WO2012127558A1 - 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法 - Google Patents

新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法 Download PDF

Info

Publication number
WO2012127558A1
WO2012127558A1 PCT/JP2011/056548 JP2011056548W WO2012127558A1 WO 2012127558 A1 WO2012127558 A1 WO 2012127558A1 JP 2011056548 W JP2011056548 W JP 2011056548W WO 2012127558 A1 WO2012127558 A1 WO 2012127558A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
chromosome
individual
region
cultivar
Prior art date
Application number
PCT/JP2011/056548
Other languages
English (en)
French (fr)
Inventor
少揚 林
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201180069337.2A priority Critical patent/CN103429074B/zh
Priority to JP2011513784A priority patent/JP4892648B1/ja
Priority to US14/005,211 priority patent/US8981193B2/en
Priority to PCT/JP2011/056548 priority patent/WO2012127558A1/ja
Publication of WO2012127558A1 publication Critical patent/WO2012127558A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8266Abscission; Dehiscence; Senescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a new cultivar produced by a non-genetic recombination method, a method for distinguishing the new cultivar, and a method for premature rice plants.
  • a group that belongs to the same species, but has a different genetic composition, and is different from other groups in a certain trait is called a breed. That is, even if it is the same kind of plant, the difficulty of cultivation, resistance to pest damage, yield, quality, and the like differ depending on the variety. For this reason, in crops, especially major crops such as rice and wheat, varieties have been improved to obtain better varieties since ancient times. In recent years, not only seed companies, but also countries and prefectures. It has also been actively conducted in the public institutions.
  • genes of various plants such as Arabidopsis, rice, and wheat have been analyzed, and the obtained gene information has been disclosed. Many of these varieties have been improved by introducing a gene of a foreign species by a genetic recombination method using the disclosed gene information.
  • breeding by genetic recombination has the advantage that a trait of a distantly related species that cannot normally be crossed can be introduced, there is a problem that its safety verification is not always sufficient.
  • rice is desired to breed varieties that have the same quality and yield as conventional varieties but are a little earlier or a little later than conventional varieties.
  • the rice cultivar Koshihikari that consumers prefer is cultivated, but when only Koshihikari is cultivated on a large scale, harvest-related work is concentrated in a short period of time, which requires a lot of labor.
  • As a method of shifting the harvesting period a method of shifting the seeding period can be considered.
  • the object of the present invention is to provide a new rice cultivar that has become faster than the original variety, and a method for quickly cultivating a rice individual.
  • the present inventor has replaced the chromosomal fragment of a specific region present on the third chromosome of the rice cultivar Habataki with the rice cultivar Koshihikari, so that the harvest period can be improved over that of Koshihikari.
  • the present invention has been completed by finding that it can be accelerated.
  • the present invention (1) Rice cultivar Koshihikari Kazusa 5 (Oryza sativa L. cultivar Koshihikari-kazusa5 gou), whose cultivar registration application number is 25586, (2) A progeny individual obtained by mating two individuals selected from the group consisting of an individual of the variety described in (1) and a progeny individual of the individual of the variety described in (1), (3) A method for discriminating whether a rice individual is a specific variety,
  • the SNP corresponding to the 31st, 521, and 442nd SNP (single nucleotide polymorphism) in the 3rd chromosome of rice cultivar Nipponbare is A DNA in rice cultivar Koshihikari and C in rice cultivar Habataki as DNA marker M1
  • the SNP corresponding to the 31st, 689th, and 690th SNPs of chromosome 3 of rice cultivar Nipponbare (C for rice cultivar Koshihikari and T for rice cultivar Habataki) is defined as DNA marker
  • a rice cultivar Habataki is substituted with a chromosomal fragment consisting of the region, a method for premature rice individuals, (5) A region corresponding to the region from the 31,720,064th base to the 32,314,677th base in the third chromosome of the rice variety Nipponbare in the third chromosome of the rice individual Koshihikari Kazusa No.
  • a rice cultivar Habataki is substituted with a chromosomal fragment consisting of the region, a method for premature rice individuals, (6)
  • the upstream end of the chromosome fragment is present in a region corresponding to a region including the 31st, 689th, 691st base to the 31st, 720, 064th base of the third chromosome of rice cultivar Nipponbare, and
  • the chromosomal fragment is present so that the downstream end of the chromosomal fragment is present in a region corresponding to the region from the 32,314,677th base to the 32,363,156th base of the third chromosome of rice cultivar Nipponbare.
  • a rice cultivar Habataki is substituted with a chromosomal fragment consisting of the region, a method for premature rice individuals, (8) the upstream end of the chromosomal fragment is present in a region corresponding to a region including from the 31,521,443th base to the 31,689,690th base of the third chromosome of rice cultivar Nipponbare;
  • the chromosomal fragment is present so that the downstream end of the chromosomal fragment is present in the region corresponding to the region from the 32,363,157th base to the 32,384,798th base of the third chromosome of rice cultivar Nipponbare.
  • a method for prematurely developing the rice individual according to (7) wherein (9) A rice cultivar produced by the method for rapidly growing a rice individual according to any one of (4) to (8), (10) A progeny individual obtained by mating two individuals selected from the group consisting of an individual of the variety described in (9) and a progeny individual of the individual of the variety described in (9), (11) A region corresponding to the region from the 32,309,502 th base to the 32,314,677 th base in the third chromosome of the rice variety Nipponbare in the third chromosome of the rice individual Koshihikari Kazusa No.
  • a rice chromosome cultivar Habataki the method comprising the step of cultivating rice individuals, characterized by replacing the chromosome fragment consisting of the region, (12)
  • Rice varieties produced by the method of late-growing the rice individuals according to (11), (13) A progeny individual obtained by mating two individuals selected from the group consisting of an individual of the variety described in (12) and a progeny individual of the individual of the variety described in (12), Is provided.
  • the rice cultivar Koshihikari Kazusa No. 5, which is a new variety of the present invention, is quicker than Koshihikari, but is a new cultivar that is almost equivalent to Koshihikari in characteristics other than the harvest period such as quality and yield.
  • the rice individual of the present invention can be made to grow faster than the original cultivar by the method for making the rice individual grow faster.
  • the chromosome fragment replacement line means a line in which only a part of the chromosome of the original variety is replaced with a chromosome fragment derived from a foreign variety.
  • the foreign cultivar is not particularly limited as long as it is a cultivar other than the original cultivar, and may be a plant cultivar of the same species as the original cultivar, or a plant cultivar of a species different from the original cultivar. It may be a variety other than plants such as animals.
  • the cultivar means a group that can be clearly distinguished from other varieties in the same species in a certain trait because the plants are of the same species and have different genetic constitutions.
  • the DNA marker is not particularly limited as long as it can detect the difference in the DNA sequence on the chromosome that can distinguish the chromosome derived from the original variety and the chromosome derived from the foreign variety.
  • DNA markers can be used.
  • the DNA marker may be, for example, a marker capable of detecting a genetic polymorphism such as SNP (Single Nucleotide Polymorphism, single gene polymorphism) or SSR (Simple Sequence Repeats, simple repeat sequence), and the like.
  • RFLP Restriction Fragment Length Polymorphism, restriction enzyme fragment length polymorphism
  • discrimination between the original variety-derived alleles and the foreign variety-derived alleles by these DNA markers can be performed by a conventional method. For example, using DNA extracted from each individual as a template, performing PCR using a primer that can specifically hybridize with a specific SNP or SSR, detecting the presence or absence of a PCR product using electrophoresis or the like, Polymorphism can be identified. In addition, after DNA extracted from each individual is treated with a restriction enzyme, the pattern of the DNA fragment can be detected using electrophoresis or the like to identify each polymorphism.
  • a primer that can specifically hybridize with a specific SNP or SSR can be designed by a conventional method using a commonly used primer design tool or the like according to the base sequence of the SNP or SSR.
  • designed primers and the like can be synthesized using any method well known in the art.
  • DNA markers known DNA markers can be used as appropriate. Moreover, the DNA marker produced newly may be sufficient. As known DNA markers, for example, in rice, the SNP marker disclosed in International Publication No. 2003/070934, etc., Rice Genome Research Program (RGP: http://rgp.dna.affrc.go.jp) /Publicdata.html) publicly available DNA markers can be used.
  • RGP Rice Genome Research Program
  • the gene information of each variety can be obtained from, for example, NCBI (National center for Biotechnology Information) and DDBJ (DNA Data Bank of Japan), which are international base sequence databases.
  • the genetic information of each rice variety can be obtained from KOME (Knowledge-based Oryza Molecular biologic Encyclopedia, http://cdna01.dna.affrc.go.jp/cDNA/).
  • the region from the Xth base to the Yth base of the chromosome of rice cultivar Nipponbare is the nucleotide sequence of the genomic DNA of rice cultivar Nipponbare published in RGB (version 4; IRGSP- This is an area determined based on build4-06 / 04/21).
  • the region corresponding to the region from the Xth base to the Yth base of the chromosome of rice cultivar Nipponbare refers to the chromosome of the rice cultivar Nipponbare in the chromosome of the rice individual. This region is highly homologous to the region, and can be determined by aligning the known genomic DNA of the rice cultivar Nipponbare and the base sequence of the genomic DNA of the rice individual so as to have the highest homology.
  • SNPs corresponding to SNPs of rice varieties Nipponbare” in rice individuals other than rice varieties Nipponbare include the known genomic DNA of rice varieties Nipponbare and the genomic DNA of the rice individual in the region containing the SNP. , When aligned so that the homology is highest, it means a base at a position corresponding to the SNP.
  • the inventors of the present invention In order to breed new varieties that are a little earlier or a little later than conventional varieties, the inventors of the present invention first crossed the rice cultivar Habataki and the rice cultivar Koshihikari with respect to the heading stage, and QTL ( Quantitative Trait Locus) analysis was performed. As a result, it was found that QTL that delayed the heading period and became late life was present in the QTS4 region of the long arm of chromosome 3. By substituting the gene contained in this region of Koshihikari with a gene derived from Habataki, it was predicted that late rice would be obtained rather than the original cultivar Koshihikari.
  • QTL Quantitative Trait Locus
  • FIG. 1 is a diagram schematically showing genomes of Koshihikari, QTS4 heterotype, and QTS4 homotype. Furthermore, when the heading time of each rice was measured in a field in Chiba Prefecture (seeding date: May 6, 2010, transplanting date: June 1, 2010), the heading of Koshihikari as shown in FIG. QTS4 heterotype was from August 9 to August 12, while QTS4 homotype was from August 11 to August 16, whereas the period was from July 31 to August 5. . That is, it was found that both the QTS4 heterotype and the QTS4 homotype are clearly late-life than the original Koshihikari, and the tendency is stronger in the QTS4 homotype than in the QTS4 heterotype.
  • FIG. 3 is a diagram schematically showing Koshihikari and QTS14 homotype genomes. Further, when the heading time of each rice was measured in a field in Chiba Prefecture (seeding date: May 6, 2010, transplanting date: June 1, 2010), as shown in FIG. 4, heading of Koshihikari The QTS14 homotype was from July 24 to July 26, whereas the period was from August 5 to August 8. In other words, it was found that the QTS14 homotype was clearly earlier than the original variety Koshihikari.
  • a chromosome fragment that expresses a late-life trait contained in the Habataki-derived QTS4 region (hereinafter, a late-cause chromosome fragment) and an early-early life that is contained in the Habataki-derived QTS14 region.
  • a late-cause chromosome fragment a late-cause chromosome fragment
  • an early-early life that is contained in the Habataki-derived QTS14 region.
  • the QTS4 area and the QTS14 area are adjacent to each other. For this reason, the present inventor attempted to produce rice that is a little earlier or slightly later than Koshihikari by replacing the Habataki-derived chromosomal fragment of the region including both regions and the region between them with Koshihikari.
  • the DNA marker M2 is located upstream or upstream of a region including the QTS4 region and the QTS14 region (hereinafter, “(QTS4 + QTS14) region”), the DNA marker M1 is upstream of the DNA marker M2, and the downstream of the (QTS4 + QTS14) region.
  • a DNA marker M4 was set at the side end or downstream thereof, a DNA marker M5 was set downstream of the DNA marker M4, and a DNA marker M3 was set in the (QTS4 + QTS14) region.
  • the progeny individuals were obtained such that the upstream end of “L”) was between DNA markers M1 and M2, and the downstream end of the region was between DNA markers M4 and M5.
  • the progeny individuals are of the same type as Koshihikari, whose DNA markers M1 and M5 are the original varieties, and the DNA markers M2, M3, and M4 are of the same type as Habataki.
  • the distance d1 between the DNA markers M1 and M2 is long, the upstream end of the foreign-variety-derived chromosome fragment (in this application, Habataki-derived chromosome fragment) L exists.
  • the range to be obtained is wide, and the length of the introduced Habataki-derived chromosome fragment L is difficult to determine.
  • the distance d1 is short, the range in which the upstream end of the Habataki-derived chromosome fragment L can exist is narrow, and the length of the Habataki-derived chromosome fragment L to be introduced is easily determined.
  • the distance d3 between the DNA markers M4 and M5 is long, the range in which the downstream end of the Habataki-derived chromosome fragment L can exist is wide, and the length of the Habataki-derived chromosome fragment L to be introduced becomes difficult to determine. If d3 is short, the range in which the downstream end of Habataki-derived chromosome fragment L can exist is narrow, and the length of Habataki-derived chromosome fragment L to be introduced is easily determined.
  • the introduction of a gene other than the target gene means that a gene other than the target gene existing in the original variety is also replaced, and the excellent traits possessed by the original variety are inadvertently damaged. There is a risk of being lost.
  • the length of the Habataki-derived chromosome fragment L is the shortest region including the QTS4 region and the QTS14 region (the region from the upstream end of the QTS14 region to the downstream end of the QTS4 region, hereinafter referred to as “(QTS4 + QTS14) region”). It is preferable that it is not unnecessarily long compared to the above.
  • the present inventor established a plurality of sets of DNA markers M1 to M5, created a plurality of individuals into which chromosome fragments having different lengths including the (QTS4 + QTS14) region were introduced, and examined the heading time of each individual. As a result, all of them were early-growing individuals whose heading stage was slightly earlier than Koshihikari.
  • the SNP (A in rice cultivar Koshihikari and C in rice cultivar Habataki) corresponding to SNP (single nucleotide polymorphism) of chromosome 3,521,442 of chromosome 3 of cultivar Nipponbare is DNA marker M1 (DNA marker M1-Ac)
  • SNP (C for rice cultivar Koshihikari and T for rice cultivar Habataki) is the DNA marker M2 (DNA marker M2-Ct)
  • the rice cultivar Nihonbara SNP corresponding to the 32, 208, and 924 th SNPs of chromosome 3 is the DNA marker M3 (DNA marker M3-Ag), and the SNP corresponding to the 32,363,157th
  • Rice cultivar Koshihikari Kazusa No. 5 is an individual produced using a DNA marker set in which the length of the introduced Habataki-derived chromosome fragment is the shortest among the DNA marker sets used for breeding new varieties.
  • Koshihikari Kazusa No. 5 is a new cultivar produced by the method described in Patent Document 1, and it is very early that it maintains the excellent traits such as taste of Koshihikari even though it is a little earlier than Koshihikari. It is an excellent variety. Therefore, the applicant filed a variety registration application for Koshihikari Kazusa No. 5 under the Japanese Seedling Law (Act No. 83 of May 29, 1998). : January 28, 2011, kind registration application number: No. 25586).
  • the region of rice cultivar Koshihikari kazusa 5 is composed of a chromosome fragment comprising the region of rice cultivar Habataki, it may be replaced with a chromosome fragment comprising the region of rice cultivar Koshihikari kazusa 5.
  • the rice individual that is rapidly grown by introducing a chromosome fragment comprising the region of the rice cultivar Habataki may be any cultivar that has the same or similar base sequence as the rice cultivar Koshihikari, although not limited to Koshihikari, it is preferable that it is a rice variety Koshihikari or a new variety produced using it as a parent variety from the viewpoint of consumer preference.
  • the upstream end of the chromosomal fragment derived from the rice cultivar Habataki (or the rice cultivar Koshihikari Kazusa No. 5) is located downstream from the DNA marker M1-Ac and up to the DNA marker M2-Ct (that is, rice A region corresponding to the region from the 31st, 521, 443th base to the 31st, 689th, 690th base in the third chromosome of the cultivar Nipponbare, the downstream end of which is from the DNA marker M4-At to the DNA Present in the region upstream from the marker M5-Tg (ie, the region corresponding to the region from the 32,363,157th base to the 32,384,798th base in the third chromosome of the rice variety Nipponbare)
  • the chromosome fragment into the third chromosome of a rice individual, it has a clear effect on traits other than the heading stage. And without the rice individuals, it is possible to early reduction than the original cultivar.
  • Hd6 contains a region encoding the Casein kinase II subunit alpha gene (Takahashi, et.al., PNAS (2001) vol.98, No.14, p7922-7927).
  • the region encoding the gene of the rice variety Habataki has a different sequence from the allele of the rice variety Koshihikari.
  • the causative gene causing late vegetation in the QTS4 region is the Casein kinase II subunit alpha gene.
  • the chromosome fragment derived from the rice cultivar Habataki introduced into the chromosome of the rice individual by substitution was found to contain the rice cultivar. It was confirmed that the entire region encoding the gene of Habataki was included.
  • the Casein kinase II subunit alpha gene is an allele fragment of the rice cultivar Nipponbare, which has been published in the region from the 32,309,502th base to the 32,314,677th base of the 3rd chromosome of the rice cultivar Karasasu.
  • the regions from the 32,350,406th base to the 32,362,686th base are mapped. Therefore, the region corresponding to the region from the 32,309,502th base to the 32,314,677th base in the third chromosome of the rice cultivar Nipponbare in the third chromosome of the rice individual is designated as the rice cultivar Koshihikari.
  • the gene contained in the QTS14 region was examined, a region encoding the phytochrome C gene was contained in the vicinity of 31.7 Mbp of the third chromosome in the region. It has been reported that this gene is mainly involved in the control of plant flowering time (US Pat. No. 7,656,815). Therefore, it is inferred that the causative gene causing prematurity in the QTS14 region is the phytochrome C gene.
  • the phytochrome C gene is mapped to the region from the 31,720,064th base to the 31,724,043rd base of the third chromosome in the rice cultivar Nipponbare. Therefore, the region corresponding to the region from the 31st, 720, 064th base to the 31st, 724, 043th base in the 3rd chromosome of the rice cultivar Nipponbare in the 3rd chromosome of the rice individual is designated as the rice cultivar Koshihikari.
  • a chromosome fragment comprising the region of Kazusa No. 5 or the rice cultivar Habataki, rice individuals can be prematurely born.
  • the region containing the late-causing gene in the QTS4 region and the region containing the early-causing gene in the QTS14 region is replaced by a Habataki-derived chromosome fragment, the region from the DNA marker M2-Ct to the DNA marker M4-At Even in rice plants in which a short region is replaced by a Habataki-derived chromosome fragment, it is considered that premature aging is caused as in the rice cultivar Koshihikari Kazusa No. 5.
  • the region corresponding to the region from the 31st, 720, 064th base to the 32, 314th, 677th base in the third chromosome of the rice cultivar Nipponbare in the chromosome of the rice individual is the rice cultivar Koshihikari Kazusa 5 It is considered that the rice individual can be born faster than the original variety by substituting the chromosome fragment consisting of the region of No. or rice variety Habataki. In this case, the upstream end of the chromosome fragment is present in a region corresponding to the region from the 31st, 689th, 691st base to the 31st, 720th, 064th base of the third chromosome of rice cultivar Nipponbare.
  • the chromosome end of the chromosome fragment is present in the region corresponding to the region from the 32,314,677th base to the 32,363,156th base of the third chromosome of rice cultivar Nipponbare.
  • Rice cultivar Koshihikari Kazusa No. 5 is a new cultivar whose heading time has been slightly advanced without clearly affecting other characteristics of Koshihikari such as yield. For this reason, for example, even when Koshihikari and Koshihikari Kazusa No. 5 were sowed at almost the same time, Koshihikari Kazusa No. 5 reached the heading time several days earlier than Koshihikari, so Koshihikari Kazusa No. 5 was first harvested. Later, Koshihikari can be harvested. By shifting the harvesting time in this way, the harvesting operation can be dispersed even in large-scale cultivation, and it can be harvested at an appropriate time, so that good rice with good taste can be harvested.
  • Rice cultivar Koshihikari Kazusa No. 5 can be cultivated by the same method as the original cultivar Koshihikari, and rice can be harvested by self-mating or artificial mating.
  • the rice variety Koshihikari Kazusa No. 5 and its progeny individuals can be used as parent individuals for breeding new varieties, similar to the original variety Koshihikari. For example, trying to breed a new variety by crossing an individual of rice variety Koshihikari Kazusa No. 5 with an individual of a different variety and backcrossing the obtained progeny individual with an individual of rice variety Koshihikari Kazusa No. 5 You can also.
  • DNA marker M1-Ac DNA marker M2-Ct
  • DNA marker M3-Ag DNA marker M4-At
  • DNA marker M5-Tg DNA marker M5-Tg
  • the method for distinguishing rice varieties of the present invention is a method for discriminating whether or not a rice individual is a specific variety, and by analyzing the genome of the rice individual, the DNA marker M1-Ac, One or more DNA markers selected from the group consisting of the DNA marker M2-Ct, the DNA marker M3-Ag, the DNA marker M4-At, and the DNA marker M5-Tg are typed, and the obtained typing result is the rice cultivar Koshihikari. When the results match those of Kazusa No.
  • the rice individual is the rice variety Koshihi Characterized by discriminating that the RiKazusa No. 5.
  • all of the DNA markers M1 to M5 may be used for identifying the varieties, or some of the five DNA markers may be used.
  • only DNA markers M1 and M2 that are upstream recombination points may be used, only DNA markers M4 and M5 that are downstream recombination points may be used, or only DNA markers M2 and M4 may be used.
  • Good. By appropriately combining a plurality of DNA markers, more rigorous product identification becomes possible.
  • Example 1 Among the Koshihikari chromosomes, the chromosome fragment replacement system in which only a part including the (QTS4 + QTS14) region was replaced with the Habataki-derived chromosome fragment was used as a parent individual, and a new variety with a little earlier harvesting season than the original variety Koshihikari was created. . First, chromosomal fragment substitution lines and Koshihikari were crossed, and 10 progeny individuals (seed) whose DNA marker M3-Ag is a heterochromosomal region of Koshihikari-derived allele and Habataki-derived allele were harvested. All the seeds obtained were cultivated, self-bred (self-mating), and seeds that were progeny individuals were harvested.
  • the harvested seeds were further cultivated. After growing to the extent that it can be transplanted to the field, DNA is collected from the leaves of each cultivated individual, and the DNA marker M1-Ac is the homochromosomal region of the Koshihikari-derived allele, and the DNA marker M2-Ct and the DNA marker M3 (DNA marker A cultivated individual in which M3-Ag) is a heterochromosomal region of an allele derived from Koshihikari and an allele derived from Habataki was selected. The selected cultivated individuals were bred (self-mating), and seeds that were progeny individuals were harvested. The harvested seeds are further cultivated and grown to such an extent that they can be transplanted to the field.
  • FIG. 6 is a diagram schematically showing the genome of Koshihikari Kazusa No. 5.
  • Koshihikari Kazusa No. 5 and Koshihikari were compared (conducted in Chiba Prefecture in 2009).
  • the examination of the traits was conducted in accordance with the characteristic examination for the variety registration application based on Article 5 Paragraph 1 of the Seedling and Seedling Law (Act No. 83 of 1998).
  • the examination results are shown in Tables 2-5.
  • Koshihikari Kazusa No. 5 was about 5-6 days earlier than Koshihikari in both heading and maturity.
  • Koshihikari Kazusa No. 5 had a slightly shorter pod length, main stem length, main stem length, and fewer ears and main stem grains than Koshihikari, but other traits were basically Koshihikari. Was the same.
  • the rice cultivar Koshihikari Kazusa No. 5, which is a new variety of the present invention, has the same quality and yield as Koshihikari except that it is quicker than Koshihikari, so it can be used particularly in the field of agriculture. Moreover, since the rice individual of the present invention can be made to grow faster than the original variety, the method can be used particularly in the field of plant breeding.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、元品種よりも早生化されたイネの新品種、及びイネ個体を早生化する方法の提供を目的とする。本発明は、品種登録出願番号が第25586号であるイネ品種コシヒカリかずさ5号、前記記載の品種の個体及びこの後代個体からなる群より選択される2個体を交配して得られる後代個体、並びに、イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法に係る。

Description

新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
 本発明は、非遺伝子組み換え法により作出された新品種、当該新品種の鑑別方法、及びイネ個体を早生化する方法に関する。
 同一生物種に属するが、遺伝的構成が異なるために、ある形質において他の集団と異なる集団を品種という。すなわち、同じ種類の植物であったとしても、品種により、栽培の難易性や病虫害に対する抵抗性、収量、品質等が異なる。このため、農作物、特にイネやムギ類等の主要な作物においては、より優良な品種を得るための品種改良が古くから行われており、近年では、種苗会社等のみならず、国や県等の公的機関においても積極的に行われてきている。
 近年の核酸解析技術等の進歩に伴い、シロイヌナズナ、イネ、コムギ等の様々な植物の遺伝子が解析され、得られた遺伝子情報が開示されている。これらの開示された遺伝子情報を利用して、遺伝子組み換え法による外来種の遺伝子を導入する品種改良も多く行われている。しかしながら、遺伝子組み換え法による品種改良は、通常は交配不可能な遠縁種が有する形質を導入し得るという利点はあるものの、その安全性に対する検証は必ずしも十分ではないという問題点がある。
 このため、イネをはじめとする食用植物においては、非遺伝子組み換え法による新品種の作出が多く行われている。例えば特許文献1には、非遺伝子組み換え法により、外来の有用な染色体断片で置換する場合に、導入される外来品種由来の染色体断片による置換領域をコントロールし、元品種が有する好ましい形質を変更することなく、標的形質を有する新品種を作製するための方法が開示されている。
 特に、イネでは、従来の品種と同じ品質・収穫量を備えつつ、従来の品種よりも少し早生若しくは少し晩生である品種の育種が望まれている。日本の大部分の水田では、消費者が好むイネ品種コシヒカリが栽培されているが、コシヒカリのみを大規模に栽培した場合、短期間に収穫関連作業が集中し、大変な労力を要する。特に、大量のイネを収穫する場合、必ずしも各個体に最適な時期に収穫できるとは限らないが、早めに収穫しても、遅くに収穫しても、米の食味や収量に影響するため、農家にとっては大きな問題となっている。収穫期をずらす方法として、種まき期をずらす、という方法が考えられる。しかしながら、コシヒカリは強い感光性を持っているために、たとえ種まき期を2~3日ずらしたとしても、同じ時期に収穫期を迎えることになる。一方で、種まき期を10日又はそれ以上ずらすことにより、収穫期を分散させることは可能である。しかしながら、種まき期を大幅にずらした場合には、生育期間が短くなり、充分な収穫量が得られないという問題がある。少し早生若しくは少し晩生な品種と従来の品種とを栽培できれば、収穫期をずらすことができるため、品種ごとにそれぞれ時期をずらして収穫作業を行えることが期待できる。
 しかしながら、従来の品種よりも少し早生若しくは少し晩生な品種、すなわち、僅かに出穂期や収穫期をずらすという微妙な調整を施したコシヒカリ品種を育成することは、技術的に非常に困難である。これは、出穂期のわずかな差を検出し、それと関連する遺伝子を特定することが難しいためである。このような微妙な出穂期の差を遺伝的に検出するためには、水田の土壌や肥料、水、空気の流れなどの圃場環境が極めて均一になっているような精密圃場を要するだけでは足らず、種まき用の種の状態も均一にする必要があるが、現実には非常に困難である。実際には、通常、日本の水田では遺伝的に同じような品種でも、同じ日に種まきして、同じ日に田植えしても7日程度のずれが生じる。つまり、最初に出穂した日と最後に出穂した日との間に7日間もある。農業試験場などの場合は割と精度の高い圃場を使っているものの、それでも3~5日間のずれが生じるのが普通である。 
特許第4409610号公報
 本発明は、元品種よりも早生化されたイネの新品種、及びイネ個体を早生化する方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した結果、イネ品種ハバタキの第3染色体上に存在する特定の領域の染色体断片を、イネ品種コシヒカリに置換することにより、コシヒカリよりも収穫期を早めることが可能であることを見出し、本発明を完成させた。 
 すなわち、本発明は、
(1) 品種登録出願番号が第25586号である、イネ品種コシヒカリかずさ5号(Oryza sativa L.cultivar Koshihikari-kazusa5 gou)、
(2) 前記(1)記載の品種の個体及び前記(1)記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体、
(3) あるイネ個体が、特定の品種であるか否かを鑑別する方法であって、
イネ品種日本晴の第3染色体中の31,521,442番目のSNP(一塩基多型)に相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではC)をDNAマーカーM1とし、
イネ品種日本晴の第3染色体の31,689,690番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM2とし、
イネ品種日本晴の第3染色体の32,208,924番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM3とし、
イネ品種日本晴の第3染色体の32,363,157番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM4とし、
イネ品種日本晴の第3染色体の32,384,799番目のSNPに相当するSNP(イネ品種コシヒカリではT、イネ品種ハバタキではG)をDNAマーカーM5とし、
当該イネ個体のゲノム解析により、前記DNAマーカーM1~M5からなる群より選択される1以上のDNAマーカーをタイピングし、
得られたタイピング結果がイネ品種コシヒカリかずさ5号(Oryza sativa L.cultivar Koshihikari-kazusa5 gou)の結果と一致する場合に、当該イネ個体がイネ品種コシヒカリかずさ5号であると鑑別することを特徴とする、イネ品種の鑑別方法、
(4) イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法、
(5) イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から32,314,677番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法、
(6) 前記染色体断片の上流端が、イネ品種日本晴の第3染色体の31,689,691番目の塩基から31,720,064番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の32,314,677番目の塩基から32,363,156番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする前記(5)記載のイネ個体を早生化する方法、
(7) イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,689,690番目の塩基から32,363,157番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法、
(8) 前記染色体断片の上流端が、イネ品種日本晴の第3染色体の31,521,443番目の塩基から31,689,690番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の32,363,157番目の塩基から32,384,798番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする前記(7)記載のイネ個体を早生化する方法、
(9) 前記(4)~(8)のいずれか一つに記載のイネ個体を早生化する方法により作出されたイネ品種、
(10) 前記(9)記載の品種の個体及び前記(9)記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体、
(11) イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の32,309,502番目の塩基から32,314,677番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を晩生化する方法、
(12) 前記(11)に記載のイネ個体を晩生化する方法により作出されたイネ品種、
(13) 前記(12)記載の品種の個体及び前記(12)記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体、
を、提供するものである。
 本発明の新品種であるイネ品種コシヒカリかずさ5号は、コシヒカリよりも早生化されているが、品質や収穫量等の収穫期以外の特性はコシヒカリとほぼ同等な新品種である。
 また、本発明のイネ個体を早生化する方法により、イネ個体を元品種よりも早生化することができる
コシヒカリ、QTS4ヘテロタイプ、及びQTS4ホモタイプのゲノムを模式的に表した図である。 コシヒカリ、QTS4ヘテロタイプ、及びQTS4ホモタイプの出穂期を調べた結果を示した図である。 コシヒカリ、及びQTS14ホモタイプのゲノムを模式的に表した図である。 コシヒカリ、及びQTS14ホモタイプの出穂期を調べた結果を示した図である。 コシヒカリの第3染色体上のQTS4領域、QTS14領域及びDNAマーカーの位置を模式的に示した図である。 コシヒカリかずさ5号のゲノムを模式的に表した図である。 コシヒカリかずさ5号、コシヒカリ、QTS4ホモタイプ、及びQTS14ホモタイプの出穂期を調べた結果を示した図である。
 本発明において染色体断片置換系統とは、元品種の染色体の一部のみが外来品種由来の染色体断片に置換されている系統を意味する。ここで、外来品種は、元品種以外の品種であれば特に限定されるものではなく、元品種と同一種の植物の品種であってもよく、元品種と異なる種の植物の品種であってもよく、動物等の植物以外の品種であってもよい。なお、本発明において品種とは、同一種の植物であって、遺伝的構成が異なるために、ある形質において同種内の他品種から明確に識別し得る集団を意味する。
 本発明においてDNAマーカーは、元品種由来の染色体と外来品種由来の染色体を識別し得る染色体上のDNA配列の差異を検出し得るものであれば、特に限定されるものではなく、遺伝子解析分野で通常用いられているDNAマーカーを用いることができる。該DNAマーカーとして、例えば、SNP(Single Nucleotide Polymorphism、一遺伝子多型)やSSR(Simple Sequence Repeats、単純反覆配列)の繰り返し数の違い等の遺伝子多型を検出し得るマーカーであってもよく、RFLP(Restriction Fragment Length Polymorphism、制限酵素断片長多型)マーカーであってもよい。なお、これらのDNAマーカーによる、元品種由来アレルと外来品種由来アレルとの識別は、常法により行うことができる。例えば、各個体から抽出したDNAを鋳型とし、特定のSNPやSSRと特異的にハイブリダイズし得るプライマー等を用いてPCRを行い、電気泳動法等を用いてPCR産物の有無を検出し、各多型を識別することができる。また、各個体から抽出したDNAを制限酵素処理した後、電気泳動法等を用いてDNA断片のパターンを検出し、各多型を識別することができる。なお、特定のSNPやSSRと特異的にハイブリダイズし得るプライマー等は、該SNPやSSRの塩基配列に応じて、汎用されているプライマー設計ツール等を用いて常法により設計することができる。また、設計されたプライマー等は、当該技術分野においてよく知られている方法のいずれを用いても合成することができる。
 これらのDNAマーカーは、公知のDNAマーカーを適宜用いることができる。また、新規に作製したDNAマーカーであってもよい。公知のDNAマーカーとして、例えば、イネにおいては、国際公開第2003/070934号パンフレット等において開示されているSNPマーカーや、Rice Genome Research Program(RGP:http://rgp.dna.affrc.go.jp/publicdata.html)において公開されているDNAマーカーを用いることができる。
 なお、各品種の遺伝子情報等は、例えば、国際的な塩基配列データベースであるNCBI(National center for Biotechnology Information)やDDBJ(DNA Data Bank of Japan)等において入手することができる。特にイネの各品種の遺伝子情報は、KOME(Knowledge-based Oryza Molecular biological Encyclopedia、http://cdna01.dna.affrc.go.jp/cDNA/)等において入手することができる。
 本発明及び本願明細書において「イネ品種日本晴の染色体のX番目の塩基からY番目の塩基までの領域」は、RGBにおいて公開されているイネ品種日本晴のゲノムDNAの塩基配列(バージョン4;IRGSP-build4-06/04/21)に基づいて決定される領域である。
 また、本発明及び本願明細書において、「イネ品種日本晴の染色体のX番目の塩基からY番目の塩基までの領域に相当する領域」とは、イネ個体の染色体中のイネ品種日本晴の染色体中の当該領域と相同性の高い領域であり、イネ品種日本晴の公知のゲノムDNAと当該イネ個体のゲノムDNAの塩基配列を、最もホモロジーが高くなるようにアラインメントすることにより決定することができる。また、イネ品種日本晴以外のイネ個体中の「イネ品種日本晴のSNPに相当するSNP」は、当該SNPを含む領域において、イネ品種日本晴の公知のゲノムDNAと当該イネ個体のゲノムDNAの塩基配列を、最もホモロジーが高くなるようにアラインメントした場合に、当該SNPに対応する位置にある塩基を意味する。
 従来の品種よりも少し早生若しくは少し晩生である新品種を育種するため、本発明の発明者は、まず、出穂期に関して、イネ品種ハバタキとイネ品種コシヒカリとを交配して、分離集団でQTL(Quantitative Trait Locus) 解析を行った。この結果、第3染色体の長腕のQTS4領域に、出穂期を遅らせ、晩生とするQTLが存在していることがわかった。コシヒカリの当該領域に含まれている遺伝子をハバタキ由来の遺伝子に置換することにより、元品種コシヒカリよりも晩生のイネが得られると予想された。
 そこで、コシヒカリで戻し交配をして、コシヒカリのQTS4領域〔イネ品種日本晴の第3染色体の32,309,502番目の塩基から32,314,677番目の塩基までの領域に相当する領域〕を、ハバタキ由来の染色体断片に置換した染色体断片置換系統を作製した。この際、相同染色体の一方のQTS4領域のみがハバタキ由来の染色体断片に置換されたQTS4ヘテロタイプと、相同染色体の両方のQTS4領域がハバタキ由来の染色体断片に置換されたQTS4ホモタイプの両方の個体を得た。図1は、コシヒカリ、QTS4ヘテロタイプ、及びQTS4ホモタイプのゲノムを模式的に表した図である。さらに、千葉県にある圃場において、各イネの出穂期を測定したところ(種まき日:2010年5月6日、移植日: 2010年6月1日)、図2に示すように、コシヒカリの出穂期が7月31日~8月5日であったのに対して、QTS4ヘテロタイプは8月9日~8月12日であり、QTS4ホモタイプは8月11日~8月16日であった。つまり、元品種のコシヒカリよりも、QTS4ヘテロタイプ及びQTS4ホモタイプのいずれも明らかに晩生であり、QTS4ヘテロタイプよりもQTS4ホモタイプのほうがその傾向が強いことが判明した。
 また、出穂期に関するQTL解析において、イネ品種ハバタキの第3染色体の長腕のQTS14領域〔イネ品種日本晴の第3染色体の31,720,064番目の塩基から31,724,043番目の塩基までの領域に相当する領域〕に、出穂期を早め、早生とするQTLが存在していることもわかった。コシヒカリの当該領域に含まれている遺伝子をハバタキ由来の遺伝子に置換することにより、元品種コシヒカリよりも早生のイネが得られると予想された。
 そこで、コシヒカリで戻し交配をして、コシヒカリのQTS14領域をハバタキ由来の遺伝子断片に置換した染色体断片置換系統を作製した。図3は、コシヒカリ、及びQTS14ホモタイプのゲノムを模式的に表した図である。さらに、千葉県にある圃場において、各イネの出穂期を測定したところ(種まき日:2010年5月6日、移植日: 2010年6月1日)、図4に示すように、コシヒカリの出穂期が8月5日~8月8日であったのに対して、QTS14ホモタイプは7月24日~7月26日であった。つまり、元品種のコシヒカリよりも、QTS14ホモタイプは明らかに早生であることが判明した。
 これらの結果から、本発明の発明者は、ハバタキ由来のQTS4領域に含まれている晩生形質を発現させる染色体断片(以下、晩生原因染色体断片)と、ハバタキ由来のQTS14領域に含まれている早生形質を発現させる染色体断片(以下、早生原因染色体断片)との両方を、コシヒカリの対応する染色体断片と置換して導入することにより、コシヒカリとは微妙な出穂期の違いを生じる新品種を育種し得るのではないかと考えた。
 QTS4領域とQTS14領域は互いに隣接している。このため、本発明者は、両領域とその間の領域を含む領域のハバタキ由来の染色体断片をコシヒカリに置換して導入することにより、コシヒカリよりも少し早生若しくは少し晩生のイネの作出を試みた。
 非遺伝子組み換え法により植物の品種改良を行う場合において、導入される外来品種由来の染色体断片が大きすぎる場合には、目的の形質遺伝子以外の機能不明な他の遺伝子を多数導入してしまうおそれや、元品種が有する好ましい形質を損なうおそれがある。そこで、本発明者は、導入される外来品種由来の染色体断片による置換領域をコントロールし、元品種が有する好ましい形質を変更することなく、標的形質を有する新品種を作製するため、特許文献1に記載の方法により、新品種の作出を行った。
 具体的には、まず、公知のイネの遺伝子情報に基づき、図5に示すような位置関係にある5種類のDNAマーカーを設定した。すなわち、QTS4領域とQTS14領域を含む領域(以下、「(QTS4+QTS14)領域」)の上流側末端又はその上流にDNAマーカーM2を、DNAマーカーM2の上流にDNAマーカーM1を、(QTS4+QTS14)領域の下流側末端又はその下流にDNAマーカーM4を、DNAマーカーM4の下流にDNAマーカーM5を、(QTS4+QTS14)領域中にDNAマーカーM3を、それぞれ設定した。次いで、コシヒカリの染色体のうち、(QTS4+QTS14)領域を含む一部分のみがハバタキ由来の染色体断片に置換されている染色体断片置換系統に対して、戻し交配を行い、得られた交雑集団から前記5種類のDNAマーカーM1~M5に基づいて好ましい個体を選抜した。その後、当該個体に対して適宜自家交配又は戻し交配を行い、同様にDNAマーカーM1~M5に基づいて好ましい個体を選抜することを適宜繰り返すことにより、ハバタキ由来の染色体断片により置換される領域(図5中、「L」)の上流側末端がDNAマーカーM1とM2の間、該領域の下流側末端がDNAマーカーM4とM5の間にあるような後代個体を得た。図5に示すように、当該後代個体は、DNAマーカーM1及びM5が元品種であるコシヒカリと同じタイプであり、DNAマーカーM2、M3、及びM4が、ハバタキと同じタイプである。
 ここで、特許文献2に記載の新品種の製造方法では、DNAマーカーM1とM2の距離d1が長ければ、外来品種由来染色体断片(本願では、ハバタキ由来染色体断片)Lの上流側末端が存在し得る範囲が広く、導入されるハバタキ由来染色体断片Lの長さが確定しにくくなる。一方、距離d1が短ければ、ハバタキ由来染色体断片Lの上流側末端が存在し得る範囲が狭く、導入されるハバタキ由来染色体断片Lの長さが確定しやすくなる。同様に、DNAマーカーM4とM5の距離d3が長ければ、ハバタキ由来染色体断片Lの下流側末端が存在し得る範囲が広く、導入されるハバタキ由来染色体断片Lの長さが確定しにくくなり、距離d3が短ければ、ハバタキ由来染色体断片Lの下流側末端が存在し得る範囲が狭く、導入されるハバタキ由来染色体断片Lの長さが確定しやすくなる。
 ハバタキ由来染色体断片Lの長さが長くなるほど、QTS4領域とQTS14領域以外の領域に存在する遺伝子も、QTS4領域やQTS4領域に存在する目的の遺伝子とともに元品種コシヒカリに導入される可能性が高くなる。目的の遺伝子以外の遺伝子も導入されるということは、元品種に存在する目的遺伝子以外の遺伝子も置換されてしまうということであり、元品種が有していた優れた形質が、不用意に損なわれてしまうおそれがある。このため、ハバタキ由来染色体断片Lの長さは、QTS4領域とQTS14領域を含む最短の領域(QTS14領域の上流端からQTS4領域の下流端までの領域、以下、「(QTS4+QTS14)領域」ということがある。)と比べて不必要に長くないことが好ましい。
 本発明者は、DNAマーカーM1~M5のセットを複数設定し、(QTS4+QTS14)領域を含む長さの異なる染色体断片が導入された複数の個体を作出し、各個体の出穂期を調べた。この結果、いずれもコシヒカリよりも少し出穂期が早い早生の個体であった。さらに、各個体の出穂期以外の形質(例えば、食味や収穫量等)をコシヒカリと比較したところ、後記実施例1に示すように、表1に示すDNAマーカーM1~M5のセット、すなわち、イネ品種日本晴の第3染色体の31,521,442番目のSNP(一塩基多型)に相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではC)をDNAマーカーM1(DNAマーカーM1-Ac)とし、イネ品種日本晴の第3染色体の31,689,690番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM2(DNAマーカーM2-Ct)とし、イネ品種日本晴の第3染色体の32,208,924番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM3(DNAマーカーM3-Ag)とし、イネ品種日本晴の第3染色体の32,363,157番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM4(DNAマーカーM4-Gc)とし、イネ品種日本晴の第3染色体の32,384,799番目のSNPに相当するSNP(イネ品種コシヒカリではT、イネ品種ハバタキではG)をDNAマーカーM5(DNAマーカーM5-Tg)としてそれぞれ用いて作出された個体(イネ品種コシヒカリかずさ5号(Oryza sativa L.cultivar Koshihikari-kazusa5 gou))が、出穂期以外のその他の形質はコシヒカリと同等であることが分かった(表2~5参照。)。なお、イネ品種コシヒカリかずさ5号は、新品種育種に用いたDNAマーカーセットのうち、導入されるハバタキ由来染色体断片の長さが最も短くなるDNAマーカーセットを用いて製造された個体である。
Figure JPOXMLDOC01-appb-T000001
 コシヒカリかずさ5号は、特許文献1に記載の方法により作出された新品種であり、コシヒカリよりもやや早生であるにもかかわらず、コシヒカリが有する味等の優良形質を維持しているという非常に優れた品種である。そこで、出願人は、コシヒカリかずさ5号について、日本国種苗法(平成十年五月二十九日法律第八十三号)に規定される品種登録出願を行った(品種登録出願の出願日:2011年1月28日、品種登録出願番号:第25586号)。
 これらの結果から、イネ個体の第3染色体中の、少なくともDNAマーカーM2-CtからDNAマーカーM4-Atまでの領域(すなわち、イネ品種日本晴の第3染色体中の31,689,690番目の塩基から32,363,157番目の塩基までを含む領域に相当する領域)を、イネ品種ハバタキの当該領域からなる染色体断片に置換することにより、当該イネ個体を元品種よりも早生化することができることが明らかである。なお、イネ品種コシヒカリかずさ5号の当該領域は、イネ品種ハバタキの当該領域からなる染色体断片により構成されているため、イネ品種コシヒカリかずさ5号の当該領域からなる染色体断片によって置換してもよい。また、イネ品種ハバタキの当該領域からなる染色体断片を導入することにより早生化するイネ個体は、当該領域がイネ品種コシヒカリと同一若しくは近似した塩基配列を有している品種であればよく、イネ品種コシヒカリに限定されるものではないが、消費者の嗜好性等から、イネ品種コシヒカリ又はそれを親品種として作出された新品種であることが好ましい。
 また、導入されるイネ品種ハバタキ由来(若しくはイネ品種コシヒカリかずさ5号由来)の染色体断片の上流端が、DNAマーカーM1-Acよりも下流であってDNAマーカーM2-Ctまでの領域(すなわち、イネ品種日本晴の第3染色体中の31,521,443番目の塩基から31,689,690番目の塩基までを含む領域に相当する領域)に存在し、その下流端が、DNAマーカーM4-AtからDNAマーカーM5-Tgよりも上流までの領域(すなわち、イネ品種日本晴の第3染色体中の32,363,157番目の塩基から32,384,798番目の塩基までを含む領域に相当する領域)に存在するように、当該染色体断片をイネ個体の第3染色体中に導入することにより、出穂期以外の形質に明らかな影響を及ぼすことなく、当該イネ個体を、元品種よりも早生化することができる。
 QTS4領域に含まれる遺伝子を調べたところ、当該領域中の第3染色体の32.3Mbp付近には、イネ品種日本晴とイネ品種カラカスにおいて発見された出穂期のQTL遺伝子Hd6が含まれていることがわかった。Hd6には、Casein kinase II subunit alpha遺伝子をコードする領域が含まれていることが報告されている(Takahashi, et.al., PNAS(2001) vol.98, No.14, p7922-7927)。また、イネ品種ハバタキの当該遺伝子をコードする領域は、イネ品種コシヒカリの対立遺伝子とは配列が異なる。よって、QTS4領域において晩生化を引き起こす原因遺伝子はCasein kinase II subunit alpha遺伝子であると推察される。実際に、イネ品種コシヒカリかずさ5号の第3染色体の32.3Mbp付近の塩基配列を解読したところ、置換により当該イネ個体の染色体に導入されたイネ品種ハバタキ由来の染色体断片中には、イネ品種ハバタキの当該遺伝子をコードする全領域が含まれていることが確認された。
 なお、Casein kinase II subunit alpha遺伝子は、イネ品種日本晴の対立断片では第3染色体の32,309,502番目の塩基から32,314,677番目の塩基までの領域に、公表されたイネ品種カラサスの対立断片では32,350,406番目の塩基から32,362,686番目の塩基までの領域に、それぞれマップされている。したがって、イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の32,309,502番目の塩基から32,314,677番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することにより、イネ個体を晩生化することができる。
 同様に、QTS14領域に含まれる遺伝子を調べたところ、当該領域中の第3染色体の31.7Mbp付近には、phytochrome C遺伝子をコードする領域が含まれていた。当該遺伝子は、主に植物の開花時間の制御に関与していることが報告されている(米国特許第7566815号明細書)。よって、QTS14領域において早生化を引き起こす原因遺伝子はphytochrome C遺伝子であると推察される。
 なお、phytochrome C遺伝子は、イネ品種日本晴では第3染色体の31,720,064番目の塩基から31,724,043番目の塩基までの領域にマップされている。したがって、イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することにより、イネ個体を早生化することができる。
 QTS4領域中の晩生化の原因遺伝子とQTS14領域中の早生化の原因遺伝子を含む領域がハバタキ由来の染色体断片によって置換されていれば、DNAマーカーM2-CtからDNAマーカーM4-Atまでの領域よりも短い領域がハバタキ由来の染色体断片によって置換されているイネ個体であっても、イネ品種コシヒカリかずさ5号と同様に早生化が引き起こされると考えられる。例えば、イネ個体の染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から32,314,677番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することにより、当該イネ個体を元品種よりも早生化することができると考えられる。また、この際、当該染色体断片の上流端が、イネ品種日本晴の第3染色体の31,689,691番目の塩基から31,720,064番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の32,314,677番目の塩基から32,363,156番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片をイネ個体の第3染色体中に導入することにより、出穂期以外の形質に明らかな影響を及ぼすことなく、当該イネ個体を、元品種よりも早生化することができると考えられる。
 イネ品種コシヒカリかずさ5号は、収穫量等のコシヒカリのその他の形質に明らかな影響を及ぼすことなく、出穂期が少し早められた新品種である。このため、例えばコシヒカリとコシヒカリかずさ5号とをほぼ同時期に種まきを行った場合でも、コシヒカリかずさ5号は、コシヒカリよりも数日早く出穂期を迎えるため、まず、コシヒカリかずさ5号を収穫した後、コシヒカリを収穫することができる。このように収穫時期をずらすことにより、大規模栽培においても収穫作業を分散させることができる上に、的確な時期に収穫することができるため、良食味で良好なお米を収穫することができる。
 イネ品種コシヒカリかずさ5号は、元品種コシヒカリと同様の手法により、栽培し、自家交配や人工交配により米を収穫することができる。また、イネ品種コシヒカリかずさ5号及びその後代個体は、元品種コシヒカリと同様に、新品種育成の親個体とすることができる。例えば、イネ品種コシヒカリかずさ5号の個体と別の品種の個体とを交配し、得られた後代個体を、イネ品種コシヒカリかずさ5号の個体と戻し交配することにより、新品種の育種を試みることもできる。
 また、表1に記載の5種類のDNAマーカー(DNAマーカーM1-Ac、DNAマーカーM2-Ct、DNAマーカーM3-Ag、DNAマーカーM4-At、及びDNAマーカーM5-Tg)は、イネ品種コシヒカリかずさ5号に特有のゲノム情報である。したがって、イネ品種コシヒカリかずさ5号は、これらの5種類のDNAマーカーを適宜用いて鑑別することができる。
 具体的には、本発明のイネ品種の鑑別方法は、あるイネ個体が、特定の品種であるか否かを鑑別する方法であって、当該イネ個体のゲノム解析により、DNAマーカーM1-Ac、DNAマーカーM2-Ct、DNAマーカーM3-Ag、DNAマーカーM4-At、及びDNAマーカーM5-Tgからなる群より選択される1以上のDNAマーカーをタイピングし、得られたタイピング結果が、イネ品種コシヒカリかずさ5号の結果と一致する場合、すなわち、DNAマーカーM1-AcはA(アデニン)であり、DNAマーカーM2-CtはT(チミン)であり、DNAマーカーM3-AgはG(グアニン)であり、DNAマーカーM4-AtはTであり、DNAマーカーM5-TgはTである場合に、当該イネ個体がイネ品種コシヒカリかずさ5号であると鑑別することを特徴とする。
 ここで、品種の鑑別には、DNAマーカーM1~M5の全てを用いてもよく、5個のDNAマーカーのうちの幾つかを用いてもよい。例えば、上流側の組み換えポイントであるDNAマーカーM1とM2のみを用いてもよく、下流側の組み換えポイントであるDNAマーカーM4とM5のみを用いてもよく、DNAマーカーM2とM4のみを用いてもよい。複数のDNAマーカーを適宜組み合わせることにより、より厳密な品種鑑別が可能となる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 コシヒカリの染色体のうち、(QTS4+QTS14)領域を含む一部のみがハバタキ由来の染色体断片に置換されている染色体断片置換系統を親個体とし、元品種コシヒカリよりも少し収穫期が早い新品種を作出した。
 まず、染色体断片置換系統とコシヒカリとを交配させ、DNAマーカーM3-Agが、コシヒカリ由来アレルとハバタキ由来アレルとのヘテロ染色体領域である後代個体(種子)を10個収穫した。得られた種子を全て栽培し、自殖(自家交配)させ、さらに後代個体である種子を収穫した。
 収穫された種子をさらに栽培した。圃場に移植できる程度に成育させた後、各栽培個体の葉からDNAを回収し、DNAマーカーM1-Acがコシヒカリ由来アレルのホモ染色体領域であり、DNAマーカーM2-Ct及びDNAマーカーM3(DNAマーカーM3-Ag)がコシヒカリ由来アレルとハバタキ由来アレルとのヘテロ染色体領域である栽培個体を選抜した。
 この選抜された栽培個体を自殖(自家交配)させ、さらに後代個体である種子を収穫した。この収穫された種子をさらに栽培し、圃場に移植できる程度に成育させた後、各栽培個体の葉からDNAを回収し、DNAマーカーM1-Ac及びDNAマーカーM5-Tgがコシヒカリ由来アレルのホモ染色体領域であり、前記DNAマーカーM2-Ct、DNAマーカーM3(DNAマーカーM3-Ag)、及びDNAマーカーM4-Atがハバタキ由来アレルのホモ染色体領域である栽培個体1個を選抜した。この選抜された栽培個体が、(QTS4+QTS14)領域を、ハバタキ由来染色体断片に置換した新品種であり、本発明者はこの新品種を「コシヒカリかずさ5号」と命名した。図6はコシヒカリかずさ5号のゲノムを模式的に表した図である。
 さらに、千葉県にある圃場において、コシヒカリかずさ5号の出穂期を測定したところ(種まき日:2010年5月6日、移植日: 2010年6月1日)、コシヒカリの出穂期が8月5日~8月8日であったのに対して、コシヒカリかずさ5号は7月27日~7月30日であった。図7に、コシヒカリ、QTS4ホモタイプ、QTS14ホモタイプの結果とともに、コシヒカリかずさ5号の出穂期の測定結果を示す。元品種のコシヒカリよりも、コシヒカリかずさ5号は明らかにやや早生であるが、QTS14ホモタイプよりも出穂期は遅いことが、図7から明らかである。
 コシヒカリかずさ5号とコシヒカリの形質を比較検討した(千葉県にて、2009年に実施)。形質の検討は、種苗法(平成10年法律第83号)第5条第1項に基づく品種登録出願のための特性審査に準拠して行った。検討結果を表2~5に示す。この結果、出穂期及び成熟期のいずれも、コシヒカリかずさ5号はコシヒカリよりも5~6日程度早くなった。また、コシヒカリかずさ5号はコシヒカリよりも、稈長や穂の主軸の長さ、主茎長が若干短く、穂数及び主茎粒数も少な目であったが、それ以外の形質は基本的にコシヒカリと同じであった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の新品種であるイネ品種コシヒカリかずさ5号は、コシヒカリよりも早生化されている以外は、コシヒカリと同様の品質や収穫量を備えるため、特に農業の分野において利用が可能である。また、本発明のイネ個体を早生化する方法により、イネ個体を元品種よりも早生化することができるため、当該方法は、特に植物の育種の分野において利用が可能である。

Claims (13)

  1.  品種登録出願番号が第25586号である、イネ品種コシヒカリかずさ5号(Oryza sativa L.cultivar Koshihikari-kazusa5 gou)。
  2.  請求項1記載の品種の個体及び請求項1記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体。
  3.  あるイネ個体が、特定の品種であるか否かを鑑別する方法であって、
    イネ品種日本晴の第3染色体中の31,521,442番目のSNP(一塩基多型)に相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではC)をDNAマーカーM1とし、
    イネ品種日本晴の第3染色体の31,689,690番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM2とし、
    イネ品種日本晴の第3染色体の32,208,924番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM3とし、
    イネ品種日本晴の第3染色体の32,363,157番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM4とし、
    イネ品種日本晴の第3染色体の32,384,799番目のSNPに相当するSNP(イネ品種コシヒカリではT、イネ品種ハバタキではG)をDNAマーカーM5とし、
    当該イネ個体のゲノム解析により、前記DNAマーカーM1~M5からなる群より選択される1以上のDNAマーカーをタイピングし、
    得られたタイピング結果がイネ品種コシヒカリかずさ5号(Oryza sativa L.cultivar Koshihikari-kazusa5 gou)の結果と一致する場合に、当該イネ個体がイネ品種コシヒカリかずさ5号であると鑑別することを特徴とする、イネ品種の鑑別方法。
  4.  イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法。
  5.  イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から32,314,677番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法。
  6.  前記染色体断片の上流端が、イネ品種日本晴の第3染色体の31,689,691番目の塩基から31,720,064番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の32,314,677番目の塩基から32,363,156番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする請求項5記載のイネ個体を早生化する方法。
  7.  イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,689,690番目の塩基から32,363,157番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法。
  8.  前記染色体断片の上流端が、イネ品種日本晴の第3染色体の31,521,443番目の塩基から31,689,690番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の32,363,157番目の塩基から32,384,798番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする請求項7記載のイネ個体を早生化する方法。
  9.  請求項4~8のいずれか一項に記載のイネ個体を早生化する方法により作出されたイネ品種。
  10.  請求項9記載の品種の個体及び請求項9記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体。
  11.  イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の32,309,502番目の塩基から32,314,677番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ5号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を晩生化する方法。
  12.  請求項11に記載のイネ個体を晩生化する方法により作出されたイネ品種。
  13.  請求項12記載の品種の個体及び請求項12記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体。
PCT/JP2011/056548 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法 WO2012127558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180069337.2A CN103429074B (zh) 2011-03-18 2011-03-18 新品种的培育方法、植物品种的鉴别方法以及使水稻个体早熟的方法
JP2011513784A JP4892648B1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
US14/005,211 US8981193B2 (en) 2011-03-18 2011-03-18 Cultivar, method for differentiating plant cultivars, and method for causing earlier maturing of rice individual
PCT/JP2011/056548 WO2012127558A1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056548 WO2012127558A1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法

Publications (1)

Publication Number Publication Date
WO2012127558A1 true WO2012127558A1 (ja) 2012-09-27

Family

ID=45907926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056548 WO2012127558A1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法

Country Status (4)

Country Link
US (1) US8981193B2 (ja)
JP (1) JP4892648B1 (ja)
CN (1) CN103429074B (ja)
WO (1) WO2012127558A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066385A (ja) * 2011-09-20 2013-04-18 Tottori Univ イネの第3染色体にある新規の短稈晩生遺伝子のdnaマーカー選抜方法
JP2020198830A (ja) * 2019-06-11 2020-12-17 国立大学法人静岡大学 イネの第7染色体にある極早生遺伝子のdnaマーカー選抜方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127559A1 (ja) 2011-03-18 2012-09-27 本田技研工業株式会社 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
CN102719543B (zh) * 2012-06-25 2013-12-04 中国科学院植物研究所 利用核苷酸化学分子式鉴定植物品种的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044200A1 (ja) * 2002-11-13 2004-05-27 Honda Motor Co., Ltd. 穀物の収量を増加させる遺伝子、並びにその利用
JP2008283902A (ja) * 2007-05-17 2008-11-27 Honda Motor Co Ltd イネおよびその作出方法
JP2010011826A (ja) * 2008-07-07 2010-01-21 Honda Motor Co Ltd 新品種の作製方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2389921A1 (en) * 1999-11-04 2001-05-10 National Institute Of Agrobiological Sciences Plant photoperiod sensitivity gene hd1 and use of the same
EP1433850A4 (en) 2001-09-03 2005-01-26 Nat Inst Of Agrobio Sciences REGULATION OF FLOWERING TIME OF PLANTS THROUGH THE EXPRESSION OF PHYTOCHROME C
JPWO2003070934A1 (ja) 2002-02-25 2005-06-09 株式会社植物ゲノムセンター 植物のsd−1遺伝子周辺領域の遺伝子型判定方法、および該方法を用いた植物の半わい性形質の検査方法
KR20110008019A (ko) 2008-02-25 2011-01-25 더 유니버시티 오브 멜버른 단일 포톤 방출 시스템
JP4352102B1 (ja) 2009-05-18 2009-10-28 本田技研工業株式会社 新品種及び植物品種の鑑別方法
WO2012127559A1 (ja) 2011-03-18 2012-09-27 本田技研工業株式会社 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044200A1 (ja) * 2002-11-13 2004-05-27 Honda Motor Co., Ltd. 穀物の収量を増加させる遺伝子、並びにその利用
JP2008283902A (ja) * 2007-05-17 2008-11-27 Honda Motor Co Ltd イネおよびその作出方法
JP2010011826A (ja) * 2008-07-07 2010-01-21 Honda Motor Co Ltd 新品種の作製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAYUKO IKEDA ET AL.: "Tashu Ine, Habataki no Ho no Chakuryu Kozo Keisei ni Kakawaru Gn1 Oyobi QTL no Pyramiding", BREEDING RESEARCH, vol. 12, 24 September 2010 (2010-09-24), pages 253 *
TAIICHIRO OKAWA: "(9) Ko-Biomass Tashusei Suito Chokan Hinshu ga Sonaeru beki Tai-Tofukusei ni Kan'yo suru Kyoku-Kyokan Keishitsu no QTL Kaiseki", KENKYU SEIKA DAI 473 SHU 'GENOME IKUSHU NI YORU KORITSUTEKI HINSHU IKUSEI GIJUTSU NO KAIHATSU, QTL IDENSHI KAISEKI NO SUISHIN', 20 February 2009 (2009-02-20), pages 60 - 63 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066385A (ja) * 2011-09-20 2013-04-18 Tottori Univ イネの第3染色体にある新規の短稈晩生遺伝子のdnaマーカー選抜方法
JP2020198830A (ja) * 2019-06-11 2020-12-17 国立大学法人静岡大学 イネの第7染色体にある極早生遺伝子のdnaマーカー選抜方法
JP7328680B2 (ja) 2019-06-11 2023-08-17 国立大学法人静岡大学 イネの第7染色体にある極早生遺伝子のdnaマーカー選抜方法

Also Published As

Publication number Publication date
US20140109248A1 (en) 2014-04-17
CN103429074B (zh) 2015-08-26
JP4892648B1 (ja) 2012-03-07
CN103429074A (zh) 2013-12-04
JPWO2012127558A1 (ja) 2014-07-24
US8981193B2 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
JP6872307B2 (ja) ホウレンソウにおけるペロノスポラ耐性のための組成物及び方法
JP5991658B2 (ja) イネf1種子の生産方法、イネf1種子、及びイネ雄性不稔系統
US11032986B2 (en) Methods of creating drought tolerant corn plants using markers linked to cold shock domain-containing proteins and compositions thereof
CN110578015B (zh) 甘蓝型油菜高矮性状紧密连锁的snp标记及其应用
CN105695478B (zh) 调节植物株型和产量的基因及其应用
JP2012210205A (ja) イネf1種子の生産方法、イネf1種子、及びイネ雄性不稔系統
CN114134247B (zh) 与谷子株高性状紧密连锁的分子标记及其引物序列和应用
Martinez et al. Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype
CN107058338A (zh) 一个棉花产量性状关联的乙烯响应转录因子基因
JP4892648B1 (ja) 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
JP7407112B2 (ja) べと病抵抗性の花蕾または頭部を有するBrassica oleracea植物
JP4892647B1 (ja) 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
JP4961504B1 (ja) 新品種
US20190241981A1 (en) Plant breeding using next generation sequencing
JP7094681B2 (ja) Xanthomonas抵抗性のBrassica oleracea植物
AU2014268142A1 (en) Disease resistance loci in onion
JP2020501575A (ja) 多着花スイカ
JP4961503B1 (ja) 新品種
JP5906080B2 (ja) トビイロウンカ抵抗性のイネ品種
KR20200061380A (ko) 오이 모자이크 바이러스 저항성 고추류 식물
JP4298538B2 (ja) 休眠性に関与する遺伝子座に連鎖する遺伝マーカーおよびその利用
WO2023157671A1 (ja) チップバーン抵抗性レタス植物、チップバーン抵抗性レタス植物の製造方法、及びレタス植物へのチップバーン抵抗性の付与方法
WO2013033221A1 (en) Molecular markers associated with soybean tolerance to low iron growth conditions
Dawlah et al. Genetic relationship between some Egyptian and Yemeni wheat based on different markers
Win et al. Incorporation of Photoperiod Insensitivity and High-Yield Genes into an Indigenous Rice Variety from Myanmar, Paw San Hmwe

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011513784

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14005211

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861874

Country of ref document: EP

Kind code of ref document: A1