WO2012118095A1 - 光源モジュール及び光源システム - Google Patents

光源モジュール及び光源システム Download PDF

Info

Publication number
WO2012118095A1
WO2012118095A1 PCT/JP2012/054980 JP2012054980W WO2012118095A1 WO 2012118095 A1 WO2012118095 A1 WO 2012118095A1 JP 2012054980 W JP2012054980 W JP 2012054980W WO 2012118095 A1 WO2012118095 A1 WO 2012118095A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
primary
light source
unit
abnormality
Prior art date
Application number
PCT/JP2012/054980
Other languages
English (en)
French (fr)
Inventor
山本 英二
伊藤 毅
真博 西尾
駒崎 岩男
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201280010814.2A priority Critical patent/CN103402420B/zh
Priority to EP12752004.7A priority patent/EP2682046A4/en
Publication of WO2012118095A1 publication Critical patent/WO2012118095A1/ja
Priority to US14/013,705 priority patent/US9445477B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Definitions

  • the present invention relates to a light source module and a light source system using the same.
  • the primary light emitted from a primary light unit such as a semiconductor laser (LD) is guided to a wavelength conversion member via an optical fiber, and is converted into secondary light having a desired wavelength by the wavelength conversion member,
  • a light source module that emits the converted secondary light as illumination light is known.
  • Patent Document 1 proposes a fiber light source configuration that uses two optical fibers in such a light source module and guides light from a primary light unit to a light conversion unit in which a plurality of wavelength conversion members are arranged. ing. By adopting such a configuration, it is possible to provide a fiber light source in which illumination is not completely stopped even if one of the optical fibers is disconnected or a failure occurs such that one of the wavelength conversion members is dropped or damaged. .
  • Patent Document 1 With the technique disclosed in Patent Document 1, it is possible to secure a situation in which illumination does not stop completely when an abnormality occurs, such as a break in one optical fiber or a failure of one wavelength conversion element. However, the technique disclosed in Patent Document 1 cannot detect the occurrence of the abnormality.
  • the present invention has been made in view of the above points, and an object thereof is to provide a light source module capable of detecting the occurrence of an abnormality and a light source system using the same.
  • One aspect of the light source module of the present invention is: A primary light unit that emits primary light; A light conversion unit that receives the primary light, converts it into secondary light, and emits the converted secondary light; A light detection unit for detecting light; A plurality of optical fibers for guiding light; A plurality of primary terminals and a plurality of secondary terminals, wherein light incident on one of the primary terminals is emitted from the plurality of secondary terminals, and light incident on one of the secondary terminals is An optical branching unit that emits light from a plurality of primary terminals; Comprising The primary light can be guided from the primary light unit to the light conversion unit via the plurality of optical fibers, and the secondary light is directed from the light conversion unit to the light detection unit.
  • the primary light unit and the light detection unit are disposed on the primary terminal side of the light branching unit, and the light conversion unit is disposed on the secondary terminal side of the light branching unit. It is characterized by being arranged.
  • one aspect of the light source system of the present invention is: An aspect of the light source module; A primary light source drive circuit for driving the primary light unit of the light source module; Based on the detection result of the light detection unit, an abnormality diagnosis circuit that diagnoses the presence or absence of an abnormality in the abnormality detection target region; A primary light source drive control circuit for controlling driving of the primary light unit by the primary light source drive circuit based on a diagnosis result of the abnormality diagnosis circuit; It is characterized by comprising.
  • another aspect of the light source system of the present invention is as follows.
  • the light detection unit includes a spectroscopic detector having a function of splitting a light spectrum or polarization characteristics of incident light, A primary light source drive circuit for driving the primary light unit of the light source module; Based on the detection result of the spectral detector of the light detection unit, an abnormality diagnosis circuit for diagnosing the presence / absence of an abnormality in the abnormality detection target region and the cause of the abnormality, A primary light source drive control circuit for controlling driving of the primary light unit by the primary light source drive circuit based on a diagnosis result of the abnormality diagnosis circuit; It is characterized by comprising.
  • the illumination is completely stopped when an abnormality occurs. It is possible to provide a light source module that can detect the occurrence of an abnormality and a light source system using the light source module while ensuring a situation in which it does not occur.
  • FIG. 1 is a diagram illustrating a configuration of a light source module according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the light source system according to the first embodiment of the present invention.
  • FIG. 3A is a diagram illustrating a configuration of a light source module according to a second embodiment of the present invention.
  • FIG. 3B is a diagram for explaining the influence of the abnormality detection target region when it is abnormal.
  • FIG. 4 is a diagram showing a configuration of a light source system according to the second embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration of a modification of the light source module according to the first embodiment.
  • the light source module according to the first embodiment of the present invention is used as an illumination device for an endoscope, for example.
  • the light source module includes a primary light unit 10, a light conversion unit 20, a light detection unit 30, a plurality of optical fibers 40, and a light branching unit 50.
  • the primary light unit 10 is a light source that emits primary light.
  • the light conversion unit 20 receives primary light guided from the primary light unit 10 through a plurality of optical fibers 40 (two in this embodiment), converts the light into secondary light, and converts the converted light 2. The next light is emitted as illumination light. Therefore, the light conversion unit 20 includes a plurality (two in this embodiment) of light conversion members 21 having a function of converting the optical characteristics of the primary light from the primary light unit 10.
  • This “function of converting optical characteristics” includes, for example, a function of converting an optical spectrum (phosphor, electroluminescence, semiconductor light emission, optical filter, second harmonic generation), a function of converting a light distribution (light diffusion, Lens function, etc.) and the function of converting polarized light.
  • the primary light is converted into secondary light converted into predetermined optical characteristics by the light conversion member 21, and then emitted toward an irradiation target (not shown) as irradiation light of the light source module.
  • adopts a predetermined condensing structure not all of it goes to the illumination object, but a part of such secondary light is obtained by the plurality of optical fibers 40.
  • the light is guided as return light in the opposite direction to the primary light.
  • the light detection unit 30 detects the return light guided by the plurality of optical fibers 40.
  • the optical branching unit 50 includes a plurality (two in this embodiment) primary terminals and a plurality (two in this embodiment) secondary terminals.
  • the light branching unit 50 emits light incident on one of the primary terminals from the plurality of secondary terminals, and emits light incident on one of the secondary terminals from the plurality of primary terminals. It has a branch function.
  • the primary light unit 10 and the light detection unit 30 are disposed on the primary terminal side of the light branching unit, and the light conversion unit 20 is disposed on the secondary terminal side of the light branching unit 50. So that each is optically connected. Accordingly, the primary light from one primary light unit 10 can be guided toward the light conversion unit 20 via the plurality of optical fibers 40, and the secondary light from the light conversion unit 20 can be guided. (Return light) can be guided toward one light detection unit 30.
  • the light source module having such a configuration, if an abnormality such as one of the optical fibers 40 is broken, the primary light to the light conversion unit 20 is reduced, so that after light conversion from the light conversion unit 20 The light output is reduced. At this time, the reflected primary light is reflected at the abnormality occurrence location (breakage or the like), and the reflected primary light is guided as the return light in the reverse direction through the optical branching unit 50 to the light detection unit. 30 is detected. Further, when such an abnormality occurs, there is a risk that the primary light may escape from the abnormality occurrence location (breakage or the like).
  • the primary light is ultraviolet light, laser light, or the like
  • a predetermined prescribed light amount or more may be irradiated to a predetermined part such as a human eye, so that the safety of the apparatus is lowered.
  • the primary light is not converted into light and penetrates the light conversion member 21 and is mixed with the irradiation light. Further, local heat generated by the primary light is generated, which is undesirable for the user of the light source module or damage to the equipment. Occur.
  • the primary light is ultraviolet light, laser light, or the like, there is a possibility that a predetermined prescribed light amount or more may be irradiated to a predetermined part such as the human eye, so that the safety of the apparatus is lowered.
  • the abnormality detection target region that is the region on the secondary terminal side of the optical branching unit 50, that is, in the light conversion unit 20 and the optical fiber 40
  • the abnormality occurrence location The primary light and the return light of the secondary light are guided from the optical fiber 40 to the light detection unit 30 through the light branching unit 50.
  • the amount of light or spectrum that can be detected by the light detection unit 30 changes, so that the above-described failure can be detected.
  • the location where the abnormality has occurred is not generated in the two optical fibers 40 simultaneously or in the two light conversion members 21, the light output after light conversion from the light conversion unit 20 is reduced. A predetermined output can be maintained without stopping.
  • the light branching unit 50 is provided, and the light detection unit 30 is provided on the primary terminal side of the light branching unit 50 in parallel with the primary light unit 10.
  • the abnormality is detected, the abnormal part is estimated, or the cause of the abnormality is diagnosed. It becomes possible. Further, at this time, if no abnormality occurs over the plurality of optical fibers 40 or the plurality of light conversion members 21, the light output after light conversion from the light conversion unit 20 is reduced but stopped. And a predetermined output can be maintained.
  • the primary light unit 10 and the light detection unit 30 are configured to be optically connected to a plurality of sets of “optical fiber 40 and light conversion member 21” via the light branching unit 50. With such a configuration, even if a pair of “optical fiber 40 and light conversion member 21” breaks down, it is possible to maintain the predetermined light output and simultaneously estimate the degree of failure and the failure state.
  • the light conversion member 21 of the light conversion unit 20 a material that generates secondary light by converting or controlling any one of the light spectrum, light amount, light distribution characteristic, and polarization characteristic of the primary light is used. Adopt accordingly. By doing so, it is possible to realize an illuminating device that can emit illumination light having different light spectrum, light distribution, and polarization according to the intended use.
  • the optical branching unit 50 may be arranged on the optical conversion unit 20 side instead of the primary optical unit 10 side with respect to the optical fiber 40 as shown in FIG.
  • the optical fiber 40 may be arranged on both the primary light unit 10 side and the light conversion unit 20 side so as to sandwich the light branching unit 50 therebetween.
  • the light branching unit 50 be arranged on the primary light unit 10 and the light detection unit 30 side with respect to the abnormality detection target part as shown in FIG.
  • the light conversion unit 20 is disposed at the distal end of an insertion portion of an endoscope that is inserted into an observation target, and the optical fiber 40 is used for the endoscope. It is assumed that the mirror insertion part is extended.
  • the insertion portion of the endoscope has a movable configuration so that it can be freely bent according to the shape inside the subject and the insertion path.
  • the possibility that the optical fiber 40 is disconnected due to repeated movement of the insertion portion is higher than in other usage applications. Therefore, it is desirable to arrange the optical branching unit 50 on the primary light unit 10 and the light detection unit 30 side so that a plurality of optical fibers 40 inserted through the insertion portion function as detection target regions. For the same reason, the length of the plurality of optical fibers 40 arranged between the secondary terminal of the optical branching unit 50 and the optical conversion unit 50 is different from the primary optical unit 10 to the optical branching unit. It is desirable that it is longer than the length to reach 50 primary terminals.
  • the primary light unit 10 and the light detection unit 30 and the light branching unit 50 when a disconnection abnormality occurs between the primary light unit 10 and the light detection unit 30 and the light branching unit 50, the illumination light from the light conversion unit 20 is completely stopped or the abnormality detection function is stopped. Therefore, as shown in FIG. 1, the primary light unit 10, the light detection unit, and the light connection between the primary light unit 10 and the light detection unit 30 and the light branching unit 50 are not broken. It is desirable that their relative positions are fixed, for example, 30 and the optical branching unit 50 are configured on the same substrate 60.
  • the light source system includes a primary light source drive circuit 71, a light detection circuit 72, an abnormality diagnosis circuit 73, a primary light source drive control circuit 74, and an abnormality notification unit 75 as shown in FIG. In addition.
  • the primary light source drive circuit 71 drives the primary light unit 10 of the light source module.
  • the light detection circuit 72 is an amplifier that amplifies the output of the light detection unit 30 of the light source module.
  • the abnormality diagnosis circuit 73 diagnoses whether there is an abnormality in the abnormality detection target region based on the detection result of the light detection unit 30 input via the light detection circuit 72.
  • the primary light source drive control circuit 74 controls the drive of the primary light unit 10 of the light source module by the primary light source drive circuit 71 based on the diagnosis result of the abnormality diagnosis circuit 73, and detects the occurrence of abnormality in the light source system.
  • the abnormality notifying unit 75 for notifying the user is driven and controlled.
  • the output of the light detection unit 30 is input to the abnormality diagnosis circuit 73 via the light detection circuit 72, and the degree of abnormality is estimated.
  • the primary light source drive control circuit 74 is concerned about the penetration of the primary light included in the illumination light or the light leakage or heat generation at the optical fiber 40 or the tip of the optical fiber 40, the primary light source drive control circuit 74 Depending on the degree, the abnormality notification unit 75 can notify the user of the occurrence of abnormality.
  • the primary light source drive control circuit 74 does not necessarily stop the light output from the light source module by setting the drive level of the primary light source drive circuit 71 according to a preset standard or calculation method according to the degree of abnormality. Even without this, it is possible to ensure equipment damage and safety for the user.
  • a method for limiting the drive of the primary light unit 10 to a predetermined level in addition to limiting the drive level in DC, that is, controlling the driving intensity, a method of controlling the pulse width and pulse period is also applied. it can.
  • the light source module according to the second embodiment of the present invention includes a spectral detector 31 having a spectral function such as a light spectrum and polarization in the light detection unit 30 of the light source module according to the first embodiment. Is introduced.
  • the spectral detector 31 of the light detection unit 30 spectrally detects the primary light component and the secondary light component to detect the phenomenon shown in FIG. 3B. .
  • the optical fiber 40 when the optical fiber 40 is broken or cracked, the light amount of the primary light component detected by the spectral detector 31 of the light detection unit 30 increases moderately, and the light amount of the secondary light component decreases. This is because when the optical fiber 40 is cracked or broken, the broken end surface of the optical fiber 40 does not become a mirror surface, so that the amount of primary light reflected by the end surface increases moderately.
  • the fluctuation of the primary light component is small, but the light amount of the secondary light component is reduced. Therefore, the secondary light component is reduced, that is, the illumination light is darkened, and heat is generated in the middle of the optical fiber 40 that is a light guide path, or light leakage is caused.
  • the light conversion member 21 of the light conversion unit 20 when the light conversion member 21 of the light conversion unit 20 is missing, the light amount of the primary light component detected by the spectral detector 31 of the light detection unit 30 increases greatly, and the light amount of the secondary light component decreases. This is because the end face of the optical fiber 40 exposed due to the lack of the light conversion member 21 is often in a mirror state, so that the primary light is reflected very strongly.
  • the penetrating component of the primary light component increases and the light amount of the secondary light component decreases. Therefore, the secondary light component is reduced, that is, the illumination light is darkened, and the primary light output from the light source module is increased.
  • the primary light component detected by the spectroscopic detector 31 of the light detection unit 30 varies little, but the secondary light.
  • the light quantity of the component decreases. This is because the primary light is hardly reflected in the burnt portion.
  • the fluctuation of the primary light component is small, but the light amount of the secondary light component is reduced. Therefore, the secondary light component is reduced, that is, the illumination light is darkened, and the light source module tip is heated.
  • the light detection unit 30 with a spectral detector 31 having a function of splitting the light spectrum or polarization characteristics of incident light, the primary light component and the secondary light component detected by the spectral detector 31 are detected. Based on the state, the cause of the abnormality that has occurred can be estimated.
  • the configuration of the light source system includes a primary light source drive circuit 71, a light detection circuit 72, an abnormality diagnosis circuit 73, and a primary light source drive control circuit. 74 and an abnormality notifying unit 75 are further provided.
  • the functions of the primary light source drive circuit 71, the light detection circuit 72, the abnormality diagnosis circuit 73, the primary light source drive control circuit 74, and the abnormality notification unit 75 are the same as those of the first embodiment.
  • the light detection circuit 72 amplifies the output of the spectral detector 31 provided in the light detection unit 30 of the light source module. Further, the abnormality diagnosis circuit 73 diagnoses the presence / absence of an abnormality in the abnormality detection target region and an estimated cause of the abnormality based on the detection result of the spectral detector 31 input via the light detection circuit 72.
  • the primary light source drive control circuit 74 is concerned about the penetration of the primary light included in the illumination light or the light leakage or heat generation at the optical fiber 40 or the tip of the optical fiber 40
  • the primary light source drive control circuit 74 Depending on the degree and the cause of the abnormality, the abnormality notification unit 75 can notify the user of the abnormality occurrence state.
  • the primary light source drive control circuit 74 sets the drive level of the primary light source drive circuit 71 according to a preset standard or calculation method according to the degree of abnormality or the cause of the failure. Even if the light output is not necessarily stopped, it is possible to ensure equipment damage and safety for the user.
  • a method for limiting the drive of the primary light unit 10 to a predetermined level in addition to limiting the drive level in DC, that is, controlling the driving intensity, a method of controlling the pulse width and pulse period is also applied. it can.
  • the primary light source drive control circuit 74 sets the driving state of the primary light source drive circuit in association with any one of the light spectrum, the light amount, and the polarization characteristic detected by the spectral detector 31 of the light detection unit 30. can do.
  • the numbers of the light conversion members 21 and the optical fibers 40 of the light conversion unit 20 do not need to match as shown in FIG. 1.
  • the numbers of the light conversion members 21 and the optical fibers 40 of the light conversion unit 20 do not need to match as shown in FIG. 1.
  • You may connect to the one light conversion member 21.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

 1次光を射出する1次光ユニット(10)と、1次光を受光して2次光に変換して射出する光変換ユニット(20)と、光を検出する光検出ユニット(30)と、光を導光する複数本の光ファイバ(40)と、複数の1次端子と複数の2次端子とを備え、1次端子の一つに入射した光を複数の2次端子から射出し、2次端子の一つに入射した光を複数の1次端子から射出する光分岐ユニット(50)と、から光源モジュールを構成する。ここで、複数本の光ファイバを介して、1次光ユニットから光変換ユニットに向けて1次光を導光可能とすると共に光変換ユニットから光検出ユニットに向けて2次光を導光可能とするように、1次光ユニット及び光検出ユニットを光分岐ユニットの1次端子側に配置し、光変換ユニットを光分岐ユニットの2次端子側に配置する。

Description

光源モジュール及び光源システム
 本発明は、光源モジュール及びそれを用いた光源システムに関する。
 半導体レーザ(LD)等の1次光ユニットから出射した1次光を光ファイバを経由して波長変換部材に導光し、該波長変換部材で所望の波長を持った2次光に変換し、その変換された2次光を照明光として出射する光源モジュールが知られている。
 特許文献1は、このような光源モジュールにおいて、光ファイバを2本用いて、1次光ユニットから、波長変換部材を複数配置した光変換ユニットに、導光する構成としたファイバ光源構成を提案している。このような構成とすることにより、一方の光ファイバが断線しても、あるいは波長変換部材の一つが脱落または破損等の故障が発生しても、完全には照明が停止しないファイバ光源を提供できる。
特開2009-189463号公報
 上記特許文献1に開示の技術では、一方の光ファイバの断線や一つの波長変換素子の故障など、異常が発生したときに、照明が完全停止しない状況を確保することができる。しかしながら、上記特許文献1に開示の技術では、その異常の発生を検知することはできなかった。
 本発明は、上記の点に鑑みてなされたもので、異常発生時にそのことを検知できる光源モジュール及びそれを用いた光源システムを提供することを目的とする。
 本発明の光源モジュールの一態様は、
 1次光を射出する1次光ユニットと、
 前記1次光を受光して2次光に変換し、その変換した2次光を射出する光変換ユニットと、
 光を検出する光検出ユニットと、
 光を導光する複数本の光ファイバと、
 複数の1次端子と複数の2次端子とを備え、前記1次端子の一つに入射した光を前記複数の2次端子から射出し、前記2次端子の一つに入射した光を前記複数の1次端子から射出する光分岐ユニットと、
 を具備し、
 前記複数本の光ファイバを介して、前記1次光ユニットから前記光変換ユニットに向けて前記1次光を導光可能とすると共に前記光変換ユニットから前記光検出ユニットに向けて前記2次光を導光可能とするように、前記1次光ユニット及び前記光検出ユニットは前記光分岐ユニットの前記1次端子側に配置され、前記光変換ユニットは前記光分岐ユニットの前記2次端子側に配置されることを特徴とする。 
 また、本発明の光源システムの一態様は、
 前記光源モジュールの一態様と、
 前記光源モジュールの前記1次光ユニットを駆動する1次光源ドライブ回路と、
 前記光検出ユニットの検出結果に基づいて、異常検出対象領域の異常の有無を診断する異常診断回路と、
 前記異常診断回路の診断結果に基づいて、前記1次光源ドライブ回路による前記1次光ユニットの駆動を制御する1次光源ドライブ制御回路と、
 を具備することを特徴とする。 
 さらに、本発明の光源システムの別の態様は、
 前記光源モジュールの一態様において、前記光検出ユニットは、入射する光の光スペクトルまたは偏光特性を分光する機能を有する分光検出器を備え、
 前記光源モジュールの前記1次光ユニットを駆動する1次光源ドライブ回路と、
 前記光検出ユニットの前記分光検出器の検出結果に基づいて、異常検出対象領域の異常の有無と異常の推定原因を診断する異常診断回路と、
 前記異常診断回路の診断結果に基づいて、前記1次光源ドライブ回路による前記1次光ユニットの駆動を制御する1次光源ドライブ制御回路と、
 を具備することを特徴とする。
 本発明によれば、1次光ユニットと光検出ユニットは、光分岐ユニットを介して、複数本の光ファイバを経由して光変換ユニットと光接続されるので、異常発生時に、照明が完全停止しない状況を確保した上で、異常発生を検知できる光源モジュール及びそれを用いた光源システムを提供することができる。
図1は、本発明の第1実施例に係る光源モジュールの構成を示す図である。 図2は、本発明の第1実施例に係る光源システムの構成を示す図である。 図3Aは、本発明の第2実施例に係る光源モジュールの構成を示す図である。 図3Bは異常検出対象領域の異常時の影響を説明するための図である。 図4は、本発明の第2実施例に係る光源システムの構成を示す図である。 図5は、第1実施例に係る光源モジュールの変形例の構成を示す図である。
 以下、本発明を実施するための形態を図面を参照して説明する。
 [第1実施例]
 本発明の第1実施例に係る光源モジュールは、例えば内視鏡の照明装置として使用される。この光源モジュールは、図1に示すように、1次光ユニット10、光変換ユニット20、光検出ユニット30、複数本の光ファイバ40、及び光分岐ユニット50から構成されている。
 ここで、1次光ユニット10は、1次光を射出する光源である。
 光変換ユニット20は、上記1次光ユニット10から複数本(本実施例では2本)の光ファイバ40を導光してきた1次光を受光して2次光に変換し、その変換した2次光を照明光として射出する。そのため、該光変換ユニット20は、1次光ユニット10からの1次光の光学特性を変換する機能を有する複数(本実施例では2個)の光変換部材21を有している。この「光学特性を変換する機能」とは、例えば、光スペクトルを変換する機能(蛍光体、エレクトロルミネッセンス、半導体発光、光フィルタ、2次高調波発生)、配光を変換する機能(光拡散、レンズ作用など)、偏光を変換する機能、などが該当する。従って、1次光は、該光変換部材21によって所定の光学特性に変換された2次光とされた後、該光源モジュールの照射光として、図示しない照射対象に向かって射出される。なお、この2次光は、所定の集光構成を採用したとしても、その全てが照明対象に向かうものではなく、そのような2次光の一部が、上記複数本の光ファイバ40によって、上記1次光とは逆方向の戻り光として導光されることとなる。
 光検出ユニット30は、上記複数本の光ファイバ40によって導光されてきた戻り光を検出する。
 光分岐ユニット50は、複数(本実施例では2個)の1次端子と複数(本実施例では2個)の2次端子とを備える。該光分岐ユニット50は、1次端子の一つに入射した光をその複数の2次端子から射出し、2次端子の一つに入射した光をその複数の1次端子から射出する、光分岐機能を有している。そして、本実施例では、1次光ユニット10及び光検出ユニット30が該光分岐ユニットの1次端子側に配置され、光変換ユニット20が該光分岐ユニット50の2次端子側に配置されるように、それぞれ光接続されている。これにより、複数本の光ファイバ40を介して、1個の1次光ユニット10からの1次光を光変換ユニット20に向けて導光可能となり、且つ、光変換ユニット20からの2次光(戻り光)を1個の光検出ユニット30へ向けて導光可能となる。
 このような構成の光源モジュールにおいて、もし、何れかの光ファイバ40が破断する等の異常が発生すると、光変換ユニット20への1次光が減少するため、光変換ユニット20からの光変換後の光出力が低下する。このとき、その異常発生箇所(破断など)にて反射され、その反射された1次光が、光ファイバ40を逆方向の戻り光として導光されて、光分岐ユニット50を介して光検出ユニット30によって検出される状態となる。また、このような異常が発生すると、1次光が異常発生箇所(破断など)から抜け出るおそれがある。すなわち、異常発生箇所の近傍からの1次光の漏れ、さらにはこれが引き起こす局所発熱などが発生し、当該光源モジュールの使用者にとって好ましくない現象や機器の損傷などが起こる。特に、1次光が紫外光やレーザ光などの場合は、一定の規定光量以上が人体の目などの所定部位に照射される可能性があるため、装置としての安全性が低下する。
 また、光変換ユニット20又はその光変換部材21が脱落したり損傷したりする等の異常が発生しても、光変換ユニット20からの光変換後の光出力が低下すると共に、1次光が光変換ユニット20から抜け出るおそれがある。すなわち、1次光が光変換されずに光変換部材21を突き抜けて照射光に混ざり、さらにはこれが引き起こす局所発熱などが発生し、当該光源モジュールの使用者にとって好ましくない現象や機器の損傷などが起こる。特に、1次光が紫外光やレーザ光などでの場合は、一定の規定光量以上が人体の目などの所定部位に照射される可能性があるため、装置としての安全性が低下する。
 本実施例に係る光源モジュールにおいては、上記光分岐ユニット50の2次端子側の領域である異常検出対象領域、つまり光変換ユニット20及び光ファイバ40に前述の異常が発生した場合、異常発生箇所からの1次光及び2次光の戻り光が光ファイバ40から光分岐ユニット50を経て光検出ユニット30に導光される。これにより、異常検出領域において異常が発生したならば、光検出ユニット30にて検知できる光量やスペクトルが変化するので、上述の故障を検出することができる。なお、異常発生箇所が2本の光ファイバ40に同時に、あるいは2つの光変換部材21に同時に、発生していなければ、光量は光変換ユニット20からの光変換後の光出力が低下するが、停止することなく所定の出力は維持できる。
 以上のように、複数(本実施例では2つの)光ファイバ40の全て(本実施例では両方)からの戻り光を検出するために、1次光ユニット10から光変換部材21に光が導光する間に、光分岐ユニット50を設けると共に、光分岐ユニット50の1次光ユニット10と並列する1次端子側に、光検出ユニット30を設ける。このような構成とすることで、光ファイバ40の破断、光変換ユニット20/光変換部材21の脱落、これらの部材損傷等の異常発生時には、光ファイバ40が異常発生箇所からの戻り光を光分岐ユニット50を介して光検出ユニット30に導光する。よって、このような異常発生時に光検出ユニット30にて検出する光の光学特性(光量やスペクトルなど)の変化から、異常を検知したり、異常個所を推定したり、異常の推定原因を診断することが可能となる。また、この時、異常発生箇所が複数本の光ファイバ40や複数の光変換部材21に渡って発生してなければ、光変換ユニット20からの光変換後の光出力は低下するが停止することなく所定の出力は維持することができる。
 すなわち、1次光ユニット10と光検出ユニット30は、光分岐ユニット50を介して、複数組の「光ファイバ40と光変換部材21」と光接続される構成としている。このような構成とすることにより、「光ファイバ40と光変換部材21」の一組が故障しても、所定の光出力を維持すると同時に、故障の程度や故障状態の推定が可能となる。
 また、光変換ユニット20の光変換部材21として、1次光の光スペクトル、光量、配光特性、偏光特性、の何れかを変換または制御することで2次光を発生するものを使用用途に応じて採用する。こうすることで、その使用用途に応じた異なる光スペクトル、配光、偏光の照明光を射出できる照明装置を実現できる。
 なお、光分岐ユニット50は、図1に示すような光ファイバ40に対して1次光ユニット10側でなく、光変換ユニット20側に配置する構成であっても良いことは勿論である。また、光ファイバ40は、光分岐ユニット50を挟むように、1次光ユニット10側と光変換ユニット20側の両方に配置する構成であっても良いことは無論である。
 ただし、本光源モジュールの使用用途によっては、図1に示すように光分岐ユニット50を、異常検出対象部位に対して1次光ユニット10及び光検出ユニット30側に配置する構成であることが好ましい場合がある。例えば、本光源モジュールを内視鏡の照明装置として使用する場合、光変換ユニット20は観察対象の内部に挿入される内視鏡の挿入部の先端に配置されて、光ファイバ40がその内視鏡挿入部内を延在されることが想定される。この内視鏡の挿入部は、被検体内部の形状や挿入経路に応じて自在に湾曲などできるように可動構成となっている。したがって、挿入部の繰り返しの可動により、光ファイバ40が断線する可能性が、他の使用用途に比較して高い。そのため、光分岐ユニット50を1次光ユニット10及び光検出ユニット30側に配置し、前記挿入部に挿通される複数本の光ファイバ40を検出対象領域として機能するように構成することが望ましい。同じ理由により、前記光分岐ユニット50の前記2次端子と前記光変換ユニット50との間に配置される前記複数本の光ファイバ40の長さは、前記1次光ユニット10から前記光分岐ユニット50の前記1次端子に至る長さよりも長いことが望ましい。
 さらに、1次光ユニット10及び光検出ユニット30と光分岐ユニット50との間で断線の異常が発生すると光変換ユニット20からの照明光が完全停止するか、異常検出機能が停止してしまう。そこで、1次光ユニット10及び光検出ユニット30と光分岐ユニット50との間の光接続は、断線などすることが無いように、図1に示すように、1次光ユニット10、光検出ユニット30及び光分岐ユニット50を、同一の基板60上に構成する等、それらの相対位置が固定されていることが望ましい。
 次に、上記のような構成の光源モジュールを用いた、本発明の第1実施例に係る光源システムを説明する。
 本光源システムは、上記光源モジュールに加えて、図2に示すように、1次光源ドライブ回路71、光検出回路72、異常診断回路73、1次光源ドライブ制御回路74、及び異常報知部75を更に備えている。
 ここで、1次光源ドライブ回路71は、上記光源モジュールの1次光ユニット10を駆動する。
 光検出回路72は、上記光源モジュールの光検出ユニット30の出力を増幅するアンプ等である。
 異常診断回路73は、光検出回路72を介して入力された光検出ユニット30の検出結果に基づいて、異常検出対象領域の異常の有無を診断する。
 1次光源ドライブ制御回路74は、異常診断回路73の診断結果に基づいて、1次光源ドライブ回路71による上記光源モジュールの1次光ユニット10の駆動を制御すると共に、異常の発生を当該光源システムの使用者に報知するための異常報知部75を駆動制御する。
 このような構成の光源システムにおいては、光検出ユニット30の出力を光検出回路72を経て、異常診断回路73に入力し、異常の程度の推定を行なう。そして、1次光源ドライブ制御回路74は、照明光に含まれる1次光の突き抜けや光ファイバ40、あるいは、光ファイバ40の先端部における光漏れや発熱が懸念される場合は、推定した異常の程度に応じて、異常報知部75にて、異常発生状況を使用者に報知することができる。
 また、1次光源ドライブ制御回路74は、異常の程度に応じて、1次光源ドライブ回路71のドライブレベルを予め設定した規準や演算方法によって設定することにより、光源モジュールからの光出力を必ずしも停止しなくても、機器損傷や使用者に対する安全性を確保することができる。なお、1次光ユニット10のドライブを所定のレベルに制限する方法には、DC的にドライブレベルを制限するつまり駆動強度を制御する他にも、パルス幅やパルス周期を制御する方法なども適用できる。
 以上のように、本光源システムでは、照明が完全停止しないだけでなく、安全性と明るさを適切に設定することができるため、異常発生の影響を最小限に止めることが可能となる。
 [第2実施例]
 本発明の第2実施例に係る光源モジュールは、図3Aに示すように、上記第1実施例に係る光源モジュールにおける光検出ユニット30に、光スペクトルや偏光などの分光機能を備える分光検出器31を導入したものである。
 このように、光検出ユニット30の分光検出器31にて、1次光成分と2次光成分を分光して検出することにより、典型的には、図3Bに示すような現象が推定される。
 すなわち、光ファイバ40に破断またはヒビが入ると、光検出ユニット30の分光検出器31で検出される1次光成分は光量が中程度増加し、2次光成分は光量が減少する。これは、光ファイバ40にヒビや破断が発生した場合、光ファイバ40の破断した端面は鏡面状態にはならないので、その端面による1次光の反射光量は中程度の増加となるものである。このとき、光源モジュールの光出力に関しては、1次光成分の変動は少ないが、2次光成分の光量は減少する。したがって、2次光成分が低下する、すなわち照明光が暗くなるという影響が発生すると共に、光導光路である光ファイバ40の途中での発熱、または、光漏れの影響が発生する。
 一方、光変換ユニット20の光変換部材21が欠落すると、光検出ユニット30の分光検出器31で検出される1次光成分は光量が大きく増加し、2次光成分は光量が減少する。これは、光変換部材21の欠落により露出する光ファイバ40の端面は鏡面状態になることが多いので、1次光は非常に強く反射するからである。このとき、光源モジュールの光出力に関しては、1次光成分は突き抜け成分が増加し、2次光成分の光量は減少する。したがって、2次光成分が低下する、すなわち照明光が暗くなるという影響が発生すると共に、光源モジュールからの1次光出力が増加するという影響が発生する。
 また、光変換ユニット20の光変換部材21が損傷を受けたとき(例えば焼け焦げ)には、光検出ユニット30の分光検出器31で検出される1次光成分の変動は少ないが、2次光成分の光量は減少する。これは、焼け焦げ部分では、1次光の反射は殆ど発生しないからである。このとき、光源モジュールの光出力に関しては、1次光成分の変動は少ないが、2次光成分の光量は減少する。したがって、2次光成分が低下する、すなわち照明光が暗くなるという影響が発生すると共に、光源モジュール先端部が発熱するという影響が発生する。
 したがって、光検出ユニット30に、入射する光の光スペクトルまたは偏光特性を分光する機能を有する分光検出器31を設けることにより、該分光検出器31で検出した1次光成分と2次光成分の状態に基づいて、発生した異常の原因を推定できるようになる。
 なお、図3Bに示した異常の原因とその影響は、一例であり、これに限定するものではないことは勿論である。
 次に、上記のような構成の光源モジュールを用いた、本発明の第2実施例に係る光源システムを説明する。
 本光源システムの構成は、図4に示すように、本第2実施例に係る光源モジュールに加えて、1次光源ドライブ回路71、光検出回路72、異常診断回路73、1次光源ドライブ制御回路74、及び異常報知部75を更に備えている。ここで、1次光源ドライブ回路71、光検出回路72、異常診断回路73、1次光源ドライブ制御回路74、及び異常報知部75の機能は、上記第1実施例のそれと同様である。
 ただし、本実施例においては、光検出回路72は、上記光源モジュールの光検出ユニット30が備える分光検出器31の出力を増幅する。また、異常診断回路73は、光検出回路72を介して入力された分光検出器31の検出結果に基づいて、異常検出対象領域の異常の有無や異常の推定原因の診断を行なう。そして、1次光源ドライブ制御回路74は、照明光に含まれる1次光の突き抜けや光ファイバ40、あるいは、光ファイバ40の先端部における光漏れや発熱が懸念される場合は、推定した異常の程度や異常の原因に応じて、異常報知部75にて、異常発生状況を使用者に報知することができる。
 また、1次光源ドライブ制御回路74は、異常の程度や故障の推定原因に応じて、1次光源ドライブ回路71のドライブレベルを予め設定した規準や演算方法によって設定することにより、光源モジュールからの光出力を必ずしも停止しなくても、機器損傷や使用者に対する安全性を確保することができる。なお、1次光ユニット10のドライブを所定のレベルに制限する方法には、DC的にドライブレベルを制限するつまり駆動強度を制御する他にも、パルス幅やパルス周期を制御する方法なども適用できる。
 以上のように、本光源システムでは、照明が完全停止しないだけでなく、安全性と明るさを適切に設定することができるため、異常発生の影響を最小限に止めることが可能となる。
 また、1次光源ドライブ制御回路74は、光検出ユニット30の分光検出器31が検出した光スペクトル、光量、偏光特性の何れかと関連性を持たせて、1次光源ドライブ回路の駆動状態を設定することができる。
 以上実施例に基づいて本発明を説明したが、本発明は上述した実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。
 例えば、光変換ユニット20の光変換部材21と光ファイバ40の数は、図1に示すように一致している必要はなく、例えば、図5に示すように、複数本の光ファイバ40を一つの光変換部材21に接続しても構わない。

Claims (12)

  1.  1次光を射出する1次光ユニット(10)と、
     前記1次光を受光して2次光に変換し、その変換した2次光を射出する光変換ユニット(20)と、
     光を検出する光検出ユニット(30)と、
     光を導光する複数本の光ファイバ(40)と、
     複数の1次端子と複数の2次端子とを備え、前記1次端子の一つに入射した光を前記複数の2次端子から射出し、前記2次端子の一つに入射した光を前記複数の1次端子から射出する光分岐ユニット(50)と、
     を具備し、
     前記複数本の光ファイバを介して、前記1次光ユニットから前記光変換ユニットに向けて前記1次光を導光可能とすると共に前記光変換ユニットから前記光検出ユニットに向けて前記2次光を導光可能とするように、前記1次光ユニット及び前記光検出ユニットは前記光分岐ユニットの前記1次端子側に配置され、前記光変換ユニットは前記光分岐ユニットの前記2次端子側に配置されることを特徴とする光源モジュール。
  2.  前記光分岐ユニットの前記2次端子と前記光変換ユニットとの間に配置される前記複数本の光ファイバの長さは、前記1次光ユニットから前記光分岐ユニットの前記1次端子に至る長さよりも長いことを特徴とする請求項1に記載の光源モジュール。
  3.  前記光分岐ユニットは、異常検出対象部位に対して前記1次光ユニット及び前記光検出ユニット側に配置されることを特徴とする請求項1に記載の光源モジュール。
  4.  前記光変換ユニットは、前記1次光の光スペクトル、光量、配光特性、偏光特性、の何れかを変換または制御することで前記2次光を発生する機能を有する光変換部材(21)を備えることを特徴とする請求項1に記載の光源モジュール。
  5.  請求項1乃至4の何れかに記載の光源モジュールと、
     前記光源モジュールの前記1次光ユニットを駆動する1次光源ドライブ回路(71)と、
     前記光検出ユニットの検出結果に基づいて、異常検出対象領域の異常の有無を診断する異常診断回路(73)と、
     前記異常診断回路の診断結果に基づいて、前記1次光源ドライブ回路による前記1次光ユニットの駆動を制御する1次光源ドライブ制御回路(74)と、
     を具備することを特徴とする光源システム。
  6.  前記1次光源ドライブ制御回路は、前記1次光源ドライブ回路の駆動強度または駆動パルス幅を設定することを特徴とする請求項5に記載の光源システム。
  7.  異常の発生を報知するための異常報知部(75)を更に具備し、
     前記1次光源ドライブ制御回路は、前記異常診断回路の診断結果に基づいて、前記異常報知部を駆動制御することを特徴とする請求項5に記載の光源システム。
  8.  前記光検出ユニットは、入射する光の光スペクトルまたは偏光特性を分光する機能を有する分光検出器(31)を備えることを特徴とする請求項1乃至4の何れかに記載の光源モジュール。
  9.  請求項8に記載の光源モジュールと、
     前記光源モジュールの前記1次光ユニットを駆動する1次光源ドライブ回路(71)と、
     前記光検出ユニットの前記分光検出器の検出結果に基づいて、異常検出対象領域の異常の有無と異常の推定原因を診断する異常診断回路(73)と、
     前記異常診断回路の診断結果に基づいて、前記1次光源ドライブ回路による前記1次光ユニットの駆動を制御する1次光源ドライブ制御回路(74)と、
     を具備することを特徴とする光源システム。
  10.  前記1次光源ドライブ制御回路は、前記光検出ユニットの前記分光検出器が検出した光スペクトル、光量、偏光特性の何れかと関連性を持たせて、前記1次光源ドライブ回路の駆動状態を設定する機能を有することを特徴とする請求項9に記載の光源システム。
  11.  前記1次光源ドライブ制御回路は、前記1次光源ドライブ回路の駆動強度または駆動パルス幅を設定することを特徴とする請求項10に記載の光源システム。
  12.  異常の発生を報知するための異常報知部(75)を更に具備し、
     前記1次光源ドライブ制御回路は、前記異常診断回路の診断結果に基づいて、前記異常報知部を駆動制御することを特徴とする請求項9に記載の光源システム。
PCT/JP2012/054980 2011-03-01 2012-02-28 光源モジュール及び光源システム WO2012118095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280010814.2A CN103402420B (zh) 2011-03-01 2012-02-28 光源模块以及光源系统
EP12752004.7A EP2682046A4 (en) 2011-03-01 2012-02-28 LIGHT SOURCE MODULE AND LIGHT SOURCE SYSTEM
US14/013,705 US9445477B2 (en) 2011-03-01 2013-08-29 Light source module and light source system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-043892 2011-03-01
JP2011043892A JP5864870B2 (ja) 2011-03-01 2011-03-01 光源システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/013,705 Continuation US9445477B2 (en) 2011-03-01 2013-08-29 Light source module and light source system

Publications (1)

Publication Number Publication Date
WO2012118095A1 true WO2012118095A1 (ja) 2012-09-07

Family

ID=46758026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054980 WO2012118095A1 (ja) 2011-03-01 2012-02-28 光源モジュール及び光源システム

Country Status (5)

Country Link
US (1) US9445477B2 (ja)
EP (1) EP2682046A4 (ja)
JP (1) JP5864870B2 (ja)
CN (1) CN103402420B (ja)
WO (1) WO2012118095A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959547B2 (ja) * 2013-02-01 2016-08-02 オリンパス株式会社 内視鏡システム
JP6120722B2 (ja) * 2013-08-13 2017-04-26 オリンパス株式会社 観察装置及び観察装置の作動方法
WO2015048806A2 (en) 2013-09-30 2015-04-02 Nidus Medical, Llc Apparatus and methods for treating rhinitis
CN106999022A (zh) * 2015-01-22 2017-08-01 奥林巴斯株式会社 内窥镜系统
JPWO2016185647A1 (ja) * 2015-05-15 2018-03-01 ソニー株式会社 光源装置、光源駆動方法、及び観察装置
CN107923599B (zh) * 2015-08-24 2021-03-12 亮锐有限责任公司 用于车辆头灯的照明设备
JPWO2017104048A1 (ja) 2015-12-17 2018-11-01 オリンパス株式会社 内視鏡用照明装置及び内視鏡システム
WO2017145336A1 (ja) * 2016-02-25 2017-08-31 オリンパス株式会社 内視鏡システム
DE102018107523A1 (de) 2018-03-29 2019-10-02 Schott Ag Licht- oder Bildleitkomponenten für Einweg-Endoskope
CN110389018A (zh) * 2019-08-31 2019-10-29 浙江工业大学 一种光纤纤内异常检测系统
CN110701503A (zh) * 2019-09-29 2020-01-17 浙江光塔节能科技有限公司 一种光纤反馈系统
CN110568570A (zh) * 2019-09-29 2019-12-13 浙江光塔节能科技有限公司 一种纤内反馈系统
CN110529761A (zh) * 2019-09-29 2019-12-03 浙江光塔节能科技有限公司 一种光纤控制系统
DE102019133042A1 (de) * 2019-12-04 2021-06-10 Schott Ag Endoskop, Einweg-Endoskopsystem und Lichtquelle für Endoskop

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232866A (ja) * 1985-04-05 1986-10-17 松下電器産業株式会社 レ−ザ−照射装置
JPH01206306A (ja) * 1988-02-13 1989-08-18 Fujitsu Ltd 光送信器の発光制御方法
JPH02107939A (ja) * 1988-10-14 1990-04-19 Matsushita Electric Ind Co Ltd 光ファイバーの状態監視装置
JP2008212348A (ja) * 2007-03-02 2008-09-18 Olympus Corp 内視鏡装置
JP2009189463A (ja) 2008-02-13 2009-08-27 Fujifilm Corp 内視鏡光源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988614A (en) * 1975-06-30 1976-10-26 Northern Electric Company Limited Equalization of chromatic pulse dispersion in optical fibres
JP4947975B2 (ja) * 2005-12-28 2012-06-06 オリンパス株式会社 内視鏡装置および内視鏡用照明装置
JP4920614B2 (ja) * 2008-02-20 2012-04-18 オリンパス株式会社 照明装置および内視鏡システム
JP2009213673A (ja) * 2008-03-11 2009-09-24 Fujinon Corp 内視鏡システム及び内視鏡の検査方法
JP2009259703A (ja) * 2008-04-18 2009-11-05 Olympus Corp 照明装置、画像取得装置
JP5173663B2 (ja) * 2008-08-07 2013-04-03 オリンパス株式会社 光源装置およびこれを用いた内視鏡装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232866A (ja) * 1985-04-05 1986-10-17 松下電器産業株式会社 レ−ザ−照射装置
JPH01206306A (ja) * 1988-02-13 1989-08-18 Fujitsu Ltd 光送信器の発光制御方法
JPH02107939A (ja) * 1988-10-14 1990-04-19 Matsushita Electric Ind Co Ltd 光ファイバーの状態監視装置
JP2008212348A (ja) * 2007-03-02 2008-09-18 Olympus Corp 内視鏡装置
JP2009189463A (ja) 2008-02-13 2009-08-27 Fujifilm Corp 内視鏡光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682046A4

Also Published As

Publication number Publication date
CN103402420B (zh) 2017-02-08
EP2682046A1 (en) 2014-01-08
US20130342110A1 (en) 2013-12-26
JP5864870B2 (ja) 2016-02-17
US9445477B2 (en) 2016-09-13
EP2682046A4 (en) 2014-08-20
JP2012179225A (ja) 2012-09-20
CN103402420A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5864870B2 (ja) 光源システム
JP4812430B2 (ja) 内視鏡装置
JP5757764B2 (ja) 光源システム及び撮像システム
US8939628B2 (en) Driving method of light source apparatus
WO2013140691A1 (ja) 固体照明装置
CN107529978B (zh) 光源装置、光源驱动方法与观察装置
EP0867151B1 (en) Medical laser irradiation apparatus
JP2009287969A (ja) 蛍光温度センサ
US11076106B2 (en) Observation system and light source control apparatus
WO2018070179A1 (ja) 試験装置および発光装置の製造方法
US20170082811A1 (en) Fiber Coupling Module
JP2008301873A (ja) 照明装置及び内視鏡装置
JP7270169B2 (ja) レーザ装置及びそれを用いたレーザ加工装置
US10591657B2 (en) Optical fiber laser module, lighting device, and treatment device
JP2017084529A (ja) 複合コネクタ及び車両用灯具
JP6210532B2 (ja) レーザ装置
CN115135981A (zh) 光纤的连接状态判断系统以及光纤的连接状态判断方法
JP2008310992A (ja) 光照射装置
JP6622510B2 (ja) 発光素子、その制御方法、及びそれを用いた光干渉断層計
JP2015065302A (ja) 固体照明装置および照明装置用光ファイバ
WO2024018807A1 (ja) 濃度測定装置およびその異常検知方法
JP2012143366A (ja) 内視鏡装置
JP2016110819A (ja) 光源装置
KR20180071956A (ko) 결합 광원을 구비하는 광학 영상 장치
FR2868685A1 (fr) Systeme pour la transillumination des tissus vivants par un dispositif a base de led de forte puissance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE