WO2012118029A1 - 強化用ガラス板 - Google Patents

強化用ガラス板 Download PDF

Info

Publication number
WO2012118029A1
WO2012118029A1 PCT/JP2012/054821 JP2012054821W WO2012118029A1 WO 2012118029 A1 WO2012118029 A1 WO 2012118029A1 JP 2012054821 W JP2012054821 W JP 2012054821W WO 2012118029 A1 WO2012118029 A1 WO 2012118029A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mass
glass plate
less
tempered
Prior art date
Application number
PCT/JP2012/054821
Other languages
English (en)
French (fr)
Inventor
小池 章夫
伊藤 節郎
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013502341A priority Critical patent/JP5954316B2/ja
Priority to CN2012800108161A priority patent/CN103402937A/zh
Priority to KR1020137020326A priority patent/KR20140018227A/ko
Priority to EP12752344.7A priority patent/EP2682374A4/en
Publication of WO2012118029A1 publication Critical patent/WO2012118029A1/ja
Priority to US14/012,319 priority patent/US20140005026A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass plate that can be strengthened to the same level or higher than conventional soda lime glass without increasing the expansion coefficient at room temperature.
  • Tempered glass has been used for vehicles and buildings for the purpose of improving the drawback of glass that is easily broken.
  • the tempered glass referred to in the present invention is a tempered glass using thermal contraction of glass called thermal tempering or physical tempering, and is used for windows of vehicles and vehicles such as passenger cars, trucks, buses, railways, ships and aircrafts.
  • Tempered glass used for headlights and taillights tempered glass used for windows and doors in buildings and houses, doors and show windows, furniture and office work such as partitions, desktops, bookshelves, and showcases It refers to tempered glass used for household appliances such as tempered glass and cooking utensils.
  • Tempered glass for vehicles and buildings is manufactured by a thermal strengthening method in which a glass plate manufactured by a float process is heated to a temperature near the softening point or yield point temperature, and then rapidly cooled by blowing air onto the surface.
  • heat shrinkage of the glass at the time of cooling is used. Since the interior of the glass shrinks after the glass surface is cooled and shrunk first, compressive stress remains on the glass surface, and the strength of the glass is improved. Further, since the tempered glass has compressive stress remaining on the surface, it has the effect of suppressing the progress of scratches and the effect of improving the scratch resistance. In recent years, when tempered glass is used as glass for high-rise buildings and vehicles, it has been required to reduce the weight of the glass itself.
  • the weight reduction of the glass is achieved by reducing the density, but in the case of soda lime silica glass produced by the float method generally used as a glass plate for strengthening, it is about 2.5 g / cm 3 at room temperature. In addition, even silica glass was about 2.2 g / cm 3 , and there was a limit to reducing the density.
  • the reduction in the weight of the glass can be achieved by reducing the thickness of the glass, but there has been a problem that the strength is lowered in the thinned glass.
  • the glass is strengthened by utilizing the temperature difference between the glass surface and the inside during cooling, it is difficult to make a substantial difference because a thin glass having a thickness of 2.8 mm or less is difficult to cause a temperature difference. .
  • the temperature difference between the yield point where the air-cooling strengthening is started and the temperature near the strain point where the strain is frozen is large so that the strengthening can proceed easily.
  • Patent Document 1 discloses a tempered glass that is low in density but easy to strengthen as conventional soda lime glass and has excellent scratch resistance.
  • Patent Document 1 discloses a glass that can be tempered like a conventional soda lime glass with a low density, but does not disclose the strengthening of a thin glass plate, and has a coefficient of thermal expansion. No small glass is disclosed.
  • the present invention provides a tempered glass plate having a small coefficient of thermal expansion, high stress generated by physical strengthening, and capable of being sufficiently strengthened even when thin.
  • the present invention is a mass percentage display based on the following oxides: SiO 2 55-85%, B 2 O 3 2-12%, MgO 0.1-12%, CaO 0.1-12%, Na 2 O 0-13%, MgO + CaO + SrO + ZnO 3-16%, Al 2 O 3 0-3%, Is a tempered glass sheet characterized in that it can be tempered by heating and quenching.
  • the present invention is a tempered glass plate having a composition composed of the following mass percentage display based on oxides and capable of being tempered by heating and quenching. SiO 2 55-85%, B 2 O 3 2-12%, MgO 0.1-12%, CaO 0.1-12%, Na 2 O 0-13%, MgO + CaO + SrO + ZnO 3-12%, Al 2 O 3 0-3%.
  • the present invention is a mass percentage display based on the following oxide, SiO 2 60-80%, B 2 O 3 2-10%, MgO 0.5-8%, CaO 2-12%, Na 2 O 2-12%, K 2 O 0.5-10%, MgO + CaO + SrO + ZnO 3-14%, Al 2 O 3 0-1.5%, Fe 2 O 3 0.01-1.0%, Is a tempered glass sheet characterized in that it can be tempered by heating and quenching.
  • the present invention provides a glass for strengthening characterized by having an average linear thermal expansion coefficient of 50 to 350 ° C. of less than 100 ⁇ 10 ⁇ 7 / ° C. and a density at room temperature of less than 2.50 g / cm 3. It is a board.
  • this invention is a glass plate for reinforcement
  • the crack initiation load is described later, when the Vickers indenter is pushed into the glass plate surface with a Vickers hardness tester, the lowest load at the Vickers load at which the crack occurrence probability becomes 100% is It is an initiation load.
  • the present invention also relates to a tempered glass plate characterized by having a thermal expansion coefficient of 250 ⁇ 10 ⁇ 7 / ° C. or more at a temperature intermediate between the glass transition temperature and the sag temperature. is there. Further, the present invention is characterized in that the value obtained by dividing the thermal expansion coefficient at a temperature between the glass transition point and the yield point by the average linear thermal expansion coefficient at 50 to 350 ° C. is 4.0 or more. It is a glass plate. In addition, the present invention is a tempered glass plate manufactured by any one of a glass plate forming method of a float method, a fusion method, and a download method.
  • this invention is a tempered glass board obtained by performing the tempering process which heats above-mentioned glass plate for reinforcement
  • the term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value, and unless otherwise specified, “to” is the same in the following specification. Used with meaning.
  • a tempered glass plate and a tempered glass plate that have a low density and excellent scratch resistance, a high surface compressive stress due to physical strengthening, and a low thermal expansion coefficient at 50 to 350 ° C.
  • the glass plate of the present invention has an average coefficient of linear thermal expansion at 50 to 350 ° C. of less than 100 ⁇ 10 ⁇ 7 / ° C.
  • the average linear thermal expansion coefficient is 100 ⁇ 10 ⁇ 7 / ° C. or more, various problems may occur depending on the intended use of the tempered glass. For example, in a glass plate manufacturing process, a dimensional change due to a temperature difference becomes large, and defects are likely to occur. Further, when the temperature rises suddenly from a low temperature, tensile stress is generated on the glass surface, and cracking is likely to occur.
  • a preferable range of the average linear thermal expansion coefficient is less than 90 ⁇ 10 ⁇ 7 / ° C.
  • the temperature is more preferably less than 80 ⁇ 10 ⁇ 7 / ° C., and preferably less than 75 ⁇ 10 ⁇ 7 / ° C. Particularly preferred.
  • the glass plate of the present invention preferably has an average linear thermal expansion coefficient of 50 to 350 ° C. of 30 ⁇ 10 ⁇ 7 / ° C. or more. If it is less than 30 ⁇ 10 ⁇ 7 / ° C., the stress generated by air cooling strengthening may not be increased. More preferably, it is 60 ⁇ 10 ⁇ 7 / ° C. or more, and particularly preferably 70 ⁇ 10 ⁇ 7 / ° C. or more.
  • the glass plate of the present invention has a density at room temperature of less than 2.50 g / cm 3 . At 2.50 g / cm 3 or more, the glass itself becomes heavy. In addition, since glass having a low density tends to have a low thermal conductivity, stress is easily applied during thermal strengthening. Preferably less than 2.46 g / cm 3, more preferably less than 2.43 g / cm 3, more preferably less than 2.40 g / cm 3.
  • the range of the composition of each component of the glass plate of the present invention will be described.
  • the content of SiO 2 is 55% by weight or more.
  • the content of SiO 2 is 85% by mass or less.
  • the content of SiO 2 exceeds 85% by mass, the viscosity becomes high and the glass becomes difficult to dissolve.
  • the content of B 2 O 3 is 2% by mass or more.
  • the present inventors show that when a specific amount of B 2 O 3 is contained in the glass, the thermal expansion coefficient at room temperature is not so large, but the thermal expansion coefficient above the glass transition temperature is increased, It has been found that the temperature difference between the strain point and the yield point increases. Thereby, even if the thermal expansion coefficient at room temperature is not large, a glass plate that can be strengthened more than the conventional soda lime glass can be obtained.
  • the content of B 2 O 3 is more preferably 5% by mass or more, and particularly preferably 8% by weight or more.
  • the content of B 2 O 3 is 12% by mass or less. If it exceeds 12% by mass, the glass tends to undergo phase separation, and the chemical durability of the glass deteriorates. Further, when the glass is melted, the alkali boric acid volatilizes and it becomes difficult to obtain a homogeneous glass. Preferably it is 10 mass% or less, More preferably, it is 8 mass% or less.
  • the glass plate of the present invention has an MgO content of 0.1% by mass or more.
  • MgO is necessary for maintaining the thermal expansion coefficient of the glass moderately, and improves the scratch resistance of the glass.
  • it is 0.5 mass% or more, More preferably, it is 1.0 mass% or more, More preferably, it is 1.5 mass% or more.
  • the content of MgO is 12% by mass or less.
  • the thermal expansion coefficient of the glass becomes too large.
  • it is 10 mass% or less, More preferably, it is 8 mass% or less, More preferably, it is 6 mass% or less.
  • content of CaO is 0.1 mass% or more.
  • CaO is necessary to maintain the thermal expansion coefficient of the glass moderately.
  • it is 1 mass% or more, More preferably, it is 2 mass% or more, More preferably, it is 3 mass% or more.
  • content of CaO is 12 mass% or less.
  • the thermal expansion coefficient of the glass becomes too large.
  • it is 10 mass% or less, More preferably, it is 8 mass% or less.
  • the Na 2 O content is not more than 13 wt%.
  • Na 2 O is a component that increases the thermal expansion coefficient even when the glass density is low. Therefore, Na 2 O can be contained in the glass composition for the purpose of adjusting the thermal expansion coefficient.
  • the Na 2 O content is 2 mass% or more, and more preferably 5 mass% or more.
  • the total of MgO, CaO, SrO and ZnO, and MgO + CaO + SrO + ZnO is 3% by mass or more. If it is less than 3% by mass, it is necessary to add a large amount of alkali such as Li 2 O, Na 2 O, K 2 O or the like in the composition in order to maintain the solubility of glass at a high temperature and an appropriate coefficient of thermal expansion. As a result, the temperature difference between the strain point and the yield point is reduced, and the strengthening stress is reduced. Another problem is that the thermal expansion coefficient becomes too large. Preferably it is 5 mass% or more, More preferably, it is 6 mass% or more.
  • MgO + CaO + SrO + ZnO is 16% by mass or less. If MgO + CaO + SrO + ZnO exceeds 16% by mass, the density of the glass increases and the thermal expansion coefficient becomes too large. Preferably it is 14 mass% or less, More preferably, it is 12 mass% or less, More preferably, it is 11 mass% or less, Most preferably, it is 10 mass% or less.
  • including MgO + CaO + SrO + ZnO in the above range means including at least one selected from the group consisting of MgO, CaO, SrO, and ZnO, and necessarily includes all of MgO, CaO, SrO, and ZnO. That doesn't mean.
  • the content of Al 2 O 3 is 3 wt% or less.
  • the coefficient of thermal expansion above the glass transition temperature is difficult to increase, and it may be difficult to increase the stress.
  • it is 1.5 mass% or less, More preferably, it is 1.0 mass% or less.
  • the content of K 2 O is preferably 10% by mass or less.
  • the thermal expansion coefficient becomes too large. More preferably, it is 8 mass% or less, Most preferably, it is 5 mass% or less.
  • K 2 O may not be contained, but is preferably contained in order to maintain the solubility of glass at a high temperature and an appropriate thermal expansion coefficient, more preferably 0.5% by mass or more, Especially preferably, it is 1 mass% or more.
  • the glass plate of the present invention may contain SrO. By containing SrO, the solubility at high temperature and the thermal expansion coefficient of the glass can be adjusted. When it contains SrO, 0.1 mass% or more is preferable, More preferably, it is 1 mass% or more, More preferably, it is 2 mass% or more.
  • the glass plate of the present invention preferably has a SrO content of 10% by mass or less. When the SrO content exceeds 10% by mass, the density of the glass increases and the weight of the glass increases. More preferably, it is 8 mass% or less, More preferably, it is 6 mass% or less.
  • the glass plate of the present invention may contain BaO.
  • BaO By containing BaO, the solubility at high temperature and the thermal expansion coefficient of the glass can be adjusted.
  • the content of BaO is preferably 6% by mass or less, more preferably 4% by mass or less, and still more preferably 2% by mass or less.
  • BaO is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
  • the glass plate of the present invention may contain ZnO.
  • the Young's modulus of the glass can be increased.
  • the content of ZnO is preferably 3% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less.
  • the glass plate of the present invention may contain SnO 2.
  • SnO 2 By containing SnO 2 , the Young's modulus of the glass can be increased, and the clarity of the glass can be further improved.
  • the content of SnO 2 is preferably 3% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less.
  • the glass plate of the present invention may contain Li 2 O. When Li 2 O is contained, the content is preferably 6% by mass or less.
  • the content of Li 2 O exceeds 6% by mass, the temperature difference between the strain point and the yield point becomes small, and the strengthening stress becomes small. Moreover, the devitrification property of glass deteriorates, and continuous glass plate forming such as float forming tends to be difficult. More preferably, it is 4 mass% or less, More preferably, it is 3 mass% or less, Most preferably, it is 1.5 mass% or less.
  • the glass plate of the present invention contains Li 2 O and / or K 2 O
  • the total sum of Li 2 O, Na 2 O, and K 2 O is 16% by mass or less. It is preferable. If it exceeds 16% by mass, the temperature difference between the strain point and the yield point becomes small, so that the strengthening stress may be reduced. Another problem is that the thermal expansion coefficient becomes too large. More preferably, it is 13 mass% or less, More preferably, it is 12 mass% or less.
  • the glass plate of the present invention may contain Fe. When Fe is contained, the content of Fe is preferably 0.01% by mass or more in terms of Fe 2 O 3 .
  • Fe is a component that absorbs heat rays, it promotes thermal convection of the molten glass to improve the homogeneity of the glass, and also has an effect of extending the kiln life by preventing the temperature of the bottom brick of the melting kiln. Therefore, it is preferable that it is contained in the composition in the melting process of plate glass using a large kiln. If the Fe content is less than 0.01% by mass in terms of Fe 2 O 3 , production in a large kiln may be difficult. More preferably, it is 0.02 mass% or more, Most preferably, it is 0.05 mass% or more.
  • the Fe content is preferably 1.0% by mass or less in terms of Fe 2 O 3 .
  • it exceeds 1.0 mass% it becomes difficult to use it as glass for vehicles or construction by coloring. More preferably, it is 0.5 mass% or less.
  • the glass plate of this invention consists of said component substantially, you may contain another component to a total of 10 mass% in the range which does not impair the objective of this invention.
  • the other components for example, BaO, ZrO 2, TiO 2 , Y 2 O 3, etc. CeO 2 may be contained.
  • SO 3 chlorides, fluorides, halogen, SnO 2, Sb 2 O 3 , As 2 O 3 and the like may also contain appropriate.
  • Ni, Co, Cr, Mn, V, Se, Au, Ag, Cd, etc. may be contained for adjusting the color.
  • the glass plate of the present invention preferably contains substantially no arsenic or antimony. Since arsenic and antimony are toxic, it is preferable that they are not contained in the glass in order to prevent environmental effects. In the present invention, “not containing substantially” means less than 0.01% by mass.
  • the glass plate of the present invention preferably has a glass transition point of 700 ° C. or lower.
  • a tempering process for example, an air-cooling tempering process
  • the glass plate is heated to a temperature equal to or higher than its glass transition point and rapidly cooled, but the glass transition point is 700. If it exceeds °C, it is necessary to increase the temperature for tempering, so during tempering, the peripheral members, such as the members that hold the glass plate, are exposed to high temperatures, so the life of the peripheral members is significantly reduced. Alternatively, problems such as the need for an expensive member having excellent heat resistance may occur. More preferably, it is 650 degrees C or less.
  • a glass transition point is 400 degreeC or more. If the glass transition point is less than 400 ° C., it is difficult to create a temperature difference due to heating and quenching during the tempering process, so that the strengthening stress may be reduced. More preferably, it is 450 degreeC or more, More preferably, it is 500 degreeC or more.
  • the glass plate of the present invention preferably has a yield point of 640 ° C or higher. If it is lower than 640 ° C., the strengthening start temperature is lowered, and the strengthening stress may be reduced. More preferably, it is 660 degreeC or more. Moreover, it is preferable that the yield point of the glass plate of this invention is 750 degrees C or less. When the yield point exceeds 750 ° C., it is necessary to increase the temperature for the strengthening process, so the peripheral members such as the glass holding member are exposed to high temperatures, so the life of the peripheral members is significantly reduced or the heat resistance is increased. There is a possibility that problems such as the need for an expensive member excellent in performance may occur. More preferably, it is 700 degrees C or less.
  • the glass plate of the present invention preferably has a thermal expansion coefficient of 250 ⁇ 10 ⁇ 7 / ° C. or higher at a temperature intermediate between the glass transition point and the yield point. If it is less than 250 ⁇ 10 ⁇ 7 / ° C., the strengthening stress may be reduced. Preferably it is 300 ⁇ 10 ⁇ 7 / ° C. or more, more preferably 350 ⁇ 10 ⁇ 7 / ° C. or more, and further preferably 380 ⁇ 10 ⁇ 7 / ° C. or more.
  • the coefficient of thermal expansion at a temperature intermediate between the glass transition point and the yield point is when the temperature of the glass transition point of the strengthening glass plate is Tg (° C.) and the temperature of the yield point is Ts (° C.).
  • the glass plate of the present invention has a value ( ⁇ h / ⁇ ) obtained by dividing the thermal expansion coefficient ( ⁇ h ) at a temperature between the glass transition point and the yield point by the average linear thermal expansion coefficient ( ⁇ ) of 50 to 350 ° C.
  • average linear thermal expansion coefficient
  • it is 5.0 or more.
  • it is more preferably 6.0 or more, and even more preferably 7.0 or more.
  • the thermal expansion coefficient, glass transition point, and yield point are measured as follows.
  • a cylindrical sample having a diameter of 5 mm and a length of 20 mm was prepared and measured using a thermal dilatometer at a rate of temperature increase of 5 ° C./min.
  • a thermal expansion coefficient ⁇ h at a temperature between the glass transition point and the yield point is obtained.
  • the glass plate of the present invention preferably has a plate thickness of 1.3 mm or more. If it is less than 1.3 mm, the reinforcing stress may not increase. More preferably, it is 1.6 mm or more, More preferably, it is 1.9 mm or more.
  • the glass plate of the present invention is produced by any one of glass plate forming methods such as a float method, a fusion method, a download method, and a roll-out method.
  • the float method is more preferable because it is easy to mass-produce plate glass having a plate thickness of 1.3 mm or more in a large area and easily reduce the plate thickness deviation.
  • the scratch resistance of glass will be described. Glass excellent in scratch resistance has characteristics such as high Vickers hardness and high crack initiation load. In a tempered glass manufactured by a tempering process in which it is heated and then rapidly cooled, the scratch resistance of the glass depends on the thermal history of the glass and varies greatly depending on the tempering process.
  • the scratch resistance of the glass plate of the present invention is as follows: an annealed glass plate before strengthening, specifically, holding at a temperature about 30 ° C. higher than the glass transition point for 1 hour or more and then cooling at 1 ° C. per minute. Evaluation was performed using a glass plate that was gradually cooled to room temperature at a speed.
  • the glass plate of the present invention preferably has a Vickers hardness of 450 or more. When the Vickers hardness is less than 450, a dent is easily formed due to contact with an object, and scratches are easily generated. More preferably, it is 500 or more, Most preferably, it is 520 or more.
  • the glass plate of the present invention preferably has a crack initiation load in a vacuum of 1500 gf or more.
  • the crack initiation load indicates a load at which the crack occurrence probability is 50%.
  • the crack occurrence probability is a probability that a crack will occur from all the vertices of four Vickers indentations. When a crack occurs from all the vertices, the number of cracks is 4, and the occurrence probability corresponds to 100%.
  • the crack initiation load is low, cracks are likely to occur due to contact with an object, and the strength tends to decrease. More preferably, it is 1600 gf or more, More preferably, it is 1800 gf or more, Most preferably, it is 2000 gf or more.
  • the crack generation load is plotted on the horizontal axis, and the crack generation probability is plotted on the vertical axis, and the Vickers load at which the crack generation probability is 50% is obtained to obtain the crack initiation load.
  • a larger value indicates that cracks do not occur and are harder to break.
  • the reinforcing glass plate made of the glass plate of the present invention preferably has a Young's modulus of 60 GPa or more. When it is 60 GPa or more, there is an effect that the breaking strength tends to be higher. More preferably, it is 65 GPa or more, More preferably, it is 70 GPa or more, Most preferably, it is 75 GPa or more.
  • the reinforcing glass plate made of the glass plate of the present invention preferably has a photoelastic constant of 3.5 ⁇ 10 ⁇ 7 cm 2 / kg or less. If it exceeds 3.5 ⁇ 10 ⁇ 7 cm 2 / kg, color unevenness tends to occur when it is used for a display cover glass or when the luminance is adjusted by polarization. More preferably, it is 3.2 ⁇ 10 ⁇ 7 cm 2 / kg or less.
  • the produced glass was measured at a rate of temperature increase of 5 ° C./min using a thermal dilatometer (manufactured by Bruker AXS, TD5010SA) in the same manner as the measurement of the glass transition point.
  • the average linear expansion coefficient ⁇ at 50 to 350 ° C. was determined.
  • a coefficient of thermal expansion ⁇ h at a temperature intermediate between the glass transition point and the yield point was determined from the same measurement data.
  • a sample with a thickness of about 10 mm is prepared by polishing the glass so that both sides of a 4 cm ⁇ 4 cm glass plate are parallel, and the density is obtained by the Archimedes method, and the Young's modulus is obtained by the ultrasonic pulse method.
  • a sample of about 20 mm ⁇ about 20 mm ⁇ thickness of about 1 mm is prepared from the prepared glass, and the upper and lower surfaces are mirror-finished. After polishing, the sample is slowly cooled again in a dry nitrogen atmosphere under the above slow cooling conditions. It was. In order to evaluate scratch resistance and breakage, a Vickers hardness meter indenter was pressed into the surface of the obtained slow-cooled glass plate in a vacuum, and crack initiation load was determined. The Vickers hardness was determined from the indentation at 100 gf.
  • Example 5 has the same composition as soda lime silica glass used for ordinary window glass plates.
  • the stress generated by heating and rapid cooling was measured in order to evaluate the ease of air cooling strengthening.
  • a disk having a diameter of 20 mm, a thickness of 5 mm, and a mirror surface on the entire surface was produced.
  • the photoelastic constant was calculated
  • the disk-like samples were suspended one by one in a platinum crucible using a platinum wire and held at a temperature 125 ° C.
  • the platinum crucible used at this time had a cylindrical shape with a diameter of about 6 cm and a height of about 10 cm, and the glass was positioned substantially at the center inside the crucible. After heating, the glass was taken out together with the crucible, and the glass was quenched by quenching with the crucible in the air. The retardation of the prepared quenched glass was measured with a strain inspection machine (manufactured by Toshiba Corporation). The generated stress was determined by dividing the retardation value by the photoelastic constant. The obtained results are shown in Table 1. For the glasses of Examples 6 to 11, the generated stress was estimated by calculation from the physical property values of the obtained glass.
  • Example 1 and 6 to 9 heating and quenching were performed in spite of a smaller average linear expansion coefficient ⁇ at 50 to 350 ° C. than Example 5 having the same composition as soda lime silica glass used for a normal window glass plate.
  • the generated stress increased.
  • the thermal expansion coefficient ⁇ of Example 2 and Example 10 was about 2/3 that of Example 5, but the stress generated by heating and quenching was the same as that of Example 5.
  • the thermal expansion coefficient ⁇ of Examples 3 and 11 was about half that of Example 5, but the stress generated by heating and quenching was larger than the numerical value obtained by setting Example 5 to 2/3.
  • Examples 1 to 3 and Examples 6 to 11 were low in density and excellent in scratch resistance as compared with Example 5. In Example 4, the density was low, but the scratch resistance was inferior, and the stress generated by heating and quenching was low.
  • the glass plate of the present invention is a tempered glass for windows of vehicles such as passenger cars, trucks, buses, railroads, ships, aircraft, etc., tempered glass for headlights and taillights, and buildings for buildings and houses, doors, show windows, etc.
  • tempered glass Used for tempered glass, furniture such as partitions, desktops, bookshelves, showcases, tempered glass for office supplies, and tempered glass for home appliances such as cooking utensils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 本発明は、熱膨張係数が小さく、物理強化による表面圧縮応力が高く、低密度かつ耐擦傷性に優れる強化ガラスが可能となる強化用ガラス板を提供する。 以下の質量%からなる組成を有し、加熱および急冷することによって強化加工を可能としたことを特徴とする強化用ガラス板。 SiO 55~85%、 B 2~12%、 MgO 0.1~12%、 CaO 0.1~12%、 NaO 0~13%、 MgO+CaO+SrO+ZnO 3~16%、 Al 0~3%。

Description

強化用ガラス板
 本発明は、室温の膨張係数を大きくすることなく、従来のソーダライムガラス並みか、それ以上の強化が可能なガラス板に関する。
 強化ガラスは、ガラスの課題である割れやすいという欠点を改善し、従来から車両用や建築用として用いられている。本発明でいう強化ガラスとは、熱強化または物理強化と呼ばれるガラスの熱収縮を利用した強化ガラスのことであり、乗用車、トラック、バス、鉄道、船舶、航空機等の車両や乗物の窓に使用される強化ガラス、ヘッドライトおよびテールライトに使用される強化ガラス、ビルや住宅の窓、ドア、およびショーウインド等に使用される強化ガラス、パーテーション、デスクトップ、本棚、およびショーケース等の家具や事務用品に使用される強化ガラス、調理器具等の家庭電化製品に使用される強化ガラスを指す。
 車両用や建築用の強化ガラスは、フロート法により製造されたガラス板を、軟化点または屈伏点温度付近まで昇温し、その後表面にエアーを吹き付けて急冷する熱強化法にて製造される。
 この方法では、冷却時のガラスの熱収縮を利用しており、ガラス表面が先に冷却され収縮した後で内部が収縮するため、ガラス表面に圧縮応力が残留し、ガラスの強度が向上する。また、強化ガラスは、表面に圧縮応力が残留しているため、傷の進展を抑制する効果があり、耐擦傷性を改善する効果がある。
 近年、高層ビルや車両向けのガラスとして強化ガラスを用いる際、ガラス自身の重量を軽くすることが求められてきている。ガラスの軽量化は、密度を小さくすることによって達成されるが、一般的に強化用ガラス板として使用されるフロート法により製造されたソーダライムシリカガラスでは室温にて約2.5g/cmであり、またシリカガラスであっても約2.2g/cmであり、低密度化には限界があった。
 一方、ガラスの軽量化は、ガラスの厚みの薄肉化によっても達成されるが、薄肉化したガラスでは強度が低下するという問題があった。また、ガラスの強化においては、冷却時のガラス表面と内部との温度差を利用して強化しているため、2.8mm以下の薄いガラスでは温度差がつきにくいため本質的な強化が難しかった。
 また、強化されるガラス板としては、風冷強化が開始される屈伏点付近の温度と、歪が凍結される歪点付近の温度差が大きいことが、強化が進みやすく望まれるが、このようなガラスは低温から熱膨張率が大きいため、用途により熱膨張率が小さいことが望まれる場合には適さなかった。
 これら課題に対し、以下特許文献1には、低密度でありながら従来のソーダライムガラス並みに強化が容易で、耐擦傷性に優れた強化ガラスが開示されている。
日本特開平9-124338号公報
 しかし、特許文献1では、低密度でありながら従来のソーダライムガラス並みに強化が可能なガラスについては開示しているが、薄いガラス板の強化については開示されておらず、また熱膨張率の小さなガラスについても開示されていない。
 本発明は、熱膨張係数が小さく、物理強化による発生応力が高く、薄くても十分強化が可能な強化用ガラス板を提供する。
 本発明は、下記酸化物基準の質量百分率表示で、
   SiO 55~85%、
   B 2~12%、
   MgO 0.1~12%、
   CaO 0.1~12%、
   NaO 0~13%、
   MgO+CaO+SrO+ZnO 3~16%、
   Al 0~3%、
を含有し、加熱および急冷することによって強化加工を可能としたことを特徴とする強化用ガラス板である。
 また、本発明は、以下の酸化物基準の質量百分率表示からなる組成を有し、加熱および急冷することによって強化加工を可能としたことを特徴とする強化用ガラス板である。
   SiO 55~85%、
   B 2~12%、
   MgO 0.1~12%、
   CaO 0.1~12%、
   NaO 0~13%、
   MgO+CaO+SrO+ZnO 3~12%、
   Al 0~3%。
 また、本発明は、下記酸化物基準の質量百分率表示で、
   SiO 60~80%、
   B 2~10%、
   MgO 0.5~8%、
   CaO 2~12%、
   NaO 2~12%、
   KO 0.5~10%、
   MgO+CaO+SrO+ZnO 3~14%、
   Al 0~1.5%、
   Fe 0.01~1.0%、
を含有し、加熱および急冷することによって強化加工を可能としたことを特徴とする強化用ガラス板である。
 また、本発明は、50~350℃の平均線熱膨張係数が100×10-7/℃未満であり、室温での密度が2.50g/cm未満であることを特徴とする強化用ガラス板である。
 また、本発明は、真空中におけるクラック・イニシエーション・ロード(crack initiation load)が1500gf以上であることを特徴とする強化用ガラス板である。ここで、クラック・イニシエーション・ロードとは、後述するが、ビッカース硬度試験機にて、ガラス板面にビッカース圧子を押し込んだ際、クラック発生確率が100%となるビッカース荷重で最も低い荷重をクラック・イニシエーション・ロードとする。
 また、本発明は、ガラス転移点(Glass Transition Temperature)と屈伏点(Sag Temperature)の中間の温度における熱膨張係数が250×10-7/℃以上であることを特徴とする強化用ガラス板である。
 また、本発明は、ガラス転移点と屈伏点の中間の温度における熱膨張係数を、50~350℃における平均線熱膨張係数で除した値が4.0以上であることを特徴とする強化用ガラス板である。
 また、本発明は、フロート法、フュージョン法、およびダウンロード法のガラス板成形方法のうち、いずれかの方法によって製造されることを特徴とする強化用ガラス板である。
 また、本発明は、上記した強化用ガラス板を、当該ガラス板のガラス転移点の温度以上に加熱し、次いで急冷する強化加工処理を施して得られる強化ガラス板である。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明によれば、低密度かつ耐擦傷性に優れ、物理強化による表面圧縮応力が高く、50~350℃における熱膨張係数が小さい強化用ガラス板および強化ガラス板を得ることができる。
 本発明のガラス板は、50~350℃の平均線熱膨張係数が100×10-7/℃未満である。平均線熱膨張係数が100×10-7/℃以上の場合、強化ガラスの使用用途に応じて種々の問題が発生する場合がある。例えば、ガラス板の製造工程において、温度差による寸法変化が大きくなり、不良が発生しやすくなる。また、低温から急激に温度が上昇した場合に、ガラス表面に引張応力が発生し、割れが発生しやすくなる。平均線熱膨張係数の好ましい範囲は、90×10-7/℃未満である。ディスプレイをはじめとする電子用途など、加熱工程での寸法変化を小さく抑えたい用途においては、80×10-7/℃未満であることがより好ましく、75×10-7/℃未満であることが特に好ましい。
 また、本発明のガラス板は、50~350℃の平均線熱膨張係数が30×10-7/℃以上であることが好ましい。30×10-7/℃未満では、風冷強化により発生する応力が大きくなりにくいおそれがある。より好ましくは60×10-7/℃以上、特に好ましくは70×10-7/℃以上である。
 本発明のガラス板は、室温での密度が2.50g/cm未満である。2.50g/cm以上では、ガラス自体が重くなる。また、密度の小さいガラスは熱伝導率が小さくなりやすいことから、熱強化時に応力が入りやすい。好ましくは2.46g/cm未満、より好ましくは2.43g/cm未満、さらに好ましくは2.40g/cm未満である。
 以下、本発明のガラス板の各成分の組成の範囲について説明する。
 本発明のガラス板は、SiOの含有量が55重量%以上である。55重量%未満ではガラスの密度が大きくなる、熱膨張係数が大きくなる、耐擦傷性が悪化する、等の不具合が生じる。好ましくは60質量%以上、より好ましくは65質量%以上、特に好ましくは70質量%以上である。また、本発明のガラス板は、SiOの含有量が85質量%以下である。SiOの含有量が85質量%を超えると、粘性が高くなりガラスが溶解しにくくなる。好ましくは80質量%以下である。
 本発明のガラスは、Bの含有量が2質量%以上である。本発明者らは、ガラスに特定の量のBを含有させた場合、室温での熱膨張係数があまり大きくならずに、ガラス転移温度以上での熱膨張係数が大きくなること、さらに歪点と屈伏点の温度差が大きくなることを見出した。これにより、室温での熱膨張係数が大きくなくても、従来のソーダライムガラス以上に強化が可能なガラス板を得ることができる。
 そのような効果が得られる機構としては、風冷強化の際に、強化開始温度と歪点の温度差を大きくすることができ、かつ温度差によって生じる応力を大きくすることができるためと考えられる。Bの含有量は5質量%以上であることがより好ましく、8重量%以上であることが特に好ましい。また、本願発明のガラス板は、Bの含有量が12質量%以下である。12質量%を超えると、ガラスが分相しやすくなり、ガラスの化学的耐久性が劣化する、等の問題が発生する。また、ガラスの溶解時にアルカリホウ酸が揮発し、均質なガラスが得られにくくなる。好ましくは10質量%以下、さらに好ましくは8質量%以下である。
 本発明のガラス板は、MgOの含有量が0.1質量%以上である。MgOはガラスの熱膨張係数を適度に維持するために必要であり、またガラスの耐擦傷性を向上させる。好ましくは0.5質量%以上、より好ましくは1.0質量%以上、さらに好ましくは1.5質量%以上である。また、本発明のガラス板は、MgOの含有量が12質量%以下である。MgOの含有量が12質量%を超えると、ガラスの熱膨張係数が大きくなり過ぎる。好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。
 本発明のガラス板は、CaOの含有量が0.1質量%以上である。CaOはガラスの熱膨張係数を適度に維持するために必要である。好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上である。本発明のガラス板は、CaOの含有量が12質量%以下である。CaOの含有量が12質量%を超えると、ガラスの熱膨張係数が大きくなり過ぎる。好ましくは10質量%以下、より好ましくは8質量%以下である。
 本発明のガラス板は、NaOの含有量が13質量%以下である。NaOの含有量が13質量%を超えると、歪点と屈伏点の温度差が小さくなり、強化応力が小さくなる。また、熱膨張係数が大きくなり過ぎることも問題となる。好ましくは12.5質量%以下、より好ましくは12質量%以下である。また、NaOはガラスの密度が低くても、熱膨張係数が大きくなる成分であるため、熱膨張係数を調整する目的でガラス組成中に含有させることができる。NaOの含有量が2質量%以上であることが好ましく、5質量%以上であることが、より好ましい。
 本発明のガラス板は、MgO、CaO、SrO、ZnOの総和、MgO+CaO+SrO+ZnOが3質量%以上である。3質量%未満では、ガラスの高温での溶解性と適度な熱膨張係数を維持するためにLiO、NaO、KO等のアルカリを組成中に多量に添加する必要があり、その結果、歪点と屈伏点の温度差が小さくなり、強化応力が小さくなる。また、熱膨張係数が大きくなり過ぎることも問題となる。好ましくは5質量%以上、より好ましくは6質量%以上である。また、本発明のガラス板は、MgO+CaO+SrO+ZnOが16質量%以下である。MgO+CaO+SrO+ZnOが16質量%を超えるとガラスの密度が大きくなり、また熱膨張係数が大きくなり過ぎる。好ましくは14質量%以下、より好ましくは12質量%以下、さらに好ましくは11質量%以下、特に好ましくは10質量%以下である。ここにおいて、MgO+CaO+SrO+ZnOを上記範囲で含むとは、MgO、CaO、SrO、およびZnOからなる群から選ばれる少なくとも1種を含むことを意味し、必ずしも、MgO、CaO、SrO、およびZnOのすべてを含むことは意味しない。
 本発明のガラス板は、Alの含有量が3質量%以下である。Alの含有量が3質量%を超えると、ガラス転移温度以上での熱膨張係数が大きくなりにくく、応力を大きくすることが困難になる恐れがある。好ましくは1.5質量%以下、より好ましくは1.0質量%以下である。
 本発明のガラス板は、KOの含有量が10質量%以下であることが好ましい。KOの含有量が10質量%を超えると、歪点と屈伏点の温度差が小さくなり、強化応力が小さくなる。また、熱膨張係数が大きくなり過ぎることも問題となる。より好ましくは8質量%以下、特に好ましくは5質量%以下である。また、KOは、含有しなくてもよいが、ガラスの高温での溶解性と適度な熱膨張係数を維持するためには含有した方が好ましく、より好ましくは0.5質量%以上、特に好ましくは1質量%以上である。
 本発明のガラス板は、SrOを含有してもよい。SrOを含有させることにより、ガラスの高温での溶解性と熱膨張係数を調整することができる。SrOを含有させる場合は、0.1質量%以上が好ましく、より好ましくは1質量%以上、さらに好ましくは2質量%以上である。本発明のガラス板は、SrOの含有量が10質量%以下であることが好ましい。SrOの含有量が10質量%を超えると、ガラスの密度が大きくなり、ガラスの重量が大きくなる。より好ましくは8質量%以下、さらに好ましくは6質量%以下である。
 本発明のガラス板は、BaOを含有してもよい。BaOを含有させることにより、ガラスの高温での溶解性と熱膨張係数を調整することができる。一方、BaOを含有すると、ガラスの密度が大きくなり、ガラスの重量が大きくなりやすい。また、ガラスが脆くなるため、クラック・イニシエーション・ロードが低くなり、傷つきやすくなりやすい。そのため、BaOの含有量は6質量%以下であることが好ましく、より好ましくは4質量%以下、さらに好ましくは2質量%以下である。特にクラック・イニシエーション・ロードを高くするためには、BaOは1質量%以下が好ましく、0.5質量%以下がより好ましい。
本発明のガラス板は、ZnOを含有してもよい。ZnOを含有させることにより、ガラスのヤング率を上げることができる。一方、ZnOを含有すると、ガラスの失透性が悪化し、フロート成形などの連続ガラス板成形が難しくなりやすい。そのため、ZnOの含有量は3質量%以下が好ましく、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。
 本発明のガラス板は、SnOを含有してもよい。SnOを含有させることにより、ガラスのヤング率を上げ、さらにガラスの清澄性を改善することができる。一方、SnOを含有させると、ガラスの失透性が悪化し、フロート成形などの連続ガラス板成形が難しくなりやすい。そのため、SnOの含有量は3質量%以下が好ましく、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。
 本発明のガラス板は、LiOを含有してもよい。LiOを含有させる場合、その含有量は6質量%以下であることが好ましい。LiOの含有量が6質量%を超えると、歪点と屈伏点の温度差が小さくなり、強化応力が小さくなる。また、ガラスの失透性が悪化し、フロート成形などの連続ガラス板成形が難しくなりやすい。より好ましくは4質量%以下、さらに好ましくは3質量%以下、特に好ましくは1.5質量%以下である。
 本発明のガラス板は、LiOおよび/またはKOを含む場合、LiO、NaO、KOの総和(LiO+NaO+KO)は、16質量%以下であることが好ましい。16質量%を超えると、歪点と屈伏点の温度差が小さくなるため、強化応力が小さくなる恐れがある。また、熱膨張係数が大きくなり過ぎることも問題となる。より好ましくは13質量%以下、さらに好ましくは12質量%以下である。
 本発明のガラス板は、Feを含有してもよい。Feを含有させる場合、Feの含有量はFe換算で0.01質量%以上であることが好ましい。Feは熱線を吸収する成分であることから、溶融ガラスの熱対流を促してガラスの均質性を向上させる、また溶融窯の底煉瓦の高温化を防ぐことで窯寿命を延ばす等の効果があるため、大型窯を用いる板ガラスの溶融プロセスでは組成中に含まれていることが好ましい。Feの含有量は、Fe換算にて0.01質量%未満では大型窯での製造が難しくなるおそれがある。より好ましくは、0.02質量%以上、特に好ましくは0.05質量%以上である。一方、本発明のガラス板は、Feの含有量がFe換算で1.0質量%以下であることが好ましい。1.0質量%を超える場合は、着色により車両用や建築用のガラスとして使用しにくくなる。より好ましくは0.5質量%以下である。
 本発明のガラス板は実質的に上記成分からなるが、本発明の目的を損なわない範囲で他の成分を合計10質量%まで含有してもよい。上記他の成分としては、例えば、BaO、ZrO、TiO、Y、CeOなどを含有してもよい。また、ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物、ハロゲン、SnO、Sb、Asなどを適宜含有してもよい。さらに、色味の調整のため、Ni、Co、Cr、Mn、V、Se、Au、Ag、Cdなどを含有してもよい。
 本発明のガラス板は、ヒ素やアンチモンを実質的に含まないことが好ましい。ヒ素やアンチモンは毒性があることから、環境への影響を防ぐために、ガラス中に含まれない方が好ましい。本発明において、実質的に含有しないとは、0.01質量%未満のことを示す。
 本発明のガラス板は、ガラス転移点が700℃以下であることが好ましい。ガラス板に強化加工(例えば、風冷強化加工)を施して強化ガラス板を製造する場合には、ガラス板を、そのガラス転移点以上の温度に加熱し、急冷するが、ガラス転移点が700℃を超えると、強化加工のために高温にする必要があるため、強化加工の際、ガラス板を保持する部材等、周辺部材が高温下に晒されるため、周辺部材の寿命が著しく低下する、あるいは耐熱性に優れた高価な部材が必要となる、等の問題が発生する恐れがある。より好ましくは650℃以下である。また、ガラス転移点は400℃以上であることが好ましい。ガラス転移点が400℃未満だと、強化加工の際に加熱・急冷による温度差がつけにくいため、強化応力が小さくなる恐れがある。より好ましくは450℃以上、さらに好ましくは500℃以上である。
 本発明のガラス板は、屈伏点が640℃以上であることが好ましい。640℃未満だと、強化開始温度が低くなり、強化応力が小さくなるおそれがある。より好ましくは660℃以上である。また、本発明のガラス板は、屈伏点が750℃以下であることが好ましい。屈伏点が750℃を超えると、強化加工のために高温にする必要があるため、ガラスを保持する部材等、周辺部材が高温下に晒されるため、周辺部材の寿命が著しく低下する、あるいは耐熱性に優れた高価な部材が必要となる、等の問題が発生する恐れがある。より好ましくは700℃以下である。
 本発明のガラス板は、ガラス転移点と屈伏点の中間の温度における熱膨張係数が250×10-7/℃以上であることが好ましい。250×10-7/℃未満だと、強化応力が小さくなるおそれがある。好ましくは300×10-7/℃以上、より好ましくは350×10-7/℃以上、さらに好ましくは380×10-7/℃以上である。ここにおいて、ガラス転移点と屈伏点の中間の温度における熱膨張係数とは、強化用ガラス板のガラス転移点の温度をTg(℃)とし、その屈伏点の温度をTs(℃)としたとき、(Ts+Tg)/2の温度における熱膨張係数をいう。
 本発明のガラス板は、ガラス転移点と屈伏点の中間の温度における熱膨張係数(α)を、50~350℃の平均線熱膨張係数(α)で除した値(α/α)が、4.0以上であることが好ましい。すなわち、4.0未満だと強化応力が小さくなるおそれがある。好ましくは5.0以上である。より小さい熱膨張係数のガラスにおいて強化応力を大きくするには、6.0以上とすることがより好ましく、7.0以上とすることがさらに好ましい。
 熱膨張係数、ガラス転移点、屈伏点は以下の要領で測定する。
 直径5mm、長さ20mmの円柱状サンプルを作成し、熱膨張計を用いて5℃/分の昇温速度で測定し、50~350℃における平均線膨張係数α、ガラス転移点、屈伏点、ガラス転移点と屈伏点の中間の温度における熱膨張係数αを求める。
 本発明のガラス板は、板厚が1.3mm以上であることが好ましい。1.3mm未満だと、強化応力が大きくならないおそれがある。より好ましくは、1.6mm以上、さらに好ましくは1.9mm以上である。
 本発明のガラス板は、フロート法、フュージョン法、ダウンロード法、およびロールアウト法などのガラス板成形方法のうち、いずれかの方法によって製造される。フロート法では、1.3mm以上の板厚の板ガラスを大面積で大量生産することが容易であり、かつ板厚偏差を小さくしやすいため、より好ましい。
 次に、ガラスの耐擦傷性について説明する。耐擦傷性に優れたガラスは、ビッカース硬度が高く、クラック・イニシエーション・ロードが高いなどの特徴を有する。加熱し、次いで急冷するという強化加工によって製造される強化ガラスでは、ガラスの耐擦傷性はガラスの熱履歴に依存し、その強化工程によって大きく差が生じる。通常の風冷強化ガラスの製造工程では、均等に配置されたノズルから加熱されたガラスに対し風を吹き付けて急冷するため、ノズルの直下とそれ以外の部分で耐擦傷性に差が生じる。
 したがって、本発明のガラス板の耐擦傷性は、強化前の徐冷ガラス板、具体的には、ガラス転移点から30℃程度高い温度にて1時間以上保持した後、毎分1℃の冷却速度にて室温まで徐冷したガラス板を使用して評価した。
 本発明のガラス板は、ビッカース硬度が450以上であることが好ましい。ビッカース硬度が450未満であると、物体との接触により凹みができやすく、また傷も発生しやすい。より好ましくは500以上、特に好ましくは520以上である。
 本発明のガラス板は、真空中におけるクラック・イニシエーション・ロードが1500gf以上であることが好ましい。クラック・イニシエーション・ロードは、クラック発生確率が50%となる荷重を示す。クラック発生確率は、4か所のビッカース圧痕の頂点全てからクラックが発生する確率であり、全ての頂点からクラックが発生した場合、クラック数が4となり、発生確率は100%に相当する。クラック・イニシエーション・ロードが低いと、物体との接触によりクラックが発生しやすく、また強度が低下しやすい。より好ましくは1600gf以上、さらに好ましくは1800gf以上、特に好ましくは2000gf以上である。
 真空中におけるクラック・イニシエーション・ロードは以下の要領で測定する。ビッカース硬度試験機により、真空中にてガラス表面にビッカース圧子を15秒間押し込んだ後、ビッカース圧子を外し、圧痕部分を観察する。通常のガラスでは、圧痕の4つのコーナーよりクラックが発生するが、4つのコーナーのうち、1つのコーナーにのみクラックが見られる場合にはクラック発生確率が25%、2つのコーナーにのみクラックが見られる場合には50%、3つのコーナーにのみクラックが見られる場合には75%、4つのコーナー全てにクラックが見られる場合には100%とし、複数の試験片についてクラック発生確率を測定する。その後、横軸にクラック発生荷重、縦軸にクラック発生確率をプロットし、クラック発生確率が50%となるビッカース荷重を求め、クラック・イニシエーション・ロードとする。この値は大きいほど、クラックが発生せず、破壊しにくいことを示す。
 本発明のガラス板からなる強化用ガラス板は、ヤング率が60GPa以上であることが好ましい。60GPa以上であると、より破壊強度が高くなりやすいという効果がある。より好ましくは65GPa以上、さらに好ましくは70GPa以上、特に好ましくは75GPa以上である。
 本発明のガラス板からなる強化用ガラス板は、光弾性定数が3.5×10-7cm/kg以下であることが好ましい。3.5×10-7cm/kgを超えると、ディスプレイのカバーガラスに用いた際や、偏光により輝度を調整するような場合において、色ムラが発生しやすくなるおそれがある。より好ましくは3.2×10-7cm/kg以下である。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
 表1、表2の質量%で示すガラス組成となるように、酸化物、水酸化物、炭酸塩、硝酸塩等、一般的に使用されるガラス原料を適宜選択し、ガラスとして300gとなるように秤量および混合した。その後、混合物を白金るつぼに入れ、1600℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した後、型材に流し込み、ガラス転移点から約30℃高い温度にて1時間以上保持した後、毎分1℃の冷却速度にて室温まで徐冷し、サンプル用の徐冷ガラスを作製した。
 JIS R 3103-3:2001に基づき、作製したガラスから、直径5mm、長さ20mmの円柱状サンプルを作製し、熱膨張計(ブルカー・エイエックスエス社製、TD5010SA)を用いて5℃/分の昇温速度で測定し、ガラス転移点を求めた。また、同じ測定データから、屈伏点を求めた。
 JIS R 1618:2002に基づき、作製したガラスについて、ガラス転移点の測定と同様に熱膨張計(ブルカー・エイエックスエス社製、TD5010SA)を用いて5℃/分の昇温速度で測定し、50~350℃における平均線膨張係数αを求めた。また、同じ測定データから、ガラス転移点と屈伏点の中間の温度における熱膨張係数αを求めた。
 作製したガラスから、4cm×4cmのガラス板の両面が平行になるように研磨し、厚さを約10mmとしたサンプルを作製し、アルキメデス法により密度を、また超音波パルス法によりヤング率を求めた。
 作製したガラスから、約20mm×約20mm×厚さ約1mmで、上下面が鏡面加工されたサンプルを作製し、研磨加工後、上記徐冷条件にて乾燥窒素雰囲気下にて再度徐冷を行った。耐擦傷性、破損の評価のため、得られた徐冷ガラス板表面に真空中にてビッカース硬度計の圧子を押し込み、クラック・イニシエーション・ロードを求めた。また、ビッカース硬度は100gfでの圧痕から求めた。
 得られた物性値を表1、2に示す。例1~3、および例6~11は実施例、例4および例5は比較例である。例5は通常の窓ガラス板に用いられるソーダライムシリカガラスと同じ組成である。
 例1~5のガラスについて、風冷強化のしやすさを評価するため、加熱・急冷により発生する応力を測定した。先ず、例1~5の徐冷ガラスから、寸法が直径20mm、厚さ5mmで、全面が鏡面である円板を作製した。作製した円板を用いて、円板圧縮法により光弾性定数を求めた。次いで、円板状のサンプルを1個ずつ白金るつぼ内に白金製のワイヤーを用いて吊るし、ガラス転移点から125℃高い温度にて10分間保持した。この際使用した白金るつぼは、直径約6cm、高さ約10cmの筒状であり、ガラスはるつぼ内部のほぼ中心に位置するようにした。加熱後、ガラスをるつぼごと取り出し、大気中でるつぼごと急冷することにより、ガラスを急冷した。作製した急冷ガラスのレターデーションを歪検査機(東芝社製)により測定した。また、レターデーション値を前記光弾性定数にて除して、発生応力を求めた。得られた結果を表1に示す。例6~11のガラスについては、得られたガラスの物性値から計算によって発生応力を推定した。
 例1および例6~9は、通常の窓ガラス板に用いられるソーダライムシリカガラスと同じ組成である例5より50~350℃における平均線膨張係数αが小さいにもかかわらず、加熱・急冷による発生応力は高くなった。また、例2および例10の熱膨張係数αは、例5の2/3程度であったが、加熱・急冷による発生応力は例5と同等であった。また、例3および例11の熱膨張係数αは、例5の半分程度であったが、加熱・急冷による発生応力は例5を2/3にした数値より大きかった。また、例1~3および例6~11は、例5に比較して低密度かつ耐擦傷性にすぐれていた。例4は、低密度であるが、耐擦傷性に劣っており、また加熱・急冷による発生応力も低かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のガラス板は、乗用車、トラック、バス、鉄道、船舶、航空機等の車両の窓向け強化ガラス、ヘッドライトおよびテールライト向け強化ガラス、ビルや住宅の窓、ドア、ショーウインド等の建築向け強化ガラス、パーテーション、デスクトップ、本棚、ショーケース等の家具や事務用品等向け強化ガラス、調理器具等の家庭電化製品向け強化ガラスに用いられる。
 なお、2011年2月28日に出願された日本特許出願2011-041772号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。

Claims (10)

  1.  下記酸化物基準の質量百分率表示で、
       SiO 55~85%、
       B 2~12%、
       MgO 0.1~12%、
       CaO 0.1~12%、
       NaO 0~13%、
       MgO+CaO+SrO+ZnO 3~16%、
       Al 0~3%、
    を含有し、加熱および急冷することによって強化加工を可能としたことを特徴とする強化用ガラス板。
  2.  以下の酸化物基準の質量百分率表示からなる組成を有し、加熱および急冷することによって強化加工を可能としたことを特徴とする強化用ガラス板。
       SiO 55~85%、
       B 2~12%、
       MgO 0.1~12%、
       CaO 0.1~12%、
       NaO 0~13%、
       MgO+CaO+SrO+ZnO 3~12%、
       Al 0~3%。
  3.  下記酸化物基準の質量百分率表示で、
       SiO 60~80%、
       B 2~10%、
       MgO 0.5~8%、
       CaO 2~12%、
       NaO 2~12%、
       KO 0.5~10%、
       MgO+CaO+SrO+ZnO 3~14%、
       Al 0~1.5%、
       Fe 0.01~1.0%、
    を含有し、加熱および急冷することによって強化加工を可能としたことを特徴とする強化用ガラス板。
  4.  50~350℃における平均線膨張係数が100×10-7/℃未満であり、室温での密度が2.50g/cm未満であることを特徴とする請求項1~3の何れか1項に記載の強化用ガラス板。
  5.  真空中におけるクラック・イニシエーション・ロードが1500gf以上であることを特徴とする請求項1~4の何れか1項に記載の強化用ガラス板。
  6.  ガラス転移点と屈伏点の中間の温度における熱膨張係数が250×10-7/℃以上であることを特徴とする請求項1~5の何れか1項に記載の強化用ガラス板。
  7.  ガラス転移点と屈伏点の中間の温度における熱膨張係数を、50~350℃における平均線熱膨張係数で除した値が4.0以上であることを特徴とする請求項1~6の何れか1項に記載の強化用ガラス板。
  8.  50~350℃における平均線膨張係数が、30×10-7/℃以上、100×10-7/℃未満であることを特徴とする請求項1~7の何れか1項に記載の強化用ガラス板。
  9.  フロート法、フュージョン法、ダウンロード法、およびロールアウト法、のいずれかによって製造されることを特徴とする請求項1~8の何れか1項に記載の強化用ガラス板。
  10.  請求項1~8の何れか1項に記載の強化用ガラス板を、当該ガラス板のガラス転移点の温度以上に加熱し、次いで急冷する強化加工処理を施して得られる強化ガラス板。
PCT/JP2012/054821 2011-02-28 2012-02-27 強化用ガラス板 WO2012118029A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013502341A JP5954316B2 (ja) 2011-02-28 2012-02-27 強化用ガラス板
CN2012800108161A CN103402937A (zh) 2011-02-28 2012-02-27 强化用玻璃板
KR1020137020326A KR20140018227A (ko) 2011-02-28 2012-02-27 강화용 유리판
EP12752344.7A EP2682374A4 (en) 2011-02-28 2012-02-27 TEMPERED GLASS PLATE
US14/012,319 US20140005026A1 (en) 2011-02-28 2013-08-28 Glass to be tempered

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-041772 2011-02-28
JP2011041772 2011-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/012,319 Continuation US20140005026A1 (en) 2011-02-28 2013-08-28 Glass to be tempered

Publications (1)

Publication Number Publication Date
WO2012118029A1 true WO2012118029A1 (ja) 2012-09-07

Family

ID=46757963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054821 WO2012118029A1 (ja) 2011-02-28 2012-02-27 強化用ガラス板

Country Status (6)

Country Link
US (1) US20140005026A1 (ja)
EP (1) EP2682374A4 (ja)
JP (1) JP5954316B2 (ja)
KR (1) KR20140018227A (ja)
CN (1) CN103402937A (ja)
WO (1) WO2012118029A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086080A (ja) * 2013-10-28 2015-05-07 旭硝子株式会社 物理強化ガラスおよび物理強化ガラスの製造方法
WO2015111524A1 (ja) * 2014-01-24 2015-07-30 旭硝子株式会社 強化用ガラス組成物、強化ガラス物品およびその製造方法
JP2016540716A (ja) * 2013-10-23 2016-12-28 サン−ゴバン グラス フランス 薄い積層ガラス
JP2017500261A (ja) * 2013-10-23 2017-01-05 サン−ゴバン グラス フランス フロントガラスのための薄い積層ガラス
JP2017122039A (ja) * 2015-11-26 2017-07-13 ショット アクチエンゲゼルシャフトSchott AG 熱強化したガラス要素及びその使用
JP2018095514A (ja) * 2016-12-14 2018-06-21 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
JP2019135201A (ja) * 2018-02-05 2019-08-15 株式会社オハラ 光学ガラス
JPWO2019017404A1 (ja) * 2017-07-18 2020-07-02 Agc株式会社 強化ガラス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102219327B1 (ko) * 2014-10-17 2021-02-22 동우 화인켐 주식회사 유리의 면취 방법
KR102223005B1 (ko) * 2014-10-20 2021-03-03 동우 화인켐 주식회사 유리 면취 방법
CN104743876A (zh) * 2015-03-06 2015-07-01 武汉理工大学 一种玻璃组合物
CN105016617A (zh) * 2015-06-24 2015-11-04 黄红林 一种家用茶几桌面安全玻璃生产工艺
CN105645763A (zh) * 2015-12-30 2016-06-08 东旭科技集团有限公司 一种硅酸盐玻璃用组合物、硅酸盐玻璃及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221137A (ja) * 1989-02-23 1990-09-04 Asahi Glass Co Ltd 易成形性ガラス組成物
JPH0769669A (ja) * 1993-07-30 1995-03-14 Carl Zeiss:Fa 防火安全板ガラス
JPH09124338A (ja) 1995-08-28 1997-05-13 Asahi Glass Co Ltd 強化ガラス
JP2003119048A (ja) * 2000-10-03 2003-04-23 Nippon Sheet Glass Co Ltd ガラス組成物
JP2006175877A (ja) * 1994-06-17 2006-07-06 Saint-Gobain Glass France 輸送車両用の低エネルギー透過率ペイン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721181A (en) * 1995-02-10 1998-02-24 Asahi Glass Company Ltd. Abrasion resistant glass
JPH10101368A (ja) * 1996-10-01 1998-04-21 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
EP0980341B1 (en) * 1997-05-07 2003-07-16 Corning S.A. Organic lens molds in inorganic glass and novel inorganic glasses
JPH11224649A (ja) * 1998-02-10 1999-08-17 Matsushita Electron Corp ランプ用ガラス組成物、ランプ用ステムおよびランプ用バルブ
JPH11310429A (ja) * 1998-04-27 1999-11-09 Asahi Glass Co Ltd 基板に用いるためのガラス組成物
JPH11310430A (ja) * 1998-04-27 1999-11-09 Asahi Glass Co Ltd 基板として用いるためのガラス組成物
JP4951838B2 (ja) * 1999-11-11 2012-06-13 日本板硝子株式会社 強化用板ガラス
US6858553B2 (en) * 2000-10-03 2005-02-22 Nippon Sheet Glass Co., Ltd. Glass composition
EP1245545B1 (en) * 2001-03-30 2011-08-10 Asahi Glass Company Ltd. Glass plate and method for tempering a glass plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221137A (ja) * 1989-02-23 1990-09-04 Asahi Glass Co Ltd 易成形性ガラス組成物
JPH0769669A (ja) * 1993-07-30 1995-03-14 Carl Zeiss:Fa 防火安全板ガラス
JP2006175877A (ja) * 1994-06-17 2006-07-06 Saint-Gobain Glass France 輸送車両用の低エネルギー透過率ペイン
JPH09124338A (ja) 1995-08-28 1997-05-13 Asahi Glass Co Ltd 強化ガラス
JP2003119048A (ja) * 2000-10-03 2003-04-23 Nippon Sheet Glass Co Ltd ガラス組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682374A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540716A (ja) * 2013-10-23 2016-12-28 サン−ゴバン グラス フランス 薄い積層ガラス
JP2017500261A (ja) * 2013-10-23 2017-01-05 サン−ゴバン グラス フランス フロントガラスのための薄い積層ガラス
JP2020117437A (ja) * 2013-10-23 2020-08-06 サン−ゴバン グラス フランス 薄い積層ガラス
JP2015086080A (ja) * 2013-10-28 2015-05-07 旭硝子株式会社 物理強化ガラスおよび物理強化ガラスの製造方法
WO2015111524A1 (ja) * 2014-01-24 2015-07-30 旭硝子株式会社 強化用ガラス組成物、強化ガラス物品およびその製造方法
JP2017122039A (ja) * 2015-11-26 2017-07-13 ショット アクチエンゲゼルシャフトSchott AG 熱強化したガラス要素及びその使用
JP2018095514A (ja) * 2016-12-14 2018-06-21 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
JPWO2019017404A1 (ja) * 2017-07-18 2020-07-02 Agc株式会社 強化ガラス
JP7136100B2 (ja) 2017-07-18 2022-09-13 Agc株式会社 強化ガラス
JP2019135201A (ja) * 2018-02-05 2019-08-15 株式会社オハラ 光学ガラス
JP2022121479A (ja) * 2018-02-05 2022-08-19 株式会社オハラ 光学ガラス
JP7457061B2 (ja) 2018-02-05 2024-03-27 株式会社オハラ 光学ガラス

Also Published As

Publication number Publication date
JPWO2012118029A1 (ja) 2014-07-07
EP2682374A4 (en) 2015-04-29
JP5954316B2 (ja) 2016-07-20
CN103402937A (zh) 2013-11-20
EP2682374A1 (en) 2014-01-08
KR20140018227A (ko) 2014-02-12
US20140005026A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
JP5954316B2 (ja) 強化用ガラス板
JP6020455B2 (ja) 強化用ガラス板
KR102630405B1 (ko) 화학 강화 유리 및 화학 강화용 유리
JP6798629B2 (ja) 化学強化用ガラス
US9783451B2 (en) Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display
US20150158757A1 (en) Tempered glass
US6297182B1 (en) Glass for a substrate
WO2018199046A1 (ja) 化学強化ガラスおよび化学強化用ガラス
EA036302B1 (ru) Листовое стекло, пригодное для химической закалки
US20160347656A1 (en) Tempered glass, tempered glass plate, and glass for tempering
JP7447942B2 (ja) 強化ガラス
JPH09124338A (ja) 強化ガラス
WO2015111524A1 (ja) 強化用ガラス組成物、強化ガラス物品およびその製造方法
JP6675592B2 (ja) 強化ガラス
JP6477506B2 (ja) 強化ガラスおよび強化ガラス用の被処理ガラス
WO2017082311A1 (ja) 風冷強化用ガラス、および風冷強化ガラス
JP2018203571A (ja) ガラス
WO2020021933A1 (ja) 強化ガラス及び強化用ガラス
JP6769441B2 (ja) 風冷強化用ガラス、および風冷強化ガラス
JP2019001662A (ja) 風冷強化用ガラス、および、風冷強化ガラス
WO2020021918A1 (ja) 強化ガラス及び強化用ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502341

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137020326

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012752344

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE