WO2012120874A1 - 検出方法および検出装置 - Google Patents

検出方法および検出装置 Download PDF

Info

Publication number
WO2012120874A1
WO2012120874A1 PCT/JP2012/001517 JP2012001517W WO2012120874A1 WO 2012120874 A1 WO2012120874 A1 WO 2012120874A1 JP 2012001517 W JP2012001517 W JP 2012001517W WO 2012120874 A1 WO2012120874 A1 WO 2012120874A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
substance
detection
fluorescent label
light
Prior art date
Application number
PCT/JP2012/001517
Other languages
English (en)
French (fr)
Inventor
和由 堀井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012120874A1 publication Critical patent/WO2012120874A1/ja
Priority to US14/021,517 priority Critical patent/US20140011293A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a detection method and a detection apparatus for detecting a substance to be detected in a sample solution.
  • Fluorescence method is widely used as a highly sensitive and easy measurement method in biomeasurement and the like.
  • the fluorescence method is qualitative or qualitative by irradiating a sample considered to contain a substance to be detected that emits fluorescence when excited by light of a specific wavelength, by irradiating the excitation light of the specific wavelength and detecting the fluorescence emitted at this time. This is a method for quantitatively confirming the presence of a substance to be detected.
  • the substance to be detected is not a fluorescent material, the substance to be detected is labeled with a fluorescent label such as an organic fluorescent dye, and then the fluorescence is detected in the same manner. It is a method to confirm.
  • the target substance is fixed to the surface of the sensor unit by the following two methods and then fluorescence detection is performed. It is common.
  • One such technique is, for example, when the substance to be detected is an antigen, the antigen is specifically bound to the primary antibody immobilized on the surface of the sensor unit, and then a fluorescent label is attached.
  • a secondary antibody that specifically binds to the antigen, and further binds to the antigen to form a primary antibody-antigen-secondary antibody binding state, and the fluorescence from the fluorescent label attached to the secondary antibody This is a so-called sandwich method for detection.
  • the other is, for example, when the substance to be detected is an antigen, a secondary antibody in which an antigen and a fluorescent label are attached to the primary antibody immobilized on the surface of the sensor unit (unlike the above-described secondary antibody, Is a so-called competition method in which the primary antibody is bound to the primary antibody competitively and the fluorescence from the fluorescent label attached to the competitively bound secondary antibody is detected. .
  • an evanescent fluorescence method has been proposed in which a fluorescent label indirectly fixed to a sensor unit by the above-described method is excited by evanescent light.
  • excitation light is incident from the back surface of the sensor unit, and the fluorescent label is excited by evanescent light that oozes out to the surface of the sensor unit, and fluorescence generated from the fluorescent label is detected.
  • Patent Document 1 In order to improve sensitivity in the evanescent fluorescence method, a method using the effect of enhancing the photoelectric field by plasmon resonance has been proposed in Patent Document 1, Non-Patent Document 1, and the like.
  • this surface plasmon enhanced fluorescence method in order to generate plasmon resonance, a metal layer is provided in the sensor portion, surface plasmon is generated in the metal layer, and the fluorescence signal is increased by the photoelectric field enhancement action to increase the S / N ratio. Is to improve.
  • Non-Patent Document 2 a method using the photoelectric field enhancement effect by the optical waveguide mode is proposed in Non-Patent Document 2.
  • This optical waveguide mode-enhanced fluorescence spectroscopy (OWF: Optical waveguide mode / enhanced / fluorescence / spectroscopy) sequentially forms a metal layer and an optical waveguide layer made of a dielectric material in the sensor part, and the optical waveguide mode is applied to the optical waveguide layer.
  • the fluorescence signal is enhanced by the photoelectric field enhancement effect.
  • Patent Document 2 and Non-Patent Document 3 instead of detecting fluorescence from a fluorescent label as in the fluorescence method described above, the fluorescence is generated by newly inducing surface plasmon in the metal layer.
  • a method for detecting synchrotron radiation SPCE: Surface Plasmon-Coupled Emission
  • the sensitivity of the evanescent fluorescence method and the effect of enhancing the photoelectric field by the surface plasmon resonance and the optical waveguide mode are abruptly attenuated as the distance from the measurement surface increases, so the distance from the measurement surface to the fluorescent label only slightly changes.
  • a difference occurs in the signal and a variation in the signal occurs.
  • FIG. 14 shows a schematic diagram of the vicinity of a sensor unit of a device that detects fluorescence due to a photoelectric field enhancement effect by surface plasmon resonance.
  • a gold film 102 is provided on the surface of the prism (substrate) 101, and the primary antibody B ⁇ b> 1 is fixed on the gold film 102.
  • the binding state of the primary antibody B1-antigen A-labeled secondary antibody B2 is formed as described above.
  • the labeled secondary antibody B2 is a secondary antibody provided with a fluorescent label (here, the fluorescent dye molecule f).
  • excitation light is incident on the interface between the prism 101 and the gold film 102 at an angle greater than the total reflection angle, thereby exciting surface plasmons on the gold film surface and enhancing the photoelectric field on the gold film surface.
  • the fluorescent label f is excited in the enhanced photoelectric field and emits fluorescence.
  • the graph in FIG. 14 shows the distance dependence of the photoelectric field intensity from the sensor part surface (gold film surface). As shown in the graph, the intensity of the photoelectric field attenuates rapidly as the distance from the surface increases. At this time, the distance from the sensor unit surface to the fluorescent label f of the labeled secondary antibody B2 may be as much as about 50 nm, and in such a case, the fluorescence intensity is attenuated by 30% or more.
  • the primary antibody B1 is not always fixed upright on the surface of the sensor unit, and may fall down along the surface due to the flow of liquid or steric hindrance. Accordingly, the distance from the surface of the fluorescent label f varies accordingly, and this variation leads to variations in signal intensity.
  • the present invention has been made in view of the above problems, and in a detection method and apparatus for detecting light resulting from excitation of a fluorescent label, it is possible to suppress variations in detection signal intensity and perform stable measurement.
  • An object is to provide a detection method and apparatus.
  • a sample liquid containing a substance to be detected is brought into contact with a sensor part formed on one surface of a dielectric plate of a sensor chip, thereby depending on the amount of the substance to be detected contained in the sample liquid.
  • An amount of fluorescent label binding substance is bound onto the sensor unit, and the sensor unit is irradiated with excitation light at an incident angle at which a total reflection condition is obtained, whereby a photoelectric field is generated on the sensor unit, and the fluorescent label is generated by the photoelectric field.
  • the sample liquid is irradiated by irradiating the sensor part with ultrasonic waves.
  • the amount of the substance to be detected is detected in a state in which the substance to be detected and the fluorescent label binding substance are brought close to each other on the sensor unit.
  • the amount of the substance to be detected is detected in a state where the substance to be detected and the fluorescent label binding substance in the sample liquid are brought close to the sensor part by irradiating the sensor part with ultrasonic waves through the sample liquid”. Is not limited to the mode of detecting the amount of the substance to be detected in a state where the sensor part is irradiated with ultrasonic waves, but the sensor part is irradiated with ultrasonic waves immediately before the detection to detect the substance to be detected and the fluorescent label binding substance. It also includes those that are placed close to the sensor unit and have stopped irradiating ultrasonic waves at the time of detection.
  • a sensor chip having a laminated structure including a metal layer adjacent to a dielectric plate is used as a sensor chip, and the plasmon is excited by irradiating excitation light to the metal layer.
  • An enhanced photoelectric field may be generated, and fluorescence generated from the fluorescent label by excitation may be detected as light generated due to excitation of the fluorescent label.
  • a quenching preventive substance as the fluorescent label binding substance, or to use a sensor chip having a laminated structure including a quenching preventing layer as the sensor chip.
  • a sensor part having a laminated structure including an ultrasonic matching layer and / or an ultrasonic absorption layer may be used.
  • the detection device of the present invention is a detection device used in the detection method described above, and the excitation light is applied to the position of the storage portion for storing the sensor chip and the sensor portion of the sensor chip stored in the storage portion.
  • an ultrasonic wave irradiation means for irradiating ultrasonic waves.
  • the light detection means is disposed above the position of the sensor part of the sensor chip accommodated in the accommodation part, and the ultrasonic irradiation means is located above the sensor part and on the side of the light detection means.
  • the ultrasonic irradiation means is located above the sensor part and on the side of the light detection means.
  • the ultrasonic irradiation means may be transmissive to light, and the ultrasonic irradiation means may be disposed between the light detection means and the sensor portion of the sensor chip accommodated in the accommodation portion. Good.
  • the sample liquid containing the detection target substance is brought into contact with the sensor unit formed on one surface of the dielectric plate of the sensor chip, thereby detecting the detection target contained in the sample liquid.
  • An amount of the fluorescent label binding substance corresponding to the amount of the substance is bound on the sensor unit, and the sensor unit is irradiated with excitation light at an incident angle at which a total reflection condition is obtained, thereby generating a photoelectric field on the sensor unit,
  • the sensor part is irradiated with ultrasonic waves through the sample solution.
  • the amount of the detected substance is detected while the position of the detected substance or fluorescent label binding substance at the time of detection is stably positioned in the vicinity of the sensor part with high detection sensitivity. Suppresses the variation, it is possible to perform stable measurement with high detection sensitivity state.
  • the sensor part has a laminated structure including a metal layer adjacent to the dielectric plate, and the plasmon is excited by irradiating excitation light to generate a photoelectric field enhanced by the plasmon. If the fluorescence generated from the fluorescent label is detected as the light generated due to the excitation of the fluorescent label, the fluorescence signal is increased by the photoelectric field enhancement effect of the plasmon to improve the S / N ratio. be able to.
  • FIG. 2 is a schematic diagram showing how a sample is extracted from a sample container using a nozzle tip by the sample processing means of FIG.
  • FIG. 2 is a schematic diagram showing how the sample in the nozzle tip is injected and stirred into the reagent cell by the sample processing means of FIG.
  • the schematic diagram of the fluorescence detection apparatus of the 2nd Embodiment of this invention Schematic diagram showing a modification of the fluorescence detection device
  • the schematic diagram which shows the other example of the analysis chip in the fluorescence detection apparatus of this invention The schematic diagram which shows the other example of the analysis chip in the fluorescence detection apparatus of this invention
  • the schematic diagram which shows the other example of the analysis chip in the fluorescence detection apparatus of this invention Conceptual diagram showing the detection method in the conventional example
  • FIG. 1 is a schematic diagram of a fluorescence detection device according to a first embodiment of the present invention
  • FIG. 2 is a block diagram of the fluorescence detection device
  • FIG. 3 is a schematic diagram illustrating an example of an analysis chip used in the fluorescence detection device.
  • FIG. 4 is a schematic diagram showing a state in which a sample is extracted from a sample container using a nozzle tip by the sample processing means of FIG. 2
  • FIG. 5 is a diagram in which a sample in the nozzle chip is injected into a reagent cell by the sample processing means of FIG. 6 is a schematic diagram showing an example of stirring
  • FIG. 4 is a schematic diagram showing a state in which a sample is extracted from a sample container using a nozzle tip by the sample processing means of FIG. 2
  • FIG. 5 is a diagram in which a sample in the nozzle chip is injected into a reagent cell by the sample processing means of
  • FIG. 6 is a schematic diagram showing an example of stirring
  • FIG. 6 is a schematic diagram showing an example of the light irradiation means, ultrasonic irradiation means, and fluorescence detection means of FIG. 2
  • FIG. 7 is a schematic diagram showing another example of the analysis chip of FIG.
  • FIG. 8 is a graph showing how quantitative or qualitative analysis is performed by the rate method in the data analysis means of FIG.
  • This fluorescence detection device 1 is an immunological analysis device using surface plasmon resonance.
  • the sample container CB containing the sample shown in FIG. 1 and the nozzle chip NC used for extracting the sample and the reagent are loaded to form a reagent cell and a microchannel.
  • the analyzed analysis chip 10 is accommodated in the accommodating portion of the fluorescence detection device 1. Note that the sample container CB, the nozzle tip NC, and the analysis chip 10 are all disposable items that are discarded once they are used. Then, the fluorescence detection apparatus 1 performs a quantitative or qualitative analysis on the test substance in the sample while flowing the sample through the microchannel 15 of the analysis chip 10.
  • the fluorescence detection apparatus 1 includes a specimen processing means 20, a light irradiation means 30, an ultrasonic irradiation means 40, a fluorescence detection means 50, a data analysis means 60, and the like.
  • the sample processing means 20 extracts a sample from the sample container CB containing the sample using the nozzle tip NC, and generates a sample solution obtained by mixing and stirring the extracted sample with a reagent.
  • the analysis chip 10 has a structure in which an inlet 12, an outlet 13, sample cells 14a and 14b, and a flow path 15 are formed in a main body 11 made of a light-transmitting resin.
  • the injection port 12 communicates with the discharge port 13 via the flow channel 15, and by applying a negative pressure from the discharge port 13, the specimen is injected from the injection port 12, flows into the flow channel 15, and is discharged from the discharge port 13.
  • the sample cells 14a and 14b are containers for storing a fluorescent reagent (second antibody) to be mixed with the specimen in the specimen container CB. Note that the openings of the sample cells 14a and 14b are sealed with a sealing member, and the sealing member is pierced when the specimen and the fluorescent reagent are mixed.
  • a test region TR for detecting a test substance in the specimen and a control region CR provided on the downstream side of the test region TR are formed in the flow path 15.
  • a first antibody is immobilized on the test region TR, and the labeled antibody is captured by a so-called sandwich method.
  • a reference antibody is fixed to the control region CR, and the reference antibody captures the fluorescent substance when the sample solution flows on the control region CR.
  • Two control regions CR are formed, a so-called negative control region CR for detecting non-specific adsorption, and a so-called positive control region CR for detecting a difference in reactivity due to a difference in specimen. Is formed.
  • the sample processing means 20 Aspirates the sample from the sample container CB using the nozzle tip NC as shown in FIG. Thereafter, the sample processing means 20 punctures the seal member of the sample cell 14a as shown in FIG. 5, mixes and stirs the sample with the reagent in the sample cell 14a, and then sucks the sample solution again using the nozzle tip NC. . This operation is similarly performed for the sample cell 14b. As a result, a sample solution SF in which the fluorescent labeling substance F (more precisely, the second antibody B2 modified on the surface of the fluorescent labeling substance F) and the test substance (antigen) A are bound is generated. Then, the sample processing means 20 installs the nozzle chip NC containing the sample solution SF on the injection port 12, and the sample solution in the nozzle chip NC flows into the flow path 15 due to the negative pressure from the discharge port 13.
  • sample processing unit 20 illustrates the case where the sample solution SF in which the sample and the reagent are mixed is supplied into the flow path 15. However, the sample processing means 20 is filled with the reagent in advance. However, only the specimen may flow from the inlet 12.
  • the light irradiation means 30, the ultrasonic irradiation means 40, and the fluorescence detection means 50 will be described with reference to FIG. In FIG. 6, the description will be given focusing on the test region TR, but the excitation light L is similarly applied to the control region CR.
  • the light irradiation means 30 irradiates the excitation light L from the side surface side of the analysis chip 10 to the interface between the dielectric plate 11a and the metal layer 16 in the test region TR through the prism at an incident angle that is a total reflection condition. .
  • the ultrasonic irradiation means 40 uses a thickness vibration mode of a piezoelectric element, and generally a piezoelectric ceramic is used, but is not limited thereto. This ultrasonic irradiation means 40 presses the fluorescent labeling substance F in the sample solution SF onto the metal layer 16 by the ultrasonic radiation pressure.
  • the resonance frequency of the piezoelectric element is 7 MHz as an example, but is not limited thereto, and can be appropriately selected according to the structure of the analysis chip 10 and the characteristics of the sample solution SF.
  • the fluorescent labeling substance F for example, as a quenching preventive substance such as a fluorescent dye encapsulated in polystyrene particles or silica particles, or a gold colloid surface coated with polystyrene, the problem of metal quenching is solved. be able to.
  • a quenching preventive substance such as a fluorescent dye encapsulated in polystyrene particles or silica particles, or a gold colloid surface coated with polystyrene
  • the fluorescence detection means 50 is composed of, for example, a photodiode, a CCD, a CMOS, or the like, and detects fluorescence generated from the test region TR by the irradiation of the excitation light L of the light irradiation means 30 as the fluorescence signal FS.
  • the fluorescence detection means 50 is preferably disposed directly above the metal layer 16 in order to efficiently detect the fluorescence generated from the test region TR. Therefore, the ultrasonic wave irradiation means 40 is brought into contact with the analysis chip 10 via the spacer 45 inclined toward the metal layer 16 on the side of the fluorescence detection means 50 so as not to prevent the fluorescence detection in the fluorescence detection means 50.
  • the ultrasonic irradiation means 40 may be disposed directly above the metal layer 16 and the fluorescence detection means 50 may be disposed on the side of the ultrasonic irradiation means 40.
  • the ultrasonic wave irradiation means 40 irradiates the ultrasonic wave S into the sample solution SF, whereby the fluorescent labeling substance F in the sample solution SF is pressed onto the metal layer 16, and in this state, the light irradiation means 30.
  • the excitation light L being incident on the interface between the dielectric plate 17 and the metal layer 16 at a specific incident angle that is greater than the total reflection angle
  • the evanescent wave Ew oozes into the sample solution SF on the metal layer 16.
  • the surface plasmon is excited in the metal layer 16 by the evanescent wave Ew. This surface plasmon causes an electric field distribution on the surface of the metal layer 16 to form a photoelectric field enhancement region.
  • the bound fluorescent labeling substance F is excited by the evanescent wave Ew and generates enhanced fluorescence.
  • the data analysis means 60 in FIG. 2 analyzes the test substance based on the change over time of the fluorescence signal FS detected by the fluorescence detection means 50. Specifically, since the fluorescence intensity changes depending on the amount of the fluorescent labeling substance F bound thereto, the fluorescence intensity changes with time as shown in FIG.
  • the data analysis means 60 acquires a plurality of fluorescent signals FS in a predetermined period (for example, 5 minutes) at a predetermined sampling period (for example, a period of 5 seconds), and analyzes the change rate of the fluorescence intensity over time to analyze the test in the sample. Perform quantitative analysis of substances (rate method).
  • the analysis result is output from the information output means 4 comprising a monitor, a printer or the like.
  • the detection signal intensity is detected by detecting the amount of the substance to be detected in a state where the position of the fluorescent labeling substance F at the time of detection is stably positioned in the vicinity of the metal layer 16 having high detection sensitivity.
  • FIG. 9 is a schematic diagram of a fluorescence detection device according to a second embodiment of the present invention
  • FIG. 10 is a schematic diagram showing a modification of the fluorescence detection device.
  • the fluorescence detection device of the first embodiment is compatible with the surface plasmon enhanced fluorescence method
  • the fluorescence detection device of the present embodiment is compatible with the evanescent fluorescence method that does not enhance the photoelectric field by the surface plasmon. It is a thing. Since points other than this are the same as those in the first embodiment, description of similar points is omitted.
  • the fluorescence detection apparatus corresponding to the evanescent fluorescence method has the same configuration as the fluorescence detection apparatus of the first embodiment described mainly with reference to FIG. 6 except that a metal layer is unnecessary. It can be.
  • the light irradiation means 30 can be disposed below the analysis chip 10 as shown in FIG. In that case, since the ultrasonic irradiation means 40 can be disposed right above the detection region, the fluorescent labeling substance F in the sample solution SF can be efficiently pressed against the detection region.
  • the ultrasonic irradiation means 40 when the ultrasonic irradiation means 40 is transparent to detection light such as PVDF (Polyvinylidene fluoride), the ultrasonic irradiation means It is also possible to arrange the fluorescence detection means 50 on 40. In this case, both the ultrasonic irradiation and the fluorescence detection can be efficiently performed by arranging the ultrasonic irradiation means 40 and the fluorescence detection means 50 immediately above the detection region.
  • detection light such as PVDF (Polyvinylidene fluoride
  • an ultrasonic absorption layer 18 may be provided on the dielectric plate 11a.
  • a material of the ultrasonic absorption layer 18 a material generally known as an ultrasonic absorber such as rubber, urethane, silicon rubber or the like can be used.
  • the ultrasonic matching layer 19 for matching the acoustic impedance with the ultrasonic absorption layer 18 is provided on the ultrasonic absorption layer 18, the generation of ultrasonic reflected waves on the surface of the ultrasonic absorption layer 18 is reduced when the ultrasonic wave is irradiated. Can be suppressed.
  • the ultrasonic matching layer 19 a material generally known as an ultrasonic matching body can be used.
  • an ultrasonic matching layer 19 for matching the acoustic impedance between the channel wall 11b and the liquid sample is also provided on the lower surface of the channel wall 11b, the lower surface of the channel wall 11b The generation of ultrasonic reflected waves can be suppressed, and the liquid sample can be efficiently irradiated with ultrasonic waves.
  • the ultrasonic matching layer 19 a material generally known as an ultrasonic matching body can be used.
  • the 11, 12, and 13 are examples of a fluorescence detection device that supports the evanescent fluorescence method, but in the case of a fluorescence detection device that supports the surface plasmon enhanced fluorescence method, ultrasonic absorption is performed on the metal layer.
  • the layer 18 may be provided.
  • the fluorescence detection apparatus of the present invention can be adapted to various methods such as optical waveguide mode enhanced fluorescence spectroscopy.

Abstract

【課題】蛍光標識の励起に起因して生じる光を検出する検出方法および装置において、検出信号強度のばらつきを抑え、安定した測定を行えるようにする。 【解決手段】超音波照射手段(40)により超音波(S)を検体溶液(SF)中に照射することにより、検体溶液(SF)中の蛍光標識物質(F)を金属層(16)上に押し付け、この状態で、光照射手段(30)により励起光(L)を誘電体プレート(17)と金属層(16)との界面に対して全反射角以上の特定の入射角度で入射させることにより金属層(16)上に表面プラズモン光電場増強領域を形成させて蛍光標識物質(F)を励起させる。励起により蛍光標識物質(F)から発生した蛍光を蛍光検出手段(50)により検出する。

Description

検出方法および検出装置
 本発明は、試料液中の被検出物質を検出する検出方法および検出装置に関するものである。
 バイオ測定等において、蛍光法は高感度かつ容易な測定法として広く用いられている。蛍光法とは、特定波長の光に励起されて蛍光を発する被検出物質を含むと考えられる試料に、上記特定波長の励起光を照射し、このとき発せられる蛍光を検出することによって定性的または定量的に被検出物質の存在を確認する方法である。また、被検出物質自身が蛍光材料ではない場合、この被検出物質を有機蛍光色素等の蛍光標識で標識し、その後同様にして蛍光を検出することにより、その標識の存在をもって被検出物質の存在を確認する方法である。
 上記蛍光法において、試料を流しながら特定の被検出物質のみを効率よく検出できる等の理由から、以下に示す2つの方法により被検出物質をセンサ部表面に固定し、その後蛍光検出を行う手法が一般的である。このような手法の1つは、例えば被検出物質が抗原である場合に、センサ部表面に固定された1次抗体に、抗原を特異的に結合させ、次いで、蛍光標識が付与された、抗原と特異的に結合する2次抗体を、さらに上記抗原に結合させることにより、1次抗体―抗原―2次抗体という結合状態を形成し、2次抗体に付与されている蛍光標識からの蛍光を検出する、所謂サンドイッチ法である。また、もう1つは、例えば被検出物質が抗原である場合に、センサ部表面に固定された1次抗体に、抗原と蛍光標識が付与された2次抗体(前述の2次抗体と異なり、1次抗体と特異的に結合する)とを、競合的に1次抗体と結合させ、競合的に結合した2次抗体に付与されている蛍光標識からの蛍光を検出する、所謂競合法である。
 また、蛍光検出においてS/N比を向上できる等の理由から、上記のような方法によって間接的にセンサ部に固定された蛍光標識を、エバネッセント光により励起するエバネッセント蛍光法が提案されている。エバネッセント蛍光法は、励起光をセンサ部裏面から入射し、センサ部表面に染み出すエバネッセント光により蛍光標識を励起して、その蛍光標識から生じる蛍光を検出するものである。
 一方、エバネッセント蛍光法において、感度を向上させるため、プラズモン共鳴による光電場増強の効果を利用する方法が、特許文献1、非特許文献1などに提案されている。この表面プラズモン増強蛍光法は、プラズモン共鳴を生じさせるため、センサ部に金属層を設け、この金属層に表面プラズモンを生じさせ、その光電場増強作用によって、蛍光信号を増大させてS/N比を向上させるものである。
 また、エバネッセント蛍光法において、表面プラズモン増強蛍光法と同様に、センサ部の光電場を増強する効果を有する方法として、光導波モードによる光電場増強効果を利用する方法が非特許文献2に提案されている。この光導波モード増強蛍光分光法(OWF:Optical waveguide mode enhanced fluorescence spectroscopy)は、センサ部に金属層と、誘電体などからなる光導波層とを順次形成し、この光導波層に光導波モードを生じさせ、その光電場増強効果によって、蛍光信号を増強させるものである。
 また、特許文献2および非特許文献3には、上記に示した蛍光法のように蛍光標識からの蛍光を検出するのではなく、その蛍光が金属層に新たに表面プラズモンを誘起することによって生じる放射光(SPCE: Surface Plasmon-Coupled Emission)を検出する方法が提案されている。
 以上のように、バイオ測定等における測定方法としては、種々の方法が提案されている。
特開平10-307141号公報 米国特許出願公開第2005/0053974号明細書
W.Knoll他、AnalyticalChemistry 77(2005), p.2426-2431 2007年春季 応用物理学会 予稿集 No.3,P.1378 Thorsten Liebermann WolfgangKnoll, "Surface-plasmon field-enhanced fluorescence spectroscopy"Colloids and Surfaces A 171(2000)115-130
 ところで、エバネッセント蛍光法の感度や、表面プラズモン共鳴や光導波モードによる光電場増強の効果は、測定面から離れるに従って急激に減衰するため、この測定面から蛍光標識までの距離が僅かに変化するだけで、信号に差が生じ、信号のばらつきが生じてしまうという問題がある。
 例えば、表面プラズモン共鳴による光電場増強効果による蛍光を検出する装置のセンサ部近傍の模式図を図14に示す。プリズム(基板)101の表面に金膜102が設けられており、この金膜102上に1次抗体B1が固定されている。サンドイッチアッセイを行う場合、前述のように、1次抗体B1-抗原A-標識2次抗体B2の結合状態を形成する。ここで、標識2次抗体B2は、蛍光標識(ここでは、蛍光色素分子f)が付与された2次抗体である。そして、プリズム101と金膜102との界面に全反射角度以上の角度で励起光を入射することにより、金膜表面に表面プラズモンを励起して金膜表面の光電場を増強する。この結果、蛍光標識fは、増強された光電場において励起され、蛍光を発する。
 図14中のグラフは、光電場強度のセンサ部表面(金膜表面)からの距離依存性を示している。グラフに示すように、光電場強度は表面から離れるにつれ急激に減衰する。このとき、センサ部表面から標識2次抗体B2の蛍光標識fまでの距離は、最大で50nm程度も離れることがあり、このような場合には、蛍光強度は30%以上減衰してしまう。また、1次抗体B1は、常にセンサ部表面に直立に固定されるものではなく、液の流れや立体障害等により表面に沿って倒れる場合もある。したがって、これに応じて蛍光標識fの表面からの距離にばらつきが生じ、このばらつきが信号強度のばらつきに繋がる。
 本発明は上記問題に鑑みてなされたものであり、蛍光標識の励起に起因して生じる光を検出する検出方法および装置において、検出信号強度のばらつきを抑え、安定した測定を行うことが可能な検出方法および装置を提供することを目的とする。
 本発明の検出方法は、センサチップの誘電体プレートの一面に形成されたセンサ部上に、被検出物質を含む試料液を接触させることにより、試料液に含有される被検出物質の量に応じた量の蛍光標識結合物質をセンサ部上に結合させ、センサ部に全反射条件が得られる入射角度で励起光を照射することにより、センサ部上に光電場を発生せしめ、光電場により蛍光標識結合物質の蛍光標識を励起し、励起に起因して生じる光の量に基づいて、被検出物質の量を検出する検出方法において、試料液を通してセンサ部に超音波を照射することにより、試料液中の被検出物質および蛍光標識結合物質をセンサ部上に近接させた状態で、被検出物質の量を検出することを特徴とするものである。
 ここで「試料液を通してセンサ部に超音波を照射することにより、試料液中の被検出物質および蛍光標識結合物質をセンサ部上に近接させた状態で、被検出物質の量を検出する」とは、センサ部に超音波を照射している状態で被検出物質の量を検出する態様に限らず、検出を行う直前にセンサ部に超音波を照射して被検出物質および蛍光標識結合物質をセンサ部上に近接させ、検出時には超音波の照射を停止しているものも含むものである。
 本発明の検出方法においては、センサチップとして、センサ部が、誘電体プレートに隣接する金属層を含む積層構造からなるものを用い、励起光の照射により金属層にプラズモンを励起して、プラズモンによって増強した光電場を発生せしめ、蛍光標識の励起に起因して生じる光として、励起によって蛍光標識から生じる蛍光を検出するようにしてもよい。
 プラズモン増強を利用した検出の場合には、試料中の蛍光標識結合物質と金属層とが接近し過ぎていると、蛍光標識結合物質内で励起されたエネルギーが蛍光を発生させる前に金属層へ遷移してしまい、蛍光が生じないという現象(いわゆる金属消光)が起こり得る。
 このような問題を解消するため、蛍光標識結合物質として、消光防止性物質を用いたり、センサチップとして、センサ部が、消光防止層を含む積層構造からなるものを用いることが好ましい。
 また、センサチップとして、センサ部が、超音波整合層および/または超音波吸収層を含む積層構造からなるものを用いるようにしてもよい。
 本発明の検出装置は、上記に記載の検出方法に用いられる検出装置であって、センサチップを収容するための収容部と、収容部に収容されるセンサチップのセンサ部の位置に励起光を照射する励起光照射光学系と、光電場による蛍光標識の励起に起因して生じる光の量を検出する光検出手段と、収容部に収容されるセンサチップのセンサ部上の試料液の位置に超音波を照射する超音波照射手段とを備えることを特徴とするものである。
 本発明の検出装置においては、光検出手段が、収容部に収容されるセンサチップのセンサ部の位置の上方に配置され、超音波照射手段が、センサ部の上方であって光検出手段の側方において、センサ部に向けて超音波を照射できるように配置されたものとしてもよい。
 また、超音波照射手段が光に対して透過性を有するものであり、超音波照射手段が、光検出手段と収容部に収容されるセンサチップのセンサ部との間に配置されたものとしてもよい。
 本発明の検出方法および検出装置によれば、センサチップの誘電体プレートの一面に形成されたセンサ部上に、被検出物質を含む試料液を接触させることにより、試料液に含有される被検出物質の量に応じた量の蛍光標識結合物質をセンサ部上に結合させ、センサ部に全反射条件が得られる入射角度で励起光を照射することにより、センサ部上に光電場を発生せしめ、光電場により蛍光標識結合物質の蛍光標識を励起し、励起に起因して生じる光の量に基づいて、被検出物質の量を検出する場合において、試料液を通してセンサ部に超音波を照射することにより、検出時における被検出物質や蛍光標識結合物質の位置を、検出感度が高いセンサ部近傍に安定的に位置させた状態で、被検出物質の量を検出するようにしたので、検出信号強度のばらつきを抑えるとともに、検出感度が高い状態で安定した測定を行うことが可能となる。
 また、センサチップとして、センサ部が、誘電体プレートに隣接する金属層を含む積層構造からなるものを用い、励起光の照射により金属層にプラズモンを励起して、プラズモンによって増強した光電場を発生せしめ、蛍光標識の励起に起因して生じる光として、励起によって蛍光標識から生じる蛍光を検出するようにすれば、プラズモンの光電場増強作用によって、蛍光信号を増大させてS/N比を向上させることができる。
 プラズモン増強を利用した検出の場合には、試料中の蛍光標識結合物質と金属層とが接近し過ぎていると、蛍光標識結合物質内で励起されたエネルギーが蛍光を発生させる前に金属層へ遷移してしまい、蛍光が生じないという現象(いわゆる金属消光)が起こり得るため、蛍光標識結合物質として、消光防止性物質を用いたり、センサチップとして、センサ部が、消光防止層を含む積層構造からなるものを用いれば、金属消光の問題を解消することができる。
 また、センサチップとして、センサ部が、超音波整合層および/または超音波吸収層を含む積層構造からなるものを用いるようすれば、超音波を照射した際に、試料液中の被検出物質および蛍光標識結合物質をセンサ部上に近接させる方向とは逆方向の超音波反射波の発生を抑えることができるので、効率よく被検出物質および蛍光標識結合物質をセンサ部上に近接させることができる。
本発明の第1の実施の形態の蛍光検出装置の模式図 上記蛍光検出装置のブロック図 上記蛍光検出装置に用いられる分析チップの一例を示す模式図 図2の検体処理手段によりノズルチップを用いて検体が検体容器から抽出される様子を示す模式図 図2の検体処理手段によりノズルチップ内の検体が試薬セルに注入・撹拌される様子を示す模式図 図2の光照射手段、超音波照射手段および蛍光検出手段の一例を示す模式図 図3の分析チップの他の例を示す模式図 図2のデータ分析手段においてレート法により定量的または定性的な分析が行われる様子を示すグラフ 本発明の第2の実施の形態の蛍光検出装置の模式図 上記蛍光検出装置の変形例を示す模式図 本発明の蛍光検出装置における分析チップの他の例を示す模式図 本発明の蛍光検出装置における分析チップの他の例を示す模式図 本発明の蛍光検出装置における分析チップの他の例を示す模式図 従来例における検出方法を示す概念図
 以下、図面を参照して本発明の第1の実施の形態を詳細に説明する。図1は本発明の第1の実施の形態の蛍光検出装置の模式図、図2は上記蛍光検出装置のブロック図、図3は上記蛍光検出装置に用いられる分析チップの一例を示す模式図、図4は図2の検体処理手段によりノズルチップを用いて検体が検体容器から抽出される様子を示す模式図、図5は図2の検体処理手段によりノズルチップ内の検体が試薬セルに注入・撹拌される様子を示す模式図、図6は図2の光照射手段、超音波照射手段および蛍光検出手段の一例を示す模式図、図7は図3の分析チップの他の例を示す模式図、図8は図2のデータ分析手段においてレート法により定量的または定性的な分析が行われる様子を示すグラフである。
 この蛍光検出装置1は、表面プラズモン共鳴を利用した免疫解析装置である。蛍光検出装置1により分析を行う際、図1に示す検体が収容された検体容器CBと、検体および試薬を抽出する際に用いられるノズルチップNCとが装填され、試薬セルおよびマイクロ流路が形成された分析チップ10が蛍光検出装置1の収容部に収容される。なお、検体容器CB、ノズルチップNCおよび分析チップ10はいずれも一度使用したら破棄される使い捨てのものである。そして、蛍光検出装置1は検体を分析チップ10のマイクロ流路15に流しながら検体内の被検物質について定量的もしくは定性的な分析を行う。
 図2に示すように、この蛍光検出装置1は、検体処理手段20、光照射手段30、超音波照射手段40、蛍光検出手段50、データ分析手段60等を備えている。
 検体処理手段20は、ノズルチップNCを用いて検体を収容した検体容器CB内から検体を抽出し、抽出した検体を試薬と混合撹拌した検体溶液を生成するものである。
 図3に示すように、分析チップ10は、光透過性の樹脂からなる本体11に注入口12、排出口13、試料セル14a、14b、流路15が形成された構造を有している。注入口12は流路15を介して排出口13に連通しており、排出口13から負圧をかけることにより検体は注入口12から注入されて流路15内に流れ排出口13から排出される。試料セル14a、14bは検体容器CB内の検体に混合する蛍光試薬(第2抗体)を収容する容器である。なお、試料セル14a、14bの開口部はシール部材により封止されており、検体と蛍光試薬とを混合する際にシール部材が穿孔されるようになっている。
 また、流路15内には検体内の被検物質を検出するためのテスト領域TRおよびテスト領域TRの下流側に設けられたコントロール領域CRが形成されている。このテスト領域TR上には第1抗体が固定されており、いわゆるサンドイッチ方式により標識化された抗体を捕捉する。また、コントロール領域CRには参照抗体が固定されており、コントロール領域CR上に検体溶液が流れることにより参照抗体が蛍光物質を捕捉する。なお、コントロール領域CRは2つ形成されており、非特異吸着を検出するためのいわゆるネガ型のコントロール領域CRと、検体差による反応性の違いを検出するためのいわゆるポジ型のコントロール領域CRとが形成されている。
 そして、分析の開始が指示された際、検体処理手段20は図4に示すようにノズルチップNCを用いて検体容器CBから検体を吸引する。その後、検体処理手段20は図5に示すように試料セル14aのシール部材を穿孔し試料セル14a内の試薬に検体を混合・撹拌させた後、検体溶液を再びノズルチップNCを用いて吸引する。この動作を試料セル14bについても同様に行う。その結果、蛍光標識物質F(正確には蛍光標識物質Fの表面に修飾された第2抗体B2)と被検物質(抗原)Aとが結合した検体溶液SFが生成される。そして、検体処理手段20は、検体溶液SFを収容したノズルチップNCを注入口12上に設置し、排出口13からの負圧によりノズルチップNC内の検体溶液が流路15内に流入する。
 なお、検体処理手段20が検体と試薬とを混合した検体溶液SFを流路15内に供給する場合について例示しているが、流路15内に予め試薬を充填させておき、検体処理手段20が注入口12から検体のみを流入させるようにしてもよい。
 次に図6を用いて光照射手段30、超音波照射手段40および蛍光検出手段50について説明する。なお、図6においてはテスト領域TRに着目して説明するが、コントロール領域CRについても同様に励起光Lが照射されるものである。
 光照射手段30は、分析チップ10の側面側から励起光Lを全反射条件となる入射角度でプリズムを介してテスト領域TRの誘電体プレート11aと金属層16との界面に照射するものである。
 超音波照射手段40は、圧電素子の厚み振動モードを利用したものであり、一般的には圧電セラミックが用いられるが、これに限定されるものではない。この超音波照射手段40は、超音波の放射圧により検体溶液SF中の蛍光標識物質Fを金属層16上に押し付けるものである。なお、圧電素子の共振周波数については、一例として7MHzが挙げられるが、これに限らず分析チップ10の構造や検体溶液SFの特性に応じて適宜選択することができる。
 なお、プラズモン増強を利用した検出において、このように検体溶液SF中の蛍光標識物質Fを金属層16上に押し付けた場合、金属消光が発生して感度が低下するおそれがあるため、図7に示すように金属層16上に、例えばシリカ層やポリスチレン層等からなる消光防止層17を設けるようにすれば、このような問題を解消することができる。
 また、蛍光標識物質Fについて、例えば、蛍光色素をポリスチレン粒子やシリカ粒子に内包したものや、金コロイド表面をポリスチレンでコーティングしたもの等といった、消光防止性物質としても、金属消光の問題を解消することができる。
 蛍光検出手段50は、例えばフォトダイオード、CCD、CMOS等からなり、光照射手段30の励起光Lの照射によりテスト領域TRから生じる蛍光を蛍光信号FSとして検出するものである。
 蛍光検出手段50は、テスト領域TRから生じる蛍光を効率よく検出するために金属層16の真上に配置することが好ましい。そのため、超音波照射手段40は、蛍光検出手段50における蛍光検出を妨げないように、蛍光検出手段50の側方において、金属層16に向けて傾いたスペーサー45を介して分析チップ10に接触される。なお、上記とは逆に、超音波照射手段40を金属層16の真上に、蛍光検出手段50を超音波照射手段40の側方に配置するようにしてもよい。
 検出時には、超音波照射手段40により超音波Sが検体溶液SF中に照射されることにより、検体溶液SF中の蛍光標識物質Fが金属層16上に押し付けられ、この状態で、光照射手段30により励起光Lが誘電体プレート17と金属層16との界面に対して全反射角以上の特定の入射角度で入射されることにより、金属層16上の検体溶液SF中にエバネッセント波Ewが滲み出し、このエバネッセント波Ewによって金属層16中に表面プラズモンが励起される。この表面プラズモンにより金属層16表面に電界分布が生じ、光電場増強領域が形成される。すると、結合した蛍光標識物質Fはエバネッセント波Ewにより励起され増強された蛍光を発生する。
 図2のデータ分析手段60は、蛍光検出手段50により検出された蛍光信号FSの経時変化に基づいて被検物質の分析を行うものである。具体的には、蛍光強度は蛍光標識物質Fの結合した量によって変化するため、図8に示すように時間経過とともに蛍光強度は変化する。データ分析手段60は、複数の蛍光信号FSを所定期間(例えば5分間)において所定のサンプリング周期(例えば5秒周期)で取得し、蛍光強度の時間変化率を解析することにより検体内の被検物質について定量的な分析を行う(レート法)。そして分析結果は、モニタやプリンタ等からなる情報出力手段4から出力される。
 上記のような態様として、検出時における蛍光標識物質Fの位置を、検出感度が高い金属層16近傍に安定的に位置させた状態で、被検出物質の量を検出することにより、検出信号強度のばらつきを抑えるとともに、検出感度が高い状態で安定した測定を行うことが可能となる。
 次に、本発明の第2の実施の形態について説明する。図9は本発明の第2の実施の形態の蛍光検出装置の模式図、図10は上記蛍光検出装置の変形例を示す模式図である。
 上記第1の実施の形態の蛍光検出装置が表面プラズモン増強蛍光法に対応したものであるのに対し、本実施の形態の蛍光検出装置は表面プラズモンによる光電場増強を行わないエバネッセント蛍光法に対応したものである。これ以外の点は上記第1の実施の形態と同様であるため、同様の点についての説明は省略する。
 図9に示すように、エバネッセント蛍光法に対応した蛍光検出装置は、金属層が不要である以外は、主に図6を用いて説明した第1の実施の形態の蛍光検出装置と同様の構成とすることができる。
 また、エバネッセント蛍光法では、金属層が不要であるため、図10に示すように、分析チップ10の下方に光照射手段30を配置することもできる。その場合は、超音波照射手段40を検出領域の真上に配置することができるため、検体溶液SF中の蛍光標識物質Fを効率よく検出領域に押し付けることができる。
 以上、本発明の好ましい実施の形態について説明したが、本発明は上記実施の形態に限定されるものではない。
 例えば、図6や図9、10に示す上記実施の形態において、超音波照射手段40をPVDF(Polyvinylidene fluoride)等の検出光に対して透過性を有するものとした場合には、超音波照射手段40上に蛍光検出手段50を配置することも可能である。この場合には超音波照射手段40および蛍光検出手段50を検出領域の真上に配置することにより、超音波照射と蛍光検出の両方を効率よく行うことができる。
 また、図11に示すように、誘電体プレート11a上に超音波吸収層18を設けてもよく、このような態様とすれば、超音波を照射した際に、試料液中の被検出物質および蛍光標識結合物質をセンサ部上に近接させる方向とは逆方向の超音波反射波の発生を抑えることができるので、効率よく被検出物質および蛍光標識結合物質をセンサ部上に近接させることができる。この超音波吸収層18の材質としては、ゴム、ウレタン、シリコンゴム等、超音波吸収体として一般的に知られているものを用いることができる。
 なお、超音波吸収層18を設けたとしても超音波吸収層18表面での超音波反射波の発生を完全に抑えることは難しいため、図12に示すように、超音波吸収層18と液体試料との音響インピーダンスを整合させる超音波整合層19を超音波吸収層18上に設けるようにすれば、超音波を照射した際に、超音波吸収層18表面での超音波反射波の発生を低く抑えることができる。この超音波整合層19についても、超音波整合体として一般的に知られているものを用いることができる。
 また、図13に示すように、流路壁11bと液体試料との音響インピーダンスを整合させる超音波整合層19を流路壁11bの下面にも設けるようにすれば、流路壁11b下面での超音波反射波の発生を抑え、効率よく液体試料に超音波を照射することができる。この超音波整合層19についても、超音波整合体として一般的に知られているものを用いることができる。
 なお、図11、12、13はいずれもエバネッセント蛍光法に対応した蛍光検出装置の例であるが、表面プラズモン増強蛍光法に対応した蛍光検出装置の場合には、金属層の上に超音波吸収層18を設ければよい。
 また、本発明の蛍光検出装置は、表面プラズモン増強蛍光法やエバネッセント蛍光法以外にも、光導波モード増強蛍光分光法等、種々の方式に対応させることが可能である。
 さらに、上記以外にも、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行なってもよいのは勿論である。

Claims (9)

  1.  センサチップの誘電体プレートの一面に形成されたセンサ部上に、被検出物質を含む試料液を接触させることにより、該試料液に含有される被検出物質の量に応じた量の蛍光標識結合物質を前記センサ部上に結合させ、
     前記センサ部に全反射条件が得られる入射角度で励起光を照射することにより、該センサ部上に光電場を発生せしめ、
     該光電場により前記蛍光標識結合物質の蛍光標識を励起し、該励起に起因して生じる光の量に基づいて、前記被検出物質の量を検出する検出方法において、
     前記試料液を通して前記センサ部に超音波を照射することにより、前記試料液中の前記被検出物質および前記蛍光標識結合物質を前記センサ部上に近接させた状態で、前記被検出物質の量を検出することを特徴とする検出方法。
  2.  前記センサチップとして、前記センサ部が、前記誘電体プレートに隣接する金属層を含む積層構造からなるものを用い、
     前記励起光の照射により前記金属層にプラズモンを励起して、該プラズモンによって増強した光電場を発生せしめ、
     前記蛍光標識の励起に起因して生じる前記光として、該励起によって該蛍光標識から生じる蛍光を検出することを特徴とする請求項1記載の検出方法。
  3.  前記蛍光標識結合物質として、消光防止性物質を用いることを特徴とする請求項2記載の検出方法。
  4.  前記センサチップとして、前記センサ部が、消光防止層を含む積層構造からなるものを用いることを特徴とする請求項2または3記載の検出方法。
  5.  前記センサチップとして、前記センサ部が、超音波整合層を含む積層構造からなるものを用いることを特徴とする請求項1から4のいずれかに記載の検出方法。
  6.  前記センサチップとして、前記センサ部が、超音波吸収層を含む積層構造からなるものを用いることを特徴とする請求項1から5のいずれかに記載の検出方法。
  7.  請求項1から6いずれかに記載の検出方法に用いられる検出装置であって、
     前記センサチップを収容するための収容部と、
     該収容部に収容される前記センサチップの前記センサ部の位置に前記励起光を照射する励起光照射光学系と、
     前記光電場による前記蛍光標識の励起に起因して生じる前記光の量を検出する光検出手段と、
     前記収容部に収容される前記センサチップの前記センサ部上の前記試料液の位置に前記超音波を照射する超音波照射手段とを備えることを特徴とする検出装置。
  8.  前記光検出手段が、前記収容部に収容される前記センサチップの前記センサ部の位置の上方に配置され、
     前記超音波照射手段が、前記センサ部の上方であって前記光検出手段の側方において、前記センサ部に向けて超音波を照射できるように配置されていることを特徴とする請求項7記載の検出装置。
  9.  前記超音波照射手段が前記光に対して透過性を有するものであり、
     該超音波照射手段が、前記光検出手段と前記収容部に収容される前記センサチップの前記センサ部との間に配置されていることを特徴とする請求項7記載の検出装置。
PCT/JP2012/001517 2011-03-10 2012-03-06 検出方法および検出装置 WO2012120874A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/021,517 US20140011293A1 (en) 2011-03-10 2013-09-09 Detection method and detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-052858 2011-03-10
JP2011052858A JP5797427B2 (ja) 2011-03-10 2011-03-10 検出方法および検出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/021,517 Continuation US20140011293A1 (en) 2011-03-10 2013-09-09 Detection method and detection apparatus

Publications (1)

Publication Number Publication Date
WO2012120874A1 true WO2012120874A1 (ja) 2012-09-13

Family

ID=46797845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001517 WO2012120874A1 (ja) 2011-03-10 2012-03-06 検出方法および検出装置

Country Status (3)

Country Link
US (1) US20140011293A1 (ja)
JP (1) JP5797427B2 (ja)
WO (1) WO2012120874A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758511A (zh) * 2016-04-15 2016-07-13 北京大学 一种基于石墨烯的超声探测装置及其探测方法和用途
CN106236145A (zh) * 2016-09-07 2016-12-21 北京大学 一种基于全反射的超声探测和光声成像装置及其方法
WO2021131331A1 (ja) * 2019-12-23 2021-07-01 国立研究開発法人物質・材料研究機構 蛍光検出用生体分子検査チップ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047027A1 (ja) * 2014-09-24 2016-03-31 富士フイルム株式会社 蛍光検出方法および検出用試料セル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001289A1 (en) * 2007-06-28 2008-12-31 Koninklijke Philips Electronics N. V. Microelectronic sensor device for optical examinations on a wetted surface
JP2010008247A (ja) * 2008-06-27 2010-01-14 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010019767A (ja) * 2008-07-14 2010-01-28 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010019766A (ja) * 2008-07-14 2010-01-28 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010048756A (ja) * 2008-08-25 2010-03-04 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
WO2010030828A2 (en) * 2008-09-11 2010-03-18 University Of Maryland Biotechnology Institute Sonication-assisted metal-enhanced fluorescence (samef)-based bioassays
JP2011174857A (ja) * 2010-02-25 2011-09-08 Fujifilm Corp 生体物質分析方法並びにそれに用いられる生体物質分析セル、チップおよび装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001289A1 (en) * 2007-06-28 2008-12-31 Koninklijke Philips Electronics N. V. Microelectronic sensor device for optical examinations on a wetted surface
JP2010008247A (ja) * 2008-06-27 2010-01-14 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010019767A (ja) * 2008-07-14 2010-01-28 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010019766A (ja) * 2008-07-14 2010-01-28 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010048756A (ja) * 2008-08-25 2010-03-04 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
WO2010030828A2 (en) * 2008-09-11 2010-03-18 University Of Maryland Biotechnology Institute Sonication-assisted metal-enhanced fluorescence (samef)-based bioassays
JP2011174857A (ja) * 2010-02-25 2011-09-08 Fujifilm Corp 生体物質分析方法並びにそれに用いられる生体物質分析セル、チップおよび装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758511A (zh) * 2016-04-15 2016-07-13 北京大学 一种基于石墨烯的超声探测装置及其探测方法和用途
CN105758511B (zh) * 2016-04-15 2019-01-15 北京大学 一种基于石墨烯的超声探测装置及其探测方法和用途
CN106236145A (zh) * 2016-09-07 2016-12-21 北京大学 一种基于全反射的超声探测和光声成像装置及其方法
CN106236145B (zh) * 2016-09-07 2019-02-22 北京大学 一种基于全反射的超声探测和光声成像装置及其方法
WO2021131331A1 (ja) * 2019-12-23 2021-07-01 国立研究開発法人物質・材料研究機構 蛍光検出用生体分子検査チップ
JP7300201B2 (ja) 2019-12-23 2023-06-29 国立研究開発法人物質・材料研究機構 蛍光検出用生体分子検査チップ

Also Published As

Publication number Publication date
JP5797427B2 (ja) 2015-10-21
US20140011293A1 (en) 2014-01-09
JP2012189429A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5295149B2 (ja) 生体物質分析方法並びにそれに用いられる生体物質分析セル、チップおよび装置
JP2012122977A (ja) 分析チップ
US20100068824A1 (en) Sensing method, sensing device, inspection chip, and inspection kit
JP5095552B2 (ja) 検出方法および検出システム
US20090218496A1 (en) Sensing apparatus and a method of detecting substances
JP6991972B2 (ja) 検出チップ、検出システムおよび検出方法
US20110244594A1 (en) Target substance detecting method and target substance detecting apparatus
JP5797427B2 (ja) 検出方法および検出装置
JP2013185967A (ja) 生化学検査装置
JP2011209097A (ja) 光学的測定装置および光学的測定方法
JP2010210378A (ja) センシング方法、およびそれに用いられるセンシングキット
JP2009258034A (ja) 表面プラズモン放射光検出方法および装置、表面プラズモン放射光検出用試料セルおよびキット
WO2012042882A1 (ja) 生体分子検出装置および生体分子検出方法
JP2012202742A (ja) 検出方法および検出装置
JP6838612B2 (ja) 検査チップ及び検査システム
JP2010071682A (ja) センシング装置、物質検出方法、検査チップ、及び検査キット
JP6888548B2 (ja) 測定方法
JP5602053B2 (ja) 被検物質検出方法並びにそれに用いられる被検物質検出チップおよび被検物質検出装置
JP2012202911A (ja) 分析チップ
JP2013076673A (ja) 測定装置
JP6943262B2 (ja) 送液システム、検査システム及び送液方法
WO2019230222A1 (ja) 表面プラズモン励起増強蛍光測定法
JP5681077B2 (ja) 測定方法および測定装置
JP5851015B2 (ja) 分析チップ
JP5669312B2 (ja) 検出方法および検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754905

Country of ref document: EP

Kind code of ref document: A1