WO2012124655A1 - 2酸化ケイ素ソーラーセル - Google Patents

2酸化ケイ素ソーラーセル Download PDF

Info

Publication number
WO2012124655A1
WO2012124655A1 PCT/JP2012/056291 JP2012056291W WO2012124655A1 WO 2012124655 A1 WO2012124655 A1 WO 2012124655A1 JP 2012056291 W JP2012056291 W JP 2012056291W WO 2012124655 A1 WO2012124655 A1 WO 2012124655A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon dioxide
solar cell
electrolyte
particles
cell according
Prior art date
Application number
PCT/JP2012/056291
Other languages
English (en)
French (fr)
Inventor
信明 小松
朋子 伊藤
裕己 永井
眞一郎 南條
Original Assignee
国際先端技術総合研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES12757417T priority Critical patent/ES2895978T3/es
Priority to DK12757417.6T priority patent/DK2685554T3/da
Priority to EP12757417.6A priority patent/EP2685554B1/en
Priority to AU2012227434A priority patent/AU2012227434B2/en
Application filed by 国際先端技術総合研究所株式会社 filed Critical 国際先端技術総合研究所株式会社
Priority to SG2013068259A priority patent/SG193401A1/en
Priority to PL12757417T priority patent/PL2685554T3/pl
Priority to LTEPPCT/JP2012/056291T priority patent/LT2685554T/lt
Priority to US14/004,283 priority patent/US9384902B2/en
Priority to JP2013504719A priority patent/JP5848324B2/ja
Publication of WO2012124655A1 publication Critical patent/WO2012124655A1/ja
Priority to US15/175,602 priority patent/US9805878B2/en
Priority to AU2017201120A priority patent/AU2017201120B2/en
Priority to AU2017201115A priority patent/AU2017201115B2/en
Priority to US15/716,852 priority patent/US20180019067A1/en
Priority to US15/973,159 priority patent/US20180261397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2072Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells comprising two or more photoelectrodes sensible to different parts of the solar spectrum, e.g. tandem cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a solar cell, and more particularly to a silicon dioxide solar cell using silicon dioxide.
  • a dry solar cell using a semiconductor such as silicon is in a practical stage.
  • a semiconductor solar cell is high in conversion efficiency but expensive because it uses a high-purity material.
  • As a relatively inexpensive solar cell there is a wet solar cell using titanium dioxide (TiO 2 ) and an electrolyte.
  • FIG. 1 is a titanium dioxide solar cell having a basic structure
  • (b) is a titanium dioxide solar cell called an improved dye-sensitized type.
  • reference numeral 1 denotes a glass substrate, and a transparent conductive film 2 such as FTO is formed on one surface to form a photoelectrode.
  • 3 is a porous titanium dioxide sintered body.
  • Reference numeral 4 denotes an electrolytic solution. Generally, an iodine electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used.
  • Reference numeral 5 denotes a platinum counter electrode, which is formed on a glass substrate 7 on which a conductive film 6 such as FTO is formed. Further, 8 is a sealing material, and 9 is an external load such as a resistor.
  • the light incident through the transparent conductive film 2 on the glass substrate 1 is absorbed by the porous titanium dioxide sintered body 3.
  • the porous titanium dioxide oxide sintered body 3 that has absorbed light changes from an electronic ground state to an excited state, and the excited electrons are extracted from the transparent conductive film 2 to the outside by diffusion, and pass through the load 9 to form a transparent conductive film. 6 to the platinum counter electrode 5.
  • the light that titanium dioxide can use for electromotive force is only ultraviolet light having a wavelength of 380 nm or less, and ultraviolet light in this wavelength region is only 4% of sunlight, and the utilization efficiency of sunlight is 4% at maximum, Actually, since 1% is at most, the utilization efficiency of sunlight as a solar cell is extremely low.
  • (B) explains the basic structure of the dye-sensitized solar cell.
  • 1 is a glass substrate, and a transparent conductive film 2 such as FTO is formed on one surface.
  • 3 is a porous titanium dioxide oxide sintered body, and a ruthenium complex dye is adsorbed on the surface of the pores.
  • Reference numeral 4 denotes an electrolytic solution. Generally, an iodine electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used.
  • Reference numeral 5 denotes a platinum counter electrode, which is formed on a glass substrate 7 on which a conductive film 6 such as FTO is formed.
  • 8 is a sealing material, and 9 is an external load such as a resistor.
  • the light incident through the FTO transparent conductive film 2 on the glass substrate 1 is absorbed by the ruthenium complex dye adsorbed on the pore surface of the porous titanium dioxide sintered body 3.
  • the ruthenium complex dye that has absorbed the light changes from an electronic ground state to an excited state, and the electrons of the ruthenium complex dye in the excited state are injected into the porous titanium dioxide sintered body 3.
  • the ruthenium complex dye is in an oxidized state.
  • the porous titanium dioxide sintered body 3 in which the excitation energy level of the ruthenium complex dye is a semiconductor is used for effective injection of excited electrons of the ruthenium complex dye into the porous titanium dioxide sintered body 3.
  • the porous titanium dioxide sintered body 3 in which the excitation energy level of the ruthenium complex dye is a semiconductor is used. Must be more negative than the conduction band energy level.
  • Electrons injected into the porous titanium dioxide sintered body 3 are taken out of the transparent conductive film 2 by diffusion and guided to the platinum counter electrode 5 via the load 9.
  • the oxidized ruthenium complex dye receives electrons from iodine in the iodine-related electrolyte 4 and returns to the ruthenium complex dye in the ground state.
  • the solar light utilization efficiency of the dye-sensitized solar cell having such a configuration is theoretically 30%, but is actually 10% at the maximum.
  • Titanium dioxide has a photocatalytic function.
  • fused quartz treated with hydrohalic acid as a material having a photocatalytic function is disclosed in Japanese Patent Application Laid-Open Nos. 2004-290748 and 2004-290747. Yes.
  • the artificial quartz photocatalyst functions as a photocatalyst in a wider wavelength region of 200 to 800 nm than the photocatalyst using fused silica as a raw material disclosed in JP-A-2004-290748 and JP-A-2004-290747.
  • reference numerals 11 and 17 denote a 30 mm ⁇ 30 mm glass substrate on which a transparent conductive layer FTO (fluorine-doped tin oxide) layer 12 and an FTO layer 16 are formed, and the size of the solar cell is 20 mm ⁇ 20 mm.
  • FTO fluorine-doped tin oxide
  • n-type semiconductor layer 13 such as zinc oxide (ZnO) or titanium oxide (TiO 2 ) is formed on the light incident side FTO layer, and a platinum film is formed on the FTO layer 16 facing the light incident side FTO layer 12. 15 is formed.
  • a solar cell material 20 in which a glass containing SiO 2 and an electrolyte are mixed with a thickness of 0.15 to 0.20 mm is enclosed.
  • a material such as glass containing SiO 2 is immersed in a 5% hydrofluoric acid aqueous solution for 5 minutes, washed with water, dried, and pulverized so that the particle size becomes 0.2 mm or less. ing.
  • the electrolyte was prepared by adding 0.1 mol of LiI, 0.05 mol of I2, 0.5 mol of 4-tert-butylpyridine, and 0.5 mol of tetrabutylammonium iodide to 0.5 mol acetonitrile solvent.
  • the silicon dioxide photovoltaic cell mechanism Details of the silicon dioxide photovoltaic cell mechanism are unknown, but it is absorbed when irradiated with sunlight having a wavelength of 200 to 800 nm, and electrons are transferred from the silicon dioxide side electrode to the counter electrode via the load. In other words, there is a phenomenon that current flows from the counter electrode toward the silicon dioxide side electrode.
  • the short-circuit current and open-circuit voltage obtained by irradiating a fluorescent light of 15,000 to 19,000 lux are as follows. Artificial quartz: Short-circuit current 0.5 ⁇ A, release voltage 35mV Fused silica glass: Short-circuit current 0.5 ⁇ A, release voltage 30 mV Soda lime glass: short circuit current 0.3 ⁇ A, release voltage 15 mV Alkali-free glass: short-circuit current 0.4 ⁇ A, release voltage 30 mV Borosilicate glass: Short-circuit current 0.3 ⁇ A, release voltage 14 mV
  • short-circuit current 0.1 ⁇ A release voltage 3 mV
  • Fused silica glass Short-circuit current 0.2 ⁇ A
  • Soda lime glass Short-circuit current 0.1 ⁇ A
  • Alkali-free glass Short-circuit current 0.1 ⁇ A
  • Borosilicate glass short-circuit current 0.2 ⁇ A, release voltage 12 mV
  • An object of this invention is to obtain a solar cell that exhibits high light utilization efficiency.
  • the inventors of the present invention have found that artificial quartz grains and fused quartz grains that have been treated with hydrohalic acid can be made into a fine powder to exhibit a further excellent solar cell function.
  • the present inventors have found that artificial quartz or glass finely pulverized to near the wavelength of light exhibits a further excellent function as a solar cell material.
  • the inventors of the present invention have found that a silicon dioxide solar cell can generate electricity even by infrared light.
  • the invention combines a silicon dioxide solar cell with a titanium dioxide solar cell in a tandem configuration, and outputs from the silicon dioxide solar cell side electrode and the titanium dioxide solar cell side electrode.
  • a solar cell is obtained that generates electricity by light in all regions ranging from ultraviolet light to infrared light.
  • the range of light to be used is widened.
  • the finely divided silicon dioxide particles may diffuse into the electrolyte and adhere to the sensitizing dye, which may reduce the function of the sensitizing dye.
  • a partition is provided between the silicon dioxide solar cell part and the dye-sensitized titanium dioxide solar cell part.
  • the invention according to this application relates to an artificial quartz particle that is a crystal treated with hydrohalic acid or an amorphous crystal treated with hydrohalic acid, such as quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, and the like.
  • This is a solar cell in which a dye-sensitized titanium dioxide solar cell is combined with a silicon dioxide solar cell made of an electrolyte in a tandem configuration.
  • a dye-sensitized solar cell composed of titanium dioxide adsorbing a dye such as a ruthenium dye and an iodine-related electrolyte is treated with an artificial crystal grain or a hydrohalic acid treatment which is a crystalline material obtained by a hydrohalic acid treatment.
  • This solar cell is a combination of tandem silicon dioxide solar cells using non-crystalline quartz glass, alkali-free glass, borosilicate glass, soda lime, and the like.
  • the invention according to this application is directed to an artificial crystal grain or hydrohalic acid which is a crystalline material obtained by treating a dye-sensitized solar cell comprising a porous titanium dioxide adsorbing a dye such as a ruthenium dye and an iodine-related electrolyte with a hydrohalic acid treatment.
  • a dye-sensitized solar cell comprising a porous titanium dioxide adsorbing a dye such as a ruthenium dye and an iodine-related electrolyte with a hydrohalic acid treatment.
  • Two conductive substrates are arranged with their respective conductive surfaces facing each other, at least one of the substrates is transparent and has a light incident side substrate, and the silicon dioxide particle molded body is disposed facing the light incident side substrate.
  • An electrolyte is filled between the silicon dioxide particle compact and the light incident side substrate.
  • Two conductive substrates are arranged with their respective conductive surfaces facing each other, at least one of the substrates is transparent and has a light incident side substrate, and the silicon dioxide particle molded body is disposed facing the light incident side substrate.
  • An electrolyte is filled between the silicon dioxide particle compact and the light incident side substrate, and a porous titanium oxide sintered body is further disposed on the light incident side substrate.
  • Two conductive substrates are arranged with their respective conductive surfaces facing each other, at least one of the substrates is transparent and has a light incident side substrate, and the silicon dioxide particle molded body is disposed facing the light incident side substrate.
  • the invention according to this application takes out output from the electrode on the titanium dioxide solar cell side and the electrode on the silicon dioxide solar cell side by combining the silicon dioxide solar cell with the titanium dioxide solar cell in a tandem configuration. .
  • the range of light to be used is widened.
  • the solar cell according to this application it is possible to obtain higher photoelectric conversion than a conventional solar cell made of porous titanium dioxide and iodine-related electrolyte.
  • the dye-sensitized solar cell According to the dye-sensitized solar cell according to this application, it is possible to obtain higher photoelectric conversion than a conventional dye-sensitized solar cell composed of titanium dioxide adsorbed with ruthenium sensitizing dye and an iodine-related electrolyte.
  • the dye-sensitized titanium dioxide solar cell according to this application can obtain a maximum short-circuit current of 2860 ⁇ A, and there was a significant increase in electromotive force as compared with 2510 ⁇ A of the conventional dye-sensitized titanium dioxide solar cell.
  • FIG. 1 is a schematic diagram of a silicon dioxide solar cell of Example 1.
  • FIG. 2 is a schematic diagram of the solar cell of Example 2.
  • the schematic diagram of the solar cell of Example 3 using dye-sensitized porous titanium dioxide and silicon oxide.
  • FIG. 6 is a voltage-current characteristic graph of the dye-sensitized porous titanium dioxide solar cell of Example 3 and the conventional dye-sensitized porous titanium dioxide solar cell.
  • FIG. 3 shows a silicon dioxide solar cell obtained by improving the silicon dioxide solar cell shown in FIG.
  • 11 and 17 are glass substrates each having a transparent conductive film 12 such as FTO and a transparent conductive film 16 such as FTO, and the transparent conductive film 12 and the transparent conductive film 16 function as power extraction electrodes.
  • the glass substrates 11 and 12 are arranged so that the transparent conductive film 12 on the glass substrate 11 and the FTO film 16 on the glass substrate 17 face each other.
  • Reference numeral 20 denotes a silicon dioxide (SiO 2 ) fired body having a thickness of 0.15 to 0.20 mm, and is disposed on the glass substrate 17 on the side where no light enters.
  • a platinum (Pt) film 15 is formed as a charge extraction electrode on the transparent conductive film 16 on the silicon dioxide side.
  • Reference numeral 14 denotes an electrolyte, which is different from that mixed in silicon dioxide in the silicon dioxide solar cell of the prior art shown in FIG. 2, between the silicon dioxide fired body 20 and the light incident side glass substrate 11. The space is filled. Further, 18 is a sealing material, and 19 is an external load.
  • the electrolyte 14 used was LiI 0.1 mol, I 2 0.05 mol, 4-tert-butylpyridine 0.5 mol, and tetrabutylammonium iodide 0.5 mol in acetonitrile.
  • the silicon dioxide fired body 20 is made of 5% hydrofluoric acid aqueous solution of glass particles such as quartz crystal, non-alkali glass, borosilicate glass, soda lime, etc., which are crystalline quartz or amorphous crystalline silicon dioxide. What was immersed for 5 minutes, washed with water, dried, and then pulverized to a particle size of 500 nm or less was used. Hydrochloric acid in addition to hydrofluoric acid as hydrohalic acid
  • Artificial quartz particles having a particle size of about 0.2 to 0.5 mm can be used, and those obtained by mixing with ethanol, applying onto the platinum electrode 15 and drying can be used without firing.
  • the light incident from the light incident side glass substrate 11 enters the silicon dioxide 20 and generates electricity.
  • the solar cell of Example 1 irradiated with light of 1 kw / 1 m 2 which is a solar constant by a solar simulator can obtain a short circuit current of 85 ⁇ A and an open voltage of 470 mV when the particle size of the artificial quartz is 0.2 mm or less.
  • a short-circuit current of 348 ⁇ A and an open-circuit voltage of 620 mV were obtained.
  • the inventors measured the short-circuit current of an artificial quartz solar cell, which is a silicon dioxide solar cell, with an illuminance of 300 W, which is a light source that does not contain components in the ultraviolet region, with an illuminance almost equal to direct sunlight.
  • an open-circuit voltage of 400 mV and a short-circuit current of 0.5 ⁇ A were observed, respectively, and it was confirmed that the silicon dioxide solar cell was generated only by infrared light. From this, the silicon dioxide solar cell is also generated by light that does not contain components in the ultraviolet region, which is impossible with the dye-sensitized titanium dioxide solar cell that is a typical wet solar cell.
  • the solar cell of Example 2 is a tandem type combination of the silicon dioxide solar cell of Example 1 and the titanium dioxide solar cell of the prior art shown in FIG.
  • 11 is a transparent substrate made of glass or resin, and a transparent electrode film 12 such as FTO is formed on one surface to serve as a light incident side electrode.
  • 3 is porous titanium dioxide solidified by means such as sintering.
  • 14 is an electrolytic solution, and generally an iodine-based electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used.
  • Reference numeral 20 denotes artificial quartz particles having a particle size of 0.2 mm or less, which are mixed with ethanol, applied onto the electrode 25 made of platinum or the like, and dried.
  • 16 is a transparent electrode such as FTO
  • 17 is a substrate made of glass or resin.
  • 18 is a sealing material
  • 19 is an external load.
  • Ultraviolet light incident from the light incident side transparent substrate 11 enters the porous titanium dioxide 3 to generate electricity, and ultraviolet light and visible light that have not contributed to the electromotive force enter the silicon dioxide 20 to generate electricity.
  • the solar cell of Example 2 can be generated by light in the ultraviolet light to visible light region.
  • a short circuit current of 20 ⁇ A and an open circuit voltage of 417 mV were obtained by the solar cell of Example 1 irradiated with light of 1 kw / 1 m 2 , which is a solar constant, using a solar simulator.
  • the solar cell of Example 3 is a combination of the silicon dioxide solar cell of Example 1 and the conventional dye-sensitized titanium dioxide solar cell shown in FIG.
  • 11 is a transparent substrate made of glass or resin, and a transparent conductive film 12 such as FTO is formed on one surface to serve as a light incident side electrode.
  • Reference numeral 10 denotes porous titanium dioxide that is solidified by means of sintering or the like and adsorbs a sensitizing dye such as a ruthenium complex dye.
  • Reference numeral 14 denotes an electrolytic solution. Generally, an iodine electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used.
  • 20 is an artificial quartz fine pulverized particle having a particle size of 500 nm or less, which is mixed with ethanol, applied onto the electrode 15 made of platinum or the like, and dried.
  • 16 is a transparent electrode such as FTO
  • 17 is a substrate made of glass or resin.
  • 18 is a sealing material
  • 19 is an external load.
  • the infrared light enters the silicon dioxide 20 and generates electricity.
  • the silicon dioxide 20 generates electricity even in visible light to infrared light in a region where titanium dioxide and sensitizing dye do not generate electricity.
  • the solar cell of Example 3 can be generated by light in the entire region from ultraviolet light to infrared light.
  • a short circuit current of 285 ⁇ A and an open voltage of 510 mV were obtained by the solar cell of Example 3.
  • FIG. 6 shows voltage-current characteristics of a dye-sensitized solar cell and various voltage-current characteristics of a conventional dye-sensitized solar cell when silicon dioxide is variously changed.
  • the horizontal axis represents voltage
  • the vertical axis represents current.
  • “1.0E-03” means 1.0 mA.
  • the characteristic is the result of measuring the voltage and current between both FTO electrodes when the solar simulator is used and the incident light energy to the solar cell is 1-Sun (ie, 1 kW / m 2 ).
  • FIG. 6 shows voltage-current characteristic curves of six samples A to E and G and a conventional dye-sensitized solar cell F which is a comparative sample.
  • A is a voltage-current characteristic curve when finely pulverized artificial quartz particles having a particle size of 50 to 200 nm were used.
  • the short-circuit current was 3067 ⁇ A and the open circuit voltage was 660 mV.
  • B is a voltage-current characteristic curve when artificial quartz particles having a particle diameter of 0.2 mm were used, and the short-circuit current was 2340 ⁇ A and the open-circuit voltage was 680 mV.
  • D is a voltage-current characteristic curve when using fused silica, and the short-circuit current was 1293 ⁇ A and the open-circuit voltage was 680 mV.
  • C is a voltage-current characteristic curve when using alkali-free glass, and the short-circuit current was 1850 ⁇ A and the open-circuit voltage was 690 mV.
  • E is a voltage-current characteristic curve when borosilicate glass was used, and the short-circuit current was 930 ⁇ A and the open-circuit voltage was 700 mV.
  • F is a voltage-current characteristic curve of the prior art dye-sensitized solar cell of FIG. 1B, where the short-circuit current was 733 ⁇ A and the open-circuit voltage was 680 mV.
  • G is a voltage-current characteristic curve when using soda-lime glass, the short-circuit current was 626 ⁇ A, and the open-circuit voltage was 670 mV.
  • Example 1 shown in FIG. 3 the particle size of the finely pulverized artificial quartz crystal used is as small as 500 nm or less, and when applied to the platinum electrode and dried and then touched with the electrolyte, it is indicated by 22 in FIG. Thus, it may be dispersed and suspended in the electrolyte. Even in such a state, the current-voltage relationship of the silicon dioxide solar cell is not significantly affected.
  • Example 2 shown in FIG. 4 the particle size of the finely pulverized artificial quartz crystal particles used is as small as 500 nm or less, and when applied to the platinum electrode and dried and then touched with the electrolyte, it is indicated by 22 in FIG. Thus, it may be dispersed and suspended in the electrolyte. Even in such a state, the current-voltage relationship of the silicon dioxide solar cell combined with the porous titanium dioxide sintered body is not greatly affected.
  • Example 3 shown in FIG. 5 the particle size of the finely pulverized artificial quartz particles used is as small as 500 nm or less, and when applied to the platinum electrode and dried and then touched with the electrolyte, it is indicated by 22 in FIG. Thus, it may be dispersed and suspended in the electrolyte. Even in such a state, the current-voltage relationship of the silicon dioxide solar cell combined with the dye-sensitized porous titanium dioxide sintered body is not greatly affected.
  • Example 6 the silicon dioxide solar cell of Example 6 which improved Example 5 is shown.
  • the finely pulverized artificial quartz particles dispersed and suspended in the electrolyte have a fine particle size of 500 nm or less and are essentially poor conductors, so they enter the pores of porous titanium dioxide. There is a possibility that the electromotive ability of titanium dioxide is hindered. In order to prevent such a situation, an electrolyte in which silicon dioxide 22 is suspended is separated from an electrolyte in which silicon dioxide 22 is not suspended by a diaphragm 23 through which only the electrolyte can permeate.
  • FIG. 11 shows a silicon dioxide solar cell of Example 6 in which Example 6 is improved.
  • the finely pulverized artificial quartz particles dispersed and suspended in the electrolyte have a fine particle size of 500 nm or less and are essentially poor conductors, so they enter the pores of porous titanium dioxide. There is a possibility that the electromotive ability of titanium dioxide is hindered. In order to prevent such a situation, an electrolyte in which silicon dioxide 22 is suspended is separated from an electrolyte in which silicon dioxide 22 is not suspended by a diaphragm 23 through which only the electrolyte can permeate.
  • the container for containing the solar cell material and the electrolyte is made of a light transmissive material on the light incident side and a light transmissive or light opaque material on the light non-incident side.
  • Glass, plastics, amorphous silicon, and polyester film can be used as the light-transmitting material, and a metal plate such as stainless steel and nickel is used as the light-impermeable material.
  • Transparent conductor Most of the glass and plastic used as the light-transmitting material do not have conductivity, and when a material having no conductivity is used, it is necessary to impart conductivity.
  • carbon-based materials such as AZO (Al—ZN—O), carbon nanotubes, graphene, etc., or conductive PET films, etc.
  • a transparent conductive material such as ITO, carbon nanotube, or graphene is used, and an electrode formed on a transparent body such as glass or plastic is used. The transparent electrode is provided inside the solar cell.
  • the side facing the light incident side of the solar cell storage container is a transparent electrode such as FTO, ITO, carbon nanotube, or graphene formed on a transparent material such as glass or plastic when it is necessary to transmit light.
  • a transparent electrode such as FTO, ITO, carbon nanotube, or graphene formed on a transparent material such as glass or plastic when it is necessary to transmit light.
  • a metal plate on which a charge extracting conductor such as carbon nanotube or graphene is formed is used.
  • the electric charge extracting conductor is provided inside the solar cell.
  • Crystalline artificial quartz grains or amorphous glass grains treated with hydrohalic acid were prepared as follows. An artificial quartz crystal made of silicon dioxide (SiO 2 ) or amorphous quartz glass, non-alkali glass, borosilicate glass, soda lime, etc. is immersed in a hydrofluoric acid aqueous solution, and then the artificial quartz The grains or glass grains were washed with water, dried, and then finely pulverized. In addition to hydrofluoric acid, hydrochloric acid is used as hydrohalic acid, but hydrofluoric acid is preferred. Other hydrohalic acids can also be used.
  • the silicon dioxide particles are not treated with the hydrohalic acid, the silicon dioxide particles are pulverized to an average particle size of several tens of nanometers.
  • the treatment of silicon dioxide particles with hydrohalic acid can be carried out after pulverization, not before pulverization.
  • the silicon dioxide layer can be used even if a powder such as artificial quartz is mixed with platinum powder with ethanol and baked.
  • a silicon dioxide particle fired body having a particle size of about 0.5 mm can be used.
  • electrolyte various electrolytes such as cations such as lithium ions and anions such as chlorine ions are used as the supporting electrolyte, and oxidation-reduction pairs present in the electrolyte include oxidation of iodine-iodine compounds, bromine-bromine compounds, etc. Use reducing pairs.
  • a thickener is added to 0.5 mol of lithium iodide (LiI) and 0.05 mol of metal iodine (I 2 ) dissolved in methoxypropionitrile. Added with butyl pyridine.
  • a colored electrolyte such as an iodine-related electrolyte can be used.
  • An organic acid such as acetic acid or citric acid can also be used as a colorless electrolyte.
  • Titanium dioxide solar cells can also generate electricity in the ultraviolet and visible light regions by using sensitizing dyes, but they are expensive and have a short life when silicon dioxide solar cells generate sufficient power in the visible light region. There is no need to use any sensitizing dye.
  • Counter electrode In addition to zinc oxide (ZnO), titanium oxide (TiO 2 ), copper oxide (CuO), magnesium oxide (MgO), strontium titanate (SrTiO 3 ), carbon nitride, graphene, etc. are used as the semiconductor layer for the counter electrode. Is possible.
  • the silicon dioxide fired body is disposed on the surface where light does not enter. Since there is no absolute reason for this arrangement, the silicon dioxide fired body can be arranged on the surface on which light is incident.
  • a useful solar cell can be obtained by being able to generate electricity by light in all regions from ultraviolet to infrared. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 2酸化ケイ素ソーラーセルの変換効率を高める。 導電性を有する2枚の基板が各々の導電面を向かい合わせて配置し、少なくとも一方の基板を透明な光入射側基板とし、この基板と向かい合わせて配置された基板上に2酸化ケイ素粒成形体を配置し、2酸化ケイ素粒成形体と前記光入射側基板との間に電解質を充填する。 この構成を採った2酸化ケイ素ソーラーセルは2酸化ケイ素と電解質が混合されたものと比較して短絡電流及び解放電圧が大幅に上昇する。 さらに改良型として、2酸化チタンソーラーセルあるいは色素増感2酸化チタンソーラーセルを光入射側基板上に配置することによりさらに短絡電流及び解放電圧が大幅に上昇する。 

Description

2酸化ケイ素ソーラーセル
 本発明は、ソーラーセルに関し、特に2酸化ケイ素を用いた2酸化ケイ素ソーラーセルに関する。
 シリコン等の半導体を用いた乾式ソーラーセルが実用段階にある。半導体ソーラーセルは変換効率が高い反面、高純度の材料を使用するため高価である。
 比較的安価なソーラーセルとして2酸化チタン(TiO)と電解質を用いた湿式ソーラーセルがある。
 図1により2酸化チタンソーラーセルの構成を説明する。
 図1において、(a)は基本的な構成の2酸化チタンソーラーセルであり、(b)に示すのは改良された色素増感型と呼ばれる2酸化チタンソーラーセルである。 (a)に示した基本的構成の2酸化チタンソーラーセルにおいて、1はガラス基板であり1方の面にFTO等の透明導電膜2が形成され、光電極とされる。3は多孔質2酸化チタン焼結体である。4は電解液であり、一般的には沃化カリウム水溶液に沃素を溶解した沃素系電解質が用いられる。5は白金対向電極であり、FTO等の導電膜6が形成されたガラス基板7上に形成されている。また、8は封止材、9は抵抗器等の外部負荷である。
 ガラス基板1上の透明導電膜2を透過して入射した光は多孔質2酸化チタン焼結体3に吸収される。光を吸収した多孔質2酸化チタン焼結体3は電子的な基底状態から励起状態となり、励起された電子は拡散により透明導電膜2から外部へ取り出され、負荷9を経由して透明導電膜6から白金対向電極5へ導かれる。
 しかしながら、2酸化チタンが起電に利用できる光は波長が380nm以下の紫外線のみであり、この波長領域の紫外線は太陽光中の4%に過ぎなく、太陽光の利用効率は最大でも4%、実際には1%がせいぜいであるため、ソーラーセルとして太陽光の利用効率はきわめて低い。
 利用可能な波長領域が狭い2酸化チタンの欠点を補うため、焼結多孔質酸化チタンにルテニウム錯体色素を吸着させることにより利用可能な光の範囲を紫外線より波長が長い可視光領域まで拡げた色素増感ソーラーセル(DSSC:Dye Sensitized Solar Cell)が知られている。
 (b)に色素増感ソーラーセルの基本的な構成を説明する。
 この図において、1はガラス基板であり1方の面にFTO等の透明導電膜2が形成されている。3は多孔質2酸化チタン焼結体であり、空孔表面にルテニウム錯体色素が吸着されている。4は電解液であり、一般的には沃化カリウム水溶液に沃素を溶解した沃素系電解質が用いられる。5は白金対向電極であり、FTO等の導電膜6が形成されたガラス基板7上に形成されている。また、8は封止材、9は抵抗器等の外部負荷である。
 ガラス基板1上のFTO透明導電膜2を透過して入射した光は多孔質2酸化チタン焼結体3の空孔表面に吸着されたルテニウム錯体色素に吸収される。光を吸収したルテニウム錯体色素は電子的な基底状態から励起状態となり、励起状態のルテニウム錯体色素の電子は、多孔質2酸化チタン焼結体3に注入される。その結果ルテニウム錯体色素は酸化状態となる。このときルテニウム錯体色素の励起電子の多孔質2酸化チタン焼結体3への効果的な注入のためには、ルテニウム錯体色素の励起エネルギー準位が半導体である多孔質2酸化チタン焼結体3の伝導帯エネルギー準位より負でなければならない。多孔質2酸化チタン焼結体3に注入された電子は拡散により透明導電膜2から外部へ取り出され、負荷9を経由して白金対向電極5へ導かれる。一方酸化されたルテニウム錯体色素は、沃素係電解質4中の沃素から電子を受け取り基底状態のルテニウム錯体色素に戻る。
 このような構成を有する色素増感ソーラーセルの太陽光利用効率は理論的に30%であるが、実際には最大で10%である。
 2酸化チタンは光触媒機能を有しており、同様に光触媒機能を有する材料としてハロゲン化水素酸で処理された溶融石英が特開2004-290748号公報及び特開2004-290747号公報に示されている。
 同様に、光触媒能を有する材料としてフッ化水素酸で処理された人工水晶が、国際公開公報WO2005/089941号に示されている。
 人工水晶光触媒は、特開2004-290748号公報及び特開2004-290747号公報に示された溶融石英を原材料とする光触媒よりもさらに広い200~800nmという波長領域で光触媒として機能する。
 本発明者等は、2酸化ケイ素である人工水晶又は溶融石英が、光起電能を有することを発見し、国際公開WO2011/049156号公報に記載された2酸化ケイ素ソーラーセルを提案した。
 図2により、国際公開WO2011/049156号公報に記載されたソーラーセルを説明する。
 この図において、11及び17は透明導電層FTO(フッ素ドープ酸化錫)層12及びFTO層16が形成された30mm×30mmのガラス基板であり、ソーラーセルの大きさは20mm×20mmである。
 光入射側のFTO層には酸化亜鉛(ZnO),酸化チタン(TiO)等のn型半導体層13が形成されており、光入射側FTO層12と対向するFTO層16上には白金膜15が形成されている。
 n型半導体層25と白金膜26の間に0.15~0.20mmの厚さでSiOを含むガラスと電解質を混合したソーラーセル材料20が封入されている。
 ソーラーセル材料27は、SiOを含むガラス等の粒を5%のフッ化水素酸水溶液に5分間浸漬し、水洗後に乾燥させ、粒径が0.2mm以下になるように粉砕したものを用いている。
 電解質は、LiIを0.1mol、I2を0.05mol,4-tert-ブチルピリジンを0.5mol,テトラブチルアンモニウムヨージドを0.5molアセトニトリル溶媒に添加したものである。
 2酸化ケイ素の光電池機構の詳細は不明であるが、波長が200~800nmである太陽光が照射されると吸収され、2酸化ケイ素側の電極から負荷を経由して対向電極に向かって電子が流れる、いいかえれば、対向電極から2酸化ケイ素側の電極に向かって電流が流れるという現象がある。
 ソーラーセル材料としては、人工水晶が最も有用であるが、溶融石英ガラス,ソーダ石灰ガラス,無アルカリガラス,ホウケイ酸ガラスでも、起電する。
 15,000~19,000luxの蛍光灯を照射したことにより得られた短絡電流及び開放電圧は次のとおりである。
 人工水晶    :短絡電流0.5μA、解放電圧35mV
 溶融石英ガラス :短絡電流0.5μA、解放電圧30mV
 ソーダ石灰ガラス:短絡電流0.3μA、解放電圧15mV
 無アルカリガラス:短絡電流0.4μA、解放電圧30mV
 ホウケイ酸ガラス:短絡電流0.3μA、解放電圧14mV
 また、フッ化水素酸処理をしていない2酸化ケイ素組成物でも、以下の短絡電流及び開放電圧が得られている。
 人工水晶    :短絡電流0.1μA、解放電圧 3mV
 溶融石英ガラス :短絡電流0.2μA、解放電圧 3mV
 ソーダ石灰ガラス:短絡電流0.1μA、解放電圧 5mV
 無アルカリガラス:短絡電流0.1μA、解放電圧 5mV
 ホウケイ酸ガラス:短絡電流0.2μA、解放電圧12mV
特開2004-290748号公報 特開2004-290747号公報 国際公開WO2005/089941号公報 国際公開WO2011/049156号公報
 この出願に係る発明は、高い光利用効率を発揮するソーラーセルを得ることを課題とする。
 本発明者等は、ハロゲン化水素酸処理をした人工水晶粒及び溶融石英粒は微粉末化することにより、さらに優れたソーラーセル機能を発揮することを発見した。
 本発明者等は、光の波長近くにまで微粉砕された人工水晶あるいはガラスがソーラーセル材料としてさらに優れた機能を発揮することを発見した。
 本発明者等は2酸化ケイ素ソーラーセルが赤外光によっても起電することを発見した。
 この出願に係る発明は、これらの知見に基づき2酸化ケイ素ソーラーセルに2酸化チタンソーラーセルをタンデム構成で組みあわせ、2酸化ケイ素ソーラーセル側の電極と2酸化チタンソーラーセル側の電極とから出力を取り出すことにより、紫外光から赤外光にわたる全ての領域の光によって起電する、ソーラーセルを得る。
 タンデム構成される一方の2酸化チタンソーラーセルを色素増感型とすることにより、利用する光の範囲が広くなる。
 微粉末化した2酸化ケイ素粒が電解質に拡散し、増感色素に付着することがあり、増感色素に機能を低下させることがある。
 その場合には2酸化ケイ素ソーラーセル部と色素増感2酸化チタンソーラーセル部との間に隔壁を設ける。
 この出願に係る発明は、ハロゲン化水素酸処理した結晶質である人工水晶粒子あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等と沃素係電解質からなる2酸化ケイ素ソーラーセルに色素増感2酸化チタンソーラーセルをタンデム構成で組み合わせた、ソーラーセルである。
 この出願に係る発明は、ルテニウム色素等の色素を吸着した2酸化チタンと沃素係電解質からなる色素増感ソーラーセルにハロゲン化水素酸処理した結晶質である人工水晶粒あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰等を用いた2酸化ケイ素ソーラーセルをタンデム構成で組み合わせた、ソーラーセルである。
 この出願に係る発明は、ルテニウム色素等の色素を吸着した多孔質2酸化チタンと沃素係電解質からなる色素増感ソーラーセルにハロゲン化水素酸処理した結晶質である人工水晶粒あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等を用いた2酸化ケイ素ソーラーセルをタンデム構成で組み合わせ、さらに多孔質2酸化チタンに粉末化した2酸化ケイ素を組み合わせた、ソーラーセルである。
 この出願に係る発明の2酸化ケイ素ソーラーセルの具体的な特徴は以下のとおりである。
 導電性を有する2枚の基板を各々の導電面を向かい合わせて配置し、基板の少なくとも一方を透明で光入射側基板とし、2酸化ケイ素粒成形体を光入射側基板と向かい合わせて配置された基板上に配置し、2酸化ケイ素粒成形体と光入射側基板との間に電解質を充填する。
 導電性を有する2枚の基板を各々の導電面を向かい合わせて配置し、基板の少なくとも一方を透明で光入射側基板とし、2酸化ケイ素粒成形体を光入射側基板と向かい合わせて配置された基板上に配置し、2酸化ケイ素粒成形体と光入射側基板との間に電解質を充填し、さらに、光入射側基板上に多孔質酸化チタン焼結体を配置する。
 導電性を有する2枚の基板を各々の導電面を向かい合わせて配置し、基板の少なくとも一方を透明で光入射側基板とし、2酸化ケイ素粒成形体を光入射側基板と向かい合わせて配置された基板上に配置し、2酸化ケイ素粒成形体と光入射側基板との間に電解質を充填し、さらに、光入射側基板上に増感色素を吸着した多孔質酸化チタン焼結体を配置する。
 この出願に係る発明は、2酸化ケイ素ソーラーセルに2酸化チタンソーラーセルにをタンデム構成で組みあわせることにより、2酸化チタンソーラーセル側の電極と2酸化ケイ素ソーラーセル側の電極とから出力を取り出す。
 この構成により、紫外から赤外にわたる全ての領域の光によって起電することができる。
 タンデム構成される一方の2酸化チタンソーラーセルを色素増感型とすることにより、利用する光の範囲が広くなる。
 この出願に係るソーラーセルによれば、多孔質2酸化チタンと沃素係電解質からなる従来のソーラーセルよりも高い光-電気変換を得ることができる。
 この出願に係る色素増感ソーラーセルによれば、ルテニウム増感色素を吸着した2酸化チタンと沃素係電解質からなる従来の色素増感ソーラーセルよりも高い光-電気変換を得ることができる。
 この出願に係る色素増感2酸化チタンソーラーセルは、最大2860μAの短絡電流を得ることができ、従来の色素増感2酸化チタンソーラーセルの2510μAと比して大幅な起電力増加があった。
従来の多孔質2酸化チタンソーラーセル及び色素増感多孔質2酸化チタンソーラーセルの模式図。 先行技術の2酸化ケイ素ソーラーセルの模式図。 実施例1の2酸化ケイ素ソーラーセルの模式図。 多孔質2酸化チタンと2酸化ケイ素を用いた実施例2のソーラーセルの模式図。 色素増感多孔質2酸化チタンと酸化ケイ素を用いた実施例3のソーラーセルの模式図。 実施例3の色素増感多孔質2酸化チタンソーラーセル及び従来の色素増感多孔質2酸化チタンソーラーセルの電圧-電流特性グラフ。 2酸化ケイ素微粉砕粒子を用いた実施例4の2酸化ケイ素ソーラーセルの構成の模式図。 多孔質2酸化チタンと2酸化ケイ素微粉砕粒子を用いた実施例5のソーラーセルの構成の模式図。 色素増感多孔質2酸化チタンと2酸化ケイ素微粉砕粒子を用いた実施例6のソーラーセルの構成の模式図。 多孔質2酸化チタンと2酸化ケイ素微粉砕粒子を用いた実施例7のソーラーセルの構成の模式図。 色素増感多孔質2酸化チタンと2酸化ケイ素微粉砕粒子を用いた実施例8のソーラーセルの構成の模式図。
 以下図面を参照して発明を実施するための形態を説明する。
 図3に実施例1として図2に示した2酸化ケイ素ソーラーセルを改良した2酸化ケイ素ソーラーセルを示す。
 この図において、11及び17は各々FTO等の透明導電膜12及びFTO等の透明導電膜16を有するガラス基板であり、透明導電膜12及び透明導電膜16は電力取り出し電極として機能する。ガラス基板11上の透明導電膜12とガラス基板17上のFTO膜16が向かい合うようにガラス基板11と12を配置する。
 20は0.15~0.20mmの厚さを有する2酸化ケイ素(SiO)焼成体であり、光が入射しない側のガラス基板17上に配置する。
 2酸化ケイ素側の透明導電膜16上には電荷取り出し電極として、白金(Pt)膜15を形成してある。
 14は電解質であり、図2に示した先行技術の2酸化ケイ素ソーラーセルでは2酸化ケイ素中に混合されているのとは異なり、2酸化ケイ素焼成体20と光入射側ガラス基板11との間の空間に充填されている。
 また、18は封止材であり、19は外部負荷である。
 電解質14は、LiIを0.1mol、Iを0.05mol,4-tert-ブチルピリジンを0.5mol,テトラブチルアンモニウムヨージドを0.5molアセトニトリル溶媒に添加したものを用いた。
 2酸化ケイ素焼成体20は2酸化ケイ素の結晶質である人工水晶あるいは非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰等のガラス粒を5%のフッ化水素酸水溶液に5分間浸漬し、水洗後に乾燥し、その後粒径500nm以下に微粉砕したものを用いた。
 浸漬する水溶液にはフッ化水素酸以外に塩化水素酸がハロゲン化水素酸として
 人工水晶粒子は、粒径は0.2~0.5mm程度の大きさでも使用でき、焼成しなくてもエタノールと混合して白金電極15上に塗布し乾燥させたものも使用できる。
 光入射側ガラス基板11から入射した光は2酸化ケイ素20に入射して起電する。
 ソーラーシミュレータにより太陽常数である1kw/1mの光を照射した実施例1のソーラーセルは、人工水晶の粒径が0.2mm以下の場合に、85μAの短絡電流、470mVの開放電圧が得られ、粒径が500nm以下の場合に、348μAの短絡電流、620mVの開放電圧が得られた。
 これらの数値は、図2に示した先行技術の2酸化ケイ素ソーラーセルと比較して、測定条件は異なるが短絡電流と解放電圧がともに大幅に増加している。
 それだけでなく、本発明者等は2酸化ケイ素ソーラーセルである人工水晶ソーラーセルについて、紫外領域の成分を含まない光源である300Wの白熱電球により、ほぼ直射日光に等しい照度で短絡電流を測定したところ、それぞれ400mVの解放電圧及び0.5μAの短絡電流を観測し、2酸化ケイ素ソーラーセルは赤外光のみによっても起電することを確認した。
 このことから、2酸化ケイ素ソーラーセルは代表的な湿式ソーラーセルである色素増感型2酸化チタンソーラーセルでは不可能であった、紫外領域の成分を含まない光によっても起電する。
 図4により実施例2を説明する。
 実施例2のソーラーセルは実施例1の2酸化ケイ素ソーラーセルに図1(a)に示した従来技術の2酸化チタンソーラーセルをタンデム型に組み合わせたものである。
 この図において、11はガラスあるいは樹脂からなる透明な基板であり一方の面にFTO等の透明電極膜12が形成され、光入射側電極とされる。3は焼結等の手段により固体化された多孔質2酸化チタンである。14は電解液であり、一般的には沃化カリウム水溶液に沃素を溶解した沃素系電解質を用いる。
 20は粒径が0.2mm以下の人工水晶粒子であり、エタノールと混合して白金等からなる電極25上に塗布し乾燥させたものである。
 16はFTO等の透明電極であり、17はガラスあるいは樹脂からなる基板である。また、18は封止材であり、19は外部負荷である。
 光入射側透明基板11から入射した紫外光は多孔質2酸化チタン3に入射して起電し、起電に寄与しなかった紫外光及び可視光は2酸化ケイ素20に入射して起電する。
 このように実施例2のソーラーセルは紫外光~可視光領域の光により起電することができる。
 ソーラーシミュレータにより太陽常数である1kw/1mの光を照射した実施例1のソーラーセルにより、20μAの短絡電流、417mVの開放電圧が得られた。
 図5により実施例3を説明する。
 実施例3のソーラーセルは実施例1の2酸化ケイ素ソーラーセルに図1(b)に示した従来技術の色素増感2酸化チタンソーラーセルをタンデム型に組み合わせたものである。
 この図において、11はガラスあるいは樹脂からなる透明な基板であり一方の面にFTO等の透明導電膜12が形成され、光入射側電極とされる。
 10は焼結等の手段により固体化され、ルテニウム錯体色素等の増感色素を吸着させた多孔質2酸化チタンである。
 14は電解液であり、一般的には沃化カリウム水溶液に沃素を溶解した沃素系電解質が用いられる。
 20は粒径が500nm以下である人工水晶微粉砕粒子であり、エタノールと混合して白金等からなる電極15上に塗布し乾燥させたものである。
 16はFTO等の透明電極であり、17はガラスあるいは樹脂からなる基板である。また、18は封止材であり、19は外部負荷である。
 光入射側透明基板11から入射した紫外光~赤外光の中の紫外光~可視光は色素増感多孔質2酸化チタン10に入射して起電し、起電に寄与しなかった紫外光~赤外光は2酸化ケイ素20に入射して起電する。
 実施例1で説明したように、2酸化チタン及び増感色素が起電しない領域の可視光~赤外光でも、2酸化ケイ素20は起電する。
 このように実施例3のソーラーセルは紫外光~赤外光の全領域の光により起電することができる。
 実施例3のソーラーセルにより、285μAの短絡電流、510mVの開放電圧が得られた。
 図6に、2酸化ケイ素を種々変更した場合の色素増感ソーラーセルの電圧-電流特性及び従来技術の色素増感ソーラーセルの電圧-電流特性を示す。
 この図において、横軸に電圧を、縦軸に電流を記載してある。
 なお、グラフにおいて例えば「1.0E-03」との記載は1.0mAを意味している。
 特性はソーラーシミュレータを用い、ソーラーセルへの入射光エネルギーが1-Sun(即ち1kW/m)となるようにしたときの両FTO電極間の電圧・電流を測定した結果である。
 図6には6個の試料A~E,G及び比較試料である従来型の色素増感ソーラーセルFの電圧-電流特性曲線が示してある。
 Aは、粒径を50~200nmと微粉砕した人工水晶粒子を用いたときの電圧-電流特性曲線であり、短絡電流は3067μA、開放電圧は660mVであった。
 Bは、粒径が0.2mmの人工水晶粒子を用いたときの電圧-電流特性曲線であり、短絡電流は2340μA、開放電圧は680mVであった。
 Dは、溶融石英を用いたときの電圧-電流特性曲線であり、短絡電流は1293μA、開放電圧は680mVであった。
 Cは、無アルカリガラスを用いたときの電圧-電流特性曲線であり、短絡電流は1850μA、開放電圧は690mVであった。
 Eは、ホウケイ酸ガラスを用いたときの電圧-電流特性曲線であり、短絡電流は930μA、開放電圧は700mVであった。
 Fは、図1(b)の従来技術の色素増感ソーラーセルの電圧-電流特性曲線であり、短絡電流は733μA、開放電圧は680mVであった。
 Gは、ソーダ石灰ガラスを用いたときの電圧-電流特性曲線であり、短絡電流は626μA、開放電圧は670mVであった。
 これらの電圧-電流特性曲線から読み取られるように、A~Eの二酸化ケイ素を用いた色素増感ソーラーセルは、従来の物と比較して大きな電流を取り出すことができることが明らかである。
 また、全体的には従来の物に劣るように見えるソーダ石灰ガラスを用いた場合でも、一部の電圧領域では従来の物よりも大きな電流を取り出すことができる。
 図3に示した実施例1において、使用する人工水晶微粉砕粒子の粒径は500nm以下と微細であり、白金電極上に塗布・乾燥してから電解液に触れさせると図7に22で示すように、電解液中に分散・懸濁することがある。
 このような状態でも2酸化ケイ素ソーラーセルの電流一電圧関係が大きな影響を受けることはない。
 図4に示した実施例2において、使用する人工水晶微粉砕粒子の粒径は500nm以下と微細であり、白金電極上に塗布・乾燥してから電解液に触れさせると図8に22で示すように、電解液中に分散・懸濁することがある。
 このような状態でも多孔質2酸化チタン焼結体を組み合わせた2酸化ケイ素ソーラーセルの電流一電圧関係が大きな影響を受けることはない。
 図5に示した実施例3において、使用する人工水晶微粉砕粒子の粒径は500nm以下と微細であり、白金電極上に塗布・乾燥してから電解液に触れさせると図9に22で示すように、電解液中に分散・懸濁することがある。
 このような状態でも色素増感多孔質2酸化チタン焼結体を組み合わせた2酸化ケイ素ソーラーセルの電流一電圧関係が大きな影響を受けることはない。
 図10に、実施例5を改良した実施例6の2酸化ケイ素ソーラーセルを示す。
 実施例6において、電解液中に分散・懸濁している人工水晶微粉砕粒子は粒径が500nm以下と微細であり、本質的には不良導体であるため多孔質2酸化チタンの孔部に入り込み2酸化チタンの起電能を妨げる可能性がある。
 このような事態を防止するために、電解質のみが透過可能な隔膜23により2酸化ケイ素22が懸濁した電解質と2酸化ケイ素22が懸濁していない電解質とを分離する。
 図11に実施例6を改良した実施例6の2酸化ケイ素ソーラーセルを示す。
 実施例6において、電解液中に分散・懸濁している人工水晶微粉砕粒子は粒径が500nm以下と微細であり、本質的には不良導体であるため多孔質2酸化チタンの孔部に入り込み2酸化チタンの起電能を妨げる可能性がある。
 このような事態を防止するために、電解質のみが透過可能な隔膜23により2酸化ケイ素22が懸濁した電解質と2酸化ケイ素22が懸濁していない電解質とを分離する。
 この出願に係る発明では、基板、透明導電膜、対向電極、電解質等に、各実施例で説明した以外の様々な構造及び材料を使用することができる。
 以下に、代替可能な構造及び材料について説明する。
[基板]
 各実施例においてソーラーセル材料及び電解質を収容する容器は、光入射側には光透過性の材料が、光が入射しない側には光透過性あるいは光不透過性の材料が用いられる。
 光透過性の材料としてガラス,プラスティックス,アモルファスシリコン,ポリエステルフィルムが使用可能であり、光不透過性の材料としてはステンレス、ニッケル等の金属板が用いられる。
[透明導電体]
 光透過性材料として用いるガラス及びプラスティックスは導電性を有しないものが殆どであり、導電性を有しない材料を用いた場合には導電性を付与する必要がある。光透過性であり導電性を有する材料として、FTOあるいはITO等の錫の酸化物の他に、AZO(Al-ZN-O),カーボンナノチューブ,グラフェン等の炭素系の材料あるいは導電性PETフィルム等がITO,カーボンナノチューブ,グラフェン等の透明導電材料が用いられ、電極をガラスあるいはプラスティックス等の透明体上に形成したものを使用する。透明電極はソーラーセルの内側に設ける。
 ソーラーセル収納容器の光入射側と対面する側は、光を透過させる必要がある場合にはFTO,ITO,カーボンナノチューブ,グラフェン等の透明電極をガラスあるいはプラスティックス等の透明体上に形成したものを使用し、光を透過させる必要があない場合にはカーボンナノチューブ,グラフェン等の電荷取り出し用導電体を形成した金属板を使用する。電荷取り出し用導電体はソーラーセルの内側に設ける。
 プラスティックスを導電性プラスティックスとすることにより、透明導電体を不要とすることもできる。
[2酸化ケイ素粒] 
 ハロゲン化水素酸処理した結晶質人工水晶粒又は非結晶質ガラス粒は以下のようにして調製した。
 2酸化ケイ素(SiO)の結晶質である人工水晶あるいは非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰等のガラス粒をフッ化水素酸水溶液に浸漬し、次いで人工水晶粒あるいはガラス粒を水洗後に乾燥し、その後微粉砕粉した。
 フッ化水素酸以外に塩化水素酸がハロゲン化水素酸として用いられるが、フッ化水素酸が好ましい。
 また、他のハロゲン化水素酸も利用可能である。
 2酸化ケイ素粒をハロゲン水素酸による処理を行わない場合には、2酸化ケイ素粒の試料の場合は平均粒径が数10nmまで微粉末化する。
 2酸化ケイ素粒のハロゲン水素酸による処理は、微粉末化前にするのではなく、微粉末化後にすることもできる。
[2酸化ケイ素層]
 2酸化ケイ素層は、人工水晶等の粉末を白金粉末とともにエタノールと混合して焼成したでものでも使用できる。
 2酸化ケイ素粒子焼成体の粒径は0.5mm程度程度のものまで使用可能である。
[電解質]
 電解質には、支持電解質としてリチウムイオンなどの陽イオンや塩素イオンなどの陰イオンなど種々の電解質を用い、電解質中に存在させる酸化還元対としては、ヨウ素-ヨウ素化合物、臭素-臭素化合物などの酸化還元対を用いる。
 1-エチル-3-メチルイミダゾリウムアイオダイド0.4mol,テトラブチルアンモニウムアイオダイド0.4mol,4-tert-butyl pyridine:0.2mol,グアニジウムイソチオシアネート0.1molをプロピレンカーボネート液を溶媒として調製したもの。
 この電解質は、ハロゲン分子の濃度が0.0004mol/L以下の場合には、可視光領域においてほぼ無色透明である。
 ヨウ化リチウム(LiI)0.5mol,金属ヨウ素(I)0.05molをメトキシプロピオニトリルに溶かしたものに増粘剤を加え、更に開放起電力とフィルファクターを向上させるため4-tert-butyl pyridineを添加したもの。
 複合ガラス板が無色透明である必要がない場合には沃素係電解液等有色の電解液を用いることもできる。
 無色の電解質として酢酸あるいはクエン酸等の有機酸も使用できる。
[増感色素]
 2酸化チタンソーラーセルは増感色素を用いることにより紫外光及び可視光領域で起電することもできるが、2酸化ケイ素ソーラーセルが可視光領域で十分に起電す場合には高価且つ短寿命な増感色素を使用する必要はない。
 増感色素はルテニウム錯体色素の他に、コバルト錯体色素、ポルフィリン系やシアニン系,メロシアニン,フタロシアニン,クマリン,リポフラピン,キサンテン,トリフェニルメタン,アゾ,キノン等、C60誘導体やBTS(スチリル ベンゾチアゾリウム プロピルスルフォネート),インドリン,ハイビスカスやアメリカンチェリー等の植物からの色素が利用でき、異なる起電特性の色素を採用することによって、起電に利用する光を選択することができる。
[対向電極]
 対向電極とする半導体層として,酸化亜鉛(ZnO)の他に酸化チタン(TiO),酸化銅(CuO),酸化マグネシウム(MgO),チタン酸ストロンチウム(SrTiO),窒化炭素、グラフェン等が使用可能である。 
[入射側面]
 これまでに説明した全ての実施例では2酸化ケイ素焼成体は光が入射しない側の面に配置されている。この配置に絶対的な理由はないので、2酸化ケイ素焼成体を光が入射する側の面に配置することもできる。
 2酸化チタンソーラーセルの容器にさらに2酸化ケイ素ソーラーセルをタンデム構成で組みあわせたこの出願に係る発明により、紫外から赤外にわたる全ての領域の光によって起電でき、有用なソーラーセルが得られる。
1,7,11,17 基板
2,6,12,16 透明導電膜
3 多孔質酸化チタン焼結体
4,14 電解質
5,15 対向電極
8,18 封止材
9 外部負荷
10 色素増感多孔質酸化チタン焼結体
20 2酸化ケイ素粒成形体
22 2酸化ケイ素粒

Claims (13)

  1.  導電性を有する2枚の基板が各々の導電面を向かい合わせて配置され、
     前記基板の少なくとも一方が透明で光入射側基板とされ、
     前記2枚の基板の間に2酸化ケイ素粒成形体と電解質が配置された2酸化ケイ素ソーラーセルであって:
     前記2酸化ケイ素粒成形体は前記光入射側基板と向かい合わせて配置された基板上に配置され、
     前記2酸化ケイ素粒成形体と前記光入射側基板との間に前記電解質が充填されていることを特徴とする2酸化ケイ素ソーラーセル。
  2.  前記2酸化ケイ素粒の粒径が500nm以下であることを特徴とする、請求項1の2酸化ケイ素ソーラーセル。
  3.  前記2酸化ケイ素粒が人工水晶粒子であることを特徴とする、請求項1又は請求項2の2酸化ケイ素ソーラーセル。
  4.  前記2酸化ケイ素粒が溶融石英ガラス粒子であることを特徴とする、請求項1又は請求項2の2酸化ケイ素ソーラーセル。
  5.  前記2酸化ケイ素粒が無アルカリガラス粒子であることを特徴とする、請求項1又は請求項2の2酸化ケイ素ソーラーセル。
  6.  前記2酸化ケイ素粒がホウケイ酸ガラス粒子であることを特徴とする、請求項1又は請求項2の2酸化ケイ素ソーラーセル。
  7.  前記2酸化ケイ素がソーダ石灰ガラスであることを特徴とする
    請求項1又は請求項2の2酸化ケイ素ソーラーセル。
  8.  前記2酸化ケイ素粒がハロゲン化水素酸で処理されていることを特徴とする、請求項1又は請求項2の2酸化ケイ素ソーラーセル。
  9.  前記ハロゲン化水素酸がフッ化水素酸であることを特徴とする、請求項8の2酸化ケイ素ソーラーセル。
  10.  前記ハロゲン化水素酸が塩化水素酸であることを特徴とする、請求項8の2酸化ケイ素ソーラーセル。
  11.  前記光入射側基板上に多孔質酸化チタン焼結体が配置されていることを特徴とする、請求項1の2酸化ケイ素ソーラーセル。
  12.  前記多孔質酸化チタン焼結体に増感色素が吸着されていることを特徴とする、請求項11の2酸化ケイ素ソーラーセル。
  13.  前記多孔質酸化チタン焼結体と前記2酸化ケイ素粒子成形体との間に電解質が透過でき、2酸化ケイ素粉末は透過できない隔壁が配置されいることを特徴とする、請求項11又は請求項12の2酸化ケイ素ソーラーセル。
PCT/JP2012/056291 2011-03-11 2012-03-12 2酸化ケイ素ソーラーセル WO2012124655A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
PL12757417T PL2685554T3 (pl) 2011-03-11 2012-03-12 Ogniwo słoneczne z dwutlenku krzemu
EP12757417.6A EP2685554B1 (en) 2011-03-11 2012-03-12 Silicon dioxide solar cell
AU2012227434A AU2012227434B2 (en) 2011-03-11 2012-03-12 Silicon dioxide solar cell
US14/004,283 US9384902B2 (en) 2011-03-11 2012-03-12 Silicon dioxide solar cell
SG2013068259A SG193401A1 (en) 2011-03-11 2012-03-12 Silicon dioxide solar cell
DK12757417.6T DK2685554T3 (da) 2011-03-11 2012-03-12 Siliciumdioxid-solcelle
LTEPPCT/JP2012/056291T LT2685554T (lt) 2011-03-11 2012-03-12 Silicio dioksido saulės baterijos elementas
ES12757417T ES2895978T3 (es) 2011-03-11 2012-03-12 Celda solar de dióxido de silicio
JP2013504719A JP5848324B2 (ja) 2011-03-11 2012-03-12 2酸化ケイ素ソーラーセル
US15/175,602 US9805878B2 (en) 2011-03-11 2016-06-07 Silicon dioxide solar cell
AU2017201120A AU2017201120B2 (en) 2011-03-11 2017-02-20 Silicon dioxide solar cell
AU2017201115A AU2017201115B2 (en) 2011-03-11 2017-02-20 Silicon dioxide solar cell
US15/716,852 US20180019067A1 (en) 2011-03-11 2017-09-27 Silicon dioxide solar cell
US15/973,159 US20180261397A1 (en) 2011-03-11 2018-05-07 Silicon dioxide solar cell

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-054609 2011-03-11
JP2011054609 2011-03-11
JP2011-073152 2011-03-29
JP2011073152 2011-03-29
JP2011-091389 2011-04-15
JP2011091389 2011-04-15
JP2012044753 2012-02-29
JP2012-044753 2012-02-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/004,283 A-371-Of-International US9384902B2 (en) 2011-03-11 2012-03-12 Silicon dioxide solar cell
US15/175,602 Continuation US9805878B2 (en) 2011-03-11 2016-06-07 Silicon dioxide solar cell

Publications (1)

Publication Number Publication Date
WO2012124655A1 true WO2012124655A1 (ja) 2012-09-20

Family

ID=46830725

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/056292 WO2012124656A1 (ja) 2011-03-11 2012-03-12 2酸化ケイ素ソーラーセル
PCT/JP2012/056291 WO2012124655A1 (ja) 2011-03-11 2012-03-12 2酸化ケイ素ソーラーセル

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056292 WO2012124656A1 (ja) 2011-03-11 2012-03-12 2酸化ケイ素ソーラーセル

Country Status (11)

Country Link
US (4) US9384902B2 (ja)
EP (1) EP2685554B1 (ja)
JP (2) JP5848324B2 (ja)
AU (3) AU2012227434B2 (ja)
DK (1) DK2685554T3 (ja)
ES (1) ES2895978T3 (ja)
LT (1) LT2685554T (ja)
PL (1) PL2685554T3 (ja)
SG (1) SG193401A1 (ja)
TW (1) TWI542023B (ja)
WO (2) WO2012124656A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044881A (ja) * 2012-08-27 2014-03-13 International Frontier Technology Laboratory Inc 複合ソーラーセル
JP2014116210A (ja) * 2012-12-10 2014-06-26 International Frontier Technology Laboratory Inc 2酸化ケイ素ソーラーセル
JP2014120243A (ja) * 2012-12-13 2014-06-30 International Frontier Technology Laboratory Inc 色素増感タンデム2酸化ケイ素ソーラーセル
JP2014130766A (ja) * 2012-12-28 2014-07-10 International Frontier Technology Laboratory Inc 色素増感タンデム2酸化ケイ素ソーラーセル
WO2014119645A1 (ja) * 2013-01-30 2014-08-07 国際先端技術総合研究所株式会社 光起電能を有するキャパシタ
CN108475582A (zh) * 2016-01-06 2018-08-31 国际先端技术综合研究所株式会社 光发电元件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI542023B (zh) * 2011-03-11 2016-07-11 Internat Frontier Tech Lab Inc Silicon dioxide solar cells
JP2013177277A (ja) * 2012-02-28 2013-09-09 International Frontier Technology Laboratory Inc ソーラーセル複合ガラス板
US10121601B2 (en) 2012-05-22 2018-11-06 International Frontier Technology Laboratory, Inc. Photoelectrode material and photocell material
US11569212B2 (en) 2017-11-09 2023-01-31 International Frontier Technology Laboratory, Inc. Semiconductor device power management system
CN108364579B (zh) * 2018-02-10 2020-08-14 安徽龙运智能科技有限公司 方便夜间使用的建筑安全警示牌

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243995A (ja) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2002170602A (ja) * 2000-11-30 2002-06-14 Hitachi Maxell Ltd 光電変換素子
JP2004290748A (ja) 2003-03-25 2004-10-21 Patent Technology Development Inc 光反応による窒素酸化物の除去方法
JP2004290747A (ja) 2003-03-25 2004-10-21 National Institute Of Advanced Industrial & Technology 新規光触媒及びそれを用いた有害有機物質の無害化処理方法
WO2005089941A1 (ja) 2004-03-18 2005-09-29 Patent Technology Development Inc. 新規な光触媒及びその製造方法
JP2011028918A (ja) * 2009-07-22 2011-02-10 Shimane Prefecture 色素増感太陽電池
WO2011049156A1 (ja) 2009-10-21 2011-04-28 国際先端技術総合研究所株式会社 光電極材料及び光電池材料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643246B2 (ja) * 1985-10-08 1994-06-08 川鉄鉱業株式会社 シリカの高純度化方法
JP4897226B2 (ja) * 2005-03-02 2012-03-14 シャープ株式会社 色素増感型太陽電池および色素増感型太陽電池モジュール
JP4863662B2 (ja) * 2005-07-06 2012-01-25 シャープ株式会社 色素増感型太陽電池モジュールおよびその製造方法
EP1936644A3 (en) * 2006-12-22 2011-01-05 Sony Deutschland Gmbh A photovoltaic cell
JP2008257893A (ja) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd 色素増感型太陽電池用基板の製造方法、色素増感型太陽電池の製造方法、および、これらによって製造された色素増感型太陽電池用基板および色素増感型太陽電池。
JP2009076448A (ja) * 2007-08-28 2009-04-09 Toray Ind Inc 色素増感型太陽電池
US8443502B2 (en) * 2007-09-14 2013-05-21 Ivoclar Vivadent Ag Blank arrangement
KR100807238B1 (ko) * 2007-10-09 2008-02-28 전남대학교산학협력단 유리분말이 함유된 염료감응형 태양전지 및 그 제조방법
JP2010080315A (ja) * 2008-09-26 2010-04-08 Sumitomo Chemical Co Ltd 色素増感型太陽電池
JP2010182457A (ja) * 2009-02-03 2010-08-19 Toray Ind Inc 色素増感太陽電池用セパレーター
JP5531300B2 (ja) * 2009-03-11 2014-06-25 国立大学法人九州工業大学 色素増感太陽電池
JP5322830B2 (ja) * 2009-08-05 2013-10-23 日東電工株式会社 ガラス製部材の接着方法
US20120255607A1 (en) * 2009-11-18 2012-10-11 The Trustees Of Princeton University Semiconductor coated microporous graphene scaffolds
KR101325646B1 (ko) * 2010-09-16 2013-11-20 한국전자통신연구원 태양전지 및 그 형성방법
TWI542023B (zh) * 2011-03-11 2016-07-11 Internat Frontier Tech Lab Inc Silicon dioxide solar cells
WO2013016650A1 (en) * 2011-07-27 2013-01-31 Massachusetts Institute Of Technology Plasmon enhanced dye-sensitized solar cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243995A (ja) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2002170602A (ja) * 2000-11-30 2002-06-14 Hitachi Maxell Ltd 光電変換素子
JP2004290748A (ja) 2003-03-25 2004-10-21 Patent Technology Development Inc 光反応による窒素酸化物の除去方法
JP2004290747A (ja) 2003-03-25 2004-10-21 National Institute Of Advanced Industrial & Technology 新規光触媒及びそれを用いた有害有機物質の無害化処理方法
WO2005089941A1 (ja) 2004-03-18 2005-09-29 Patent Technology Development Inc. 新規な光触媒及びその製造方法
JP2011028918A (ja) * 2009-07-22 2011-02-10 Shimane Prefecture 色素増感太陽電池
WO2011049156A1 (ja) 2009-10-21 2011-04-28 国際先端技術総合研究所株式会社 光電極材料及び光電池材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685554A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044881A (ja) * 2012-08-27 2014-03-13 International Frontier Technology Laboratory Inc 複合ソーラーセル
JP2014116210A (ja) * 2012-12-10 2014-06-26 International Frontier Technology Laboratory Inc 2酸化ケイ素ソーラーセル
JP2014120243A (ja) * 2012-12-13 2014-06-30 International Frontier Technology Laboratory Inc 色素増感タンデム2酸化ケイ素ソーラーセル
JP2014130766A (ja) * 2012-12-28 2014-07-10 International Frontier Technology Laboratory Inc 色素増感タンデム2酸化ケイ素ソーラーセル
WO2014119645A1 (ja) * 2013-01-30 2014-08-07 国際先端技術総合研究所株式会社 光起電能を有するキャパシタ
JP2014146773A (ja) * 2013-01-30 2014-08-14 International Frontier Technology Laboratory Inc 光起電能を有するキャパシタ
CN104995704A (zh) * 2013-01-30 2015-10-21 国际先端技术综合研究所株式会社 具有光伏性能的电容器
CN108475582A (zh) * 2016-01-06 2018-08-31 国际先端技术综合研究所株式会社 光发电元件
EP3758032A1 (en) 2016-01-06 2020-12-30 International Frontier Technology Laboratory Inc. Photovoltaic element

Also Published As

Publication number Publication date
US20160293340A1 (en) 2016-10-06
PL2685554T3 (pl) 2022-01-17
US9384902B2 (en) 2016-07-05
LT2685554T (lt) 2021-10-25
JP6165054B2 (ja) 2017-07-19
AU2017201120A1 (en) 2017-03-09
EP2685554A4 (en) 2014-10-01
US20180019067A1 (en) 2018-01-18
EP2685554A1 (en) 2014-01-15
US9805878B2 (en) 2017-10-31
DK2685554T3 (da) 2021-10-11
JP5848324B2 (ja) 2016-01-27
AU2012227434A1 (en) 2013-10-24
AU2012227434B2 (en) 2016-12-01
TW201251040A (en) 2012-12-16
US20180261397A1 (en) 2018-09-13
AU2017201120B2 (en) 2018-10-18
WO2012124656A1 (ja) 2012-09-20
AU2017201115B2 (en) 2018-10-25
US20140060630A1 (en) 2014-03-06
JPWO2012124655A1 (ja) 2014-07-24
TWI542023B (zh) 2016-07-11
JPWO2012124656A1 (ja) 2014-07-24
SG193401A1 (en) 2013-10-30
AU2017201115A1 (en) 2017-03-09
EP2685554B1 (en) 2021-08-04
ES2895978T3 (es) 2022-02-23

Similar Documents

Publication Publication Date Title
JP5848324B2 (ja) 2酸化ケイ素ソーラーセル
Yang et al. Enhanced energy conversion efficiency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium complex
KR102062293B1 (ko) 광전극 재료 및 광전지 재료
EP2716855A1 (en) Glass sheet for window
Jasim et al. Henna (Lawsonia inermis L.) Dye‐Sensitized Nanocrystalline Titania Solar Cell
JP5609800B2 (ja) 色素増感型太陽電池
Udomrungkhajornchai et al. Optimization of the TiO2 layer in DSSCs by a nonionic surfactant
Seo et al. Improvement on the electron transfer of dye-sensitized solar cell using vanadium doped TiO2
Miao et al. Studies of high-efficient and low-cost dye-sensitized solar cells
JP6227735B2 (ja) タンデム型ソーラーセル
Lee et al. Effect of process parameters on the efficiency of dye sensitized solar cells
JP2012234693A (ja) ソーラーセル
Oka et al. An Overview of Dye Sensitized Solar cells and ways to increase their efficiency by changes in Physicochemical Parameters
Zheng et al. The research of CaO/TiO 2 nanocrystalline film for dye-sensitized solar cell
WO2013151175A1 (ja) 2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル構造を有するガラス板
Hieu et al. Enhancement of dye-sensitized solar cell efficiency by spherical voids in nanocrystalline ZnO electrodes
Gupta et al. Characterization of screen-printed dye-sensitized nanocrystalline TiO2 solar cells
한대만 Functional layers of electrolyte and spectrum conversion for Dye-sensitized TiO2 solar cells
Amornkitbamrung A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste
SI22807A (sl) Postopek priprave paste in izdelava plasti titanovega dioksida z veliko notranjo povrĺ ino in dobro medsebojno povezavo nanodelcev ter dobro adhezijo na substrat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012757417

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012227434

Country of ref document: AU

Date of ref document: 20120312

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004283

Country of ref document: US