための実験を行った。本実験例では、ガルバノスキャナーを用いて、励起光パルス1の集光位置が励起光パルス2の集光位置に対して、光軸に垂直な面内で直線上を動くように集光位置を変調させた。この際の変調周波数は1kHzとした。すなわち、励起光パルス1の位置変調方向をx軸としたときに、励起光パルス1の集光位置は次のように表される。なお、このように2つの励起光パルスの集光位置を光軸に垂直な面内で相対的に直線移動させる変調方法を、以下、X変調と称する。
Figure JPOXMLDOC01-appb-M000008
 厚み70μmの検鏡プレートにシアン蛍光タンパクを封入したものを試料として用い、2光子蛍光顕微鏡の光軸方向における応答を測定した。図8にシアン蛍光タンパクとスライドガラスの境界近傍における信号発生分布を示す。図8(a)は、光軸方向の応答をリニアスケールで表したものであり、右上は境界付近の拡大図である。図8において、細線が従来手法による結果を示し、太線が本手法による2f(2kHz)成分を示している。境界近傍での応答が本手法の方が急峻であり、光軸方向の分解能が向上していることが分かる。また、図8(b)のように対数表示にすると集光点以外から発生する2光子蛍光強度も抑制できていることが分かる。なお、図8(b)においてデータがつながっていない部分は信号強度がノイズレベルであり、信号が負になっているためである。
・実験結果2
 次に、本発明の手法によって光軸に垂直な面内での分解能が向上していることを確認するための実験を行った。図9は、直径40nmの蛍光ビーズの2光子蛍光像である。
 図9(a)は従来手法による観察結果であり、図9(b)は励起光パルス1の集光位置を光軸に対して垂直な面内において、励起光パルス2の集光位置と相対的に直線移動させた。図面では、この移動方向は上下方向(Y方向)に相当する。集光位置をY方向に変調させて、変調周波数fの2倍の周波数成分2f(2kHz)を抽出することで、変調方向(Y方向)の分解能が向上していることが分かる。また、X方向については位置変調を行っていないので、X方向についての分解能は向上していない。
 図9(c)は、X方向の分解能も向上させるために、励起光パルス1の集光位置を螺旋状に移動させた場合の観測結果である。ここでは、励起光パルス1の集光位置を、以下のように位置変調させている。
Figure JPOXMLDOC01-appb-M000009

 なお、観察信号として抽出する信号は周波数2fの成分である。また、螺旋回転の各周波数f0はf0>2fとしている。このように集光位置を螺旋状に移動させることにより、光軸に垂直な面内における分解能が、X方向およびY方向の両方について向上していることが図9(c)から確認できる。
・実験結果3
 次に、2光子励起蛍光以外の他の多光子励起過程においても分解能が向上することを確認するために、ガラスと空気の境界における4光波混合(FWM: Four-wave Mixing)信号を測定した。FWMは周波数ω1,ω2,ω3の3つの入射場と媒質の相互作用により、ω4=ω1-ω2+ω3の光が発生する3次の非線形光学過程である。本実験では、3つの励起光パルスを試料に照射し、そのうちの1つの励起光パルスを光軸方向に垂直な面内で変調周波数fで直線移動させた。
 図10に、光軸に垂直な方向の信号発生分布を示す。細線が従来手法による測定結果であり、太線が本手法による2f成分を示している。2光子蛍光のときと同様に、本手法の方が境界近傍において急峻な変化をしており、光軸方向の分解能が向上していることが分かる。
<本手法による効果>
 以上のように、非線形光学過程による信号光を測定する非線形光学顕微鏡において励起光の集光位置を変調させ、信号光の変調周波数の偶数倍成分を抽出することで、空間分解能を光軸に垂直な面内方向および光軸方向の両方について向上させることができる。また、集光点以外から発生する信号光を抑制できるので、従来よりも深い部分のイメージングできるようになる。
 11  レーザー発生装置
 12  ビームスプリッター(薄膜偏光板)
 13  光パラメトリック発振器
 14  ガルバノスキャナー(ポインティング変調ユニット)
 15  ダイクロイックミラー
 16  時間遅延ステージ
 17  ダイクロイックミラー
 18  対物レンズ
 19  試料
 20  励起光カットフィルター
 21  光電子増倍管
 22  対物レンズ
 23  励起光カットフィルター
 24  光電子増倍管

Claims (13)

  1.  第1の励起光を試料上に集光する第1の光学系と、
     第2の励起光を試料上に集光する第2の光学系と、
     前記第1の励起光と前記第2の励起光の試料上での集光位置を、所定の変調周波数で相対的に位置変調させる集光位置変調手段と、
     試料から生じる信号光から、前記変調周波数に応じた周波数成分を抽出する信号抽出手段と、
     を備える非線形光学顕微鏡。
  2.  前記信号抽出手段は、前記信号光から前記変調周波数の偶数倍の周波数成分を抽出する、
     請求項1に記載の非線形光学顕微鏡。
  3.  前記集光位置変調手段は、第1の励起光の集光位置と第2の励起光の集光位置との重心を、光軸に垂直な面内で螺旋状に移動させる、
     請求項1または2に記載の非線形光学顕微鏡。
  4.  前記集光位置変調手段は、第1の励起光の集光位置と第2の励起光の集光位置との重心を、光軸に垂直な面内で直線状に移動させる、
     請求項1または2に記載の非線形光学顕微鏡。
  5.  前記集光位置変調手段は、第1の励起光の集光位置と第2の励起光の集光位置との重心を、光軸方向に直線状に移動させる、
     請求項1~4のいずれかに記載の非線形光学顕微鏡。
  6.  前記集光位置変調手段は、第1の励起光または第2の励起光の集光位置を光軸に垂直な面内で移動させるポインティング変調ユニットを含む、
     請求項3または4に記載の非線形光学顕微鏡。
  7.  前記集光位置変調手段は、第1の励起光または第2の励起光の集光位置を光軸方向に移動させる波面変調ユニットを含む、
     請求項5記載の非線形光学顕微鏡。
  8.  第1の励起光および第2の励起光はパルスレーザ光であり、
     第1の励起光と第2の励起光の集光位置を時間的に重ねるための時間遅延光学系を更に備える、
     請求項1~7のいずれかに記載の非線形光学顕微鏡。
  9.  所定の変調周波数で第1の励起光と第2の励起光の集光位置を相対的に位置変調させつつ、試料上に第1の励起光と第2の励起光を集光する集光工程と、
     試料から生じる信号光から、前記変調周波数に応じた周波数成分を抽出する抽出工程と、
     を含む、非線形光学顕微鏡法。
  10.  前記抽出工程では、前記信号光から前記変調周波数の偶数倍の周波数成分を抽出する、
     請求項9に記載の非線形光学顕微法。
  11.  前記集光工程では、第1の励起光の集光位置と第2の励起光の集光位置との重心を、光軸に垂直な面内で螺旋状に移動させる、
     請求項9または10に記載の非線形光学顕微法。
  12.  前記集光工程では、第1の励起光の集光位置と第2の励起光の集光位置との重心を、光軸に垂直な面内で直線状に移動させる、
     請求項9または10に記載の非線形光学顕微法。
  13.  前記集光工程では、第1の励起光の集光位置と第2の励起光の集光位置との重心を、光軸方向に直線状に移動させる、
     請求項9~12のいずれかに記載の非線形光学顕微法。
PCT/JP2012/052377 2011-03-18 2012-02-02 非線形光学顕微鏡および非線形光学顕微鏡法 WO2012127907A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012001802.8T DE112012001802T5 (de) 2011-03-18 2012-02-02 Nichtlineares optisches Mikroskop und Nichtlineare optische Mikroskopie
JP2013505837A JP5930220B2 (ja) 2011-03-18 2012-02-02 非線形光学顕微鏡および非線形光学顕微鏡法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-061333 2011-03-18
JP2011061333 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012127907A1 true WO2012127907A1 (ja) 2012-09-27

Family

ID=46879075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052377 WO2012127907A1 (ja) 2011-03-18 2012-02-02 非線形光学顕微鏡および非線形光学顕微鏡法

Country Status (3)

Country Link
JP (1) JP5930220B2 (ja)
DE (1) DE112012001802T5 (ja)
WO (1) WO2012127907A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072462A (ja) * 2013-09-09 2015-04-16 株式会社ニコン 超解像観察装置及び超解像観察方法
JP2016504598A (ja) * 2013-01-09 2016-02-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California 無線周波数多重励起を用いた蛍光イメージングのための装置及び方法
WO2017158697A1 (ja) * 2016-03-14 2017-09-21 オリンパス株式会社 画像取得方法および画像取得装置
US10006852B2 (en) 2016-09-13 2018-06-26 Becton, Dickinson And Company Flow cytometer with optical equalization
US10036699B2 (en) 2014-03-18 2018-07-31 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US10078045B2 (en) 2015-10-13 2018-09-18 Omega Biosystems Incorporated Multi-modal fluorescence imaging flow cytometry system
US10324019B2 (en) 2016-03-17 2019-06-18 Becton, Dickinson And Company Cell sorting using a high throughput fluorescence flow cytometer
JP2019117057A (ja) * 2017-12-26 2019-07-18 オリンパス株式会社 試料分析装置
US10935485B2 (en) 2016-05-12 2021-03-02 Bd Biosciences Fluorescence imaging flow cytometry with enhanced image resolution
CN113176583A (zh) * 2021-04-02 2021-07-27 华东师范大学重庆研究院 一种超灵敏红外高分辨三维成像技术
US11513058B2 (en) 2020-05-19 2022-11-29 Becton, Dickinson And Company Methods for modulating an intensity profile of a laser beam and systems for same
US11680889B2 (en) 2020-06-26 2023-06-20 Becton, Dickinson And Company Dual excitation beams for irradiating a sample in a flow stream and methods for using same
US11978269B2 (en) 2019-07-10 2024-05-07 Becton, Dickinson And Company Reconfigurable integrated circuits for adjusting cell sorting classification

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016111747B4 (de) 2016-06-27 2020-10-01 Forschungsverbund Berlin E.V. Verfahren und Vorrichtung zur Raman-Spektroskopie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091895A (ja) * 2003-09-18 2005-04-07 Institute Of Physical & Chemical Research 走査型共焦点顕微鏡装置
JP2010532878A (ja) * 2007-07-06 2010-10-14 ナショナル ユニヴァーシティー オブ シンガポール 蛍光焦点変調顕微鏡システムおよびその方法
JP2010286799A (ja) * 2008-11-21 2010-12-24 Nikon Corp 走査型顕微鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091895A (ja) * 2003-09-18 2005-04-07 Institute Of Physical & Chemical Research 走査型共焦点顕微鏡装置
JP2010532878A (ja) * 2007-07-06 2010-10-14 ナショナル ユニヴァーシティー オブ シンガポール 蛍光焦点変調顕微鏡システムおよびその方法
JP2010286799A (ja) * 2008-11-21 2010-12-24 Nikon Corp 走査型顕微鏡

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371937B2 (en) 2013-01-09 2022-06-28 The Regents Of The University Of California Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation
JP2016504598A (ja) * 2013-01-09 2016-02-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California 無線周波数多重励起を用いた蛍光イメージングのための装置及び方法
US10408758B2 (en) 2013-01-09 2019-09-10 The Regents Of The University Of California Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation
US9983132B2 (en) 2013-01-09 2018-05-29 The Regents Of The University Of California Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation
US11327016B2 (en) 2013-01-09 2022-05-10 The Regents Of The University Of California Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation
JP2015072462A (ja) * 2013-09-09 2015-04-16 株式会社ニコン 超解像観察装置及び超解像観察方法
US11630053B2 (en) 2014-03-18 2023-04-18 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US11946851B2 (en) 2014-03-18 2024-04-02 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US10222316B2 (en) 2014-03-18 2019-03-05 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US10845295B2 (en) 2014-03-18 2020-11-24 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US11280718B2 (en) 2014-03-18 2022-03-22 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US10036699B2 (en) 2014-03-18 2018-07-31 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US12055476B2 (en) 2014-03-18 2024-08-06 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US10451538B2 (en) 2014-03-18 2019-10-22 The Regents Of The University Of California Parallel flow cytometer using radiofrequency multiplexing
US11940369B2 (en) 2015-10-13 2024-03-26 Becton, Dickinson And Company Multi-modal fluorescence imaging flow cytometry system
US10684211B2 (en) 2015-10-13 2020-06-16 Omega Biosystems Incorporated Multi-modal fluorescence imaging flow cytometry system
US11692926B2 (en) 2015-10-13 2023-07-04 Becton, Dickinson And Company Multi-modal fluorescence imaging flow cytometry system
US10288546B2 (en) 2015-10-13 2019-05-14 Omega Biosystems Incorporated Multi-modal fluorescence imaging flow cytometry system
US10935482B2 (en) 2015-10-13 2021-03-02 Becton, Dickinson And Company Multi-modal fluorescence imaging flow cytometry system
US11366052B2 (en) 2015-10-13 2022-06-21 Becton, Dickinson And Company Multi-modal fluorescence imaging flow cytometry system
US10078045B2 (en) 2015-10-13 2018-09-18 Omega Biosystems Incorporated Multi-modal fluorescence imaging flow cytometry system
US12038372B2 (en) 2015-10-13 2024-07-16 Becton, Dickinson And Company Multi-modal fluorescence imaging flow cytometry system
US10942345B2 (en) 2016-03-14 2021-03-09 Olympus Corporation Image acquisition method and image acquisition device
WO2017158697A1 (ja) * 2016-03-14 2017-09-21 オリンパス株式会社 画像取得方法および画像取得装置
JPWO2017158697A1 (ja) * 2016-03-14 2019-01-17 オリンパス株式会社 画像取得方法および画像取得装置
US11774343B2 (en) 2016-03-17 2023-10-03 Becton, Dickinson And Company Cell sorting using a high throughput fluorescence flow cytometer
US11105728B2 (en) 2016-03-17 2021-08-31 Becton, Dickinson And Company Cell sorting using a high throughput fluorescence flow cytometer
US10620111B2 (en) 2016-03-17 2020-04-14 Becton, Dickinson And Company Cell sorting using a high throughput fluorescence flow cytometer
US10324019B2 (en) 2016-03-17 2019-06-18 Becton, Dickinson And Company Cell sorting using a high throughput fluorescence flow cytometer
US12078587B2 (en) 2016-03-17 2024-09-03 Becton, Dickinson And Company Cell sorting using a high throughput fluorescence flow cytometer
US10935485B2 (en) 2016-05-12 2021-03-02 Bd Biosciences Fluorescence imaging flow cytometry with enhanced image resolution
US10823658B2 (en) 2016-09-13 2020-11-03 Becton, Dickinson And Company Flow cytometer with optical equalization
US11698334B2 (en) 2016-09-13 2023-07-11 Becton, Dickinson And Company Flow cytometer with optical equalization
US10006852B2 (en) 2016-09-13 2018-06-26 Becton, Dickinson And Company Flow cytometer with optical equalization
JP2019117057A (ja) * 2017-12-26 2019-07-18 オリンパス株式会社 試料分析装置
US11978269B2 (en) 2019-07-10 2024-05-07 Becton, Dickinson And Company Reconfigurable integrated circuits for adjusting cell sorting classification
US11513058B2 (en) 2020-05-19 2022-11-29 Becton, Dickinson And Company Methods for modulating an intensity profile of a laser beam and systems for same
US11971343B2 (en) 2020-06-26 2024-04-30 Becton, Dickinson And Company Dual excitation beams for irradiating a sample in a flow stream and methods for using same
US11680889B2 (en) 2020-06-26 2023-06-20 Becton, Dickinson And Company Dual excitation beams for irradiating a sample in a flow stream and methods for using same
CN113176583A (zh) * 2021-04-02 2021-07-27 华东师范大学重庆研究院 一种超灵敏红外高分辨三维成像技术

Also Published As

Publication number Publication date
JP5930220B2 (ja) 2016-06-08
JPWO2012127907A1 (ja) 2014-07-24
DE112012001802T5 (de) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5930220B2 (ja) 非線形光学顕微鏡および非線形光学顕微鏡法
JP5208825B2 (ja) 光学顕微鏡
US9001321B2 (en) Microscope and observation method
US6809814B2 (en) System and method for epi-detected coherent anti-stokes raman scattering microscopy
JP5736325B2 (ja) 光学装置
Isobe et al. Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination
JP6283104B2 (ja) 光学分析装置
WO2014125729A1 (ja) 測定装置及び測定方法
Cheng et al. Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device
JP6357245B2 (ja) 光学分析装置及び生体分子解析装置
Filippidis et al. Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies
WO2015079786A1 (ja) 光計測装置及び光計測方法
WO2013007726A1 (en) Method for high resolution sum-frequency generation and infrared microscopy
Berto et al. Wide-field vibrational phase imaging in an extremely folded box-CARS geometry
JP5536908B2 (ja) 共鳴非線形光信号を検出するための方法およびその方法を実装するための装置
JP6765115B2 (ja) 非線形光学顕微鏡、空間位相変調器および非線形光学顕微鏡法
Liu et al. Second harmonic generation correlation spectroscopy for single molecule experiments
JP2013517490A5 (ja)
JP2011145487A (ja) 多光子励起顕微鏡
JP2009229714A (ja) コヒーレント・ラマン顕微鏡の解像度評価用チャートおよびその製造方法、コヒーレント・ラマン顕微鏡用光源装置、並びに、コヒーレント・ラマン顕微鏡の調整法
Akimov et al. Three-dimensional microimaging of inhomogeneities in transparent media using third-harmonic generation and four-wave mixing
JP6923161B2 (ja) 試料分析装置
Lee et al. Measurement of scattering nonlinearities from a single plasmonic nanoparticle
Dashtabi et al. Nonlinear optical microscopy improvement by focal-point axial modulation
D'Arco et al. Implementation of stimulated Raman scattering microscopy for single cell analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505837

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012001802

Country of ref document: DE

Ref document number: 1120120018028

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2120120000720

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: DE

Effective date: 20130918

122 Ep: pct application non-entry in european phase

Ref document number: 12760568

Country of ref document: EP

Kind code of ref document: A1