WO2012127559A1 - 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法 - Google Patents

新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法 Download PDF

Info

Publication number
WO2012127559A1
WO2012127559A1 PCT/JP2011/056551 JP2011056551W WO2012127559A1 WO 2012127559 A1 WO2012127559 A1 WO 2012127559A1 JP 2011056551 W JP2011056551 W JP 2011056551W WO 2012127559 A1 WO2012127559 A1 WO 2012127559A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
koshihikari
rice cultivar
chromosome
cultivar
Prior art date
Application number
PCT/JP2011/056551
Other languages
English (en)
French (fr)
Inventor
少揚 林
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2011/056551 priority Critical patent/WO2012127559A1/ja
Priority to CN201180069335.3A priority patent/CN103429073B/zh
Priority to US14/005,225 priority patent/US9029669B2/en
Priority to JP2011513769A priority patent/JP4892647B1/ja
Publication of WO2012127559A1 publication Critical patent/WO2012127559A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a new cultivar produced by a non-genetic recombination method, a method for distinguishing the new cultivar, and a method for premature rice plants.
  • a group that belongs to the same species, but has a different genetic composition, and is different from other groups in a certain trait is called a breed. That is, even if it is the same kind of plant, the difficulty of cultivation, resistance to pest damage, yield, quality, and the like differ depending on the variety. For this reason, in crops, especially major crops such as rice and wheat, varieties have been improved to obtain better varieties since ancient times. In recent years, not only seed companies, but also countries and prefectures. It has also been actively conducted in the public institutions.
  • genes of various plants such as Arabidopsis, rice, and wheat have been analyzed, and the obtained gene information has been disclosed.
  • Many of these varieties have been improved by introducing a gene of a foreign species by a genetic recombination method using the disclosed gene information.
  • an Hd1 gene encoding a plant-derived protein having a function of increasing plant photosensitivity, a method for producing a transformed plant into which the Hd1 gene has been introduced, and the like have been disclosed (for example, see Patent Document 1).
  • breeding by genetic recombination has the advantage that a trait of a distantly related species that cannot normally be crossed can be introduced, there is a problem that its safety verification is not always sufficient.
  • Patent Document 2 when a foreign useful chromosome fragment is replaced by a non-genetic recombination method, the substitution region of the introduced foreign variety-derived chromosome fragment is controlled, and the preferred character of the original variety is changed. Without disclosing a method for producing a new variety having a target trait.
  • Patent Document 2 describes a new rice variety Koshihikari eichi 3 in which only the region containing the Hd1 gene of Habataki was introduced into Koshihikari by the method for producing this new variety.
  • Koshihikari which has a wider cultivatable area, is desired.
  • Koshihikari has a better taste than other varieties and is preferred by consumers.
  • rice farmers prefer to cultivate Koshihikari even in areas that are not necessarily suitable for cultivating Koshihikari.
  • Koshihikari is cultivated in the southern region, the heading time is too early and a sufficient yield cannot be expected.
  • the high taste continues during the heading season, which reduces the taste.
  • Koshihikari when Koshihikari is cultivated in the northern region, it becomes late growth, and even if it can be headed, ripening becomes poor due to low temperature, and rice cannot be harvested.
  • Koshihikari is only suitable for cultivation within the range of 35.5 to 38.5 degrees north latitude of Japan. If there is Koshihikari that can be cultivated in an area north of 38.5 degrees north latitude, for example, Koshihikari can be harvested even in areas that could not be cultivated conventionally, such as Hokkaido.
  • the present invention has an object to provide a new rice cultivar that can be cultivated in the northern region of the past and a method for quickly growing a rice individual.
  • the present inventor has found that a chromosome fragment of a specific region existing on the third chromosome of rice variety Habataki and a chromosome of a specific region existing on the sixth chromosome of rice variety Habataki.
  • the fragment By substituting the fragment with the rice cultivar Koshihikari, it was found that it was possible to grow early enough to be cultivated in the northern region more than before, and the present invention was completed.
  • the present invention (1) Rice cultivar Koshihikari Kazusa 6 (Oryza sativa L. cultivar Koshihikari-kazusa6 gou), whose cultivar registration application number is No. 25587, (2) A progeny individual obtained by mating two individuals selected from the group consisting of an individual of the variety described in (1) and a progeny individual of the individual of the variety described in (1), (3) A method for discriminating whether a rice individual is a specific variety,
  • the SNP corresponding to the 31st, 521, and 442nd SNP (single nucleotide polymorphism) in the 3rd chromosome of rice cultivar Nipponbare is A DNA in rice cultivar Koshihikari and C in rice cultivar Habataki as DNA marker M1
  • the SNP corresponding to the 31st, 689th, and 690th SNPs of chromosome 3 of rice cultivar Nipponbare (C for rice cultivar Koshihikari and T for rice cultivar Habataki) is defined as
  • SNP corresponding to the 8th, 757, and 818th SNP of chromosome 6 of rice cultivar Nipponbare (C for rice cultivar Koshihikari and T for rice cultivar Habataki) is defined as DNA marker M1
  • the SNP corresponding to the 8,940,503rd SNP of chromosome 6 of rice cultivar Nipponbare (A for rice cultivar Koshihikari and G for rice cultivar Habataki) is used as DNA marker M2
  • the SNP corresponding to the 9,325,062nd SNP of chromosome 6 of rice cultivar Nipponbare (C for rice cultivar Koshihikari and G for rice cultivar Habataki) is defined as DNA marker M3
  • the SNP corresponding to the 9,533,057 SNP of chromosome 6 of rice cultivar Nipponbare (G for rice cultivar Koshihikari and C for rice cultivar Habataki) is used as DNA marker M4, SNP corresponding to 9,777
  • chromosomal fragment consisting of the region, a method for premature rice cultivation, (6)
  • the upstream end of the chromosome fragment is present in a region corresponding to a region including the 31st, 689th, 691st base to the 31st, 720, 064th base of the third chromosome of rice cultivar Nipponbare, and
  • the chromosomal fragment is present so that the downstream end of the chromosomal fragment is present in a region corresponding to the region from the 31st, 724, 043th base to the 32,298, 685th base of the third chromosome of rice cultivar Nipponbare.
  • a method of prematurely cultivating a rice individual according to the above (5) characterized by comprising: (7) A region corresponding to the region from the 31st, 689th and 690th bases to the 32th, 298th and 686th bases in the 3rd chromosome of the rice variety Nipponbare in the 3rd chromosome of the rice individual Koshihikari Kazusa No.
  • chromosomal fragment consisting of the region, a method for premature rice cultivation, (8)
  • the upstream end of the chromosomal fragment is present in a region corresponding to the region from the 31st, 521, 443th base to the 31st, 689th, 690th base of the third chromosome of rice cultivar Nipponbare.
  • the downstream end of the chromosome fragment is present in a region corresponding to the region from the 32,298,686th base to the 32,363,156th base of the third chromosome of rice cultivar Nipponbare.
  • a method for rapidly growing a rice individual according to (7), wherein a chromosome fragment is substituted (9) A rice cultivar produced by the method for rapidly growing a rice individual according to any one of (5) to (8), (10) A progeny individual obtained by mating two individuals selected from the group consisting of an individual of the variety described in (9) and a progeny individual of the individual of the variety described in (9), (11) A region corresponding to the region from the 8,940,503th base to the 9,533,057th base in the 6th chromosome of the rice variety Nipponbare in the 6th chromosome of the rice individual Koshihikari Kazusa No. 6, Rice Variety Koshihikari Eichi No.
  • the present invention provides a rice cultivation method characterized by cultivating one or more rice individuals selected from the group consisting of rice individuals in the north of 38.5 degrees north latitude.
  • rice cultivar Koshihikari Kazusa No. 6 is a new variety that is almost equivalent to Koshihikari in characteristics other than the harvest period such as quality and yield.
  • the rice variety Koshihikari kazusa No. 6 can be identified by the method for identifying rice varieties of the present invention.
  • the rice individual of the present invention can be made to grow faster than the original cultivar by the method for making the rice individual grow faster.
  • FIG. 3 is a diagram showing a target region T on a chromosome G of an original variety, a chromosome segment L derived from a foreign variety that has been replaced, and DNA markers M1 to M5. It is the figure which represented typically the genome of Koshihikari and Koshihikari eichigo No.5. It is the figure which showed the result of having investigated the heading time of Koshihikari and Koshihikari eichi No. 5 in Chiba Prefecture. It is the figure which showed the result which investigated the heading time of Koshihikari and Koshihikari eichi No. 5 in Hokkaido. It is the figure which represented typically the genome of Koshihikari eichi 3go.
  • the chromosome fragment replacement line means a line in which only a part of the chromosome of the original variety is replaced with a chromosome fragment derived from a foreign variety.
  • the foreign cultivar is not particularly limited as long as it is a cultivar other than the original cultivar. It may be a variety other than plants such as animals.
  • the cultivar means a group that can be clearly distinguished from other varieties in the same species in a certain trait because the plants are of the same species and have different genetic constitutions.
  • the DNA marker is not particularly limited as long as it can detect the difference in the DNA sequence on the chromosome that can distinguish the chromosome derived from the original variety and the chromosome derived from the foreign variety.
  • DNA markers can be used.
  • the DNA marker may be, for example, a marker capable of detecting a genetic polymorphism such as SNP (Single Nucleotide Polymorphism, single gene polymorphism) or SSR (Simple Sequence Repeats, simple repeat sequence), and the like.
  • RFLP Restriction Fragment Length Polymorphism, restriction enzyme fragment length polymorphism
  • discrimination between the original variety-derived alleles and the foreign variety-derived alleles by these DNA markers can be performed by a conventional method. For example, using DNA extracted from each individual as a template, performing PCR using a primer that can specifically hybridize with a specific SNP or SSR, detecting the presence or absence of a PCR product using electrophoresis or the like, Polymorphism can be identified. In addition, after DNA extracted from each individual is treated with a restriction enzyme, the pattern of the DNA fragment can be detected using electrophoresis or the like to identify each polymorphism.
  • a primer that can specifically hybridize with a specific SNP or SSR can be designed by a conventional method using a commonly used primer design tool or the like according to the base sequence of the SNP or SSR.
  • designed primers and the like can be synthesized using any method well known in the art.
  • DNA markers known DNA markers can be used as appropriate. Moreover, the DNA marker produced newly may be sufficient. As known DNA markers, for example, in rice, the SNP marker disclosed in International Publication No. 2003/070934, etc., Rice Genome Research Program (RGP: http://rgp.dna.affrc.go.jp) /Publicdata.html) publicly available DNA markers can be used.
  • RGP Rice Genome Research Program
  • the gene information of each variety can be obtained from, for example, NCBI (National center for Biotechnology Information) and DDBJ (DNA Data Bank of Japan), which are international base sequence databases.
  • the genetic information of each rice variety can be obtained from KOME (Knowledge-based Oryza Molecular biologic Encyclopedia, http://cdna01.dna.affrc.go.jp/cDNA/).
  • the region from the Xth base to the Yth base of the chromosome of rice cultivar Nipponbare is the nucleotide sequence of the genomic DNA of rice cultivar Nipponbare published in RGB (version 4; IRGSP- This is an area determined based on build4-06 / 04/21).
  • the region corresponding to the region from the Xth base to the Yth base of the chromosome of rice cultivar Nipponbare refers to the chromosome of the rice cultivar Nipponbare in the chromosome of the rice individual. This region is highly homologous to the region, and can be determined by aligning the known genomic DNA of the rice cultivar Nipponbare and the base sequence of the genomic DNA of the rice individual so as to have the highest homology.
  • SNPs corresponding to SNPs of rice varieties Nipponbare” in rice individuals other than rice varieties Nipponbare include the known genomic DNA of rice varieties Nipponbare and the genomic DNA of the rice individual in the region containing the SNP. , When aligned so that the homology is highest, it means a base at a position corresponding to the SNP.
  • the inventors of the present invention In order to breed new varieties that can be cultivated in a region north of conventional varieties, the inventors of the present invention first crossed rice varieties Habataki and rice varieties Koshihikari with respect to the heading period, and QTL ( Quantitative Trait Locus) analysis was performed. As a result, the QTS14 region of the long arm of chromosome 3 of rice cultivar Habataki [region corresponding to the region from the 31st, 720, 064th base to the 31st, 724, 043th base of the 3rd chromosome of rice cultivar Nipponbare] It was also found that there is a QTL for early heading and early birth. Therefore, the present inventor has produced a new variety in which a gene contained in the region of Koshihikari is replaced with a gene derived from Habataki. The new variety was expected to be an earlier rice than the original variety Koshihikari.
  • the method for producing a new variety described in Patent Document 2 is specifically as follows. First, five types of DNA markers having a positional relationship as shown in FIG. 1 were set based on known rice gene information. That is, the DNA marker M2 is upstream of the target region T or upstream thereof, the DNA marker M1 is upstream of the DNA marker M2, the DNA marker M4 is downstream of the target region T or downstream thereof, and the DNA marker M4 is downstream. DNA marker M5 is set in the target region T, and DNA marker M3 is set in the target region T.
  • a progeny individual having a side end between the DNA markers M1 and M2 and a downstream end of the region between the DNA markers M4 and M5 can be obtained.
  • the DNA markers M1 and M5 are the same type as the original variety, and the DNA markers M2, M3, and M4 are the same type as the foreign variety (in the present invention, Habataki). .
  • the distance d1 between the DNA markers M1 and M2 is long, the upstream end of the foreign-variety-derived chromosome fragment (in this application, Habataki-derived chromosome fragment) L exists.
  • the range to be obtained is wide, and the length of the introduced Habataki-derived chromosome fragment L is difficult to determine.
  • the distance d1 is short, the range in which the upstream end of the Habataki-derived chromosome fragment L can exist is narrow, and the length of the Habataki-derived chromosome fragment L to be introduced is easily determined.
  • the distance d3 between the DNA markers M4 and M5 is long, the range in which the downstream end of the Habataki-derived chromosome fragment L can exist is wide, and the length of the Habataki-derived chromosome fragment L to be introduced becomes difficult to determine. If d3 is short, the range in which the downstream end of Habataki-derived chromosome fragment L can exist is narrow, and the length of Habataki-derived chromosome fragment L to be introduced is easily determined.
  • C in the rice cultivar Habataki is the DNA marker M1 (DNA marker M1-Ac (QTS14))
  • the SNP corresponding to the 31st, 689th, and 690th SNPs in the third chromosome of the rice cultivar Nipponbare (C in the rice cultivar Koshihikari In the rice variety Habataki, T) is the DNA marker M2 (DNA marker M2-Ct (QTS14))
  • the SNP corresponding to the 32,208,924th SNP of chromosome 3 of the rice variety Nipponbare A, in the rice variety Koshihikari, A, In rice varieties Habataki, G) is replaced with DNA marker M3 (DNA marker M
  • SNP corresponding to the 32,298,686th SNP of chromosome 3 of rice cultivar Nipponbare is DNA marker M4 (DNA marker M4-Gc (QTS14))
  • the SNP corresponding to the 32,363,157th SNP of chromosome 3 of rice cultivar Nipponbare was used as DNA marker M5 (DNA marker M5-At (QTS14)).
  • the region from the DNA marker M2-Ct (QTS14) to the DNA marker M4-Gc (QTS14) in the chromosome 3 of the rice individual that is, 31,689,
  • a new cultivar was produced in which the region including the region from the 690th base to the 32,298,686th base) was replaced with a Habataki-derived chromosome fragment.
  • the upstream end of the Habataki-derived chromosome fragment is located downstream from the DNA marker M1-Ac (QTS14) and up to the DNA marker M2-Ct (QTS14) (ie, the third chromosome of the rice cultivar Nipponbare).
  • the region from the 31st, 521, 443th base to the 31st, 689th, 690th base) and the downstream end of the chromosome fragment is from the DNA marker M4-Gc (QTS14) to the DNA marker
  • a region upstream from M5-At (QTS14) ie, a region corresponding to the region from the 32,298,686th base to the 32,363,156th base in the third chromosome of rice cultivar Nipponbare) Exists.
  • FIG. 2 is a diagram schematically showing the genomes of Koshihikari and Koshihikari eichi No.5.
  • the heading time of Koshihikari eichi No. 5 was measured (seeding date: May 6, 2010, transplanting date: June 1, 2010).
  • the heading period was from August 5 to August 8, whereas Koshihikari Eichi No. 5 was from July 24 to July 26.
  • Koshihikari Eichi No. 5 was clearly found to be early born compared to the original variety Koshihikari.
  • Koshihikari Eichi No. 5 was measured in a field in Hokkaido north of 38.5 degrees north latitude (seeding date: April 28, 2010, transplanting date: June 7, 2010). As a result, as shown in FIG. 4, the heading period of Koshihikari was from September 1 to September 2, whereas Koshihikari eichi No. 5 was from August 21 to August 22. . In other words, even when cultivated in Hokkaido, Koshihikari Eichi No. 5 was clearly found to be early growing compared to the original variety Koshihikari. However, although Koshihikari and Koshihikari eichi No. 5 both headed, they did not mature sufficiently and could not harvest rice.
  • the inventor of the present invention may be able to obtain Koshihikari that is early enough to be cultivated even in the northern region by stacking foreign chromosome fragments having an early-emergence function on Koshihikari eichi-5. Thought. Therefore, Koshihikari Eichi No. 5 and the rice variety Koshihikari Eichi No. 3 were crossed.
  • Koshihikari eichi 3 is a variety in which only the region containing the Hd1 gene of chromosome 6 in Koshihikari's chromosome is replaced with a gene fragment derived from Habataki by the method for producing a new variety described in Patent Document 2.
  • Table 2 shows five types of DNA markers used for the production of Koshihikari eichi 3go.
  • the DNA marker M1-Ct is an SNP corresponding to the 8,757,818th SNP of chromosome 6 of the rice cultivar Nipponbare (C for the rice cultivar Koshihikari and T for the rice cultivar Habataki), and the DNA marker M2-Ag is The SNP corresponding to the 8,940,503rd SNP of chromosome 6 of rice cultivar Nipponbare (A in rice cultivar Koshihikari, G in rice cultivar Habataki), and DNA marker M3-Cg is chromosome 6 of rice cultivar Nipponbare Is the SNP corresponding to the 9,325,062nd SNP (C for rice cultivar Koshihikari and G for rice cultivar Habataki), and the DNA marker M4-Gc is the 9,533,057th chromosome 6 of rice cultivar Nipponbare SNP (G for rice cultivar Koshihikari, C for rice cultivar Habataki), and DNA marker M5 At is a SNP corresponding to 9,777,196 th S
  • Koshihikari eichi 3 is a region from the DNA marker M2-Ag (Hd1) to the DNA marker M4-Gc (Hd1) in the chromosome 6 of the rice variety Koshihikari (that is, in the chromosome 6 of the rice variety Nipponbare).
  • a region including the region from the 8,940,503rd base to the 9,533,057th base) is a new variety in which a Habataki-derived chromosome fragment is replaced.
  • the upstream end of the Habataki-derived chromosome fragment is located downstream from the DNA marker M1-Ct (Hd1) and up to the DNA marker M2-Ag (Hd1) (that is, chromosome 6 of the rice cultivar Koshihikari).
  • the region corresponding to the region from the 8,757,819th base to the 8,940,503th base), and the downstream end of the chromosomal fragment is from the DNA marker M4-Gc (Hd1) to the DNA marker. It exists in the region upstream of M5-At (Hd1) (that is, the region corresponding to the region including the 9,533,057th base to the 9,777,195th base).
  • FIG. 5 is a diagram schematically showing the genomes of Koshihikari and Koshihikari eichi 3go.
  • the heading time of Koshihikari eichi 3 was measured (seeding date: May 6, 2010, transplanting date: June 1, 2010).
  • the heading period was from August 5th to August 8th, while Koshihikari Eichi 3 was from July 25th to July 26th.
  • Koshihikari Eichi 3 was as early as Koshihikari Eichi 5.
  • Koshihikari Eichi 3 was measured in a field in Hokkaido north of 38.5 degrees north latitude (seeding date: April 28, 2010, transplanting date: June 7, 2010). As a result, as shown in FIG. 7, the heading time of Koshihikari was from September 1 to September 2, and rice could not be harvested. In contrast, Koshihikari Eichi No. 3 headed from August 10 to August 16, after which rice could be harvested. In other words, Koshihikari Eichi No. 3 grows significantly faster than Koshihikari Eichi No. 5 when cultivated in a region north of 38.5 degrees north latitude, so it can be cultivated in Hokkaido. It became clear.
  • the degree of early-proliferation effect by replacing the Hd1 region with Habataki-derived chromosomal fragments varies depending on the cultivated place, for example, when cultivated in a northern region, for example, a region north of latitude 38.5 degrees north. It is a finding for the first time by the present inventor that the effect of fast-growing is higher than when cultivated in the Koshihikari cultivation area (35.5 to 38.5 degrees north latitude).
  • FIG. 8 is a diagram schematically showing the genome of Koshihikari Kazusa No. 6.
  • the heading time of Koshihikari Kazusa No. 6 was measured, it was earlier than Koshihikari Eichi No. 3, and even when cultivated in Hokkaido north of 38.5 degrees north latitude, rice could be harvested.
  • the expression character of Koshihikari Kazusa No. 6 was compared with Koshihikari, in the actual field test, other characters other than the heading time were almost the same as Koshihikari.
  • Koshihikari Kazusa No. 6 is a new variety produced by the method described in Patent Document 2, and has been designed and cultivated such that 99% or more of the genome structure is the same as Koshihikari.
  • Koshihikari Kazusa No. 6 is a very good variety that maintains excellent traits such as the taste of Koshihikari despite being so fast that it can be cultivated in Hokkaido, where Koshihikari could not be cultivated. . Therefore, the applicant filed a variety registration application for Koshihikari Kazusa No. 6 as stipulated in the Japanese Seedling Law (Act No. 83 of May 29, 1998). : January 28, 2011, kind registration application number: 25587).
  • Rice cultivar Koshihikari Kazusa 6 can be cultivated by the same method as the original cultivar Koshihikari, and rice can be harvested by self-mating or artificial mating.
  • the rice variety Koshihikari Kazusa No. 5 and its progeny individuals can be used as parent individuals for breeding new varieties, similar to the original variety Koshihikari. For example, trying to breed a new variety by crossing an individual of the rice variety Koshihikari Kazusa No. 6 with an individual of another variety and backcrossing the obtained progeny individual with an individual of the rice variety Koshihikari Kazusa No. 6 You can also.
  • DNA marker M1-Ac QTS14
  • DNA marker M2-Ct QTS14
  • DNA marker M3-Ag QTS14
  • DNA marker M4-Gc QTS14
  • Genome information unique to rice cultivar Koshihikari Kazusa No. 6 and rice cultivar Koshihikari Kazuichi 5 Genome information unique to rice cultivar Koshihikari Kazusa No. 6 and rice cultivar Koshihikari Kazuichi 5. Therefore, rice cultivar Koshihikari Kazusa 6 and rice cultivar Koshihikari Kazuichi 5 use these five kinds of DNA markers as appropriate. Can be distinguished.
  • genome analysis is performed on rice individuals to be cultivated, and DNA markers M1-Ac (QTS14), DNA markers M2-Ct (QTS14), DNA markers M3-Ag (QTS14), DNA markers
  • One or more DNA markers selected from the group consisting of M4-Gc (QTS14) and DNA marker M5-At (QTS14) are typed, and the obtained typing result is consistent with the result of rice cultivar Koshihikari Kazusa No. 6
  • the rice individual can be identified as the rice variety Koshihikari kazusa No. 6 or the rice variety Koshihikari eichi No. 5.
  • DNA marker M1-Ct (Hd1) DNA marker M2-Ag (Hd1), DNA marker M3-Cg (Hd1), DNA marker M4-Gc (Hd1), and The DNA marker M5-At (Hd1)) is genomic information unique to the rice cultivar Koshihikari Kazusa No. 6 and the rice cultivar Koshihikari eichi 3go. Therefore, the rice cultivar Koshihikari kazusa No. 6 and the rice cultivar Koshihikari eichi 3 can be distinguished using these five types of DNA markers as appropriate.
  • genome analysis is carried out on rice individuals whose varieties are to be identified, and DNA markers M1-Ct (Hd1), DNA markers M2-Ag (Hd1), DNA markers M3-Cg (Hd1), DNA markers One or more DNA markers selected from the group consisting of M4-Gc (Hd1) and DNA marker M5-At (Hd1) are typed, and the obtained typing results are consistent with the results of rice cultivar Koshihikari Kazusa No. 6
  • the rice individual can be identified as the rice variety Koshihikari kazusa No. 6 or the rice variety Koshihikari eichi No. 3.
  • all of the DNA markers M1 to M5 may be used for identifying the varieties, or some of the five DNA markers may be used.
  • only DNA markers M1 and M2 that are upstream recombination points may be used, only DNA markers M4 and M5 that are downstream recombination points may be used, or only DNA markers M2 and M4 may be used.
  • Good. By appropriately combining a plurality of DNA markers, more rigorous product identification becomes possible.
  • the QTS14 region in the third chromosome of rice individuals specifically, the region from at least the DNA marker M2-Ct (QTS14) to the DNA marker M4-Gc (QTS14) (that is, the rice cultivar Nipponbare No.
  • the region of rice cultivar Koshihikari kazusa 6 and rice cultivar Koshihikari eichi 5 is composed of a chromosome fragment comprising the region of rice cultivar Habataki, so rice cultivar Koshihikari kazusa 6 or rice cultivar Koshihikari eichi You may substitute by the chromosome fragment which consists of the said area
  • a rice individual that is rapidly grown by introducing a chromosome fragment of the region of the rice variety Habataki may be any variety that has the same or similar base sequence as the rice variety Koshihikari. Although it is not limited, it is preferable that it is a rice variety Koshihikari or a new variety produced as a parent variety from the viewpoint of consumer preference.
  • the upstream end of the chromosome fragment derived from rice cultivar Habataki (or from rice cultivar Koshihikari Kazusa No. 6 etc.) including the region from DNA marker M2-Ct (QTS14) to DNA marker M4-Gc (QTS14) is the DNA marker M1.
  • the Hd1 region in the sixth chromosome specifically, at least the region from the DNA marker M2-Ag (Hd1) to the DNA marker M4-Gc (Hd1) (ie, , The region corresponding to the region from the 8,940,503th base to the 9,533,057th base in the 6th chromosome of the rice cultivar Nipponbare) is replaced with a chromosomal fragment comprising this region of the rice cultivar Habataki By doing so, the rice individual can be remarkably fastened so that it can be cultivated in a region north of 38.5 degrees north latitude.
  • the region of rice cultivar Koshihikari kazusa 6 and rice cultivar Koshihikari eichi 3 is composed of a chromosome fragment comprising the region of rice cultivar Habataki, so rice cultivar Koshihikari kazusa 6 or rice cultivar Koshihikari eichi 3 You may substitute by the chromosome fragment which consists of the said area
  • a rice individual that is rapidly grown by introducing a chromosome fragment of the region of the rice variety Habataki may be any variety that has the same or similar base sequence as the rice variety Koshihikari. Although it is not limited, it is preferable that it is a rice variety Koshihikari or a new variety produced as a parent variety from the viewpoint of consumer preference.
  • the upstream end of the chromosome fragment derived from rice cultivar Habataki (or from rice cultivar Koshihikari Kazusa No. 6 etc.) including the region from DNA marker M2-Ag (Hd1) to DNA marker M4-Gc (Hd1) is the DNA marker M1
  • the region downstream of Ct (Hd1) and up to the DNA marker M2-Ag (Hd1) ie, from the 8,757,819th base to the 8,940,503th base in chromosome 6 of the rice cultivar Nipponbare)
  • the downstream end of the chromosome fragment extends from the DNA marker M4-Gc (Hd1) to the upstream of the DNA marker M5-At (Hd1) (ie, rice cultivar) It corresponds to the region that includes from the 9,533,057th base to the 9,777,195th base in the 6th chromosome of Nipponbare
  • the Hd1 region in chromosome 6, including Koshihikari eichi 3 and Koshihikari kazusa 6 (specifically, at least from DNA marker M2-Ag (Hd1) to DNA marker M4-Gc (Hd1))
  • the rice plant whose region is replaced with a chromosome fragment comprising the region of the rice variety Habataki is not only cultivatable in areas where Koshihikari can be cultivated, but also cultivated in areas north of latitude 38.5 degrees north, Rice can be harvested. These rice individuals are affected by temperature, rainfall, and the like, but can be cultivated in an area between 38.5 degrees and 43.3 degrees north latitude, for example.
  • the Hd1 gene in the Hd1 region is considered to be a causative gene that causes premature growth.
  • a gene contained in the QTS14 region was examined, a region encoding the phytochrome C gene was contained in the region. It has been reported that this gene is mainly involved in the control of plant flowering time (US Pat. No. 7,656,815). Therefore, it is inferred that the causative gene causing prematurity in the QTS14 region is the phytochrome C gene.
  • the Hd1 gene is mapped to the region from the 9,335,337th base to the 9,337,606th base of chromosome 6, and the phytochrome C gene is Maps to the region from the 31st, 720, 064th base to the 31st, 724, 043th base of the 3 chromosome.
  • the region corresponding to the region from the 31st, 689th, 691st base to the 31st, 724th, 043th base in the 3rd chromosome of the rice variety Nipponbare in the 3rd chromosome of the rice individual It is considered that the rice individual can be born faster than the original cultivar by substituting the cultivar Koshihikari Kazusa No. 6, the rice cultivar Koshihikari eichi No. 5 or the rice cultivar Habataki with the chromosome fragment.
  • the upstream end of the chromosome fragment is present in a region corresponding to the region from the 31st, 689th, 690th base to the 31st, 720, 064th base of the third chromosome of the rice cultivar Nipponbare, And the chromosome fragment so that the downstream end of the chromosome fragment exists in a region corresponding to the region from the 31st, 724, 043th base to the 32,298, 685th base of the third chromosome of rice cultivar Nipponbare.
  • the region corresponding to the region from the 9,335,337th base to the 9,337,606th base in the 6th chromosome of the rice variety Nipponbare in the 6th chromosome of the rice individual By replacing the Koshihikari kazusa No. 6, the rice cultivar Koshihikari eichi 3 or the rice cultivar Habataki with a chromosomal fragment, it is considered that the rice individual can be born faster than the original cultivar.
  • the upstream end of the chromosome fragment is present in a region corresponding to a region including the bases from the 8,940,504th base to the 9,335,337th base of the sixth chromosome of the rice cultivar Nipponbare, And the chromosome fragment so that the downstream end of the chromosome fragment exists in a region corresponding to the region from the 9,337,606th base to the 9,533,056th base of the third chromosome of rice cultivar Nipponbare.
  • Koshihikari Eichi No. 5 and Koshihikari Eichi No. 3 were crossed to produce a new variety in which only the QTS14 region and the Hd1 region were replaced with Habataki-derived chromosome fragments in the Koshihikari chromosome. Specifically, Koshihikari eichi 3 and Koshihikari eichi 5 are crossed, 2 of the obtained progeny individuals (seed) are cultivated, self-propagated (self-mating), and seeds that are progeny individuals 100 pieces were obtained.
  • Koshihikari Kazusa No. 6 The heading time of Koshihikari Kazusa No. 6 was measured in a field in Chiba Prefecture (seeding date: May 6, 2010, transplanting date: June 1, 2010). The measurement results are shown in FIG. 9 together with the results of Koshihikari, Koshihikari eichi 5 and Koshihikari eichi 3.
  • Koshihikari's heading date is from August 5 to August 8, and Koshihikari Eichi 5 and Koshihikari Eichi 3 were from July 24 to July 26, while Koshihikari Kazusa 6 Was from July 18th to July 23rd. From these results, when cultivated in Chiba Prefecture, Koshihikari Kazusa No. 6 was clearly earlier than Koshihikari Eichi No. 3 and Koshihikari Echigo No. 5.
  • Koshihikari Kazusa No. 6 was measured in a farm field in Hokkaido (43.3 degrees north latitude) (seeding date: April 28, 2010, transplanting date: June 7, 2010). The measurement results are shown in FIG. 10 together with the results of Koshihikari, Koshihikari eichi 5 and Koshihikari eichi 3.
  • the heading season for Koshihikari is from September 1 to September 2
  • Koshihikari Eichi No. 5 is from August 21 to August 22
  • Koshihikari Eichi No. 3 is from August 10 to August 16.
  • Koshihikari Kazusa No. 6 was from August 7th to August 9th.
  • Koshihikari Kazusa No. 6 can be cultivated in Hokkaido north of 38.5 degrees north latitude.
  • Koshihikari Kazusa No. 6 and Koshihikari were compared (implemented in Chiba Prefecture in 2009).
  • the examination of the traits was conducted in accordance with the characteristic examination for the variety registration application based on Article 5 Paragraph 1 of the Seedling and Seedling Law (1998 Law 83).
  • the examination results are shown in Tables 3-6.
  • Koshihikari Kazusa No. 6 was about two weeks ahead of Koshihikari in both heading and maturity.
  • Koshihikari Kazusa No.6 was slightly shorter than the Koshihikari, but the stem length and main stem length and main stem length were slightly shorter, and the number of ears and the number of main stem grains were smaller, but other traits were basically Koshihikari. Was the same.
  • the rice cultivar Koshihikari Kazusa No. 6 which is a new variety of the present invention has almost the same characteristics as Koshihikari, and can be cultivated in the northern region more than before, so it can be used particularly in the field of agriculture. Moreover, since the rice individual of the present invention can be made to grow faster than the original variety, the method can be used particularly in the field of plant breeding.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)

Abstract

本発明は、元品種よりも早生化されたイネの新品種、及びイネ個体を早生化する方法の提供を目的とする。本発明は、品種登録出願番号が第25587号であるイネ品種コシヒカリかずさ6号、前記記載の品種の個体及びこの後代個体からなる群より選択される2個体を交配して得られる後代個体、並びに、イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法に係る。

Description

新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
 本発明は、非遺伝子組み換え法により作出された新品種、当該新品種の鑑別方法、及びイネ個体を早生化する方法に関する。
 同一生物種に属するが、遺伝的構成が異なるために、ある形質において他の集団と異なる集団を品種という。すなわち、同じ種類の植物であったとしても、品種により、栽培の難易性や病虫害に対する抵抗性、収量、品質等が異なる。このため、農作物、特にイネやムギ類等の主要な作物においては、より優良な品種を得るための品種改良が古くから行われており、近年では、種苗会社等のみならず、国や県等の公的機関においても積極的に行われてきている。
 近年の核酸解析技術等の進歩に伴い、シロイヌナズナ、イネ、コムギ等の様々な植物の遺伝子が解析され、得られた遺伝子情報が開示されている。これらの開示された遺伝子情報を利用して、遺伝子組み換え法による外来種の遺伝子を導入する品種改良も多く行われている。例えば、植物の感光性を増加させる機能を有する植物由来のタンパク質をコードするHd1遺伝子、及びHd1遺伝子を導入した形質転換植物の作製方法等が開示されている(例えば、特許文献1参照。)。しかしながら、遺伝子組み換え法による品種改良は、通常は交配不可能な遠縁種が有する形質を導入し得るという利点はあるものの、その安全性に対する検証は必ずしも十分ではないという問題点がある。
 このため、イネをはじめとする食用植物においては、非遺伝子組み換え法による新品種の作出が多く行われている。例えば特許文献2には、非遺伝子組み換え法により、外来の有用な染色体断片で置換する場合に、導入される外来品種由来の染色体断片による置換領域をコントロールし、元品種が有する好ましい形質を変更することなく、標的形質を有する新品種を作製するための方法が開示されている。同じく特許文献2には、この新品種を作製するための方法により、ハバタキのHd1遺伝子を含む領域のみをコシヒカリに導入した新品種イネ品種コシヒカリえいち3号が記載されている。
 特に、イネでは、より栽培可能地域が広いコシヒカリが望まれている。コシヒカリは、他の品種よりも食味に優れており、消費者に好まれている。このため米農家は、必ずしもコシヒカリの栽培に適しているとはいえない地域であっても、コシヒカリを好んで栽培している。しかしながら、コシヒカリを南の地域で栽培した場合には出穂期が早すぎ、充分な収穫量が望めない。その上、出穂期に高温が続くために食味が落ちてしまう。一方で、コシヒカリを北の地域で栽培した場合には晩生となり、たとえ出穂が出来たとしても、低温により登熟が不良となり、米を収穫することができない。
特許第3660967号公報 特許第4409610号公報
 本発明者による研究の結果、コシヒカリはおおよそ、日本の北緯35.5度から38.5度までの範囲内でしか栽培に適していないことがわかった。北緯38.5度よりも北の地域でも栽培可能なコシヒカリがあれば、例えば北海道等の従来では栽培不可能であった地域でもコシヒカリを収穫することができる。
 本発明は、従来よりも北の地域でも栽培可能なイネの新品種、及びイネ個体を早生化する方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した結果、イネ品種ハバタキの第3染色体上に存在する特定の領域の染色体断片とイネ品種ハバタキの第6染色体上に存在する特定の領域の染色体断片とを、イネ品種コシヒカリに置換することにより、従来よりも北の地域でも栽培可能なほど十分に早生化することが可能であることを見出し、本発明を完成させた。 
 すなわち、本発明は、
(1) 品種登録出願番号が第25587号である、イネ品種コシヒカリかずさ6号(Oryza sativa L.cultivar Koshihikari-kazusa6 gou)、
(2) 前記(1)記載の品種の個体及び前記(1)記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体、
(3) あるイネ個体が、特定の品種であるか否かを鑑別する方法であって、
イネ品種日本晴の第3染色体中の31,521,442番目のSNP(一塩基多型)に相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではC)をDNAマーカーM1とし、
イネ品種日本晴の第3染色体の31,689,690番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM2とし、
イネ品種日本晴の第3染色体の32,208,924番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM3とし、
イネ品種日本晴の第3染色体の32,298,686番目のSNPに相当するSNP(イネ品種コシヒカリではG、イネ品種ハバタキではC)をDNAマーカーM4とし、
イネ品種日本晴の第3染色体の32,363,157番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM5とし、
当該イネ個体のゲノム解析により、前記DNAマーカーM1~M5からなる群より選択される1以上のDNAマーカーをタイピングし、
得られたタイピング結果がイネ品種コシヒカリかずさ6号(Oryza sativa L.cultivar Koshihikari-kazusa6 gou)又はイネ品種コシヒカリえいち5号(Oryza sativa L.cultivar Koshihikari-eich5 gou)の結果と一致する場合に、当該イネ個体がイネ品種コシヒカリかずさ6号又はイネ品種コシヒカリえいち5号であると鑑別することを特徴とする、イネ品種の鑑別方法、
(4) あるイネ個体が、特定の品種であるか否かを鑑別する方法であって、
イネ品種日本晴の第6染色体の8,757,818番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM1とし、
イネ品種日本晴の第6染色体の8,940,503番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM2とし、
イネ品種日本晴の第6染色体の9,325,062番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではG)をDNAマーカーM3とし、
イネ品種日本晴の第6染色体の9,533,057番目のSNPに相当するSNP(イネ品種コシヒカリではG、イネ品種ハバタキではC)をDNAマーカーM4とし、
イネ品種日本晴の第6染色体の9,777,196番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM5とし、
当該イネ個体のゲノム解析により、前記DNAマーカーM1~M5からなる群より選択される1以上のDNAマーカーをタイピングし、
得られたタイピング結果がイネ品種コシヒカリかずさ6号(Oryza sativa L.cultivar Koshihikari-kazusa6 gou)又はイネ品種コシヒカリえいち3号(Oryza sativa L.cultivar Koshihikari-eich3 gou)の結果と一致する場合に、当該イネ個体がイネ品種コシヒカリかずさ6号又はイネ品種コシヒカリえいち3号であると鑑別することを特徴とする、イネ品種の鑑別方法、
(5) イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法、
(6) 前記染色体断片の上流端が、イネ品種日本晴の第3染色体の31,689,691番目の塩基から31,720,064番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の31,724,043番目の塩基から32,298,685番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする前記(5)記載のイネ個体を早生化する方法、
(7) イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,689,690番目の塩基から32,298,686番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法、
(8) 前記染色体断片の上流端が、上流端がイネ品種日本晴の第3染色体の31,521,443番目の塩基から31,689,690番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の32,298,686番目の塩基から32,363,156番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする前記(7)記載のイネ個体を早生化する方法、
(9) 前記(5)~(8)のいずれか一つに記載のイネ個体を早生化する方法により作出されたイネ品種、
(10) 前記(9)記載の品種の個体及び前記(9)記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体、
(11) イネ個体の第6染色体中の、イネ品種日本晴の第6染色体中の8,940,503番目の塩基から9,533,057番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号、イネ品種コシヒカリえいち3号、又はイネ品種ハバタキの当該領域からなる染色体断片に置換されたイネ個体、イネ品種コシヒカリかずさ6号のイネ個体、及びイネ品種コシヒカリえいち3号のイネ個体からなる群より選択される1種以上のイネ個体を、北緯38.5度よりも北で栽培することを特徴とするイネの栽培方法、を、提供するものである。
 本発明の新品種であるイネ品種コシヒカリかずさ6号は、コシヒカリよりも非常に早生化されており、北緯38.5度よりも北の地域でも栽培し、米を収穫することができる。また、イネ品種コシヒカリかずさ6号は、品質や収穫量等の収穫期以外の特性はコシヒカリとほぼ同等な新品種である。
 また、本発明のイネ品種の鑑別方法により、イネ品種コシヒカリかずさ6号を鑑別することができる。
 また、本発明のイネ個体を早生化する方法により、イネ個体を元品種よりも早生化することができる
元品種の染色体G上における標的領域T、置換された外来品種由来染色体断片L、及びDNAマーカーM1~M5を示した図である。 コシヒカリ、及びコシヒカリえいち5号のゲノムを模式的に表した図である。 千葉県において、コシヒカリ、及びコシヒカリえいち5号の出穂期を調べた結果を示した図である。 北海道において、コシヒカリ、及びコシヒカリえいち5号の出穂期を調べた結果を示した図である。 コシヒカリえいち3号のゲノムを模式的に表した図である。 千葉県において、コシヒカリ、及びコシヒカリえいち3号の出穂期を調べた結果を示した図である。 北海道において、コシヒカリ、及びコシヒカリえいち3号の出穂期を調べた結果を示した図である。 コシヒカリかずさ6号のゲノムを模式的に表した図である。 千葉県において、コシヒカリかずさ6号の出穂期を調べた結果を、コシヒカリ、コシヒカリえいち5号、及びコシヒカリえいち3号の結果とともに示した図である。 北海道において、コシヒカリかずさ6号の出穂期を調べた結果を、コシヒカリ、コシヒカリえいち5号、及びコシヒカリえいち3号の結果とともに示した図である。
 本発明において染色体断片置換系統とは、元品種の染色体の一部のみが外来品種由来の染色体断片に置換されている系統を意味する。ここで、外来品種は、元品種以外の品種であれば特に限定されるものではなく、元品種と同一種の植物の品種であってもよく、元品種と異なる種の植物の品種であってもよく、動物等の植物以外の品種であってもよい。なお、本発明において品種とは、同一種の植物であって、遺伝的構成が異なるために、ある形質において同種内の他品種から明確に識別し得る集団を意味する。
 本発明においてDNAマーカーは、元品種由来の染色体と外来品種由来の染色体を識別し得る染色体上のDNA配列の差異を検出し得るものであれば、特に限定されるものではなく、遺伝子解析分野で通常用いられているDNAマーカーを用いることができる。該DNAマーカーとして、例えば、SNP(Single Nucleotide Polymorphism、一遺伝子多型)やSSR(Simple Sequence Repeats、単純反覆配列)の繰り返し数の違い等の遺伝子多型を検出し得るマーカーであってもよく、RFLP(Restriction Fragment Length Polymorphism、制限酵素断片長多型)マーカーであってもよい。なお、これらのDNAマーカーによる、元品種由来アレルと外来品種由来アレルとの識別は、常法により行うことができる。例えば、各個体から抽出したDNAを鋳型とし、特定のSNPやSSRと特異的にハイブリダイズし得るプライマー等を用いてPCRを行い、電気泳動法等を用いてPCR産物の有無を検出し、各多型を識別することができる。また、各個体から抽出したDNAを制限酵素処理した後、電気泳動法等を用いてDNA断片のパターンを検出し、各多型を識別することができる。なお、特定のSNPやSSRと特異的にハイブリダイズし得るプライマー等は、該SNPやSSRの塩基配列に応じて、汎用されているプライマー設計ツール等を用いて常法により設計することができる。また、設計されたプライマー等は、当該技術分野においてよく知られている方法のいずれを用いても合成することができる。
 これらのDNAマーカーは、公知のDNAマーカーを適宜用いることができる。また、新規に作製したDNAマーカーであってもよい。公知のDNAマーカーとして、例えば、イネにおいては、国際公開第2003/070934号パンフレット等において開示されているSNPマーカーや、Rice Genome Research Program(RGP:http://rgp.dna.affrc.go.jp/publicdata.html)において公開されているDNAマーカーを用いることができる。
 なお、各品種の遺伝子情報等は、例えば、国際的な塩基配列データベースであるNCBI(National center for Biotechnology Information)やDDBJ(DNA Data Bank of Japan)等において入手することができる。特にイネの各品種の遺伝子情報は、KOME(Knowledge-based Oryza Molecular biological Encyclopedia、http://cdna01.dna.affrc.go.jp/cDNA/)等において入手することができる。
 本発明及び本願明細書において「イネ品種日本晴の染色体のX番目の塩基からY番目の塩基までの領域」は、RGBにおいて公開されているイネ品種日本晴のゲノムDNAの塩基配列(バージョン4;IRGSP-build4-06/04/21)に基づいて決定される領域である。
 また、本発明及び本願明細書において、「イネ品種日本晴の染色体のX番目の塩基からY番目の塩基までの領域に相当する領域」とは、イネ個体の染色体中のイネ品種日本晴の染色体中の当該領域と相同性の高い領域であり、イネ品種日本晴の公知のゲノムDNAと当該イネ個体のゲノムDNAの塩基配列を、最もホモロジーが高くなるようにアラインメントすることにより決定することができる。また、イネ品種日本晴以外のイネ個体中の「イネ品種日本晴のSNPに相当するSNP」は、当該SNPを含む領域において、イネ品種日本晴の公知のゲノムDNAと当該イネ個体のゲノムDNAの塩基配列を、最もホモロジーが高くなるようにアラインメントした場合に、当該SNPに対応する位置にある塩基を意味する。
 従来の品種よりも北の地域で栽培可能な新品種を育種するため、本発明の発明者は、まず、出穂期に関して、イネ品種ハバタキとイネ品種コシヒカリとを交配して、分離集団でQTL(Quantitative Trait Locus) 解析を行った。この結果、イネ品種ハバタキの第3染色体の長腕のQTS14領域〔イネ品種日本晴の第3染色体の31,720,064番目の塩基から31,724,043番目の塩基までの領域に相当する領域〕に、出穂期を早め、早生とするQTLが存在していることもわかった。そこで、本発明者は、コシヒカリの当該領域に含まれている遺伝子をハバタキ由来の遺伝子に置換した新品種の作出を行った。当該新品種は、元品種コシヒカリよりも早生のイネであると予想された。
 非遺伝子組み換え法により植物の品種改良を行う場合において、導入される外来品種由来の染色体断片が大きすぎる場合には、目的の形質遺伝子以外の機能不明な他の遺伝子を多数導入してしまうおそれや、元品種が有する好ましい形質を損なうおそれがある。そこで、本発明者は、導入される外来品種由来の染色体断片による置換領域をコントロールし、元品種が有する好ましい形質を変更することなく、標的形質を有する新品種を作製するため、特許文献2に記載の方法により、新品種の作出を行った。
 特許文献2に記載の新品種の作出方法は、具体的には以下の通りである。まず、公知のイネの遺伝子情報に基づき、図1に示すような位置関係にある5種類のDNAマーカーを設定した。すなわち、標的領域Tの上流側末端又はその上流にDNAマーカーM2を、DNAマーカーM2の上流にDNAマーカーM1を、標的領域Tの下流側末端又はその下流にDNAマーカーM4を、DNAマーカーM4の下流にDNAマーカーM5を、標的領域T中にDNAマーカーM3を、それぞれ設定する。次いで、コシヒカリの染色体のうち、標的領域Tを含む一部のみがハバタキ由来の染色体断片に置換されている染色体断片置換系統に対して戻し交配を行い、得られた交雑集団から前記5種類のDNAマーカーM1~M5に基づいて好ましい個体を選抜する。その後、当該個体に対して適宜自家交配又は戻し交配を行い、同様にDNAマーカーM1~M5に基づいて好ましい個体を選抜することを適宜繰り返すことにより、ハバタキ由来の染色体断片により置換される領域の上流側末端がDNAマーカーM1とM2の間、該領域の下流側末端がDNAマーカーM4とM5の間にあるような後代個体を得ることができる。図1に示すように、当該後代個体は、DNAマーカーM1及びM5が元品種と同じタイプであり、DNAマーカーM2、M3、及びM4が、外来品種(本発明では、ハバタキ)と同じタイプである。
 ここで、特許文献2に記載の新品種の製造方法では、DNAマーカーM1とM2の距離d1が長ければ、外来品種由来染色体断片(本願では、ハバタキ由来染色体断片)Lの上流側末端が存在し得る範囲が広く、導入されるハバタキ由来染色体断片Lの長さが確定しにくくなる。一方、距離d1が短ければ、ハバタキ由来染色体断片Lの上流側末端が存在し得る範囲が狭く、導入されるハバタキ由来染色体断片Lの長さが確定しやすくなる。同様に、DNAマーカーM4とM5の距離d3が長ければ、ハバタキ由来染色体断片Lの下流側末端が存在し得る範囲が広く、導入されるハバタキ由来染色体断片Lの長さが確定しにくくなり、距離d3が短ければ、ハバタキ由来染色体断片Lの下流側末端が存在し得る範囲が狭く、導入されるハバタキ由来染色体断片Lの長さが確定しやすくなる。
 具体的には、表1に示すDNAマーカーM1~M5のセット、すなわち、イネ品種日本晴の第3染色体の31,521,442番目のSNP(一塩基多型)に相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではC)をDNAマーカーM1(DNAマーカーM1-Ac(QTS14))とし、イネ品種日本晴の第3染色体の31,689,690番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM2(DNAマーカーM2-Ct(QTS14))とし、イネ品種日本晴の第3染色体の32,208,924番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM3(DNAマーカーM3-Ag(QTS14))とし、イネ品種日本晴の第3染色体の32,298,686番目のSNPに相当するSNP(イネ品種コシヒカリではG、イネ品種ハバタキではC)をDNAマーカーM4(DNAマーカーM4-Gc(QTS14))とし、イネ品種日本晴の第3染色体の32,363,157番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM5(DNAマーカーM5-At(QTS14))としてそれぞれ用いて、特許文献2に記載の新品種の作出方法によって新品種を作出した。これらの結果から、イネ個体の第3染色体中の、DNAマーカーM2-Ct(QTS14)からDNAマーカーM4-Gc(QTS14)までの領域(すなわち、イネ品種日本晴の第3染色体中の31,689,690番目の塩基から32,298,686番目の塩基までの領域に相当する領域)を含む領域が、ハバタキ由来の染色体断片によって置換された新品種が作出された。当該新品種では、ハバタキ由来の染色体断片の上流端は、DNAマーカーM1-Ac(QTS14)よりも下流であってDNAマーカーM2-Ct(QTS14)までの領域(すなわち、イネ品種日本晴の第3染色体中の31,521,443番目の塩基から31,689,690番目の塩基までの領域に相当する領域)に存在し、当該染色体断片の下流端が、DNAマーカーM4-Gc(QTS14)からDNAマーカーM5-At(QTS14)よりも上流までの領域(すなわち、イネ品種日本晴の第3染色体中の32,298,686番目の塩基から32,363,156番目の塩基までを含む領域に相当する領域)に存在する。
Figure JPOXMLDOC01-appb-T000001
 本発明者はこの新品種を「コシヒカリえいち5号」と命名した。図2は、コシヒカリ及びコシヒカリえいち5号のゲノムを模式的に表した図である。千葉県にある圃場において、コシヒカリえいち5号の出穂期を測定したところ(種まき日:2010年5月6日、移植日: 2010年6月1日)、図3に示すように、コシヒカリの出穂期が8月5日~8月8日であったのに対して、コシヒカリえいち5号は7月24日~7月26日であった。つまり、元品種のコシヒカリよりも、コシヒカリえいち5号は明らかに早生であることが判明した。
 さらに、北緯38.5度よりも北の北海道にある圃場において、コシヒカリえいち5号の出穂期を測定した(種まき日:2010年4月28日、移植日: 2010年6月7日)。この結果、図4に示すように、コシヒカリの出穂期が9月1日~9月2日であったのに対して、コシヒカリえいち5号は8月21日~8月22日であった。つまり、北海道で栽培した場合にも、元品種のコシヒカリよりも、コシヒカリえいち5号は明らかに早生であることが判明した。但し、コシヒカリとコシヒカリえいち5号は、いずれも出穂はしたものの、充分に成熟せず、米は収穫できなかった。
 本発明の発明者は、コシヒカリえいち5号に、さらに早生化の機能を有する外来染色体断片を積み重ねることにより、北の地域でも栽培可能なほど十分に早生であるコシヒカリが得られるのではないかと考えた。そこで、コシヒカリえいち5号とイネ品種コシヒカリえいち3号を交配した。
 コシヒカリえいち3号は、特許文献2に記載の新品種の作出方法により、コシヒカリの染色体中、第6染色体のHd1遺伝子を含む領域のみがハバタキ由来の遺伝子断片に置換された品種である。表2に、コシヒカリえいち3号の作製に使用した5種類のDNAマーカーを示す。DNAマーカーM1-Ctは、イネ品種日本晴の第6染色体の8,757,818番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)であり、DNAマーカーM2-Agは、イネ品種日本晴の第6染色体の8,940,503番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)であり、DNAマーカーM3-Cgは、イネ品種日本晴の第6染色体の9,325,062番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではG)であり、DNAマーカーM4-Gcは、イネ品種日本晴の第6染色体の9,533,057番目のSNPに相当するSNP(イネ品種コシヒカリではG、イネ品種ハバタキではC)であり、DNAマーカーM5-Atは、イネ品種日本晴の第6染色体の9,777,196番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)である。すなわち、コシヒカリえいち3号は、イネ品種コシヒカリの第6染色体中のDNAマーカーM2-Ag(Hd1)からDNAマーカーM4-Gc(Hd1)までの領域(すなわち、イネ品種日本晴の第6染色体中の8,940,503番目の塩基から9,533,057番目の塩基までの領域に相当する領域)を含む領域がハバタキ由来の染色体断片によって置換された新品種である。当該新品種では、ハバタキ由来の染色体断片の上流端は、DNAマーカーM1-Ct(Hd1)よりも下流であってDNAマーカーM2-Ag(Hd1)までの領域(すなわち、イネ品種コシヒカリの第6染色体中の8,757,819番目の塩基から8,940,503番目の塩基までの領域に相当する領域)に存在し、当該染色体断片の下流端が、DNAマーカーM4-Gc(Hd1)からDNAマーカーM5-At(Hd1)よりも上流までの領域(すなわち、9,533,057番目の塩基から9,777,195番目の塩基までを含む領域に相当する領域)に存在する。
Figure JPOXMLDOC01-appb-T000002
 図5は、コシヒカリ及びコシヒカリえいち3号のゲノムを模式的に表した図である。千葉県にある圃場において、コシヒカリえいち3号の出穂期を測定したところ(種まき日:2010年5月6日、移植日: 2010年6月1日)、図6に示すように、コシヒカリの出穂期が8月5日~8月8日であったのに対して、コシヒカリえいち3号は7月25日~7月26日であった。つまり、千葉県で栽培した場合には、コシヒカリえいち3号は、コシヒカリえいち5号と同程度に早生であった。
 さらに、北緯38.5度よりも北の北海道にある圃場において、コシヒカリえいち3号の出穂期を測定した(種まき日:2010年4月28日、移植日: 2010年6月7日)。この結果、図7に示すように、コシヒカリの出穂期が9月1日~9月2日であり、米は収穫できなかった。これに対して、コシヒカリえいち3号の出穂期は8月10日~8月16日であり、その後、米を収穫することができた。つまり、コシヒカリえいち3号は、北緯38.5度よりも北の地域で栽培した場合には、コシヒカリえいち5号よりも顕著に早生化するため、北海道でも栽培可能なイネであることが明らかとなった。Hd1領域をハバタキ由来の染色体断片に置換することによる早生化効果の程度が栽培地によって異なること、より北の地域、例えば北緯38.5度よりも北の地域で栽培した場合のほうが、従来のコシヒカリの栽培地域(北緯35.5度から38.5度)で栽培した場合よりも早生化効果が高いことは、本発明者によって初めて見出された知見である。
 本発明者は、後記実施例1に示すように、コシヒカリえいち5号とコシヒカリえいち3号とを交配し、コシヒカリの染色体中、QTS14領域とHd1領域のみがハバタキ由来の染色体断片に置換された新品種を作製した。本発明者はこの新品種を「コシヒカリかずさ6号」と命名した。図8は、コシヒカリかずさ6号のゲノムを模式的に表した図である。コシヒカリかずさ6号の出穂期を測定したところ、コシヒカリえいち3号よりも早生であり、北緯38.5度よりも北の北海道で栽培した場合でも、米を収穫することができた。また、コシヒカリかずさ6号の表現形質をコシヒカリと比較したところ、実際の圃場試験においても、出穂期以外のその他の形質はコシヒカリとほぼ同等であった。
 コシヒカリかずさ6号は、特許文献2に記載の方法により作出された新品種であり、ゲノム構成は99%以上がコシヒカリと同じであるように設計され、育成された。コシヒカリかずさ6号は、従来コシヒカリは栽培不可能であった北海道でも栽培可能なほど早生であるにもかかわらず、コシヒカリが有する味等の優良形質を維持しているという非常に優れた品種である。そこで、出願人は、コシヒカリかずさ6号について、日本国種苗法(平成十年五月二十九日法律第八十三号)に規定される品種登録出願を行った(品種登録出願の出願日:2011年1月28日、品種登録出願番号:第25587号)。
 イネ品種コシヒカリかずさ6号は、元品種コシヒカリと同様の手法により、栽培し、自家交配や人工交配により米を収穫することができる。また、イネ品種コシヒカリかずさ5号及びその後代個体は、元品種コシヒカリと同様に、新品種育成の親個体とすることができる。例えば、イネ品種コシヒカリかずさ6号の個体と別の品種の個体とを交配し、得られた後代個体を、イネ品種コシヒカリかずさ6号の個体と戻し交配することにより、新品種の育種を試みることもできる。
 また、表1に記載の5種類のDNAマーカー(DNAマーカーM1-Ac(QTS14)、DNAマーカーM2-Ct(QTS14)、DNAマーカーM3-Ag(QTS14)、DNAマーカーM4-Gc(QTS14)は、イネ品種コシヒカリかずさ6号及びイネ品種コシヒカリえいち5号に特有のゲノム情報である。したがって、イネ品種コシヒカリかずさ6号及びイネ品種コシヒカリえいち5号は、これらの5種類のDNAマーカーを適宜用いて鑑別することができる。
 具体的には、品種を鑑別する対象のイネ個体に対してゲノム解析を行い、DNAマーカーM1-Ac(QTS14)、DNAマーカーM2-Ct(QTS14)、DNAマーカーM3-Ag(QTS14)、DNAマーカーM4-Gc(QTS14)、及びDNAマーカーM5-At(QTS14)からなる群より選択される1以上のDNAマーカーをタイピングし、得られたタイピング結果が、イネ品種コシヒカリかずさ6号の結果と一致する場合には、当該イネ個体がイネ品種コシヒカリかずさ6号又はイネ品種コシヒカリえいち5号であると鑑別することができる。
 また、表2に記載の5種類のDNAマーカー(DNAマーカーM1-Ct(Hd1)、DNAマーカーM2-Ag(Hd1)、DNAマーカーM3-Cg(Hd1)、DNAマーカーM4-Gc(Hd1)、及びDNAマーカーM5-At(Hd1))は、イネ品種コシヒカリかずさ6号及びイネ品種コシヒカリえいち3号に特有のゲノム情報である。したがって、イネ品種コシヒカリかずさ6号及びイネ品種コシヒカリえいち3号は、これらの5種類のDNAマーカーを適宜用いて鑑別することができる。
 具体的には、品種を鑑別する対象のイネ個体に対してゲノム解析を行い、DNAマーカーM1-Ct(Hd1)、DNAマーカーM2-Ag(Hd1)、DNAマーカーM3-Cg(Hd1)、DNAマーカーM4-Gc(Hd1)、及びDNAマーカーM5-At(Hd1)からなる群より選択される1以上のDNAマーカーをタイピングし、得られたタイピング結果が、イネ品種コシヒカリかずさ6号の結果と一致する場合には、当該イネ個体がイネ品種コシヒカリかずさ6号又はイネ品種コシヒカリえいち3号であると鑑別することができる。
 ここで、品種の鑑別には、DNAマーカーM1~M5の全てを用いてもよく、5個のDNAマーカーのうちの幾つかを用いてもよい。例えば、上流側の組み換えポイントであるDNAマーカーM1とM2のみを用いてもよく、下流側の組み換えポイントであるDNAマーカーM4とM5のみを用いてもよく、DNAマーカーM2とM4のみを用いてもよい。複数のDNAマーカーを適宜組み合わせることにより、より厳密な品種鑑別が可能となる。
 これらの結果から、イネ個体の第3染色体中のQTS14領域、具体的には、少なくともDNAマーカーM2-Ct(QTS14)からDNAマーカーM4-Gc(QTS14)までの領域(すなわち、イネ品種日本晴の第3染色体中の31,689,690番目の塩基から32,298,686番目の塩基までを含む領域に相当する領域)を、イネ品種ハバタキの当該領域からなる染色体断片に置換することにより、当該イネ個体を元品種よりも早生化することができることが明らかである。なお、イネ品種コシヒカリかずさ6号及びイネ品種コシヒカリえいち5号の当該領域は、イネ品種ハバタキの当該領域からなる染色体断片により構成されているため、イネ品種コシヒカリかずさ6号若しくはイネ品種コシヒカリえいち5号の当該領域からなる染色体断片によって置換してもよい。イネ品種ハバタキの当該領域からなる染色体断片を導入することにより早生化するイネ個体は、当該領域がイネ品種コシヒカリと同一若しくは近似した塩基配列を有している品種であればよく、イネ品種コシヒカリに限定されるものではないが、消費者の嗜好性等から、イネ品種コシヒカリ又はそれを親品種として作出された新品種であることが好ましい。
 また、DNAマーカーM2-Ct(QTS14)からDNAマーカーM4-Gc(QTS14)までの領域を含むイネ品種ハバタキ由来(若しくはイネ品種コシヒカリかずさ6号等由来)の染色体断片の上流端が、DNAマーカーM1-Ac(QTS14)よりも下流であってDNAマーカーM2-Ct(QTS14)までの領域(すなわち、イネ品種日本晴の第3染色体中の31,521,443番目の塩基から31,689,690番目の塩基までを含む領域に相当する領域)に存在し、当該染色体断片の下流端が、DNAマーカーM4-Gc(QTS14)からDNAマーカーM5-At(QTS14)よりも上流までの領域(すなわち、イネ品種日本晴の第3染色体中の32,298,686番目の塩基から32,363,156番目の塩基までを含む領域に相当する領域)に存在するように、当該染色体断片をイネ個体の第3染色体中に導入することにより、出穂期以外の形質に明らかな影響を及ぼすことなく、当該イネ個体を、元品種よりも早生化することができる。
 また、第3染色体中のQTS14領域に加えて、さらに第6染色体中のHd1領域、具体的には、少なくともDNAマーカーM2-Ag(Hd1)からDNAマーカーM4-Gc(Hd1)までの領域(すなわち、イネ品種日本晴の第6染色体中の8,940,503番目の塩基から9,533,057番目の塩基までを含む領域に相当する領域)を、イネ品種ハバタキの当該領域からなる染色体断片に置換することにより、当該イネ個体を北緯38.5度よりも北の地域でも栽培可能なほど顕著に早生化することができる。なお、イネ品種コシヒカリかずさ6号及びイネ品種コシヒカリえいち3号の当該領域は、イネ品種ハバタキの当該領域からなる染色体断片により構成されているため、イネ品種コシヒカリかずさ6号若しくはイネ品種コシヒカリえいち3号の当該領域からなる染色体断片によって置換してもよい。イネ品種ハバタキの当該領域からなる染色体断片を導入することにより早生化するイネ個体は、当該領域がイネ品種コシヒカリと同一若しくは近似した塩基配列を有している品種であればよく、イネ品種コシヒカリに限定されるものではないが、消費者の嗜好性等から、イネ品種コシヒカリ又はそれを親品種として作出された新品種であることが好ましい。
 また、DNAマーカーM2-Ag(Hd1)からDNAマーカーM4-Gc(Hd1)までの領域を含むイネ品種ハバタキ由来(若しくはイネ品種コシヒカリかずさ6号等由来)の染色体断片の上流端が、DNAマーカーM1-Ct(Hd1)よりも下流であってDNAマーカーM2-Ag(Hd1)までの領域(すなわち、イネ品種日本晴の第6染色体中の8,757,819番目の塩基から8,940,503番目の塩基までを含む領域に相当する領域)に存在し、当該染色体断片の下流端が、DNAマーカーM4-Gc(Hd1)からDNAマーカーM5-At(Hd1)よりも上流までの領域(すなわち、イネ品種日本晴の第6染色体中の9,533,057番目の塩基から9,777,195番目の塩基までを含む領域に相当する領域)に存在するように、当該染色体断片をイネ個体の第6染色体中に導入することにより、出穂期以外の形質に明らかな影響を及ぼすことなく、当該イネ個体を、元品種よりも早生化することができる。
 なお、コシヒカリえいち3号やコシヒカリかずさ6号をはじめとする、第6染色体中のHd1領域(具体的には、少なくともDNAマーカーM2-Ag(Hd1)からDNAマーカーM4-Gc(Hd1)までの領域)をイネ品種ハバタキの当該領域からなる染色体断片に置換されたイネ個体は、コシヒカリが栽培可能な地域で栽培可能であるのみならず、北緯38.5度よりも北の地域でも栽培し、米を収穫することができる。これらのイネ個体は、気温や降雨量等にも影響を受けるが、例えば、北緯38.5度から43.3度までの間の地域で栽培することができる。
 これまでの研究から、Hd1領域のうち、Hd1遺伝子が早生化を引き起こす原因遺伝子と考えられている。一方で、QTS14領域に含まれる遺伝子を調べたところ、当該領域中には、phytochrome C遺伝子をコードする領域が含まれていた。当該遺伝子は、主に植物の開花時間の制御に関与していることが報告されている(米国特許第7566815号明細書)。よって、QTS14領域において早生化を引き起こす原因遺伝子はphytochrome C遺伝子であると推察される。なお、イネ品種日本晴の対立断片では、Hd1遺伝子は、第6染色体の9,335,337番目の塩基から9,337,606番目の塩基までの領域にマップされており、phytochrome C遺伝子は、第3染色体の31,720,064番目の塩基から31,724,043番目の塩基までの領域にマップされている。
 Hd1領域中の早生化の原因遺伝子やQTS14領域中の早生化の原因遺伝子を含む領域がハバタキ由来の染色体断片によって置換されていれば、コシヒカリかずさ6号に導入されたハバタキ由来染色体断片よりも短い染色体断片によって置換されているイネ個体であっても、イネ品種コシヒカリかずさ6号と同様に早生化が引き起こされると考えられる。したがって、例えば、イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,689,691番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号、イネ品種コシヒカリえいち5号、又はイネ品種ハバタキの当該領域からなる染色体断片に置換することにより、当該イネ個体を元品種よりも早生化することができると考えられる。また、この際、当該染色体断片の上流端が、イネ品種日本晴の第3染色体の31,689,690番目の塩基から31,720,064番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の31,724,043番目の塩基から32,298,685番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片をイネ個体の第3染色体中に導入することにより、出穂期以外の形質に明らかな影響を及ぼすことなく、当該イネ個体を、元品種よりも早生化することができると考えられる。
 同様に、イネ個体の第6染色体中の、イネ品種日本晴の第6染色体中の9,335,337番目の塩基から9,337,606番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号、イネ品種コシヒカリえいち3号、又はイネ品種ハバタキの当該領域からなる染色体断片に置換することにより、当該イネ個体を元品種よりも早生化することができると考えられる。また、この際、当該染色体断片の上流端が、イネ品種日本晴の第6染色体の8,940,504番目の塩基から9,335,337番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の9,337,606番目の塩基から9,533,056番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片をイネ個体の第3染色体中に導入することにより、出穂期以外の形質に明らかな影響を及ぼすことなく、当該イネ個体を、元品種よりも早生化することができると考えられる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 コシヒカリえいち5号とコシヒカリえいち3号とを掛け合わせ、コシヒカリの染色体中、QTS14領域とHd1領域のみがハバタキ由来の染色体断片に置換された新品種を作製した。
 具体的には、コシヒカリえいち3号とコシヒカリえいち5号を交配し、得られた後代個体(種子)のうち2個を栽培し、自殖(自家交配)させ、さらに後代個体である種子を100個得た。この100個の種子を全て栽培し、各後代個体のDNAマーカーを調べ、DNAマーカーM3-Cg(Hd1)とDNAマーカーM3-Ag(QTS14)の両方がハバタキ由来アレルのホモ染色体領域である栽培個体を1個体選抜した。本発明者はこの新品種を「コシヒカリかずさ5号」と命名した。
 千葉県にある圃場において、コシヒカリかずさ6号の出穂期を測定した(種まき日:2010年5月6日、移植日: 2010年6月1日)。測定結果を、コシヒカリ、コシヒカリえいち5号、及びコシヒカリえいち3号の結果とともに図9に示す。コシヒカリの出穂期が8月5日~8月8日であり、コシヒカリえいち5号とコシヒカリえいち3号が7月24日~7月26日であったのに対して、コシヒカリかずさ6号は7月18日~7月23日であった。これらの結果から、千葉県で栽培した場合に、コシヒカリかずさ6号は、コシヒカリえいち3号やコシヒカリえいち5号よりも明らかに早生であった。
 さらに、北海道にある圃場(北緯43.3度)において、コシヒカリかずさ6号の出穂期を測定した(種まき日:2010年4月28日、移植日: 2010年6月7日)。測定結果を、コシヒカリ、コシヒカリえいち5号、及びコシヒカリえいち3号の結果とともに図10に示す。コシヒカリの出穂期が9月1日~9月2日であり、コシヒカリえいち5号が8月21日から8月22日であり、コシヒカリえいち3号が8月10日~8月16日であったのに対して、コシヒカリかずさ6号は8月7日~8月9日であった。また、コシヒカリ及びコシヒカリえいち5号は成熟しなかったのに対して、コシヒカリかずさ6号はコシヒカリえいち3号と同様に米を収穫することができた。これらの結果から、コシヒカリかずさ6号は、北緯38.5度よりも北の北海道においても栽培可能であることが明らかである。
 コシヒカリかずさ6号とコシヒカリの形質を比較検討した(千葉県にて、2009年に実施)。形質の検討は、種苗法(平成10年法律第83号)第5条第1項に基づく品種登録出願のための特性審査に準拠して行った。検討結果を表3~6に示す。この結果、出穂期及び成熟期のいずれも、コシヒカリかずさ6号はコシヒカリよりも2週間程度早くなった。また、コシヒカリかずさ6号はコシヒカリよりも、稈長や穂の主軸の長さ、主茎長が若干短く、穂数及び主茎粒数も少な目であったが、それ以外の形質は基本的にコシヒカリと同じであった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明の新品種であるイネ品種コシヒカリかずさ6号は、コシヒカリとほぼ同様の特性を有し、かつ従来よりも北の地域でも栽培可能であるため、特に農業の分野において利用が可能である。また、本発明のイネ個体を早生化する方法により、イネ個体を元品種よりも早生化することができるため、当該方法は、特に植物の育種の分野において利用が可能である。

Claims (11)

  1.  品種登録出願番号が第25587号である、イネ品種コシヒカリかずさ6号(Oryza sativa L.cultivar Koshihikari-kazusa6 gou)。
  2.  請求項1記載の品種の個体及び請求項1記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体。
  3.  あるイネ個体が、特定の品種であるか否かを鑑別する方法であって、
    イネ品種日本晴の第3染色体中の31,521,442番目のSNP(一塩基多型)に相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではC)をDNAマーカーM1とし、
    イネ品種日本晴の第3染色体の31,689,690番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM2とし、
    イネ品種日本晴の第3染色体の32,208,924番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM3とし、
    イネ品種日本晴の第3染色体の32,298,686番目のSNPに相当するSNP(イネ品種コシヒカリではG、イネ品種ハバタキではC)をDNAマーカーM4とし、
    イネ品種日本晴の第3染色体の32,363,157番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM5とし、
    当該イネ個体のゲノム解析により、前記DNAマーカーM1~M5からなる群より選択される1以上のDNAマーカーをタイピングし、
    得られたタイピング結果がイネ品種コシヒカリかずさ6号(Oryza sativa L.cultivar Koshihikari-kazusa6 gou)又はイネ品種コシヒカリえいち5号(Oryza sativa L.cultivar Koshihikari-eich5 gou)の結果と一致する場合に、当該イネ個体がイネ品種コシヒカリかずさ6号又はイネ品種コシヒカリえいち5号であると鑑別することを特徴とする、イネ品種の鑑別方法。
  4.  あるイネ個体が、特定の品種であるか否かを鑑別する方法であって、
    イネ品種日本晴の第6染色体の8,757,818番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではT)をDNAマーカーM1とし、
    イネ品種日本晴の第6染色体の8,940,503番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではG)をDNAマーカーM2とし、
    イネ品種日本晴の第6染色体の9,325,062番目のSNPに相当するSNP(イネ品種コシヒカリではC、イネ品種ハバタキではG)をDNAマーカーM3とし、
    イネ品種日本晴の第6染色体の9,533,057番目のSNPに相当するSNP(イネ品種コシヒカリではG、イネ品種ハバタキではC)をDNAマーカーM4とし、
    イネ品種日本晴の第6染色体の9,777,196番目のSNPに相当するSNP(イネ品種コシヒカリではA、イネ品種ハバタキではT)をDNAマーカーM5とし、
    当該イネ個体のゲノム解析により、前記DNAマーカーM1~M5からなる群より選択される1以上のDNAマーカーをタイピングし、
    得られたタイピング結果がイネ品種コシヒカリかずさ6号(Oryza sativa L.cultivar Koshihikari-kazusa6 gou)又はイネ品種コシヒカリえいち3号(Oryza sativa L.cultivar Koshihikari-eich3 gou)の結果と一致する場合に、当該イネ個体がイネ品種コシヒカリかずさ6号又はイネ品種コシヒカリえいち3号であると鑑別することを特徴とする、イネ品種の鑑別方法。
  5.  イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,720,064番目の塩基から31,724,043番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法。
  6.  前記染色体断片の上流端が、イネ品種日本晴の第3染色体の31,689,691番目の塩基から31,720,064番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の31,724,043番目の塩基から32,298,685番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする請求項5記載のイネ個体を早生化する方法。
  7.  イネ個体の第3染色体中の、イネ品種日本晴の第3染色体中の31,689,690番目の塩基から32,298,686番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号又はイネ品種ハバタキの当該領域からなる染色体断片に置換することを特徴とする、イネ個体を早生化する方法。
  8.  前記染色体断片の上流端が、上流端がイネ品種日本晴の第3染色体の31,521,443番目の塩基から31,689,690番目の塩基までを含む領域に相当する領域に存在し、かつ当該染色体断片の下流端が、イネ品種日本晴の第3染色体の32,298,686番目の塩基から32,363,156番目の塩基までを含む領域に相当する領域に存在するように、当該染色体断片を置換することを特徴とする請求項7記載のイネ個体を早生化する方法。
  9.  請求項5~8のいずれか一項に記載のイネ個体を早生化する方法により作出されたイネ品種。
  10.  請求項9記載の品種の個体及び請求項9記載の品種の個体の後代個体からなる群より選択される2個体を交配して得られる後代個体。
  11.  イネ個体の第6染色体中の、イネ品種日本晴の第6染色体中の8,940,503番目の塩基から9,533,057番目の塩基までを含む領域に相当する領域を、イネ品種コシヒカリかずさ6号、イネ品種コシヒカリえいち3号、又はイネ品種ハバタキの当該領域からなる染色体断片に置換されたイネ個体、イネ品種コシヒカリかずさ6号のイネ個体、及びイネ品種コシヒカリえいち3号のイネ個体からなる群より選択される1種以上のイネ個体を、北緯38.5度よりも北で栽培することを特徴とするイネの栽培方法。
PCT/JP2011/056551 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法 WO2012127559A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/056551 WO2012127559A1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
CN201180069335.3A CN103429073B (zh) 2011-03-18 2011-03-18 新品种的培育方法、植物品种的鉴别方法以及使水稻个体早熟的方法
US14/005,225 US9029669B2 (en) 2011-03-18 2011-03-18 Cultivar, method for differentiating plant cultivars, and method for causing earlier maturing of rice individual
JP2011513769A JP4892647B1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056551 WO2012127559A1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法

Publications (1)

Publication Number Publication Date
WO2012127559A1 true WO2012127559A1 (ja) 2012-09-27

Family

ID=45907925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056551 WO2012127559A1 (ja) 2011-03-18 2011-03-18 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法

Country Status (4)

Country Link
US (1) US9029669B2 (ja)
JP (1) JP4892647B1 (ja)
CN (1) CN103429073B (ja)
WO (1) WO2012127559A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409610B2 (ja) * 2008-07-07 2010-02-03 本田技研工業株式会社 新品種の作製方法
CN103429074B (zh) 2011-03-18 2015-08-26 本田技研工业株式会社 新品种的培育方法、植物品种的鉴别方法以及使水稻个体早熟的方法
CN104805193A (zh) * 2015-03-31 2015-07-29 江汉大学 一种测试水稻品种实质性派生关系的方法
CN110028567A (zh) * 2019-04-22 2019-07-19 江西农业大学 一种水稻开花相关的蛋白质及其编码基因lhd3与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044200A1 (ja) * 2002-11-13 2004-05-27 Honda Motor Co., Ltd. 穀物の収量を増加させる遺伝子、並びにその利用
JP2008283902A (ja) * 2007-05-17 2008-11-27 Honda Motor Co Ltd イネおよびその作出方法
JP2010011826A (ja) * 2008-07-07 2010-01-21 Honda Motor Co Ltd 新品種の作製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032881A1 (fr) 1999-11-04 2001-05-10 National Institute Of Agrobiological Sciences GENE Hd1 LIE A LA PHOTOSENSIBILITE D'UNE PLANTE ET SON UTILISATION
CN1571840A (zh) 2001-09-03 2005-01-26 独立行政法人农业生物资源研究所 调节植物光敏素c的表达以控制植物的开花时间
JPWO2003070934A1 (ja) 2002-02-25 2005-06-09 株式会社植物ゲノムセンター 植物のsd−1遺伝子周辺領域の遺伝子型判定方法、および該方法を用いた植物の半わい性形質の検査方法
JP4352102B1 (ja) 2009-05-18 2009-10-28 本田技研工業株式会社 新品種及び植物品種の鑑別方法
CN103429074B (zh) 2011-03-18 2015-08-26 本田技研工业株式会社 新品种的培育方法、植物品种的鉴别方法以及使水稻个体早熟的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044200A1 (ja) * 2002-11-13 2004-05-27 Honda Motor Co., Ltd. 穀物の収量を増加させる遺伝子、並びにその利用
JP2008283902A (ja) * 2007-05-17 2008-11-27 Honda Motor Co Ltd イネおよびその作出方法
JP2010011826A (ja) * 2008-07-07 2010-01-21 Honda Motor Co Ltd 新品種の作製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAYUKO IKEDA ET AL.: "Tashu Ine, Habataki no Ho no Chakuryu Kozo Keisei ni Kakawaru Gn1 Oyobi QTL no Pyramiding", BREEDING RESEARCH, vol. 12, 24 September 2010 (2010-09-24), pages 253 *
TAIICHIRO OKAWA: "(9) Ko-Biomass Tashusei Suito Chokan Hinshu ga Sonaeru beki Tai-Tofukusei ni Kan'yo suru Kyoku-Kyokan Keishitsu no QTL Kaiseki", KENKYU SEIKA DAI 473 SHU 'GENOME IKUSHU NI YORU KORITSUTEKI HINSHU IKUSEI GIJUTSU NO KAIHATSU, QTL IDENSHI KAISEKI NO SUISHIN', 20 February 2009 (2009-02-20), pages 60 - 63 *

Also Published As

Publication number Publication date
US9029669B2 (en) 2015-05-12
US20140090109A1 (en) 2014-03-27
CN103429073B (zh) 2015-08-12
JPWO2012127559A1 (ja) 2014-07-24
CN103429073A (zh) 2013-12-04
JP4892647B1 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5991658B2 (ja) イネf1種子の生産方法、イネf1種子、及びイネ雄性不稔系統
US11032986B2 (en) Methods of creating drought tolerant corn plants using markers linked to cold shock domain-containing proteins and compositions thereof
CN105695478B (zh) 调节植物株型和产量的基因及其应用
US20200270623A1 (en) Method for differentiating cannabis plant cultivars based on cannabinoid synthase paralogs
JP2012210205A (ja) イネf1種子の生産方法、イネf1種子、及びイネ雄性不稔系統
CN114134247B (zh) 与谷子株高性状紧密连锁的分子标记及其引物序列和应用
CN109688805B (zh) 产生灰叶斑病抗性玉蜀黍的方法
JP4892647B1 (ja) 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
JP4892648B1 (ja) 新品種、植物品種の鑑別方法、及びイネ個体を早生化する方法
JP4961504B1 (ja) 新品種
CN109486829B (zh) 一种水稻半矮秆基因sd1等位基因及其鉴定方法
JP7094681B2 (ja) Xanthomonas抵抗性のBrassica oleracea植物
CN113278723B (zh) 合成芥菜中导入的白菜基因组片段或遗传多样性分析的组合物及应用
JP2020501575A (ja) 多着花スイカ
JP4298538B2 (ja) 休眠性に関与する遺伝子座に連鎖する遺伝マーカーおよびその利用
JP4961503B1 (ja) 新品種
Dawlah et al. Genetic relationship between some Egyptian and Yemeni wheat based on different markers
WO2023157671A1 (ja) チップバーン抵抗性レタス植物、チップバーン抵抗性レタス植物の製造方法、及びレタス植物へのチップバーン抵抗性の付与方法
CN109338001B (zh) 一种鉴定水稻半矮秆基因sd1等位基因的分子标记及矮源基因鉴定方法
Pradhan Chapter-7 Adoption of MAS in Plant Breeding
JP2005229854A (ja) 開閉花性を支配する遺伝子座に連鎖する遺伝マーカーおよびその利用
CN118103506A (zh) 具有新型霜霉病抗性基因的菠菜植物
Battal TILLING for TtBH-1 gene and its hybridization to Turkish durum wheat cultivars Kızıltan-91 and Fuatbey-2000
JP2005229848A (ja) 穂軸節間長に関与する遺伝子座に連鎖する遺伝マーカーおよびその利用
JP2005229850A (ja) 千粒重に関与する遺伝子座に連鎖する遺伝マーカーおよびその利用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011513769

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14005225

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861731

Country of ref document: EP

Kind code of ref document: A1