WO2012121040A1 - 機能性フィルムの製造方法 - Google Patents

機能性フィルムの製造方法 Download PDF

Info

Publication number
WO2012121040A1
WO2012121040A1 PCT/JP2012/054725 JP2012054725W WO2012121040A1 WO 2012121040 A1 WO2012121040 A1 WO 2012121040A1 JP 2012054725 W JP2012054725 W JP 2012054725W WO 2012121040 A1 WO2012121040 A1 WO 2012121040A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode
substrate
film formation
forming
Prior art date
Application number
PCT/JP2012/054725
Other languages
English (en)
French (fr)
Inventor
藤縄 淳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020137021409A priority Critical patent/KR101622449B1/ko
Publication of WO2012121040A1 publication Critical patent/WO2012121040A1/ja
Priority to US14/012,424 priority patent/US8986795B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Definitions

  • the present invention relates to a production method for producing a functional film such as a gas barrier film by forming a film by plasma CVD while conveying a long substrate in the longitudinal direction.
  • Various functional films such as gas barrier films, protective films, optical films such as optical filters and antireflection films, etc. in various devices such as optical elements, display devices such as liquid crystal displays and organic EL displays, semiconductor devices, thin film solar cells, etc. (Functional sheet) is used. Plasma CVD is used for the production of these functional films.
  • This RtoR film forming apparatus passes a long substrate along a predetermined transport path from a substrate roll to a take-up shaft through a predetermined path including a film forming position (pass the substrate through the predetermined transport path).
  • the film is continuously formed on the substrate transported in the longitudinal direction at the film formation position while the feeding of the substrate from the substrate roll and the winding of the film-formed substrate by the winding shaft are performed synchronously. .
  • plasma CVD capactive coupling type plasma CVD
  • plasma CVD forms an electrode pair composed of a film-forming electrode and a counter electrode with a substrate to be formed in between, and a film-forming gas (process) between the electrode pair. Gas) and high-frequency power or the like to the film-forming electrode to generate plasma and form a film.
  • film formation by plasma CVD film formation by a vapor deposition method
  • a film adheres to or deposits at various places other than the substrate in the film formation system.
  • a large amount of film adheres to the surface of the film forming electrode (the surface facing the counter electrode (substrate)).
  • a cleaning gas is used instead of a film forming gas when the film formation is completed.
  • the film is introduced into the film and the film adhering to the film forming electrode is removed.
  • RtoR apparatus that continuously forms films for a long time in order to improve productivity, a very large amount of film is deposited on the deposition electrodes. Therefore, it takes a lot of time to remove the film attached to the deposition electrode using the cleaning gas, resulting in a significant reduction in productivity.
  • the deposition electrodes and components are removed and replaced with new deposition electrodes (cleaned deposition electrodes, etc.).
  • a method of cleaning the film-forming electrode or the like on which the film has been deposited can be considered.
  • the inside of the film forming system is released to the atmosphere after the cleaning with the above-described cleaning gas.
  • the film-formed substrate that is the product is not contaminated by the scattering of the particles when the atmosphere is released.
  • the RtoR film forming apparatus there is a film-formed substrate in the film forming system, taking into consideration the trouble of passing the substrate (passing the substrate through the transport path), etc. In many cases, the inside of the film forming system is released to the atmosphere in this state.
  • the sputtering apparatus has high film adhesion in principle, and there is no method of forming a film by reaction between gases, so the deposition position of the film on the cathode is also limited. . Therefore, the problem of film peeling and particle scattering in the air release in the film forming system does not occur.
  • the film deposited by plasma CVD is not as strong as the film deposited during sputtering, and the adhesion force to the member is not so strong. End up. For this reason, it is difficult to peel off a large amount of film deposited on the film formation electrode or prevent particles from scattering in the film formation system.
  • the film adhered to or deposited on the film-forming electrode or the like peels off and becomes particles.
  • the reason for this is that the heated member is rapidly cooled by the introduction of air and the thermal stress between the member and the film is reduced. It is conceivable that the film peels due to the difference.
  • it is possible to release the atmosphere by adjusting the temperature of the film formation substrate with hot water, a chiller, or the like.
  • plasma CVD film-forming electrodes are at a high temperature of about several hundred degrees Celsius. Therefore, it is very difficult to maintain the film-forming electrode at this temperature when introduced into the atmosphere, both in terms of productivity and safety.
  • the atmosphere is introduced into the film formation system at a very low speed when the atmosphere is released, and It is also possible to use a so-called slow vent mechanism that does not give a sudden change. However, finally, the film is peeled off due to the temperature change of the film formation substrate or the like. Furthermore, when the slow vent mechanism is used, it takes a very long time from the completion of the film formation to the air release of the film formation system, resulting in a decrease in productivity.
  • An object of the present invention is to solve the above-described problems of the prior art, and in the production of a functional film that is formed by plasma CVD using RtoR, the formation after the film formation is stopped (terminated).
  • the film system is released to the atmosphere, the film that adheres to or deposits on the film formation electrode peels off, becomes particles, scatters in the film formation system, adheres to the entire area of the film formation system, and It is an object of the present invention to provide a method for producing a functional film that can prevent contamination of the film.
  • the method for producing a functional film of the present invention that can achieve the above object is to form a film on the surface of the substrate by plasma CVD while conveying the long substrate in the longitudinal direction, and then stop the film formation on the substrate. Then, when the inside of the film forming system is released to the atmosphere, the surface of the film forming electrode for performing film formation by plasma CVD is in a state that prevents contact with the atmosphere in the film forming system (in other words, After the surface of the film-forming electrode is not exposed to the film-forming system), a gas is introduced into the film-forming system and released into the atmosphere.
  • the state where the surface of the film-forming electrode has prevented contact with the atmosphere in the film-forming system means that at least a part (more preferably all) of the surface of the film-forming electrode is a film-forming system. It means a state that is prevented from contacting the atmosphere inside.
  • the film forming electrode In such a method for producing a functional film of the present invention, it is preferable to prevent the surface of the film forming electrode from coming into contact with the atmosphere in the film forming system by covering the surface of the film forming electrode with a predetermined cover. Moreover, it is preferable that the cover is in contact with the entire surface of the film forming electrode and covers the surface of the film forming electrode. Further, after the cover is moved and inserted between the film forming electrode and the counter electrode forming the electrode pair with the film forming electrode, the film forming electrode is moved to cover the surface of the film forming electrode with the cover. preferable.
  • the surface of the film forming electrode and the surface of the counter electrode that forms an electrode pair with the film forming electrode have a shape that can be brought into full contact with each other, and the surface of the film forming electrode is in contact with the surface of the counter electrode. Therefore, it is preferable to prevent the surface of the film formation electrode from coming into contact with the atmosphere in the film formation system. Further, it is preferable that the surface of the film forming electrode is brought into contact with the surface of the counter electrode by moving the film forming electrode. Furthermore, it is preferable to prevent the surface of the film forming electrode from coming into contact with the atmosphere in the film forming system by positioning the film forming electrode in another space separated from the film forming system.
  • the film-forming electrode includes a film forming gas supply unit for performing film formation by plasma CVD.
  • the method for producing a functional film of the present invention is a film forming system in which a gas barrier film or the like is formed by plasma CVD while a long substrate is conveyed in the longitudinal direction, and then the film formation is stopped (terminated).
  • the atmosphere is released to the atmosphere (during a vacuum break / vacuum break)
  • the surface of the deposition electrode is prevented from contacting the atmosphere in the deposition system (in other words, the surface of the deposition electrode is exposed to the deposition system). Introduce the atmosphere). Therefore, according to the manufacturing method of the present invention, when the film forming system is released to the atmosphere, it is attached to the surface of the film forming electrode in large quantities due to a rapid temperature drop and a violent air flow due to the introduction of the atmosphere (gas for releasing the atmosphere).
  • the manufacturing method of the present invention it is possible to prevent the deposited film from peeling off and forming particles into the film forming system.
  • the scattering of particles (films) into the film forming system at the time of release to the atmosphere and the adhesion of particles to each part or substrate in each film forming system are greatly suppressed. it can.
  • the film formation system can be quickly released to the atmosphere without performing a slow vent or temperature adjustment. Furthermore, the labor and time required for cleaning such as removal of particles in the film forming system after being released to the atmosphere can be greatly reduced. Therefore, according to the production method of the present invention, a functional film such as a gas barrier film can be produced with good productivity.
  • the particles scattered by the release to the atmosphere can be prevented from adhering to the film-formed substrate (product), contamination of the film-formed substrate due to particles and particle deposition due to particle adhesion Damage can be prevented. Further, it is possible to prevent the particles from being caught by winding the film-formed substrate with the particles attached thereto. For this reason, it is possible to prevent contamination of adjacent film-formed substrates (substrates laminated by winding), film damage, and the like due to the entrainment of particles. Further, since the scattering of the particles can be significantly suppressed, the cleaning property in the film forming system can be improved, and the deposition of particles that cannot be removed by the cleaning can be suppressed. As a result, the deterioration of the product quality due to the contamination in the film forming system can be significantly suppressed, and a high-quality product can be manufactured stably over a long period of time.
  • FIG. 1 an example of the plasma CVD apparatus which implements an example of the manufacturing method of the functional film of this invention is shown notionally.
  • a plasma CVD apparatus 10 (hereinafter referred to as a CVD apparatus 10) shown in FIG. 1 conveys a long substrate Z (web-shaped film original) in the longitudinal direction, and on the surface of the substrate Z, CCP-CVD.
  • a functional film such as a gas barrier film or various optical films is manufactured by forming a film by (Capacitively Coupled Plasma) -CVD.
  • the CVD apparatus 10 sends out the substrate Z from a substrate roll 12 formed by winding a long substrate Z into a roll shape, and transports the substrate Z in the longitudinal direction while reducing the film formation system (deposition space).
  • the substrate Z on which the film has been formed is wound around the winding shaft 14 again in the form of a roll, so that the film is formed by so-called roll-to-roll (hereinafter also referred to as RtoR). It is a device to perform.
  • the substrate (base material / substrate) Z on which the film is formed is not particularly limited, and various long sheets that can be formed by plasma CVD can be used. is there. Specifically, plastics (resins) made of organic substances such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene, polypropylene, polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, polyacrylate, polymethacrylate, etc. ) A film can be suitably used as the substrate Z.
  • plastics made of organic substances such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene, polypropylene, polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, polyacrylate, polymethacrylate, etc.
  • a film can be suitably used as the substrate Z.
  • such a plastic film or the like is used as a support, and a protective layer, an adhesive layer, a light reflection layer, a light shielding layer, a planarization layer, a buffer layer, a stress relaxation layer, and the like thereon.
  • a sheet-like material on which a layer (film) for obtaining a function is formed may be used as the substrate Z.
  • a sheet-like material in which only one layer is formed on the substrate may be used as the substrate Z, or a sheet-like material in which a plurality of layers are formed on the substrate is used as the substrate Z. Also good.
  • substrate Z is a sheet-like object in which the multiple layer was formed on the board
  • the CVD apparatus 10 shown in FIG. 1 sends out the substrate Z from the substrate roll 12 formed by winding the long substrate Z, performs film formation while conveying the substrate Z in the longitudinal direction, and again, This is an apparatus for forming a film by so-called RtoR, which is wound in a roll shape by a winding shaft 14.
  • the CVD apparatus 10 includes a supply chamber 18, a film formation chamber 20, a winding chamber 24, and an air release means 26.
  • the CVD apparatus 10 includes various sensors, a pair of transport rollers, a guide member that regulates the position in the width direction of the substrate Z, and various members for transporting the substrate Z along a predetermined path.
  • a long substrate Z such as (conveying means) may have various members included in an apparatus for forming a film by plasma CVD using RtoR.
  • the air release means 26 releases the supply chamber 18, the film formation chamber 20, and the take-up chamber 24 to the atmosphere when the film formation on the substrate Z is stopped (the film formation is completed) so that each chamber can be opened. Is for.
  • the air release means 26 is connected to the supply chamber 18, the film formation chamber 20, and the winding chamber 24 by an introduction line 26 a.
  • the atmosphere release means 26 introduces the atmosphere (air outside the apparatus) purified by a filter or the like into each chamber from the introduction line 26a, and returns the supply chamber 18, the film formation chamber 20, and the winding chamber 24 to atmospheric pressure,
  • It is a publicly known air release means that is used for a vacuum film formation apparatus (vapor phase film formation (deposition) apparatus) or the like that is used for air release.
  • the air release means 26 is not limited to releasing each chamber to the atmosphere by introducing the atmosphere, but releases each chamber to the atmosphere by introducing an inert gas such as nitrogen into each chamber. But you can. Alternatively, introduction of air and introduction of inert gas may be selectable. Further, the air release means 26 may be one that uniformly introduces air into the supply chamber 18, the film forming chamber 20, and the winding chamber 24, or one that can control the amount of air introduced into each chamber.
  • the supply chamber 18 includes a rotating shaft 28, a guide roller 30, and a vacuum exhaust unit 32.
  • the substrate roll 12 around which the long substrate Z is wound is loaded on the rotation shaft 28 of the supply chamber 18.
  • the substrate Z is pulled out of the substrate roll 12, and passes through the film forming chamber 20 from the supply chamber 18 to the winding shaft 14 of the winding chamber 24.
  • the paper is passed (the substrate Z is passed through a predetermined transport path).
  • the feeding of the substrate Z from the substrate roll 12 and the winding of the substrate Z on the winding shaft 14 of the winding chamber 24 are performed in synchronization, and a long substrate Z is transferred in a predetermined transport path.
  • film formation by CCP-CVD is continuously performed in the film formation chamber 20.
  • the supply chamber 18 rotates the rotating shaft 28 in the clockwise direction in the drawing by a drive source (not shown), feeds the substrate Z from the substrate roll 12, guides a predetermined path by the guide roller 30, and the substrate Z is separated from the partition wall 34.
  • the film 34 is sent to the film forming chamber 20 through the slit 34 a provided in the film.
  • a vacuum exhaust means 32 is provided in the supply chamber 18, and a vacuum exhaust means 70 is provided in the winding chamber 24.
  • a predetermined pressure corresponding to the pressure (film formation pressure) of the film formation chamber 20 described later is applied to the pressure in the supply chamber 18 and the take-up chamber 24 by the respective vacuum exhaust means. Keep on. This prevents the pressure in the adjacent chamber from affecting the pressure in the film formation chamber 20 (that is, film formation in the film formation chamber 20).
  • the vacuum evacuation means 32 is not particularly limited, and includes a vacuum pump such as a turbo pump, a mechanical booster pump, a dry pump, and a rotary pump, an auxiliary means such as a cryocoil, a means for adjusting the ultimate vacuum level and the exhaust amount, and the like.
  • a vacuum pump such as a turbo pump, a mechanical booster pump, a dry pump, and a rotary pump
  • an auxiliary means such as a cryocoil
  • a means for adjusting the ultimate vacuum level and the exhaust amount and the like.
  • Various known (vacuum) evacuation means used in the vacuum film forming apparatus can be used. In this regard, the same applies to the other vacuum exhaust means 60 and 70 described later.
  • the substrate Z is guided by the guide roller 30 and conveyed from the slit 34 a of the partition wall 34 to the film forming chamber 20.
  • the film forming chamber 20 forms a film (forms a film) on the surface of the substrate Z by CCP-CVD.
  • the film forming chamber 20 includes a drum 38, a film forming electrode 40, guide rollers 42, 46, 48 and 50, an electrode cover 52, a high frequency power supply 54, a gas supply means 56, and an electrode moving means. 58 and a vacuum exhaust means 60.
  • cover moving means for moving the electrode cover 52 is also arranged in the film forming chamber 20.
  • the drum 38 of the film forming chamber 20 is a cylindrical member that rotates counterclockwise in the drawing around the center line.
  • the drum Z guided by the guide rollers 42 and 46 along a predetermined path is transferred to a predetermined area on the peripheral surface.
  • the substrate Z is conveyed around in the longitudinal direction while being held at a predetermined position facing a film-forming electrode 40 described later.
  • the drum 38 also functions as a counter electrode in CCP-CVD (that is, the drum 38 and the film forming electrode 40 form an electrode pair). Therefore, the drum 38 may be connected to a bias power source for supplying bias power, or may be grounded. Alternatively, the connection with the bias power source and the ground may be switched.
  • the drum 38 may include a temperature adjusting unit that adjusts the temperature of the substrate Z during film formation.
  • the temperature adjusting means for the drum 38 is not particularly limited, and various temperature adjusting means such as a temperature adjusting means for circulating a refrigerant or a heating medium in the drum can be used.
  • the film formation electrode 40 is a known so-called shower electrode (shower plate) used for film formation by CCP-CVD, in which a film formation gas is injected from the opposite surface of the substrate Z.
  • the film-forming electrode 40 has, for example, a substantially rectangular parallelepiped shape in which one surface is disposed facing the drum 38 (that is, the substrate Z) and a space (gas supply space) is formed therein.
  • the surface of the film formation electrode 40 facing (facing) the drum 38 is parallel to the drum 38 and the peripheral surface (that is, the distance between the drum 38 and the film formation electrode is entirely uniform) It has a concave curved surface.
  • the film forming electrode 40 may also have a known temperature adjusting means, like the drum 38.
  • the surface of the film-forming electrode 40 is formed with fine irregularities of a predetermined size (roughening treatment) as a preferred embodiment. Thereby, it can prevent suitably that the film
  • the film forming electrode 40 is a so-called shower electrode, and a large number of gas supply holes are formed on the surface thereof. This gas supply hole communicates with the internal space (gas supply space) of the film-forming electrode 40 described above. Further, a gas supply means 56 described later supplies a film forming gas into the internal space of the film forming electrode 40. Therefore, the film forming gas supplied from the gas supply means 56 is supplied between the drum 38 (substrate Z) and the film forming electrode 40 through the gas supply hole of the film forming electrode 40.
  • the film forming electrode 40 is not limited to the one having a curved surface as shown in the illustrated example, and may be a rectangular parallelepiped shape having an internal space (gas supply space), or may be a drum peripheral surface. It may have a curved surface that is not parallel. That is, in the present invention, all known shower electrodes used in CCP-CVD can be used.
  • one film formation electrode 40 (film formation means by CCP-CVD) is disposed in the film formation chamber 20, but the present invention is not limited to this, and the substrate Z can be transferred.
  • a plurality of film forming electrodes may be arranged in the direction.
  • an electrode cover 52 and a cover moving means described later are provided corresponding to each film forming electrode.
  • the present invention is not limited to the configuration using shower electrodes, and the film forming gas is supplied between an electrode that does not have a film forming gas blowing port (film forming gas supply means) and the electrode pair.
  • CCP-CVD using a nozzle or the like may be used.
  • the gas supply means 56 is a known gas supply means used in a vacuum film forming apparatus such as a plasma CVD apparatus. As described above, the gas supply means 56 supplies the film forming gas to the internal space of the film forming electrode 40. Further, a large number of gas supply holes communicating with the internal space are formed on the surface of the film forming electrode 40 (the surface facing the drum 38). Accordingly, the film forming gas supplied to the film forming electrode 40 is supplied between the film forming electrode 40 and the drum 38 through the gas supply hole.
  • the supply pipe for supplying the film forming gas from the gas supply unit 56 to the film forming electrode 40 is at least partially flexible according to the movement of the film forming electrode 40 described later (flexible pipe). It has become.
  • the film (that is, the functional film to be manufactured) formed by the manufacturing method of the present invention is not particularly limited, and various optical films such as a gas barrier film (water vapor barrier film), an antireflection film, and a wavelength band filter film are used.
  • various films that exhibit functions required for a functional film to be manufactured such as a film exhibiting various characteristics and a protective film, can be formed. Therefore, the deposition gas (process gas / source gas) supplied by the gas supply means 56 may be a known one corresponding to the film to be deposited on the surface of the substrate Z.
  • the gas supply means 56 is used for forming a silicon nitride film by CCP-CVD.
  • a known film forming gas may be supplied to the film forming electrode 40.
  • the gas supply means 56 supplies a combination of silane gas, ammonia gas and hydrogen gas, a combination of silane gas, ammonia gas and nitrogen gas, etc. as a film formation gas. do it.
  • the high frequency power source 54 is a power source that supplies plasma excitation power to the film forming electrode 40.
  • the high-frequency power source 54 all known high-frequency power sources that are used in various plasma CVD apparatuses such as a power source that supplies high-frequency power of 13.56 MHz can be used. Note that at least a part of the power supply line from the high-frequency power source 54 to the deposition electrode 40 is a flexible line.
  • the vacuum evacuation means 60 is for evacuating the film formation chamber to maintain a predetermined film formation pressure for film formation by plasma CVD, and is known as a vacuum film formation apparatus as described above.
  • the vacuum exhaust means is for evacuating the film formation chamber to maintain a predetermined film formation pressure for film formation by plasma CVD, and is known as a vacuum film formation apparatus as described above.
  • film forming conditions such as the transport speed of the substrate Z, the film forming pressure, the amount of film forming gas supplied, and the intensity of plasma excitation power. That is, film formation conditions may be appropriately set according to the film to be formed, the required film formation speed, the film thickness to be formed, the type of the substrate Z, and the like, as in the case of film formation by normal plasma CVD. .
  • the film forming chamber 20 further includes an electrode cover 52, an electrode moving means 58, and a cover moving means (not shown).
  • the electrode cover 52 has a convex curved surface with one surface having the same curvature as the surface of the film forming electrode 40, and the curved surface has a larger area than the surface of the film forming electrode 40. (Plate-shaped mask member). Therefore, the convex curved surface of the electrode cover 52 can be in contact with and cover the entire surface of the film forming electrode 40.
  • the electrode cover 52 is disposed with this convex curved surface facing the surface of the film forming electrode 40. Further, the electrode cover 52 is moved in the horizontal direction (perpendicular to the paper surface in FIG. 1) by the cover moving means, and between the film forming electrode 40 and the drum 38 and between the film forming electrode 40 and the drum 38. To a position retracted from the position (a position that does not affect the film formation). Further, the electrode moving means 58 moves the film forming electrode 40 in a direction approaching the drum 38 and a direction away from the drum 38. In addition, as long as the electrode moving means 58 and the cover moving means can operate
  • the electrode cover 52 is inserted between the drum 38 and the film formation electrode 40, and then the film formation electrode 40 is placed on the drum 38. After moving toward the surface and covering the entire surface of the deposition electrode 40 with the electrode cover 52, the atmosphere is introduced into the deposition chamber 20 and the like by the atmosphere release means 26.
  • the film attached to or deposited on the surface of the film formation electrode 40 peels off and becomes particles and is scattered inside the CVD apparatus 10. To prevent that.
  • the electrode cover is not limited to a plate-like object as shown in the illustrated example.
  • it may be a cap-shaped (lid-shaped) object that is covered with the film-forming electrode 40 and covers the entire surface. That is, in the present invention, various electrode structures and shapes can be used as long as the electrode cover can cover the entire surface of the film-forming electrode 40.
  • the electrode cover is not limited to a configuration that covers the surface of the film-forming electrode 40 by contacting the entire surface of the film-forming electrode 40 as in the illustrated example. For example, a cap shape that covers the entire surface in a state of being separated from the surface of the film forming electrode 40 may be used.
  • the electrode cover is made of a film-forming electrode as shown in FIGS. 1 and 2 in that the film peeling from the surface of the film-forming electrode 40 and the scattering of particles can be prevented more reliably. It is preferable to have a configuration or shape that contacts (contacts) the entire surface and covers the entire surface.
  • the substrate Z guided along the predetermined path by the guide rollers 42 and 46 is wound around the peripheral surface of the drum 38 and conveyed in the longitudinal direction while being held at a predetermined position.
  • plasma is excited by supplying plasma excitation power to the film-forming electrode 40, radicals are generated from the film-forming gas, and transported while being supported by the drum 38.
  • a film is formed on the surface of the substrate Z to be formed by CCP-CVD.
  • the substrate Z having a predetermined film formed on the surface is then guided by the guide roller 50 and conveyed from the slit 64 a of the partition wall 64 to the winding chamber 24.
  • the winding chamber 24 includes a guide roller 68, a winding shaft 14, and a vacuum exhaust unit 70.
  • the substrate Z transported to the winding chamber 24 is guided by the guide roller 68 and transported to the winding shaft 14, wound in a roll shape by the winding shaft 14, and wound with a functional film such as a gas barrier film. As a roll, it is used for the next step.
  • a vacuum evacuation means 70 is also arranged in the winding chamber 24, and the winding chamber 24 is also decompressed to a degree of vacuum corresponding to the film forming pressure in the film forming chamber 20 during film formation. Is done.
  • FIG. 3 is a conceptual diagram of the drum 38, the film forming electrode 40, and the electrode cover 52 as viewed from the right side (winding chamber 24 side) in FIG. 1 (the arrow b indicates the substrate Z). Shows the direction of transport.)
  • the substrate roll 12 When the substrate roll 12 is loaded on the rotary shaft 28, the substrate Z is pulled out from the substrate roll 12.
  • the substrate drawn out from the substrate roll 12 is guided by the guide roller 30 to the film forming chamber 20, and is guided by the guide rollers 42 and 46 in the film forming chamber 20 to be hung on a predetermined area on the peripheral surface of the drum 38.
  • the paper is guided by the guide rollers 48 and 50 to reach the take-up chamber 24.
  • the paper is passed through a predetermined conveyance path that is guided by the guide roller 68 and reaches the take-up shaft 14. .
  • the supply chamber 18, the film forming chamber 20, and the winding chamber 24 are closed (sealed).
  • the vacuum evacuation means 32, 60, and 70 are driven, and the supply chamber 18, the film forming chamber 20, and the winding chamber 24 are depressurized to a predetermined pressure.
  • the deposition gas is supplied from the gas supply means 56 to the deposition electrode 40 in the deposition chamber 20.
  • the transfer of the substrate Z from the supply chamber 18 toward the winding chamber 24 is started, and plasma excitation from the high frequency power source 54 to the film formation electrode 40 is started. Start supplying power. In this state, as shown in FIG.
  • the electrode cover 52 is separated from the film formation region between the drum 38 and the film formation electrode 40 instead of between the drum 38 and the film formation electrode 40. (Positions that do not affect film formation, for example, positions that are separated in the axial direction a of the drum 38).
  • the substrate Z transported from the supply chamber 18 to the film forming chamber 20 is guided by guide rollers 42 and 46 and is transported while being wound around the drum 38, while the drum 38 and the film forming electrode 40 face each other.
  • a film exhibiting a desired function such as a silicon nitride film is formed by CCP-CVD.
  • the substrate Z on which a predetermined film is formed is guided by the guide rollers 48 and 50 and conveyed to the winding chamber 24.
  • the substrate Z conveyed to the winding chamber 24 is guided to a predetermined path by the guide roller 68 and is wound in a roll shape by the winding shaft 14.
  • the amount of the substrate Z wound around the substrate roll 12 becomes a predetermined length or less, or the total film formation time from the previous replacement of the film formation electrode 40 has become a predetermined time.
  • supply of plasma excitation power from the high-frequency power source 54 to the film formation electrode 40 and supply of film formation gas from the gas supply means 56 to the film formation electrode 40 are stopped. Further, the conveyance of the substrate Z is stopped, and the film formation is stopped (terminated). Next, the film formation chamber 20, the supply chamber 18, and the winding chamber 24 are released to the atmosphere in order to load a new substrate roll 12, replace the film formation electrode 40, and the like.
  • the air release may be performed in a state where all the substrates Z are wound on the winding shaft 14. That is, the atmosphere may be released in a state where the substrate Z is not present in the supply chamber 18 and the film forming chamber 20 (a state where the substrate Z is cut).
  • FIG. 1 and the like are conceptual diagrams, only six guide rollers are illustrated, but a normal RtoR CVD apparatus has a large number of guide rollers. It takes a lot of work.
  • the film-formed substrate Z wound around the winding shaft 14 is in a state where no tension is applied. The atmosphere enters between the substrates Z, and the winding state of the substrates Z becomes inappropriate.
  • the air release described below is performed in a state in which the substrate Z is passed through a predetermined path (that is, a predetermined tension is applied from the substrate roll 12 to the winding shaft 14).
  • a predetermined tension is applied from the substrate roll 12 to the winding shaft 14.
  • loading of a new substrate roll 12 is preferably performed.
  • the film is positioned outside the drum 38 and the film formation electrode 40.
  • the electrode cover 52 is moved in the direction of arrow a by a cover moving means (not shown) and is positioned between the drum 38 and the film forming electrode 40.
  • the electrode 40 is moved until the surface of the electrode 40 contacts the electrode cover 52 and is slightly pressed by the electrode moving means 58. Is moved in a direction approaching the drum 38 (arrow b direction).
  • the electrode cover 52 is brought into contact with the entire surface of the film formation electrode 40, and the entire surface of the film formation electrode 40 is covered with the electrode cover 52.
  • the film release chamber 26, the supply chamber 18, and the winding chamber 24 are moved to the film formation chamber 20, the supply chamber 18, and the winding chamber 24.
  • Introduce air exital air. That is, in the manufacturing method of the present invention, the surface of the film-forming electrode 40 (substrate Z (in the film-forming space), in other words, in the space where the pressure is reduced for film-forming on the substrate Z. Assuming that the surface facing the counter electrode (drum 38)) is not exposed, the atmosphere for releasing the atmosphere is introduced into the film forming chamber 20, the supply chamber 18 and the winding chamber 24.
  • a film is deposited or deposited in a film forming system other than the substrate Z.
  • a large amount of film adheres and accumulates on the surface of the film formation electrode 40 exposed in the plasma generation region, that is, the film formation region (film formation position).
  • the film attached or deposited on the surface of the film forming electrode 40 is peeled off and scattered into the film forming system as particles. It adheres everywhere in the entire membrane system. Therefore, a very long time is required for cleaning the film forming system for removing the particles, and the productivity is greatly reduced.
  • the atmosphere is introduced through the substrate Z, particles are deposited on the film-formed substrate Z (that is, the product). As a result, the deposited film is damaged or the substrate Z is contaminated. Further, when the film-formed substrate Z is wound with the particles attached, the particles are caught in the roll of the film-formed substrate Z, and as a result, the particles come into contact with the adjacent substrate (laminated substrate). Moreover, the quality of the product as a result of adhesion or damage to the deposited film, contamination, and the like is deteriorated.
  • the surface of the film formation electrode 40 is not exposed in the film formation system, such as covering the surface of the film formation electrode 40 with the electrode cover 52 (in the film formation system, After the surface of the membrane electrode 40 is prevented from coming into contact with the atmosphere, the atmosphere is introduced to release the atmosphere of the film formation system. Therefore, according to the present invention, even if the atmosphere is introduced to release the atmosphere, it is possible to greatly suppress the peeling of the film attached to or deposited on the surface of the film formation substrate 40, that is, by introducing the atmosphere. It is possible to greatly suppress the scattering of particles in the film system.
  • the film formation system can be quickly released to the atmosphere without performing slow venting, etc., and the labor and time required for cleaning the film formation system after release to the atmosphere are greatly reduced.
  • the functional film can be manufactured with good productivity.
  • particles can be prevented from adhering to the film-formed substrate. Damage to the film, contamination and damage of the wound film-formed substrate Z can be suitably prevented.
  • the cleaning performance in the film formation system can be improved, so that it is possible to suppress the accumulation of particles that cannot be removed in the film formation system, and as a result, the product quality due to the dirt in the film formation system that accumulates. It is also possible to stably manufacture high quality products over a long period of time.
  • the atmosphere is introduced into the film formation chamber 20, the supply chamber 18 and the winding chamber 24 by the air release means 26.
  • the electrode cover 52 and the film formation electrode 40 are returned to the same positions as during film formation.
  • the timing of moving the electrode cover 52 and the film-forming electrode 40 back to the same position as during film formation after the release of the atmosphere is not limited to this, and may be set as appropriate according to the convenience of work. That's fine. Further, any timing may be selected so that the electrode cover 52 and the film formation electrode 40 can be returned to the same position as during film formation.
  • the necessary chambers of the film formation chamber 20, the supply chamber 18, and the winding chamber 24 are opened. Thereafter, loading of a new substrate roll 12 (connection between the rear end of the cut-through substrate Z and the front end of the substrate Z of the new roll) and removal of the wound film-formed substrate Z (cut substrate) Necessary operations such as winding the tip of Z around the winding shaft 14, removing the deposition electrode 40, cleaning the deposition chamber 20, and attaching a new (cleaned) deposition electrode 40 are performed.
  • the film forming chamber 20 When the necessary work is completed, the film forming chamber 20, the supply chamber 18 and the winding chamber 24 are closed, and the evacuation means 32, 60, and 70 are driven again, and when each chamber is stabilized at a predetermined pressure, In the same manner as described above, supply of a film forming gas, conveyance of the substrate Z, supply of plasma excitation power, and the like are started, and film formation on the substrate Z is resumed.
  • a moving means for the electrode cover 52 and a moving means for the film forming electrode 40 are provided, and the film is formed by the electrode cover 52 only by moving a linear (one-dimensional) member.
  • the surface of the electrode 40 is covered.
  • the present invention is not limited to this. That is, after the electrode cover 52 is inserted between the drum 38 and the film forming electrode 40, the electrode cover 52 is moved toward the film forming electrode 40, thereby covering the surface of the film forming electrode 40 with the electrode cover 52.
  • the surface of the deposition electrode 40 may be covered by two-dimensional movement of the electrode cover.
  • the CVD apparatus 10 shown in FIGS. 1 and 3 covers the surface of the film-forming electrode 40 with the electrode cover 52, so that the surface of the film-forming electrode 40 is placed in the film-forming system when the atmosphere is introduced to release the atmosphere. It is not exposed.
  • the production method of the present invention is not limited to this, and the state in which the surface of the film-forming electrode 40 is not exposed in the film-forming system when the atmosphere is introduced for air release (in the film-forming system, Various methods can be used as a method for preventing the surface of the membrane electrode 40 from contacting the atmosphere.
  • FIGS. 4 and 5 the same members as those in FIGS. 1 to 3 are denoted by the same reference numerals, and the description will be mainly given of different parts.
  • the surface of the film-forming electrode 80 is a concave surface having the same curvature as the drum 38 (or a concave surface having the same curvature considering the thickness of the substrate Z).
  • a method of covering the surface of the film forming electrode 80 by bringing the peripheral surface of the drum 38 (the substrate Z through which the paper has passed) into contact with the entire surface of the film forming electrode 80 is exemplified.
  • the surface of the film-forming electrode and the surface of the counter electrode are shaped so that they can be brought into full contact with each other (uneven shape), and the film is formed when the atmosphere is introduced to release the atmosphere.
  • the electrode and / or the counter electrode may be moved so that the surface of the deposition electrode is entirely covered with the counter electrode.
  • the film formation electrode 80 and the drum 38 that is the counter electrode are separated from each other by a predetermined distance. And a drum 38 generate plasma, and film formation on the substrate Z is performed.
  • the film formation electrode 80 is moved toward the drum 38 by the electrode moving means 82, and the peripheral surface (substrate Z) of the drum 38 and the film formation electrode are moved.
  • the surface of 80 is brought into full contact, and preferably, the drum 38 is slightly pressed by the film-forming electrode 80.
  • the electrode moving means 82 various known moving means that can be driven in a vacuum can be used in the same manner as the electrode moving means 58.
  • the entire surface of the film formation electrode 80 is covered by the drum 38, and the surface of the film formation electrode 80 is not exposed to the film formation system (in the film formation system, the surface of the film formation electrode 80 is in contact with the atmosphere.
  • the atmosphere release means 26 introduces the atmosphere into the film forming chamber 20, the supply chamber 18, and the take-up chamber 24 to release each chamber to the atmosphere.
  • the entire surface of the film formation electrode 80 is covered with the drum 38 and is not exposed in the film formation system. The peeling of the film from the surface of the film electrode 80 and the scattering of particles into the film forming system can be significantly suppressed.
  • the film-forming electrode 80 and the drum 38 do not directly contact each other, so that mutual damage due to contact between them can be prevented.
  • the film formation electrode 80 is very hot. Therefore, if the film formation electrode 80 is brought into contact with the substrate Z immediately after the film formation is stopped, the substrate Z may be damaged by heat.
  • the length of the substrate Z wound around the substrate roll 12 is naturally known, and when the film formation is stopped, which region of the substrate Z faces the position (film formation region) facing the film formation electrode 80. It can be predicted. By utilizing this, even when the film formation is stopped, the region (expected region) that is the position facing the film formation electrode 80 on the long substrate Z may be formed of a resin having high heat resistance such as polyimide. Good.
  • the region that faces the film formation electrode 80 of the substrate Z when the film formation is stopped is heat resistant.
  • the surface of the film-forming electrode 40 is not exposed in the film-forming system when the air is introduced to release the atmosphere (the surface of the film-forming electrode 40 is in contact with the air in the film-forming system.
  • the method is not limited to the method of covering the surface of the deposition electrode with any member.
  • the deposition electrode is separated from another deposition system (more preferably, the deposition system (deposition space)).
  • the surface of the film formation electrode 40 may not be exposed in the film formation system by moving to another space where the airtightness is maintained.
  • FIG. 5 conceptually shows an example thereof.
  • a load lock chamber 86 (a retreat chamber for the film formation electrode 40) and a lid 90 of the load lock chamber 90 are provided in the film formation chamber 20, and the atmosphere is introduced into the load lock chamber 86.
  • Means 92 and means for moving the film forming electrode 40 (not shown) are provided.
  • the moving means for the film forming electrode 40 various known moving means that can be driven in a vacuum can be used in the same manner as the electrode moving means 58 described above.
  • the film formation electrode 40 is located at a predetermined distance from the drum 38 outside the load lock chamber 86.
  • the plasma is generated between the film formation electrode 80 and the drum 38, and film formation on the substrate Z is performed.
  • the lid 90 (not shown in FIG. 5A) is retracted to a position that does not affect the film formation.
  • the film formation electrode 40 is moved away from the drum 38 by the movement means of the film formation electrode 40 as shown in FIG. And accommodated in the load lock chamber 86.
  • the lid 90 is moved by a moving means (not shown), and the load lock chamber 86 is closed by the lid 90 to keep the airtightness. As a result, the surface of the film forming electrode 40 is not exposed to the film forming system.
  • various known moving means that can be driven in a vacuum can be used as in the above-described example.
  • the atmosphere release means 26 introduces the atmosphere into the film forming chamber 20, the supply chamber 18, and the winding chamber 24, and each chamber is released to the atmosphere.
  • air air
  • the load lock chamber 86 is brought to atmospheric pressure so that the film formation electrode 40 can be taken out from the load lock chamber 86.
  • the film forming electrode 40 is located in the load lock chamber 86 that is airtightly separated from the inside of the film forming system, the film peeled off from the surface of the film forming electrode 80 is only in the load lock chamber 86. Scatter. Therefore, even if the chambers are exposed to the atmosphere in order to release the film formation chamber 20 and the like to the atmosphere, the scattering of particles into the film formation system can be significantly suppressed.
  • the manufacturing method of the functional film of this invention was demonstrated in detail, this invention is not limited to the said Example, Even if various improvement and a change are performed in the range which does not deviate from the summary of this invention. Of course it is good.
  • the example shown in FIG. 1 is an apparatus for forming a film while transporting it in the longitudinal direction while the substrate Z is wound around the circumferential surface of a cylindrical drum, but the present invention is not limited to this.
  • the manufacturing method of the present invention can also be suitably used for an apparatus that forms a film while conveying the substrate Z in a straight line (planar). That is, in the manufacturing method of the present invention, any film forming apparatus having various configurations can be used as long as the apparatus performs film formation by plasma CVD while transporting a long substrate in the longitudinal direction.
  • Example 1 A gas barrier film was manufactured by forming a silicon nitride film on the surface of the substrate Z using a CVD apparatus 10 as shown in FIGS.
  • a stainless steel drum having a diameter of 1500 mm having a temperature adjusting means was used.
  • the substrate Z a PET film having a thickness of 100 ⁇ m was used.
  • Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas.
  • the supply amounts were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas.
  • the film forming pressure was 50 Pa.
  • the film formation electrode 40 was supplied with 3000 W of plasma excitation power at a frequency of 13.5 MHz from a high frequency power source 54. Further, a bias power of 500 W was supplied to the drum 38 from a power source (not shown). During the film formation, the temperature of the drum 38 was adjusted to ⁇ 20 ° C.
  • a silicon nitride film having a thickness of 100 nm was formed on the substrate Z as described above.
  • the electrode cover 52 is retracted from between the drum 38 and the film formation electrode 40 as described above.
  • film formation is performed 1000 m (that is, when a gas barrier film of 1000 m is manufactured)
  • supply of the film formation gas, plasma excitation power, and bias power is stopped, and further, conveyance of the substrate Z is stopped, The membrane was stopped.
  • the electrode cover 52 is inserted between the drum 38 and the film forming electrode 40 by the cover moving means, and the film moving electrode 58 is further inserted by the electrode moving means 58. 40 was moved toward the drum 38 and slightly pressed against the electrode cover 52, and the entire surface of the film-forming electrode 40 was covered with the electrode cover 52.
  • the atmosphere air outside the apparatus
  • the film formation chamber 20 the supply chamber 18 and the winding chamber 24 by the atmosphere release means 26.
  • each chamber was returned to atmospheric pressure. Note that the time from the start of the introduction of air to the atmospheric pressure of all the chambers was 40 minutes.
  • Example 2 A gas barrier film was manufactured by depositing a silicon nitride film having a thickness of 100 nm on the substrate Z in the same manner as in Example 1 by using a CVD apparatus having the film forming chamber 20 shown in FIG.
  • the film forming chamber 20 does not have the electrode cover 52, the electrode moving means 58, and the cover moving means, and the load lock chamber 86, the moving means for the film forming electrode 40, the lid 90, and 5 has the same configuration as that of the CVD apparatus 10 used in Example 1 except for the configuration shown in FIG.
  • Example 1 As in Example 1, when the film formation was performed for 1000 m, the supply of the film formation gas, the plasma excitation power, and the bias power was stopped, the conveyance of the substrate Z was stopped, and the film formation was stopped. Next, the film forming electrode 40 was accommodated in the load lock chamber 86, and the load lock chamber 86 was hermetically closed by the lid 90. Next, in the same manner as in Example 1, the atmosphere was introduced by the atmosphere release means 26, and each chamber was returned to atmospheric pressure. Further, the atmosphere was introduced by the atmosphere releasing means 92 and the load lock chamber 86 was also released to the atmosphere. Note that the time from the start of the introduction of air to the atmospheric pressure of all the chambers was 40 minutes.
  • Example 1 In exactly the same manner as in Example 1, a silicon nitride film having a thickness of 100 nm was formed on the surface of the substrate Z to produce a gas barrier film. As in Example 1, when the film formation was performed for 1000 m, the supply of the film formation gas, the plasma excitation power, and the bias power was stopped, the conveyance of the substrate Z was stopped, and the film formation was stopped. Next, the atmosphere is released by the atmosphere release means 26 in the same manner as in Example 1 with the electrode cover 52 not covering the surface of the film forming electrode 40 and exposing the surface of the film forming electrode 40 into the film forming system. Once introduced, each chamber was returned to atmospheric pressure. Note that the time from the start of the introduction of air to the atmospheric pressure of all the rooms was 40 minutes.
  • Example 1 Example 2, and Comparative Example, after the atmosphere was released, the film-formed substrate Z was sampled between the guide roller 48 and the slit 64a and observed with an optical microscope. As a result, in Example 1 and Example 2, no peeling or cracking of the formed silicon nitride film was observed. On the other hand, in the comparative example, peeling and cracking of the formed silicon nitride film were confirmed. Also.
  • the water vapor permeability [g / (m 2 ⁇ day)] of the sampled substrate Z (gas barrier film) was measured by the calcium corrosion method (method described in Japanese Patent Application Laid-Open No. 2005-283561).
  • the water vapor transmission rate was 1.2 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] in Example 1, and 1.7 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day) in Example 2. day)], the comparative example was 7.4 ⁇ 10 ⁇ 1 [g / (m 2 ⁇ day)].
  • Example 1 after releasing the atmosphere, the inside of the apparatus was cleaned, and a silicon oxide film was formed on the substrate Z of 1000 m in exactly the same manner.
  • the contamination of the inside of the apparatus by the particles was extremely small, and the cleaning inside the apparatus was completed in about 30 minutes, and the second film formation could be started quickly.
  • the comparative example particles scattered throughout the apparatus and adhered to the wall surface or the like, and it took about 90 minutes to clean the apparatus.
  • the water vapor transmission rate of the comparative example is 7.4 ⁇ 10 -1 [g / (m 2 ⁇ day)] for the sample between the guide roller 48 and the slit 64a, which is the same as before, The sample of the area wound around the shaft 14 was around 2.5 ⁇ 10 ⁇ 2 [g / (m 2 ⁇ day)].
  • Example 1 and Example 2 in which the atmosphere was introduced to release the atmosphere with the surface of the film formation electrode 40 not exposed to the film formation system were the damage of the silicon nitride film and the gas barrier property. No decrease was observed.
  • Example 1 and Example 2 in which the atmosphere was introduced without exposing the surface of the film forming electrode 40 into the film forming system, the deposited film adhered to the surface of the film forming electrode 40 was peeled off. It is considered that the scattering inside the apparatus could be greatly suppressed.
  • Example 1 In the second film formation, in Example 1, an appropriate gas barrier property was obtained in the entire film formation region.
  • the comparative example since there are many particles adhering in the apparatus, it seems that the particles could not be completely removed even after cleaning. Therefore, particles remaining on the guide roller or the like adhere to the front and back surfaces of the substrate Z and silicon oxide during the second film formation, which causes damage to the silicon oxide film, etc. It is thought that the gas barrier property was lowered. That is, in the comparative example, the particles remaining in the previous film formation / cleaning have an adverse effect on the next film formation, and appropriate performance cannot be obtained in the entire product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

長尺な基板を長手方向に搬送しつつ、プラズマCVDによって成膜を行う機能性フィルムの製造において、成膜を停止した後の大気解放時に、製品や成膜系内の汚染を防止し、生産性の向上や製品品質の向上を図ることができる方法を提供する。 成膜電極の表面が成膜系内で大気と接触するのを妨げた状態にした後に、大気解放のための気体を成膜系内に導入することにより、前記課題を解決する。

Description

機能性フィルムの製造方法
 本発明は、長尺な基板を長手方向に搬送しつつ、プラズマCVDによって成膜を行なってガスバリアフィルム等の機能性フィルムを製造する製造方法に関する。
 光学素子、液晶ディスプレイや有機ELディスプレイなどの表示装置、半導体装置、薄膜太陽電池など、各種の装置に、ガスバリアフィルム、保護フィルム、光学フィルタや反射防止フィルム等の光学フィルムなど、各種の機能性フィルム(機能性シート)が利用されている。
 これらの機能性フィルムの製造にプラズマCVDが利用されている。
 また、プラズマCVDに限らず、効率良く、高い生産性を確保して成膜を行なうためには、長尺な基板(ウェブ状の基板)を長手方向に搬送しつつ、連続的に成膜を行なうのが好ましい。
 このような成膜方法を実施する装置として、長尺な基板をロール状に巻回してなる基板ロールから基板を送り出し、成膜済みの基板をロール状に巻回する、いわゆるロール・ツー・ロール(Roll to Roll(以下、RtoRともいう))の成膜装置が知られている。
 このRtoRの成膜装置は、成膜位置を含む所定の経路で、基板ロールから巻取り軸まで所定の搬送経路に沿って長尺な基板を通紙し(所定の搬送経路に基板を通し)、基板ロールからの基板の送り出しと、巻取り軸による成膜済の基板の巻取りとを同期して行いつつ、成膜位置において、長手方向に搬送される基板に連続的に成膜を行なう。
 周知のように、プラズマCVD(容量結合型プラズマCVD)は、成膜される基板を挟んで、成膜電極と対向電極とからなる電極対を形成し、電極対の間に成膜ガス(プロセスガス)を供給すると共に、成膜電極に高周波電力等を供給することにより、プラズマを生成して、成膜を行うものである。
 ここで、プラズマCVDによる成膜(気相堆積法による成膜)では、成膜系内において、基板以外の様々な場所に膜が付着したり堆積してしまう。特に、成膜電極の表面(対向電極(基板)との対向面)には、大量の膜が付着してしまう。
 成膜される基板(処理基板)を、順次、出し入れする、一般的な枚葉式(バッチ式)の成膜装置では、成膜を終了したら、成膜ガスの代わりにクリーニングガスを成膜系内に導入し、成膜電極等に付着した膜を除去する。
 しかしながら、生産性を向上するために、長時間、連続で成膜を行なうRtoRの装置では、非常に大量の膜が成膜電極に堆積してしまう。そのため、クリーニングガスを用いて成膜電極に付着した膜を除去するには、多大な時間が必要となり、生産性を著しく低下してしまう結果となる。
 そのため、RtoRによる装置では、成膜電極等のクリーニング(清浄化)を迅速に行なうために、成膜電極や部品をとり外して、新しい成膜電極等(クリーニング済の成膜電極等)と交換し、膜が堆積した成膜電極等を、外部でクリーニングする方法が考えられる。
 ところが、この方法では、成膜電極等の表面に大量の膜が堆積した状態で、成膜系(成膜空間)を大気解放する結果となる。そのため、大気解放の際に、成膜電極等に付着していた大量の膜が、大気導入による急激な温度変化(熱応力)と、激しい気流とによって、成膜電極表面等から剥離し、かつ、いわゆるパーティクルとなって、成膜系内全体に飛散して、様々な場所に付着してしまう。
 その結果、このパーティクルを除去するための成膜系内のクリーニングが必要になり、結果的に、やはり生産性を低下してしまう。
 また、枚様式の成膜装置を用いた際、成膜系内を大気解放するのは、前述のクリーニングガスによるクリーニング後であり、かつ、大気解放時には、通常、成膜済の基板は、成膜系とは異なる空間に退避している。そのため、この大気解放時におけるパーティクルの飛散によって、製品となる成膜済の基板が汚染されることは無い。
 これに対し、RtoRによる成膜装置を用いた際、基板を通紙する(搬送経路に基板を通す)手間等を考慮して、製品となる成膜済の基板が、成膜系内に存在した状態で、成膜系内を大気解放する場合が多い。この際には、大気解放時に飛散したパーティクルが、成膜済の基板の表面や裏面に付着してしまい、これに起因して、成膜した膜の損傷や汚染等が生じ、製品の品質を低下してしまう。また、パーティクルが付着した状態で成膜済の基板を巻き取ると、隣接する基板(積層された基板)にパーティクルが当接し、また、付着してしまい、これに因っても、成膜した膜の損傷や、製品の汚染が生じ、製品品質を低下させる。
 同じRtoRの成膜装置でも、スパッタリング装置では、原理的に膜の付着力が高く、また、ガス同士の反応によって成膜する方式でも無いので、カソード等への膜の堆積位置も限られている。そのため、成膜系内の大気解放における膜の剥離やパーティクルの飛散の問題は、生じない。
 しかしながら、プラズマCVDにより付着する膜は、スパッタリングの際に付着する膜ほど部材との密着力は強くなく、特に成膜電極の表面には、全面的に、大量の膜が付着して堆積してしまう。そのため、成膜電極に大量に堆積した膜を剥離したり、成膜系内でパーティクルの飛散を防止することは、困難である。
 また、前述のように、成膜電極等に付着したり堆積した膜が剥離し、パーティクルとなる理由としては、昇温した部材が大気導入によって急速に冷却され、部材と膜との熱応力の差に起因して膜が剥離することが考えられる。
 この熱応力に起因する膜の剥離を防止するために、温水やチラー等で成膜基板を温度調整して、大気解放を行なうことも可能である。しかしながら、プラズマCVDの成膜電極は、数百℃程度の高温となる。そのため、大気導入時に、成膜電極を、この温度に維持することは、生産性の点でも、安全性の点でも、非常に困難である。
 さらに、成膜電極等に付着したり堆積した膜の剥離、成膜系内でのパーティクルの飛散を防止するために、大気解放時における成膜系への大気導入を極めて低速で行い、気流の急激な変化を与えない、いわゆるスローベント機構を用いることも可能である。
 しかしながら、最終的には、成膜基板等の温度変化による膜の剥離が発生してしまう。さらに、スローベント機構を用いると、成膜終了から、成膜系の大気解放までに、非常に長い時間がかかってしまうため、結果的に、生産性を低下してしまう。
 本発明の目的は、前記従来技術の問題点を解決することにあり、RtoRを利用してプラズマCVDによって成膜を行なう機能性フィルムの製造において、成膜を停止(終了)した後の、成膜系の大気解放時に、成膜電極に付着したり堆積した膜が剥離して、パーティクルとなって成膜系中に飛散して、成膜系内の全域に付着して、成膜系内を汚染することを防止できる、機能性フィルムの製造方法を提供することにある。
 前記目的を達成し得た本発明の機能性フィルムの製造方法は、長尺な基板を長手方向に搬送しつつ、プラズマCVDによって基板の表面に成膜を行い、次いで基板への成膜を停止して、成膜系内を大気解放する際に、プラズマCVDによる成膜を行なうための成膜電極の表面が、成膜系内で大気と接触するのを妨げた状態で(換言すれば、成膜電極の表面が成膜系内に露出していない状態とした後に)、気体を成膜系内に導入して、大気解放することを特徴とする。本明細書において、「成膜電極の表面が、成膜系内で大気と接触するのを妨げた状態」とは、成膜電極の表面の少なくとも一部(より好ましくは全部)が成膜系内で大気と接触するのを妨げられている状態を意味する。
 このような本発明の機能性フィルムの製造方法において、成膜電極の表面を所定のカバーで覆うことにより、成膜電極の表面が成膜系内で大気と接触するのを妨げるのが好ましい。また、カバーが、成膜電極の表面全面に当接して、成膜電極の表面を覆う形状を有するのが好ましい。また、カバーを移動して成膜電極と、成膜電極と電極対を成す対向電極との間に挿入した後、成膜電極を移動することにより、成膜電極の表面をカバーで覆うのが好ましい。
 また、成膜電極の表面と、成膜電極と電極対を成す対向電極の表面とが、互いに全面的に接触可能な形状を有し、成膜電極の表面を対向電極の表面に当接することにより、成膜電極の表面が成膜系内で大気と接触するのを妨げるのが好ましい。また、成膜電極を移動することにより、成膜電極の表面を対向電極の表面に当接するのが好ましい。
 さらに、成膜電極を、成膜系から分離された別の空間に位置させることにより、成膜電極の表面が成膜系内で大気と接触するのを妨げるのが好ましい。
 また、長尺な基板が、所定の搬送経路に通した状態で、成膜電極の表面が成膜系内で大気と接触するのを妨げるのが好ましい。
 また、長尺な基板を円筒状のドラムに巻き掛けた状態で、長手方向に搬送しつつプラズマCVDによる成膜を行い、かつ、ドラムが、成膜電極と電極対を成す対向電極として作用するのが好ましい。
 また、長尺な基板をロール状に巻回してなる基板ロールから、基板を送り出しつつ成膜を行い、成膜済の基板を、再度、ロール状に巻回するのが好ましい。
 さらに、成膜電極が、プラズマCVDによる成膜を行なうための、成膜ガスの供給手段を備えるのが好ましい。
 本発明の機能性フィルムの製造方法は、長尺な基板を長手方向に搬送しつつ、プラズマCVDによってガスバリア膜等の成膜を行い、次いで成膜を停止(終了)した際における、成膜系の大気解放時(真空ブレーク時/真空破壊時)に、成膜電極の表面が成膜系内で大気と接触するのを妨げて(換言すれば、成膜電極の表面が成膜系に露出していない状態とした後に)、大気の導入を行なう。
 そのため、本発明の製造方法によれば、成膜系の大気解放時に、大気(大気解放するための気体)の導入による急激な温度低下および激しい気流によって、成膜電極の表面に大量に付着したり堆積した膜が、剥離して、パーティクルとなって成膜系内に舞うことを防止できる。すなわち、本発明の製造方法によれば、大気解放時におけるパーティクル(膜)の成膜系内への飛散や、各成膜系内の各部位や基板へのパーティクルの付着等を、大幅に抑制できる。
 従って、本発明によれば、成膜を停止した後、スローベントや温度調整等を行なわずに迅速に成膜系を大気解放することができる。さらに、大気解放した後の成膜系内のパーティクルの除去など、クリーニングに掛かる手間および時間を大幅に低減できる。
 そのため、本発明の製造方法によれば、良好な生産性でガスバリアフィルム等の機能性フィルムを製造することができる。
 また、大気解放によって飛散したパーティクルが、成膜済の基板(製品)に付着することを防止できるので、パーティクルによる成膜済基板の汚染や、パーティクルの付着に起因する、成膜済みの基板の損傷を防止できる。さらに、パーティクルが付着した状態で成膜済基板を巻回することによる、パーティクルの巻き込みも防止できる。このため、このパーティクルの巻き込みに起因する、隣接する成膜済基板(巻回によって積層された基板)の汚染や膜の損傷等も、防止できる。
 さらに、パーティクルの飛散を大幅に抑制できるので、成膜系内のクリーニング性を向上でき、クリーニングによって取りきれないパーティクルが成膜系に堆積することも、抑制できる。その結果、成膜系内の汚れに起因する製品品質の低下も、大幅に抑制でき、高品質な製品を長期に渡って安定して製造することが可能になる。
本発明の機能性フィルムの製造方法の一例を実施するプラズマCVD装置の一例を概念的に示す図である。 本発明の機能性フィルムの製造方法に利用される電極カバーの別の例を概念的に示す図である。 (A)~(C)は、図1に示すプラズマCVD装置の作用を説明するための概念図である。 (A)および(B)は、本発明の機能性フィルムの製造方法の別の例を説明するための概念図である。 (A)および(B)は、本発明の機能性フィルムの製造方法の別の例を説明するための概念図である。
 以下、本発明の機能性フィルムの製造方法について、添付の図面に示される好適例を基に、詳細に説明する。
 図1に、本発明の機能性フィルムの製造方法の一例を実施する、プラズマCVD装置の一例を概念的に示す。
 図1に示すプラズマCVD装置10(以下、CVD装置10とする)は、長尺な基板Z(ウエブ状のフィルム原反)を長手方向に搬送しつつ、この基板Zの表面に、CCP-CVD(Capacitively Coupled Plasma(容量結合プラズマ)-CVD)による成膜を行って、ガスバリアフィルムや各種の光学フィルムなどの機能性フィルムを製造するものである。
 また、このCVD装置10は、長尺な基板Zをロール状に巻回してなる基板ロール12から基板Zを送り出し、基板Zを長手方向に搬送しつつ、減圧した成膜系(成膜空間)内で成膜を行った後、成膜済の基板Zを巻取り軸14に、再度、ロール状に巻き取る、いわゆるロール・ツー・ロール(Roll to Roll 以下、RtoRともいう)による成膜を行なう装置である。
 本発明の製造方法において、成膜を行う基板(基材/基体)Zには、特に限定はなく、プラズマCVDによる成膜が可能な、各種の長尺なシート状物が、全て利用可能である。
 具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリアクリロニトリル、ポリイミド、ポリアクリレート、ポリメタクリレートなどの有機物からなるプラスチック(樹脂)フィルムが、基板Zとして、好適に利用可能である。
 また、本発明においては、このようなプラスチックフィルム等を支持体として、その上に、保護層、接着層、光反射層、遮光層、平坦化層、緩衝層、応力緩和層等の、各種の機能を得るための層(膜)が形成されているシート状物を基板Zとして用いてもよい。
 この際においては、基板の上に1層のみが形成されたシート状物を基板Zとして用いてもよく、あるいは、基板の上に、複数層が形成されたシート状物を基板Zとして用いてもよい。また、基板Zが、基板の上に複数層が形成されたシート状物である場合には同じ層を複数層有してもよい。
 前述のように、図1に示すCVD装置10は、長尺な基板Zを巻回してなる基板ロール12から基板Zを送り出し、基板Zを長手方向に搬送しつつ成膜を行って、再度、巻取り軸14によってロール状に巻き取る、いわゆるRtoRによる成膜を行なう装置である。このCVD装置10は、供給室18と、成膜室20と、巻取り室24と、大気解放手段26とを有している。
 なお、CVD装置10は、図示した部材以外にも、各種のセンサ、搬送ローラ対や基板Zの幅方向の位置を規制するガイド部材など、基板Zを所定の経路で搬送するための各種の部材(搬送手段)等、長尺な基板Zに、RtoRによって、プラズマCVDで成膜を行なう装置が有する各種の部材を有してもよい。
 大気解放手段26は、基板Zへの成膜を停止(成膜を終了)した際に、供給室18、成膜室20および巻取り室24を大気解放して、各室を開放可能にするためのものである。図示例において、大気解放手段26は、導入ライン26aによって、供給室18、成膜室20および巻取り室24に接続されている。
 大気解放手段26は、フィルタ等によって浄化した大気(装置外部の空気)を導入ライン26aから各室に導入して、供給室18、成膜室20および巻取り室24を大気圧に戻して、大気解放するもので、真空成膜装置(気相成膜(堆積)装置)等で利用されている、公知の大気解放手段である。
 なお、大気解放手段26は、大気を導入することにより、各室を大気解放するのに限定はされず、窒素等の不活性ガスを各室に導入することにより、各室を大気解放するものでもよい。あるいは、大気の導入と不活性ガスの導入とが、選択可能であってもよい。
 さらに、大気解放手段26は、供給室18、成膜室20および巻取り室24に均等に大気を導入するものでも、各室毎に大気の導入量を制御可能なものでもよい。
 供給室18は、回転軸28と、ガイドローラ30と、真空排気手段32とを有する。
 長尺な基板Zを巻回した基板ロール12は、供給室18の回転軸28に装填される。
 回転軸28に基板ロール12が装填されると、基板Zが基板ロール12から引き出され、供給室18から、成膜室20を通り、巻取り室24の巻取り軸14に至る所定の搬送経路を通紙される(基板Zが、所定の搬送経路を通される)。
 CVD装置10においては、基板ロール12からの基板Zの送り出しと、巻取り室24の巻取り軸14における基板Zの巻き取りとを同期して行なって、長尺な基板Zを所定の搬送経路で長手方向に搬送しつつ、成膜室20において、基板Zに、CCP-CVDによる成膜を連続的に行なう。
 供給室18は、図示しない駆動源によって回転軸28を図中時計方向に回転して、基板ロール12から基板Zを送り出し、ガイドローラ30によって所定の経路を案内して、基板Zを、隔壁34に設けられたスリット34aから、成膜室20に送る。
 図示例のCVD装置10においては、好ましい態様として、供給室18に真空排気手段32を、巻取り室24に真空排気手段70を、それぞれ設けている。CVD装置10においては、成膜中は、それぞれの真空排気手段によって、供給室18および巻取り室24の圧力を、後述する成膜室20の圧力(成膜圧力)に応じた、所定の圧力に保つ。これにより、隣接する室の圧力が、成膜室20の圧力(すなわち、成膜室20での成膜)に影響を与えることを防止している。
 真空排気手段32には、特に限定はなく、ターボポンプ、メカニカルブースターポンプ、ドライポンプ、ロータリーポンプなどの真空ポンプ、さらには、クライオコイル等の補助手段、到達真空度や排気量の調整手段等を利用する、真空成膜装置に用いられている公知の(真空)排気手段が、各種、利用可能である。この点に関しては、後述する他の真空排気手段60および70も同様である。
 前述のように、基板Zは、ガイドローラ30によって案内されて、隔壁34のスリット34aから成膜室20に搬送される。
 成膜室20は、基板Zの表面に、CCP-CVDによって成膜(膜を形成)するものである。図示例において、成膜室20は、ドラム38と、成膜電極40と、ガイドローラ42、46、48および50と、電極カバー52と、高周波電源54と、ガス供給手段56と、電極移動手段58と、真空排気手段60とを有する。また、成膜室20の構成を簡潔かつ明確に示すために、図示は省略するが、成膜室20には、電極カバー52を移動するためのカバー移動手段も、配置されている。
 成膜室20のドラム38は、中心線を中心に図中反時計方向に回転する円筒状の部材で、ガイドローラ42および46によって所定の経路に案内された基板Zを、周面の所定領域(所定の巻き掛け角)に掛け回して、基板Zを、後述する成膜電極40に対面する所定位置に保持しつつ、長手方向に搬送する。
 このドラム38は、CCP-CVDにおける対向電極としても作用する(すなわち、ドラム38と成膜電極40とで電極対を形成する)。
 そのため、ドラム38には、バイアス電力を供給するためのバイアス電源を接続してもよく、あるいは、接地してもよい。あるいは、バイアス電源との接続と接地とが、切り換え可能であってもよい。
 また、ドラム38は、成膜中の基板Zの温度を調節する温度調整手段を有してもよい。ドラム38の温度調節手段には、特に限定はなく、ドラム内部に冷媒や温媒等を循環する温度調節手段等、各種の温度調節手段が、全て利用可能である。
 成膜電極40は、基板Zの対向面から成膜ガスを噴射する、CCP-CVDによる成膜に利用される、公知のいわゆるシャワー電極(シャワープレート)である。
 図示例において、成膜電極40は、一例として、一面がドラム38(すなわち基板Z)に対面して配置される、内部に空間(ガス供給空間)が形成された、略直方体形状を有する。成膜電極40のドラム38と対向(対面)する面は、ドラム38と周面と平行になるように(すなわち、ドラム38と成膜電極との間隔が全面的に均一になるように)、凹状の曲面となっている。
 なお、成膜電極40も、ドラム38と同様、公知の温度調節手段を有してもよい。
 この成膜電極40のドラム38と対向する面(すなわち、成膜される基板Zと対向する面(=成膜ガスおよびプラズマに曝される面))が、本発明の製造方法における、成膜電極40の表面である。
 また、成膜電極40の表面は、好ましい態様として、所定サイズの微細な凹凸が形成されている(粗面化処理されている)。これにより、成膜中に、この面に堆積した膜が剥離するのを、好適に防止できる。
 前述のように、成膜電極40は、いわゆるシャワー電極であり、その表面には、多数のガス供給孔が形成されている。このガス供給孔は、前述の成膜電極40の内部空間(ガス供給空間)に連通している。また、後述するガス供給手段56は、この成膜電極40の内部空間に成膜ガスを供給する。
 従って、ガス供給手段56から供給された成膜ガスは、成膜電極40のガス供給孔から、ドラム38(基板Z)と成膜電極40との間に供給される。
 なお、本発明において、成膜電極40は、図示例のような曲面を有するものに限定はされず、内部空間(ガス供給空間)を有する直方体状であってもよく、あるいは、ドラム周面と平行ではない曲面を有するものであってもよい。
 すなわち、本発明においては、CCP-CVDにおいて使用されている公知のシャワー電極が、全て、利用可能である。
 図示例においては、成膜室20には成膜電極40(CCP-CVDによる成膜手段)が、1個、配置されているが、本発明は、これに限定はされず、基板Zの搬送方向に、複数の成膜電極を配列してもよい。この際には、後述する電極カバー52、および、カバー移動手段は、個々の成膜電極に対応して設けられる。
 また、本発明は、シャワー電極を用いる構成にも限定はされず、成膜ガスの吹き出し口(成膜ガスの供給手段)を有さない電極と、電極対の間に成膜ガスを供給するノズル等を用いるCCP-CVDであってもよい。
 ガス供給手段56は、プラズマCVD装置等の真空成膜装置に用いられる、公知のガス供給手段である。
 前述のように、ガス供給手段56は、成膜電極40の内部空間に成膜ガスを供給する。また、成膜電極40の表面(ドラム38との対向面)には、内部空間に連通する多数のガス供給孔が形成されている。従って、成膜電極40に供給された成膜ガスは、このガス供給孔から、成膜電極40とドラム38との間に供給される。
 なお、ガス供給手段56から成膜電極40に成膜ガスを供給する供給管は、後述する成膜電極40の移動に応じて、少なくとも一部が、可撓性を有する配管(フレキシブルな配管)となっている。
 本発明の製造方法で成膜する膜(すなわち、製造する機能性フィルム)には、特に限定はなく、ガスバリア膜(水蒸気バリア膜)、光反射防止膜や波長帯域フィルタ膜などの各種の光学的な特性を発現する膜、保護膜等、製造する機能性フィルムに要求される機能を発現する膜が、各種、成膜可能である。
 従って、ガス供給手段56が供給する成膜ガス(プロセスガス/原料ガス)は、基板Zの表面に成膜する膜に応じた、公知のものでよい。
 例えば、CVD装置10が、基板Zの表面に窒化ケイ素膜を成膜して、ガスバリアフィルムを製造する場合には、ガス供給手段56は、CCP-CVDによる窒化ケイ素膜の成膜に利用される公知の成膜ガスを、成膜電極40に供給すればよい。具体的には、窒化ケイ素膜を成膜する場合には、ガス供給手段56は、成膜ガスとして、シランガス、アンモニアガスおよび水素ガスの組み合わせや、シランガス、アンモニアガスおよび窒素ガスの組み合わせ等を供給すればよい。
 高周波電源54は、成膜電極40に、プラズマ励起電力を供給する電源である。高周波電源54も、13.56MHzの高周波電力を供給する電源等、各種のプラズマCVD装置で利用されている、公知の高周波電源が、全て利用可能である。
 なお、高周波電源54から成膜電極40への電力供給線は、少なくとも一部が、可撓性を有する線によって行なう。
 真空排気手段60は、プラズマCVDによる成膜のために、成膜室内を排気して、所定の成膜圧力に保つものであり、前述のように、真空成膜装置に利用されている、公知の真空排気手段である。
 なお、本発明の製造方法において、基板Zの搬送速度、成膜圧力、成膜ガスの供給量、プラズマ励起電力の強さなどの成膜条件には、特に限定はない。
 すなわち、成膜条件は、通常のプラズマCVDによる成膜と同様、成膜する膜、要求される成膜速度、成膜する膜厚、基板Zの種類等に応じて、適宜、設定すればよい。
 ここで、図示例のCVD装置10においては、成膜室20は、さらに、電極カバー52と、電極移動手段58と、カバー移動手段(図示省略)とを有する。
 電極カバー52は、一面が成膜電極40の表面と同じ曲率を有する凸状の曲面を有し、かつ、この曲面が成膜電極40の表面よりもよりも大きな面積を有する、板状の部材(板状のマスク部材)である。従って、電極カバー52の凸状曲面は、成膜電極40の表面の全面に当接して、覆うことができる。
 電極カバー52は、この凸状曲面を成膜電極40の表面に向けて配置される。さらに、電極カバー52は、カバー移動手段によって水平方向(図1中、紙面と垂直方向)に移動されて、成膜電極40とドラム38との間と、成膜電極40とドラム38との間から退避した位置(成膜に影響を与えない位置)とに、移動される。
 また、電極移動手段58は、成膜電極40を、ドラム38に接近する方向、および、ドラム38から離れる方向に移動する。
 なお、電極移動手段58およびカバー移動手段は、真空中で動作可能な物であれば、公知の筐体状物や板状物等の移動手段が、各種、利用可能である。
 CVD装置10においては、成膜を停止して、装置内を大気解放する際に、電極カバー52をドラム38と成膜電極40との間に挿入し、次いで、成膜電極40をドラム38に向かって移動して、電極カバー52によって成膜電極40の表面全面を覆った後に、大気解放手段26によって、成膜室20等に大気を導入する。
 上記構成により、本発明は、成膜を停止して大気解放する際に、成膜電極40の表面に付着したり堆積した膜が剥離して、パーティクルとなって、CVD装置10内部に飛散することを防止している。
 また、電極カバーは、図示例のような板状の物に限定はされない。例えば、図2に示す電極カバー52aのように、成膜電極40を被嵌して表面全面に接触して覆う、キャップ状(蓋状)の物であってもよい。すなわち、本発明において、電極カバーは、成膜電極40の表面を全面的に覆うものができれば、各種の構成や形状のカバーが利用可能である。
 さらに、電極カバーは、図示例のように、成膜電極40の表面全面に接触して、成膜電極40の表面を覆う構成に限定はされない。例えば、成膜電極40の表面とは離間した状態で表面全面を覆うキャップ状であってもよい。しかしながら、成膜電極40の表面からの膜の剥離やパーティクルの飛散を、より確実に防止できる等の点で、電極カバーは、図1や図2に示される構成のように、成膜電極の表面全面に接触(当接)して、表面全面を覆う構成や形状であるのが好ましい。
 前述のように、ガイドローラ42および46によって所定の経路に案内された基板Zは、ドラム38の周面に掛け回されて、所定の位置に保持されつつ長手方向に搬送される。ドラム38と成膜電極40とからなる電極対の間では、成膜電極40へのプラズマ励起電力の供給によってプラズマが励起され、成膜ガスからラジカルが生成されて、ドラム38によって支持されつつ搬送される基板Zの表面に、CCP-CVDによって成膜される。
 表面に所定の膜を成膜された基板Zは、次いで、ガイドローラ50に案内されて、隔壁64のスリット64aから、巻取り室24に搬送される。
 図示例において、巻取り室24は、ガイドローラ68と、巻取り軸14と、真空排気手段70とを有する。
 巻取り室24に搬送された基板Zは、ガイドローラ68に案内されて巻取り軸14に搬送され、巻取り軸14によってロール状に巻回されガスバリアフィルムなどの機能性フィルムを巻回してなるロールとして、次の工程に供される。
 また、先の供給室18と同様、巻取り室24にも真空排気手段70が配置され、成膜中は、巻取り室24も、成膜室20における成膜圧力に応じた真空度に減圧される。
 以下、図1および図3を参照して、CVD装置10の作用を説明することにより、本発明の機能性フィルムの製造方法について、より詳細に説明する。
 なお、図3の右側の図は、ドラム38、成膜電極40、および、電極カバー52を、図1の右側(巻取り室24側)から見た概念図である(矢印bは、基板Zの搬送方向を示す。)。
 回転軸28に基板ロール12が装填されると、基板Zは、基板ロール12から引き出される。基板ロール12から引き出された基板は、ガイドローラ30によって案内されて成膜室20に至り、成膜室20において、ガイドローラ42および46に案内されて、ドラム38の周面の所定領域に掛け回され、次いで、ガイドローラ48および50によって案内されて巻取り室24に至り、巻取り室24において、ガイドローラ68に案内されて巻取り軸14に至る、所定の搬送経路を通紙される。
 基板Zの通紙が終了すると、供給室18、成膜室20および巻取り室24が閉塞される(密閉される)。次いで、真空排気手段32、60、および70が駆動され、供給室18、成膜室20および巻取り室24が、所定の圧力まで減圧される。各室の圧力が安定したら、成膜室20では、ガス供給手段56から成膜電極40に、成膜ガスが供給される。
 成膜室20内が成膜に対応する所定圧力で安定したら、供給室18から巻取り室24に向かう基板Zの搬送が、開始され、また、高周波電源54から成膜電極40へのプラズマ励起電力の供給を開始する。
 なお、この状態では、電極カバー52は、図3(A)に示すように、ドラム38と成膜電極40との間ではなく、ドラム38と成膜電極40との間の成膜領域から離間した位置(成膜に影響を与えない位置、例えば、ドラム38の軸方向aに離間した位置)に配置されている。
 供給室18から成膜室20に搬送された基板Zは、ガイドローラ42および46によって案内され、ドラム38に巻き掛けられた状態で搬送されつつ、ドラム38と成膜電極40とが対面している領域において、CCP-CVDによって、窒化ケイ素膜等の目的とする機能を発現する膜を成膜される。
 所定の膜を成膜された基板Zは、ガイドローラ48および50によって案内されて、巻取り室24に搬送される。
 巻取り室24に搬送された基板Zは、ガイドローラ68によって所定の経路に案内され、巻取り軸14によってロール状に巻回される。
 基板ロール12に巻回される基板Zの量(基板Zの残量)が所定長以下になった場合や、前回の成膜電極40の交換からの合計の成膜時間が所定時間になった場合など、所定の成膜を行なった時点で、高周波電源54から成膜電極40へのプラズマ励起電力の供給、および、ガス供給手段56から成膜電極40への成膜ガスの供給を停止し、さらに、基板Zの搬送を停止して、成膜を停止(終了)する。
 次いで、新たな基板ロール12の装填や、成膜電極40の交換等を行なうために、成膜室20、供給室18および巻取り室24の大気解放を行なう。
 なお、本発明の製造方法において、大気解放は、全部の基板Zを巻取り軸14に巻き取った状態で行なってもよい。すなわち、大気解放を、供給室18および成膜室20に、基板Zが無い状態(基板Zを切った状態)で行なってもよい。
 しかしながら、図1等は概念図であるため、ガイドローラは6本しか図示していないが、通常のRtoRによるCVD装置は、多数のガイドローラを有しており、基板Zの通紙には、非常に手間がかかる。また、基板Zが無い状態では、巻取り軸14に巻き取った成膜済の基板Zには、張力が掛かっていない状態となってしまため、この状態で大気解放を行なうと、巻き取った基板Z間に大気が進入してしまい、基板Zの巻回状態が不適性になってしまう。
 そのため、本発明の製造方法においては、基板Zを所定の経路で通紙した状態(すなわち、基板ロール12から巻取り軸14まで、所定の張力が掛かった状態)で、以下に示す大気解放を行い、大気解放後、新規な基板ロール12の装填等を行なうのが好ましい。
 CVD装置10において、前述のようにして成膜を停止したら、まず、図3(A)~図3(B)に示すように、ドラム38と成膜電極40との間の外部に位置していた電極カバー52を、カバー移動手段(図示省略)によって矢印a方向に移動して、ドラム38と成膜電極40との間に位置させる。
 次いで、図3(B)~図3(C)に示すように、電極移動手段58によって、成膜電極40の表面が電極カバー52に接触し、かつ、若干、押圧するまで、成膜電極40をドラム38に接近する方向(矢印b方向)に移動する。
 これにより、図3(C)に示すように、成膜電極40の表面全面に電極カバー52を当接して、電極カバー52によって成膜電極40の表面全面を覆う。
 CVD装置10においては、このように、電極カバー52によって成膜電極40の表面全面を覆った状態とした後に、大気解放手段26によって、成膜室20、供給室18および巻取り室24に、大気(外部の空気)を導入する。
 すなわち、本発明の製造方法においては、成膜系内(成膜空間内)、言い換えれば、基板Zへの成膜のために減圧される空間内に、成膜電極40の表面(基板Z(対向電極(ドラム38))との対向面)が露出していない状態として、成膜室20、供給室18および巻取り室24に、大気解放を行なうための大気を導入する。
 前述のように、RtoRを利用してプラズマCVDによって成膜を行なうと、基板Z以外の成膜系内にも、膜が付着したり堆積してしまう。特に、プラズマの生成領域すなわち成膜領域(成膜位置)に露出されている成膜電極40の表面には、大量の膜が付着し、堆積してしまう。
 このような状態で、装置内を大気解放するために大気を導入すると、成膜電極40の表面に付着したり堆積した膜が剥離して、パーティクルとなって成膜系内に飛散し、成膜系内全域の至る所に付着してしまう。そのため、パーティクルを除去するための成膜系内のクリーニングに、非常に多くの時間が必要になり、生産性を大幅に低下してしまう。
 また、前述のように、大気解放は、基板Zを通紙した状態で行なうのが好ましいが、基板Zを通紙して大気を導入すると、成膜済の基板Z(すなわち製品)にパーティクルが付着して、成膜した膜の損傷や基板Zの汚染等が生じる。さらに、パーティクルが付着した状態で成膜済の基板Zを巻き取ると、成膜済基板Zのロールにパーティクルを巻き込んでしまい、その結果、隣接する基板(積層された基板)にパーティクルが当接し、また、付着して、成膜した膜の損傷や、汚染など、製品としての品質を低下させてしまう。
 これに対し、本発明の製造方法では、電極カバー52によって成膜電極40の表面を覆うなど、成膜系内に成膜電極40の表面が露出していない状態(成膜系内で、成膜電極40の表面が大気と接触するのを妨げられた状態)とした後に、成膜系の大気解放のための大気導入を行なう。
 そのため、本発明によれば、大気解放のための大気導入を行なっても、成膜基板40の表面に付着したり堆積した膜が剥がれるのを、大幅に抑制でき、すなわち、大気の導入によって成膜系内にパーティクルが飛散するのを、大幅に抑制できる。
 その結果、成膜を停止した後、スローベント等を行なわずに迅速に成膜系を大気解放することができ、しかも、大気解放した後の成膜系内のクリーニングに掛かる手間および時間を大幅に低減でき、良好な生産性で機能性フィルムを製造することができる。また、好ましい態様として、基板Zを通紙した状態で大気を導入する場合にも、パーティクルが、成膜済の基板に付着することを防止できるので、パーティクルによる成膜済の基板Zの汚染や膜の損傷、巻回された成膜済基板Zの汚染や損傷等も、好適に防止できる。
 加えて、成膜系内のクリーニング性も向上できるので、成膜系内に取りきれないパーティクルが堆積するのも抑制でき、その結果、堆積していく成膜系内の汚れに起因する製品品質の低下も防止して、高品質な製品を長期に渡って安定して製造できる。
 本発明では、電極カバー52によって成膜電極40の表面を覆った後、大気解放手段26によって、成膜室20、供給室18および巻取り室24に大気を導入する。
 この大気の導入によって、全ての室が大気圧になったら、電極カバー52および成膜電極40を、成膜中と同じ位置に戻す。なお、大気解放終了後における、電極カバー52と成膜電極40とを成膜中と同じ位置に戻す移動のタイミングは、これに限定はされず、作業の都合等に応じて、適宜、設定すればよい。また、任意のタイミングを選択して、電極カバー52と成膜電極40とを成膜中と同じ位置に戻せるようにしてもよい。
 次いで、成膜室20、供給室18および巻取り室24の必要な室を開放する。
 その後、新規な基板ロール12の装填(切断した、通紙されている基板Zの後端と、新規ロールの基板Z先端との接続)、巻回した成膜済基板Zの取り外し(切断した基板Zの先端の巻取り軸14への巻回)、成膜電極40の取り外し、成膜室20内の清掃、新規(クリーニング済)の成膜電極40の取付け等の、必要な作業を行なう。
 必要な作業を終了したら、成膜室20、供給室18および巻取り室24を閉塞して、再度、真空排気手段32、60、および70を駆動し、各室が所定の圧力で安定したら、先と同様に、成膜ガスの供給、基板Zの搬送、プラズマ励起電力の供給等を開始して、基板Zへの成膜を再開する。
 図示例のCVD装置10においては、電極カバー52の移動手段と、成膜電極40の移動手段とを設けて、直線状(1次元的な)の部材の移動のみで、電極カバー52によって成膜電極40の表面を覆っている。
 しかしながら、本発明は、これに限定はされない。すなわち、ドラム38と成膜電極40との間に電極カバー52を挿入した後、電極カバー52を成膜電極40に向けて移動することにより、電極カバー52によって成膜電極40の表面を覆う、電極カバーの2次元的な移動によって、成膜電極40の表面を覆ってもよい。
 また、図1および図3に示すCVD装置10は、電極カバー52によって成膜電極40の表面を覆うことで、大気解放のための大気導入時に、成膜系内に成膜電極40の表面が露出していない状態としている。
 しかしながら、本発明の製造方法は、これに限定はされず、大気解放のための大気導入時に、成膜系内に成膜電極40の表面が露出していない状態(成膜系内で、成膜電極40の表面が大気と接触するのを妨げた状態)にする方法は、各種の方法が利用可能である。
 なお、以下の図4および図5に示す例においては、図1~図3と同じ部材には同じ符号を付し、説明は、異なる部位を主に行なう。
 一例として、図4に概念的に示す成膜電極80のように、成膜電極80の表面を、ドラム38と同じ曲率の凹面(あるいは、基板Zの厚さを考慮した同曲率の凹面)として、ドラム38の周面(通紙された基板Z)を、成膜電極80の表面の全面に当接して、成膜電極80の表面を覆う方法が例示される。
 すなわち、成膜電極の表面と、対向電極の表面(成膜電極との対向面)とを、互いに全面的に接触可能な形状(凹凸状)として、大気解放のための大気導入時に、成膜電極および/または対向電極を移動して、対向電極によって、成膜電極の表面を全面的に覆うようにしてもよい。
 図4に示す例では、成膜中は、図4(A)に示すように、成膜電極80と、対向電極であるドラム38とは、所定の距離、離間しており、成膜電極80とドラム38との間でプラズマが生成され、基板Zへの成膜が行なわれる。
 先の例と同様に、基板Zへの成膜を停止したら、電極移動手段82によって、成膜電極80をドラム38に向かって移動させ、ドラム38の周面(基板Z)と、成膜電極80の表面とを、全面的に接触させ、好ましくは、成膜電極80によってドラム38を、若干、押圧する。なお、電極移動手段82は、先の電極移動手段58と同様、真空中で駆動可能な公知の移動手段が、各種、利用可能である。
 このように、ドラム38によって成膜電極80の表面全面を覆い、成膜電極80の表面が成膜系に露出していない状態(成膜系内で、成膜電極80の表面が大気と接触するのを妨げた状態)とした後に、先と同様にして、大気解放手段26によって、成膜室20、供給室18および巻取り室24に大気を導入し、各室を大気解放する。
 本例でも、先の図1および図3に示される例と同様に、成膜電極80の表面全面がドラム38によって覆われて、成膜系内に露出していないので、大気の導入による成膜電極80表面からの膜の剥離、および、成膜系内へのパーティクルの飛散を、大幅に抑制することができる。
 ここで、図4に示すように、ドラム38(対向電極)によって成膜電極80の表面を覆う場合にも、基板Zを通紙した状態で、大気解放を行なうのが好ましい。
 これにより、前述の各種のメリットに加え、成膜電極80とドラム38とが直接的に当接することが無いので、両者の接触による互いの損傷を防止できる。
 また、成膜停止直後は、成膜電極80は、非常に高温になっている。そのため、成膜停止直後に、基板Zに成膜電極80を接触すると、基板Zが熱で損傷する可能性も有る。
 一方で、基板ロール12に巻回される基板Zの長さは、当然、既知であり、成膜停止時に、基板Zのどの領域が成膜電極80と対面する位置(成膜領域)に来るのかは、予測ができる。
 これを利用して、成膜停止時に、長尺な基板Zにおいて、成膜電極80と対面する位置となる領域(予想される領域)を、ポリイミド等の耐熱性の高い樹脂で形成してもよい。さらに、成膜電極80と基板Z(ドラム38)との密着を、より、好適にするために、成膜停止時に、基板Zの成膜電極80と対面する位置となる領域は、耐熱性に加え、弾性を有する材料で形成してもよい。
 また、本発明は、大気解放のための大気導入時に、成膜系内に成膜電極40の表面が露出していない状態(成膜系内で、成膜電極40の表面が大気と接触するのを妨げた状態)にする方法として、何らかの部材によって成膜電極の表面を覆う方法に限定されない。
 例えば、いわゆるロードロック機構を利用して、大気解放のための大気導入時に、成膜電極を成膜系から分離された別の空間(より好ましくは、成膜系(成膜空間)から分離された、気密性の保たれた別の空間)に移動することにより、成膜電極40の表面が成膜系内に露出していない状態としてもよい。
 図5に、その一例を概念的に示す。
 図5に示す例においては、成膜室20内に、ロードロック室86(成膜電極40の退避室)およびロードロック室90の蓋体90を設け、さらに、ロードロック室86への大気導入手段92、および、成膜電極40の移動手段(図示省略)を設ける。
 なお、成膜電極40の移動手段は、前述の電極移動手段58などと同様、真空中で駆動可能な公知の移動手段が、各種、利用可能である。
 この装置において、基板Zへの成膜中は、図5(A)に示すように、成膜電極40は、ロードロック室86の外部の、ドラム38とは、所定の距離、離間した位置に配置され、成膜電極80とドラム38との間でプラズマが生成され、基板Zへの成膜が行なわれる。また、蓋体90(図5(A)では省略)は、成膜に影響を与えない位置に退避している。
 先の例と同様に、基板Zへの成膜を停止したら、図5(B)に示すように、成膜電極40の移動手段によって、成膜電極40をドラム38と離間する方向に移動して、ロードロック室86に収容する。次いで、図示しない移動手段によって、蓋体90を移動して、蓋体90によって、ロードロック室86を閉塞して気密性を保つ。これにより、成膜電極40の表面が、成膜系に露出していない状態となる。
 なお、蓋体90の移動手段も、前述の例と同様、真空中で駆動可能な公知の移動手段が、各種、利用可能である。
 このように、成膜電極40をロードロック室86に収容し、次いで蓋体90によって、ロードロック室86を閉塞して、ロードロック室86内を気密状態にした後、先と同様にして、大気解放手段26によって、成膜室20、供給室18および巻取り室24に大気を導入し、各室を大気解放する。
 また、並行して、大気導入手段92によってロードロック室86内に大気(空気)を導入して、ロードロック室86内を大気圧にして、ロードロック室86から成膜電極40を取り出し可能にする。
 本例では、成膜電極40は、成膜系内とは気密に離間されたロードロック室86に位置しているので、成膜電極80表面から剥離した膜は、ロードロック室86内のみで飛散する。従って、成膜室20等を大気解放するために、各室に大気をしても、成膜系内へのパーティクルの飛散を、大幅に抑制することができる。
 以上、本発明の機能性フィルムの製造方法について詳細に説明したが、本発明は、上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。
 例えば、図1に示す例は、円筒状のドラムの周面に基板Zを巻き掛けた状態で、長手方向に搬送しつつ、成膜を行う装置であるが、本発明は、これに限定はされない。例えば、本発明の製造方法は、直線状(平面状)に基板Zを搬送しつつ、成膜を行う装置にも、好適に利用可能である。すなわち、本発明の製造方法では、長尺な基板を長手方向に搬送しつつ、プラズマCVDによって成膜を行う装置であれば、各種の構成の成膜装置が、全て、利用可能である。
 [実施例1]
 図1および図3に示すようなCVD装置10を用いて、基板Zの表面に、窒化ケイ素膜を成膜して、ガスバリアフィルムを製造した。
 ドラム38は、温度調整手段を有する、直径1500mmのステンレス製のドラムを用いた。
 基板Zは、厚さ100μmのPETフィルムを用いた。
 成膜ガスは、シランガス(SiH4)、アンモニアガス(NH3)、窒素ガス(N2)および水素ガス(H2)を用いた。供給量は、シランガスが100sccm、アンモニアガスが200sccm、窒素ガスが500sccm、水素ガスが500sccmとした。また、成膜圧力は50Paとした。
 成膜電極40には、高周波電源54から、周波数13.5MHzで、3000Wのプラズマ励起電力を供給した。さらに、ドラム38には、図示しない電源から、500Wのバイアス電力を供給した。また、成膜中は、ドラム38の温度を-20℃に調整した。
 上記成膜条件の下、前述のようにして、基板Zに厚さ100nmの窒化ケイ素膜を成膜した。なお、成膜中は、電極カバー52は、ドラム38と成膜電極40との間からは、退避しているのは、前述のとおりである。
 成膜を1000m行なった時点で(すなわち1000mのガスバリアフィルムを製造した時点で)、成膜ガス、プラズマ励起電力、およびバイアス電力の供給を停止し、さらに、基板Zの搬送を停止して、成膜を停止した。
 次いで、図3(A)~(C)に示すように、カバー移動手段によって、電極カバー52をドラム38と成膜電極40との間に挿入し、さらに、電極移動手段58によって、成膜電極40をドラム38に向けて移動して、電極カバー52に、若干、押圧し、電極カバー52によって成膜電極40の表面全面を覆った。
 このようにして、電極カバー52によって成膜電極40の表面全面を覆った後に、大気解放手段26によって、成膜室20、供給室18および巻取り室24に、大気(装置外部の空気)を導入して、各室を大気圧に戻した。
 なお、大気の導入開始から、全ての室が大気圧になるまでの時間は、40分であった。
 [実施例2]
 図5に示す成膜室20を有するCVD装置を用いて、実施例1と、全く同様にして、基板Zに、厚さ100nmの窒化ケイ素膜を成膜して、ガスバリアフィルムを製造した。
 なお、このCVD装置は、成膜室20が、電極カバー52、電極移動手段58およびカバー移動手段を有さず、かつ、ロードロック室86、成膜電極40の移動手段、蓋体90、および、蓋体90の移動手段を有する、図5に示す構成である以外は、実施例1で用いたCVD装置10と全く同じ構成を有する。
 実施例1と同様に、成膜を1000m行なった時点で、成膜ガス、プラズマ励起電力、およびバイアス電力の供給を停止し、さらに基板Zの搬送を停止して、成膜を停止した。
 次いで、成膜電極40をロードロック室86に収容し、蓋体90によってロードロック室86を気密に閉塞した。次いで、実施例1と全く同様にして、大気解放手段26によって大気を導入して、各室を大気圧に戻した。また、大気解放手段92によって大気を導入して、ロードロック室86も大気解放した。なお、大気の導入開始から、全ての室が大気圧になるまでの時間は、40分であった。
 [比較例1]
 実施例1と全く同様にして、基板Zの表面に厚さ100nmの窒化ケイ素膜を成膜して、ガスバリアフィルムを製造した。
 実施例1と同様に、成膜を1000m行なった時点で、成膜ガス、プラズマ励起電力、およびバイアス電力の供給を停止し、さらに基板Zの搬送を停止して、成膜を停止した。
 次いで、電極カバー52によって成膜電極40の表面を覆わず、成膜電極40の表面を成膜系内に剥き出しにした状態で、実施例1と全く同様にして、大気解放手段26によって大気を導入して、各室を大気圧に戻した。なお、大気の導入開始から、全ての部屋が大気圧になるまでの時間は、40分であった。
 [評価]
 上記実施例1、実施例2、および、比較例において、大気解放を行なった後、ガイドローラ48からスリット64aまでの間において、成膜済の基板Zをサンプリングして、光学顕微鏡で観察した。その結果、実施例1および実施例2では、成膜した窒化ケイ素膜の剥離やクラックは、認められなかった。これに対し、比較例では、成膜した窒化ケイ素膜の剥離やクラックが確認された。
 また。サンプリングした基板Z(ガスバリアフィルム)の水蒸気透過率[g/(m2・day)]を、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって、測定した。その結果、水蒸気透過率は、実施例1が、1.2×10-3[g/(m2・day)]、実施例2が、1.7×10-3[g/(m2・day)]、比較例が、7.4×10-1[g/(m2・day)]であった。
 また、実施例1および比較例では、大気解放を行なった後、装置内のクリーニングを行なって、再度、全く同様にして、1000mの基板Zに酸化ケイ素膜を成膜した。
 なお、実施例1では、パーティクルによる装置内の汚染が極めて少なく、装置内のクリーニングは約30分で終了し、迅速に、2回目の成膜を開始できた。これに対し、比較例では、装置内全体にパーティクルが飛散して、壁面等に付着しており、装置内のクリーニングに約90分の時間が掛かってしまった。
 2回目の成膜で酸化ケイ素膜を成膜した基板Zについて、ガイドローラ48からスリット64aまでの間のみならず、巻取り軸14に巻き取られた領域からも100m間隔で10点をサンプリングして、先と同様に、水蒸気透過率[g/(m2・day)]を測定した。
 その結果、実施例1では、全てのサンプルが、1.2×10-3[g/(m2・day)]前後の水蒸気透過率であった。これに対して、比較例の水蒸気透過率は、ガイドローラ48からスリット64aまでの間のサンプルは先と同じく7.4×10-1[g/(m2・day)]であり、巻取り軸14に巻き取られた領域のサンプルは2.5×10-2[g/(m2・day)]前後であった。
 従来のように、成膜電極40の表面を成膜系内に露出した状態で大気解放のための大気導入を行なう比較例は、大気導入によって、成膜電極40の表面に付着/堆積した膜が剥離して、パーティクルとなって装置内を飛散し、これが、窒化ケイ素膜を損傷し、ガスバリア性を低下させたと考えられる。
 これに対して、成膜電極40の表面を成膜系内に露出しない状態として、大気解放のための大気導入を行なった実施例1および実施例2は、窒化ケイ素膜の損傷およびガスバリア性の低下が認められなかった。この結果より、成膜電極40の表面を成膜系内に露出しないで大気導入を行なった実施例1および実施例2は、成膜電極40の表面に付着して堆積した膜が剥離して、装置内部を飛散するのを、大幅に抑制できたと考えられる。
 また、2回目の成膜において、実施例1では、成膜した全域において、適正なガスバリア性が得られた。
 これに対し、比較例では、装置内に付着したパーティクルが多いため、クリーニングを行なってもパーティクルを完全に取り除くことができなかったと思われる。そのため、ガイドローラ等に残存したパーティクルが、2回目の成膜の際に、基板Zの表裏面や酸化ケイ素に付着してしまい、これが酸化ケイ素膜の損傷等を招き、成膜した全域において、ガスバリア性が低下したと考えられる。すなわち、比較例では、前回の成膜/クリーニングで残存したパーティクルが、次回の成膜に悪影響を及ぼしてしまい、製品全域において適正な性能を得ることができなかった。
 ガスバリアフィルムや反射防止フィルムの製造など、各種の機能性フィルムの製造に、好適に利用可能である。
 10 (プラズマ)CVD装置
 12 基板ロール
 14 巻取り軸
 18 供給室
 20 成膜室
 24 巻取り室
 26 大気解放手段
 28 回転軸
 30,42,46,48,50,68 ガイドローラ
 32,60,70 真空排気手段
 34,64 隔壁
 38 ドラム
 40,80 成膜電極
 52 電極カバー
 54 高周波電源
 56 ガス供給手段
 58,82 電極移動手段
 92 大気導入手段

Claims (11)

  1.  長尺な基板を長手方向に搬送しつつ、プラズマCVDによって前記基板の表面に成膜を行い、次いで前記基板への成膜を停止して、成膜系内を大気解放する際に、
     前記プラズマCVDによる成膜を行なうための成膜電極の表面が、前記成膜系内で大気と接触するのを妨げた状態で、気体を前記成膜系内に導入して、前記成膜系を大気解放することを特徴とする機能性フィルムの製造方法。
  2.  前記成膜電極の表面を所定のカバーで覆うことにより、前記成膜電極の表面が前記成膜系内で大気と接触するのを妨げる請求項1に記載の機能性フィルムの製造方法。
  3.  前記カバーが、前記成膜電極の表面全面に当接して、前記成膜電極の表面を覆う形状を有する請求項2に記載の機能性フィルムの製造方法。
  4.  前記カバーを移動して、前記成膜電極と、前記成膜電極と電極対を成す対向電極との間に挿入した後、前記成膜電極を移動することにより、前記成膜電極の表面を前記カバーで覆う請求項2または3に記載の機能性フィルムの製造方法。
  5.  前記成膜電極の表面と、前記成膜電極と電極対を成す対向電極の表面とが、互いに全面的に接触可能な形状を有し、
     前記成膜電極の表面を前記対向電極の表面に当接することにより、前記成膜電極の表面が前記成膜系内で大気と接触するのを妨げる請求項1に記載の機能性フィルムの製造方法。
  6.  前記成膜電極を移動することにより、前記成膜電極の表面を前記対向電極の表面に当接する請求項5に記載の機能性フィルムの製造方法。
  7.  前記成膜電極を、前記成膜系から分離された別の空間に位置させることにより、前記成膜電極の表面が前記成膜系内で大気と接触するのを妨げる請求項1に記載の機能性フィルムの製造方法。
  8.  前記長尺な基板を、所定の搬送経路に通した状態で、前記成膜電極の表面が前記成膜系内で大気と接触するのを妨げる請求項1~7のいずれかに記載の機能性フィルムの製造方法。
  9.  前記長尺な基板を円筒状のドラムに巻き掛けた状態で、長手方向に搬送しつつプラズマCVDによる成膜を行い、かつ、前記ドラムが、前記成膜電極と電極対を成す対向電極として作用する請求項1~8のいずれかに記載の機能性フィルムの製造方法。
  10.  前記長尺な基板をロール状に巻回してなる基板ロールから、前記基板を送り出しつつ成膜を行い、成膜済の基板を、再度、ロール状に巻回する請求項1~9のいずれかに記載の機能性フィルムの製造方法。
  11.  前記成膜電極が、プラズマCVDによる成膜を行なうための、成膜ガスの供給手段を備える請求項1~10のいずれかに記載の機能性フィルムの製造方法。
PCT/JP2012/054725 2011-03-08 2012-02-27 機能性フィルムの製造方法 WO2012121040A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137021409A KR101622449B1 (ko) 2011-03-08 2012-02-27 기능성 필름의 제조 방법
US14/012,424 US8986795B2 (en) 2011-03-08 2013-08-28 Manufacturing method of functional film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-050108 2011-03-08
JP2011050108A JP5651502B2 (ja) 2011-03-08 2011-03-08 機能性フィルムの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/012,424 Continuation US8986795B2 (en) 2011-03-08 2013-08-28 Manufacturing method of functional film

Publications (1)

Publication Number Publication Date
WO2012121040A1 true WO2012121040A1 (ja) 2012-09-13

Family

ID=46798008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054725 WO2012121040A1 (ja) 2011-03-08 2012-02-27 機能性フィルムの製造方法

Country Status (4)

Country Link
US (1) US8986795B2 (ja)
JP (1) JP5651502B2 (ja)
KR (1) KR101622449B1 (ja)
WO (1) WO2012121040A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931091B2 (ja) * 2012-01-16 2016-06-08 株式会社アルバック 成膜装置
JP6801887B2 (ja) * 2018-10-18 2020-12-16 株式会社クリエイティブコーティングス 成膜装置
JP2023528469A (ja) * 2020-06-04 2023-07-04 アプライド マテリアルズ インコーポレイテッド 気相堆積装置及び真空チャンバ内で基板をコーティングするための方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226776A (ja) * 2000-02-14 2001-08-21 Fuji Electric Co Ltd プラズマ放電による薄膜形成装置と同装置用シャワー電極の製造方法
JP2003142472A (ja) * 2001-11-07 2003-05-16 Hitachi Ltd 半導体装置の製造方法
JP2009209381A (ja) * 2008-02-29 2009-09-17 Fujifilm Corp 成膜装置、ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2011006788A (ja) * 2009-05-29 2011-01-13 Fujifilm Corp 成膜方法、成膜装置、およびガスバリアフィルムの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319373B2 (ja) * 2009-04-10 2013-10-16 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226776A (ja) * 2000-02-14 2001-08-21 Fuji Electric Co Ltd プラズマ放電による薄膜形成装置と同装置用シャワー電極の製造方法
JP2003142472A (ja) * 2001-11-07 2003-05-16 Hitachi Ltd 半導体装置の製造方法
JP2009209381A (ja) * 2008-02-29 2009-09-17 Fujifilm Corp 成膜装置、ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2011006788A (ja) * 2009-05-29 2011-01-13 Fujifilm Corp 成膜方法、成膜装置、およびガスバリアフィルムの製造方法

Also Published As

Publication number Publication date
JP5651502B2 (ja) 2015-01-14
US20130344257A1 (en) 2013-12-26
JP2012184492A (ja) 2012-09-27
KR20140018875A (ko) 2014-02-13
KR101622449B1 (ko) 2016-05-18
US8986795B2 (en) 2015-03-24

Similar Documents

Publication Publication Date Title
JP4669017B2 (ja) 成膜装置、ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP5665290B2 (ja) 成膜装置
JP5486249B2 (ja) 成膜方法
JP6360882B2 (ja) フレキシブル基板のための堆積プラットフォーム及びその操作方法
JP5281606B2 (ja) 機能性フィルムの製造方法
JP5542488B2 (ja) 成膜装置
JP2009270145A (ja) 成膜装置
KR101844068B1 (ko) 성막 장치
JP2012052170A (ja) 機能性フィルムの製造方法
JP2009179427A (ja) 搬送装置および真空成膜装置
US20090291233A1 (en) Process for producing gas barrier films
JP5562723B2 (ja) 成膜方法、成膜装置、およびガスバリアフィルムの製造方法
JP2011046060A (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP5651502B2 (ja) 機能性フィルムの製造方法
JP5144393B2 (ja) プラズマcvd成膜方法およびプラズマcvd装置
US20110195203A1 (en) Gas barrier film manufacturing method
JP5484846B2 (ja) 機能膜の製造装置および製造方法
JP2009138239A (ja) 成膜装置および成膜方法
JP2009209380A (ja) 成膜装置
JP2011179084A (ja) 大気圧プラズマ装置
JP2009074154A (ja) 成膜装置
JP2012077315A (ja) 機能性フィルムおよび機能性フィルムの製造方法
JP6209039B2 (ja) 薄膜形成装置
JP2014218716A (ja) 薄膜形成装置
JP2011111628A (ja) 成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021409

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755559

Country of ref document: EP

Kind code of ref document: A1