WO2012118016A1 - 熱処理品の温度測定装置と方法 - Google Patents

熱処理品の温度測定装置と方法 Download PDF

Info

Publication number
WO2012118016A1
WO2012118016A1 PCT/JP2012/054793 JP2012054793W WO2012118016A1 WO 2012118016 A1 WO2012118016 A1 WO 2012118016A1 JP 2012054793 W JP2012054793 W JP 2012054793W WO 2012118016 A1 WO2012118016 A1 WO 2012118016A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
measurement
treated product
temperature sensor
Prior art date
Application number
PCT/JP2012/054793
Other languages
English (en)
French (fr)
Inventor
勝俣 和彦
純治 井上
嵩久 嶋田
晋也 工藤
亜実 上田
Original Assignee
株式会社Ihi
株式会社Ihi機械システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi機械システム filed Critical 株式会社Ihi
Priority to CN201280010787.9A priority Critical patent/CN103534547B/zh
Priority to KR1020137021406A priority patent/KR20130114728A/ko
Priority to DE112012001031T priority patent/DE112012001031T5/de
Priority to JP2013502334A priority patent/JP6153466B2/ja
Publication of WO2012118016A1 publication Critical patent/WO2012118016A1/ja
Priority to US14/011,564 priority patent/US9377360B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof

Definitions

  • the present invention relates to a temperature measuring apparatus and method for a heat-treated product during mist cooling after heating.
  • mist cooling is a method in which a plurality of nozzles are disposed so as to surround a heat-treated product, a cooling liquid is supplied from the nozzles in a spray manner, and an object to be processed is cooled with a mist containing the cooling liquid.
  • the mist means a gas containing coolant droplets.
  • the temperature measurement means of the heat-treated product is disclosed in Patent Document 1, for example. Further, mist cooling and a temperature measuring means of a heat-treated product during mist cooling are disclosed in Patent Documents 2 and 3, for example.
  • Patent Document 1 a temperature sensor (thermocouple) is provided inside a dummy sample having the same characteristics as the heat-treated product, and the temperature of the heat-treated product is directly measured by measuring the temperature of the dummy sample. A method for controlling the exact temperature of the heat-treated product is disclosed.
  • Patent Documents 2 and 3 exemplify a thermocouple provided on the surface of the heat-treated product and a non-contact type temperature measuring device such as a radiation thermometer as temperature measuring means for the heat-treated product during mist cooling.
  • thermocouple is attached to the surface of the heat-treated product, the thermocouple is in direct contact with the mist, so that it is affected by the mist flow and temperature.
  • disturbance such as outside air may be received from the insertion port.
  • An object of the present invention is to provide a temperature measuring device for a heat-treated product capable of measuring the surface temperature of the heat-treated product to be mist cooled after being heated in a heat treatment furnace without being affected by the flow and temperature of the mist and outside air, etc. It is to provide a method.
  • a temperature measurement device for a heat treatment product housed in a heat treatment furnace provided with a mist cooling device for cooling with a mist containing droplets of a coolant
  • a measurement window provided in the heat treatment furnace and capable of directly viewing the surface to be measured of the heat treated product
  • a temperature sensor provided outside the measurement window and capable of measuring the surface temperature of the surface to be measured in a non-contact manner through the measurement window;
  • the temperature sensor has a measurement wavelength range in which the water absorption rate is less than 100%
  • a temperature measuring device for a heat-treated product is provided, wherein the measurement window is configured by a window material having a transmittance higher than 0% in the measurement wavelength region.
  • a method for measuring the temperature of a heat treatment product housed in a heat treatment furnace provided with a mist cooling device for cooling with a mist containing droplets of a coolant (A) A temperature sensor capable of measuring the surface temperature of the surface to be measured of the heat-treated product in a non-contact manner with a wavelength range where the water absorption is less than 100%, and a transmission higher than 0% in the wavelength range Window material having a rate, (B) There is provided a method for measuring a temperature of a heat-treated product, wherein a surface temperature of a surface to be measured of the heat-treated product is measured by the temperature sensor through a measurement window made of the window material.
  • the temperature sensor has a measurement wavelength region (for example, 1.95 to 2.5 ⁇ m) in which the water absorption is less than 100%, and the measurement window has the measurement wavelength. Since it is made of a window material (eg, germanium) having a transmittance higher than 0% in the region, a temperature sensor (eg, an infrared temperature sensor) provided outside the measurement window allows the heat-treated product to pass through the measurement window. It becomes possible to measure the surface temperature of the surface to be measured without contact.
  • a window material eg, germanium
  • a temperature sensor eg, an infrared temperature sensor
  • the infrared radiation from the surface of the heat-treated product is not affected by the mist flow and temperature. Further, since the surface temperature of the surface to be measured of the heat-treated product is measured from the outside of the measurement window through the window material, there is no insertion port from the outside of the furnace, and there is no possibility of receiving disturbance such as outside air from the insertion port.
  • the surface temperature of the surface to be measured of the heat-treated product can be measured from outside the furnace.
  • the cooling rate can be controlled in consideration of the composition change of the heat-treated product, it is possible to prevent the occurrence of cracking and to reduce distortion, and to greatly improve the quality of the heat-treated product. That is, by measuring the processing temperature during mist cooling, it is possible to grasp the period that requires a fast cooling rate and perform mist rapid cooling only during that period. Further, by monitoring the temperature Ms point at which the phase change of steel starts and the Mf point at which the phase change ends, it is possible to control the cooling rate suitable for the temperature range. As a result, it is possible to prevent heat cracking of the heat-treated product and reduce distortion. It can be said that such a technique for managing and controlling the temperature of the processed product during the mist cooling has a great effect on the quality improvement.
  • a temperature measuring device for a heat-treated product capable of measuring the surface temperature of the heat-treated product to be mist cooled after being heated in a heat treatment furnace without being affected by the flow and temperature of the mist and the outside air, etc. It becomes possible to provide a method.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a heat treatment furnace 10 provided with a temperature measuring device 30 according to the present invention.
  • the heat treatment furnace 10 is a vacuum heat treatment furnace for performing heat treatment of the heat-treated product 1 (object to be treated).
  • the present invention is not limited to the vacuum heat treatment furnace, and may be any other heat treatment furnace as long as the heat treatment product 1 is heat treated.
  • the heat-treated product 1 (object to be treated) is, for example, die steel (SKD material) or high-speed steel (SKH material), but may be other metal materials that require heat treatment.
  • the size of the heat-treated product 1 is, for example, a cylindrical member having a diameter of 100 to 300 mm and a height of 100 to 300 mm, but the present invention is not limited to this and may have other shapes.
  • the heat treatment furnace 10 has a furnace body 12.
  • the furnace body 12 is a hollow airtight container.
  • the hollow cylindrical furnace body body 12a having a vertical axis, a furnace body bottom 12b that covers the lower surface of the furnace body body 12a, and the upper surface of the furnace body body 12a.
  • a furnace lid 12c for closing the door.
  • the furnace body 12a is a hollow cylindrical metal tube having upper and lower ends opened, and has a connecting flange 13 at the upper and lower ends.
  • a cooling jacket may be provided on the furnace body body 12a.
  • a through pipe 16 for a measurement window 32 (described later) is attached to the furnace body 12a in an airtight manner.
  • the through pipe 16 is composed of a horizontal through pipe 16 a and an inclined through pipe 16 b, each axis intersecting the surface of the heat treated product 1 (surface to be measured 1 a) and passing through the inside of each through pipe 16. It arrange
  • the inclined through pipe 16b is provided to be inclined downward with respect to the horizontal.
  • the furnace bottom 12b is a circular flat plate whose outer edge is connected to the lower end flange 13 of the furnace body 12a.
  • a discharge port 14 is provided in the furnace body bottom 12b so that fluid (coolant and cooling gas) can be discharged from the furnace body 12 to the outside.
  • the furnace body lid 12c is a circular flat plate whose outer edge is connected to the upper end flange 13 of the furnace body body 12a.
  • An opening 15 is provided in the center of the furnace lid 12c, and the heat treatment product 1 can be inserted into the heat treatment furnace 10 from the upper vacuum processing chamber (not shown) through the opening 15 and taken out to the outside. It is like that.
  • reference numeral 2 denotes a support member that supports the heat-treated product 1.
  • the structure of the support member 2 is not limited to this example, Other structures may be sufficient.
  • the heat treatment furnace 10 further includes a mist cooling device 20.
  • the mist cooling device 20 includes a plurality of nozzles 22, a fluid supply pipe 24, and a fluid supply device 26.
  • the plurality of nozzles 22 are nozzles that inject fluid (coolant, cooling gas), and are provided inside the furnace body 12 so as to surround the heat-treated product 1.
  • fluid coolant, cooling gas
  • four nozzles 22 are attached downward from above the heat-treated product 1, and another four nozzles 22 are attached upward from below the heat-treated product 1.
  • the number and direction of the nozzles 22 are arbitrary.
  • the nozzle 22 may be divided into liquid and gas, and nozzles with different structures may be used.
  • the fluid supply pipe 24 is a pipe line that connects the plurality of nozzles 22 and the fluid supply device 26, and supplies fluid (coolant, cooling gas) from the fluid supply device 26 to the plurality of nozzles 22.
  • the fluid supply pipe 24 may be divided into liquid use and gas use, and different pipes may be used.
  • a pump, a compressor, and a valve may be provided in the middle of the fluid supply pipe 24.
  • the fluid supply device 26 collects the fluid (coolant and cooling gas) discharged from the discharge port 14 of the furnace body 12 and circulates and supplies it to the fluid supply pipe 24.
  • the cooling liquid is water or a cooling liquid containing water as a main component.
  • the cooling gas is preferably an inert gas such as argon, helium or nitrogen.
  • the fluid supply device 26 includes a device that cools and pressurizes the recovered fluid (coolant, cooling gas), a pressure control device, and a flow rate control device. Note that the fluid supply device 26 may be divided into liquid and gas, and the coolant or the cooling gas may be supplied independently.
  • mist cooling device 20 supplies the cooling liquid and the cooling gas to the nozzle 22 simultaneously or alternately, and sprays the nozzle 22 into the heat treatment furnace 12 in a spray form.
  • a mist containing droplets is formed, and the heat-treated product 1 can be cooled (mist cooling) by the mist.
  • the coolant contained in the mist is mainly water or water
  • the coolant has a higher cooling capacity than conventional gas cooling due to the latent heat of vaporization of the coolant droplets.
  • the ratio of the cooling liquid and the cooling gas constituting the mist can be arbitrarily adjusted, the cooling ability by the mist can be freely adjusted in a wide range.
  • the heat treatment furnace 10 further includes a temperature measuring device 30.
  • the temperature measurement device 30 includes a measurement window 32, a temperature sensor 34, and a temperature correction device 36.
  • the measurement window 32 is airtightly attached to the outer end of the through pipe 16 provided in the furnace body body 12a.
  • the measurement window 32 is configured by a window material having a high transmittance of light (infrared rays) in the measurement wavelength region of the temperature sensor 34. This transmittance is preferably higher than 0%.
  • a window material has, for example, germanium, silicon, zinc selenium, sapphire or quartz as a main component.
  • the temperature sensor 34 is provided outside the measurement window 32, and measures the surface temperature of the measurement target surface 1 a of the heat-treated product 1 through the measurement window 32.
  • This temperature sensor 34 has a measurement wavelength region in which light (infrared) absorption by water is small. This absorption rate is preferably less than 100%.
  • This measurement wavelength region is preferably an infrared region of 1.95 ⁇ m to 2.5 ⁇ m.
  • the temperature sensor 34 is preferably an infrared temperature sensor having a measurement wavelength range of 1.95 ⁇ m to 2.5 ⁇ m.
  • the temperature correction device 36 corrects the temperature measurement value measured by the temperature sensor 34 based on the emissivity correction coefficient of the heat-treated product, the correction coefficient based on the transmittance of the window material, or the correction coefficient based on the mist concentration.
  • the configuration of the temperature measuring device 30 described above makes it difficult to be influenced by the flow of mist during cooling and the mist temperature, so that the surface temperature of the heat-treated product 1 can be measured very accurately from outside the furnace. Therefore, it becomes possible to greatly improve the quality of the heat-treated product.
  • FIG. 2 is an overall flowchart of the temperature measurement method for the heat-treated product according to the present embodiment.
  • the temperature measuring method of the present embodiment includes steps (steps) S1 to S5.
  • step S1 wavelength band setting
  • step S2 selection of temperature sensor
  • step S3 selection of window material
  • a window material having high transmittance in the set wavelength region (measurement wavelength region) is selected. This window material is germanium in the examples described later.
  • step S4 the surface temperature of the measured surface 1a of the heat-treated product 1 is measured by the temperature sensor 34 through the measurement window 32 made of the selected window material.
  • step S5 the temperature measurement value measured by the temperature sensor is corrected based on the emissivity correction coefficient of the heat-treated product, the correction coefficient based on the transmittance of the window material, or the correction coefficient based on the mist concentration.
  • the surface temperature of the heat-treated product 1 can be measured very accurately from the outside of the furnace.
  • the cooling rate can be controlled in consideration of the composition change of the heat-treated product 1. Therefore, prevention of burning cracks and reduction in distortion can be realized, and the quality of the heat-treated product 1 can be greatly improved.
  • FIG. 3 is a diagram showing the absorption rate by wavelength of the atmosphere. From this figure, the wavelength ranges of 1 to 2.5 ⁇ m, 3 to 5 ⁇ m, and 7 to 14 ⁇ m indicated by double arrows have a low absorption rate by the atmosphere and are called “atmosphere windows”. In the wavelength region where the absorptance is high, the main component of the atmospheric air to be absorbed is shown. FIG. 3 shows that the absorption rate by water is small in the wavelength range of the atmospheric window.
  • FIG. 4 is a diagram showing the transmittance of a general window material.
  • quartz has a high transmittance at wavelengths of 1 to 2.5 ⁇ m and 3 to 4 ⁇ m, but the transmittance greatly decreases at wavelengths of 2.5 to 3 ⁇ m and 4 to 4.5 ⁇ m. It can be seen that almost no transmission is possible at wavelengths greater than 5 ⁇ m.
  • Ge germanium
  • Si silicon
  • ZnSe zinc selenium
  • a mist cooling is performed by selecting a temperature sensor 34 having a wavelength region with a low water absorption rate as a measurement wavelength region, and further combining a window material having a high transmittance in the wavelength region (measurement wavelength region). It was possible to measure the temperature of the processed product inside.
  • heat-resistant glass registered trademark: Pyrex
  • Ge germanium
  • the temperature sensor an infrared temperature sensor having a measurement wavelength range of 8 to 13 ⁇ m and 1.95 to 2.5 ⁇ m was selected.
  • test piece of the heat-treated product 1 stainless steel (SUS304) having a diameter of 80 mm and a height of 80 mm was used.
  • a thermocouple was embedded at a position 5 mm from the surface of the test piece, and the temperature at that position was measured.
  • the surface temperature was measured by two temperature sensors selected.
  • an infrared temperature sensor having a measurement wavelength range of 8 to 13 ⁇ m is referred to as a “long wavelength temperature sensor”
  • an infrared temperature sensor having a measurement wavelength range of 1.95 to 2.5 ⁇ m is referred to as a “short wavelength temperature sensor”.
  • thermocouple T / C
  • temperature sensor long wavelength temperature sensor and short wavelength temperature sensor
  • FIG. 5 is a relationship diagram between the wavelength of the heat resistant glass and the transmittance.
  • the main component of heat-resistant glass (registered trademark: Pyrex) is borosilicate glass, and the wavelength region having high transmittance is 0.4 to 2.4 ⁇ m. Therefore, it is considered that infrared rays having a measurement wavelength (measurement wavelength of a long wavelength temperature sensor: 8 to 13 ⁇ m) emitted from the test piece were absorbed by the heat-resistant glass window and the temperature could not be measured correctly.
  • FIG. 6 is a diagram showing a temperature measurement result by a combination of a Ge window and a long wavelength temperature sensor.
  • the broken line is the measured temperature of the thermocouple
  • the solid line is the measured temperature by the long wavelength temperature sensor. From this test result, since both had different slopes, it was judged that accurate temperature measurement with this combination was impossible.
  • FIG. 7 is a diagram showing a temperature measurement result by a combination of a heat resistant glass window and a short wavelength temperature sensor.
  • the broken line indicates the measured temperature of the thermocouple
  • the solid line indicates the measured temperature by the short wavelength temperature sensor. From this test result, both have a temperature range that shows almost the same gradient (slope), but in the test piece, the emissivity (0.05) of the short-wavelength infrared is extremely small, not reliable data, It was judged that temperature measurement with this combination was impossible.
  • FIG. 8 is a diagram showing a temperature measurement result by a combination of a Ge window and a short wavelength temperature sensor.
  • the broken line indicates the measured temperature of the thermocouple
  • the solid line indicates the measured temperature by the short wavelength temperature sensor.
  • mist spraying and stopping are repeated every 10 seconds in the high temperature range (0 to 200 sec) and the low temperature range (380 to 500 sec) for cooling the test piece, and the temperature measured by the short wavelength temperature sensor is around 450 ° C. Then, cooling (mist cooling) was performed in a pattern in which the mist spraying was stopped for 180 seconds from 200 to 380 seconds.
  • thermocouple and the short wavelength temperature sensor are almost the same, and by correcting the measurement data by the short wavelength temperature sensor, it is possible to measure the surface temperature of the processed product during mist cooling. It can be said.
  • the temperature measured by the short wavelength temperature sensor during mist cooling fluctuates up and down compared to the case where mist is not sprayed.
  • the average measured temperature during mist cooling is almost the same as when mist is not sprayed. Therefore, it can be said that the influence of the mist concentration on the measurement temperature is small.
  • Emissivity correction of the temperature sensor The infrared temperature sensor is greatly affected by the state of the surface of the object to be measured for temperature. For example, in the case of a metal surface, it is necessary to correct the emissivity to 0.45 for stainless steel with high glitter, and to 0.69 for steel with an oxide film attached. Therefore, as a preliminary test, the value measured with the thermocouple in contact with the surface of the test piece is compared with the value measured with the temperature sensor (short wavelength temperature sensor) at the same position, so that they are the same. Determine the emissivity correction factor.
  • the temperature sensor 34 has a measurement wavelength region (eg, 1.95 to 2.5 ⁇ m) in which the water absorption rate is less than 100%, and the measurement window 32 Is constituted by a window material (for example, germanium) having a transmittance higher than 0% in the measurement wavelength region, so that the temperature sensor 34 (infrared temperature sensor) provided outside the measurement window 32 is used for measurement. It becomes possible to measure the surface temperature of the measured surface 1a of the heat-treated product 1 through the window 32 in a non-contact manner.
  • a measurement wavelength region eg, 1.95 to 2.5 ⁇ m
  • the measurement window 32 Is constituted by a window material (for example, germanium) having a transmittance higher than 0% in the measurement wavelength region, so that the temperature sensor 34 (infrared temperature sensor) provided outside the measurement window 32 is used for measurement. It becomes possible to measure the surface temperature of the measured surface 1a of the heat-treated product 1 through the window 32 in a non-contact manner.
  • the infrared radiation from the surface of the heat-treated product 1 is not affected by the mist flow and temperature. Further, since the surface temperature of the surface to be measured 1a of the heat-treated product 1 is measured from the outside of the measurement window 32 through the window material, there is no insertion port from the outside of the furnace, and there is no fear of disturbance such as outside air from the insertion port.
  • the surface temperature of the surface to be measured 1a of the heat-treated product 1 can be measured very accurately from the outside of the furnace. Therefore, the quality of the heat-treated product 1 can be greatly improved.
  • the cooling rate can be controlled in consideration of the composition change of the heat-treated product 1, it is possible to prevent the occurrence of burning cracks and to reduce the distortion, and to greatly improve the quality of the heat-treated product 1. That is, by measuring the processing temperature during mist cooling, it is possible to grasp the period that requires a fast cooling rate and perform mist rapid cooling only during that period. Further, by monitoring the temperature Ms point at which the phase change of steel starts and the Mf point at which the phase change ends, it is possible to control the cooling rate suitable for the temperature range. As a result, it is possible to prevent the heat-treated product 1 from cracking and to reduce distortion. It can be said that such a technique for managing and controlling the temperature of the processed product during the mist cooling has a great effect on the quality improvement.
  • 1 heat-treated product object to be treated
  • 1a surface to be measured 10 heat treatment furnace, 12 furnace bodies, 20 mist cooling device, 30 temperature measuring device, 32 measuring window, 34 Temperature sensor (infrared temperature sensor), 36 Temperature corrector

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Radiation Pyrometers (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

 熱処理炉10に設けられ熱処理品1の被測定面1aを直視可能な測定用窓32と、測定用窓の外側に設けられ測定用窓を通して被測定面1aの表面温度を非接触で測定可能な温度センサ32とを備える。温度センサ32は、水による吸収率が少ない測定波長域(例えば1.95μm~2.5μm)を有する。また測定用窓32は、前記測定波長域において高い透過率を有する窓材(例えばゲルマニウム)によって構成されている。

Description

熱処理品の温度測定装置と方法
 本発明は、加熱後のミスト冷却中における熱処理品の温度測定装置と方法に関する。
 熱処理品である金属材を加熱後に冷却する手段として、水冷、油冷、ガス冷却、ミスト冷却、等が知られている。
 このうち、ミスト冷却は、熱処理品を囲んで複数のノズルを配置し、ノズルから冷却液をスプレー式に供給し、冷却液を含むミストで被処理物を冷却するものである。なお、ミストとは、冷却液の液滴を含むガスを意味する。
 熱処理品の温度計測手段は、例えば特許文献1に開示されている。また、ミスト冷却、及びミスト冷却中における熱処理品の温度計測手段は、例えば特許文献2,3に開示されている。
 特許文献1は、熱処理品と同等の特性を有するダミー試料の内部に温度センサ(熱電対)を設け、ダミー試料の温度を計測することで、熱処理品の温度を直接計測したのと同様に、熱処理品の正確な温度を管理する方法を開示している。
 特許文献2、3は、ミスト冷却中における熱処理品の温度計測手段として、熱処理品の表面に設けられた熱電対と、放射温度計のような非接触式の温度計測器を例示している。
特開2009-035792号公報、「熱処理方法及び熱処理装置」 特開2010-38531号公報、「熱処理装置」 特開2010-249332号公報、「熱処理装置及び熱処理方法」
 ミスト冷却中に熱処理品の温度測定をすることで、熱処理品の冷却速度をコントロールでき、熱処理品の焼割れ防止や、冷却後の熱処理品の低歪化が可能となる。
 しかしながら、ミストが存在する熱処理炉(例えば真空熱処理炉)内の熱処理品の温度測定は、外乱の影響を受け易いものであった。特に、熱処理品の表面に熱電対を取り付ける場合、熱電対がミストと直接接触するため、ミストの流れと温度の影響を受ける。また、炉外から熱電対を挿入するので、挿入口から外気等の外乱を受ける可能性がある。
 本発明の目的は、熱処理炉内で加熱後にミスト冷却する熱処理品の表面温度を、ミストの流れと温度、及び外気等の影響を受けることなく温度測定することができる熱処理品の温度測定装置と方法を提供することにある。
 本発明によれば、冷却液の液滴を含むミストで冷却するミスト冷却装置を備えた熱処理炉内に収容された熱処理品の温度測定装置であって、
 前記熱処理炉に設けられ前記熱処理品の被測定面を直視可能な測定用窓と、
 該測定用窓の外側に設けられ、測定用窓を通して前記被測定面の表面温度を非接触で測定可能な温度センサとを備え、
 前記温度センサは、水による吸収率が100%未満となる測定波長域を有し、
 前記測定用窓は、前記測定波長域において0%よりも高い透過率を有する窓材によって構成されている、熱処理品の温度測定装置が提供される。
 また本発明によれば、冷却液の液滴を含むミストで冷却するミスト冷却装置を備えた熱処理炉内に収容された熱処理品の温度測定方法であって、
 (A)水による吸収率が100%未満となる波長域を測定波長域とし熱処理品の被測定面の表面温度を非接触で測定可能な温度センサと、該波長域において0%よりも高い透過率を有する窓材とを選定し、
 (B)前記窓材からなる測定用窓を通して前記温度センサにより熱処理品の被測定面の表面温度を測定する、熱処理品の温度測定方法が提供される。
 上記本発明の装置及び方法によれば、温度センサが水による吸収率が100%未満となる測定波長域(例えば1.95~2.5μm)を有しており、測定用窓が前記測定波長域において0%よりも高い透過率を有する窓材(例えばゲルマニウム)によって構成されているので、測定用窓の外側に設けられた温度センサ(例えば赤外線温度センサ)により、測定用窓を通して熱処理品の被測定面の表面温度を非接触で測定することが可能となる。
 また、熱処理品の表面(被測定面)がミストと直接接触しても、熱処理品の表面からの赤外線放射はミストの流れと温度の影響を受けない。また、測定用窓の外側から窓材を通して熱処理品の被測定面の表面温度を測定するので、炉外からの挿入口がなく、挿入口から外気等の外乱を受けるおそれがない。
 従って、冷却中のミストの流れとミスト温度の影響を受け難いので、熱処理品の被測定面の表面温度を炉外から測定することができる。
 また、熱処理品の組成変化を考慮して冷却速度をコントロールできるため、焼割れ防止や低歪化が実現でき、熱処理品の品質を大幅に高めることが可能となる。
 すなわち、ミスト冷却中の処理温度測定により、速い冷却速度を要する期間を把握し、その期間のみミスト急速冷却を行うことができる。また鋼の相変化が開始する温度Ms点と相変化が終了するMf点を監視することで、温度域に適した冷却速度にコントロールできる。これにより熱処理品の焼き割れ防止、低歪化が実現できる。このようなミスト冷却中に処理品温度を管理・温度制御する技術は、品質向上に大きな効果を有するといえる。
 本発明によれば、熱処理炉内で加熱後にミスト冷却する熱処理品の表面温度を、ミストの流れと温度、及び外気等の影響を受けることなく温度測定することができる熱処理品の温度測定装置と方法を提供することが可能となる。
本発明による温度測定装置を備えた熱処理炉の実施形態を示す縦断面図である。 本実施例に係る熱処理品の温度測定方法の全体フロー図である。 大気の波長別吸収率を示す図である。 一般的な窓材の透過率を示す図である。 耐熱ガラスの波長と透過率の関係図である。 Ge窓と長波長温度センサの組み合わせによる温度測定結果を示す図である。 耐熱ガラス窓と短波長温度センサの組み合わせによる温度測定結果を示す図である。 Ge窓と短波長温度センサの組み合わせによる温度測定結果を示す図である。
 以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図1は、本発明による温度測定装置30を備えた熱処理炉10の実施形態を示す縦断面図である。
 この例において、熱処理炉10は、熱処理品1(被処理物)の加熱処理を行う真空熱処理炉である。なお、本発明は真空熱処理炉に限定されず、熱処理品1の熱処理を行う限りで、その他の熱処理炉であってもよい。
 熱処理品1(被処理物)は、例えばダイス鋼(SKD材)やハイス鋼(SKH材)であるが、熱処理を必要とするその他の金属材であってもよい。
 熱処理品1の大きさは、例えば直径100~300mm、高さ100~300mmの円柱形部材であるが、本発明はこれに限定されず、その他の形状でもよい。
 図1において、熱処理炉10は、炉体12を有する。
 炉体12は、中空の気密容器であり、この例では軸心が鉛直な中空円筒形の炉体胴12aと、炉体胴12aの下面を塞ぐ炉体底12bと、炉体胴12aの上面を塞ぐ炉体蓋12cとからなる。
 炉体胴12aは、この例では、上下端が開口した中空円筒形の金属管であり、その上下端に連結用のフランジ13を有する。なお、炉体胴12aに冷却用のジャケットを設けてもよい。
 また、この例で炉体胴12aには、測定用窓32(後述する)用の貫通管16が気密に取り付けられている。
 貫通管16は、この例では、水平貫通管16aと傾斜貫通管16bとからなり、それぞれの軸線が熱処理品1の表面(被測定面1a)と交差し、各貫通管16の内側を通して熱処理品1の被測定面1aを直視できるように配置されている。
 また、この例で傾斜貫通管16bは、水平に対して下向きに傾いて設けられている。この構成により、温度センサにより熱処理品の中心部分を狙いやすくなるので、熱処理品のサイズによらず温度データのゆらぎが少なくなる。
 炉体底12bは、外縁部が炉体胴12aの下端フランジ13に連結された円形の平板である。炉体底12bには、排出口14が設けられ、炉体12から流体(冷却液、冷却ガス)を外部に排出できるようになっている。
 炉体蓋12cは、外縁部が炉体胴12aの上端フランジ13に連結された円形の平板である。炉体蓋12cの中心部には開口15が設けられ、この開口15を通して上方の真空処理室(図示せず)から熱処理品1を熱処理炉10の内部に挿入し、かつ外部に取り出すことができるようになっている。
 図1において、2は熱処理品1を支持する支持部材である。
 なお、支持部材2の構成は、この例に限定されず、その他の構成であってもよい。
 図1において、熱処理炉10は、さらにミスト冷却装置20を備える。
 ミスト冷却装置20は、複数のノズル22、流体供給管24、及び流体供給装置26を備える。
 複数のノズル22は、流体(冷却液、冷却ガス)を噴射するノズルであり、炉体12の内側に熱処理品1を囲んで設けられている。この例で、4つのノズル22が、熱処理品1の上方から下向きに取り付けられ、別の4つのノズル22が、熱処理品1の下方から上向きに取り付けられている。なお、ノズル22の個数と向きは任意である。
 なお、ノズル22を液用とガス用に区分し、異なる構造のノズルを用いてもよい。
 流体供給管24は、複数のノズル22と流体供給装置26を連結する管路であり、流体供給装置26から複数のノズル22に流体(冷却液、冷却ガス)を供給する。
 なお、流体供給管24を液用とガス用に区分し、異なる配管を用いてもよい。また、流体供給管24の途中に、ポンプ、圧縮機、弁(流量調節弁、圧力調節弁、等)を設けてもよい。
 流体供給装置26は、炉体12の排出口14から排出された流体(冷却液、冷却ガス)を回収し、流体供給管24に循環して供給する。
 冷却液は、水又は水を主成分とする冷却液である。また冷却ガスは、好ましくは、アルゴン、ヘリウム、窒素等の不活性ガスである。
 また、流体供給装置26は、回収した流体(冷却液、冷却ガス)を冷却し加圧する装置、圧力制御装置、及び流量制御装置を備える。
 なお、流体供給装置26を液用とガス用に区分し、それぞれ独立して冷却液又は冷却ガスを供給してもよい。
 上述したミスト冷却装置20により、冷却液と冷却ガスを同時又は交互にノズル22に供給し、ノズル22から熱処理炉12内に噴霧状に噴射し、ノズル22の内部又は外部で、冷却液の液滴を含むミストを形成し、このミストにより、熱処理品1を冷却(ミスト冷却)することができる。
 また、ミストに含まれる冷却液は、水又は水を主成分とするため冷却液の液滴の蒸発潜熱により、従来のガス冷却と比較して高い冷却能力を有する。
 また、ミストを構成する冷却液と冷却ガスの比率は、任意に調整できるため、ミストによる冷却能力を広い範囲で自由に調整することができる。
 図1において、熱処理炉10は、さらに温度測定装置30を備える。
 温度測定装置30は、測定用窓32、温度センサ34、及び温度補正装置36を備える。
 測定用窓32は、炉体胴12aに設けられた貫通管16の外方端に気密に取り付けられている。また、測定用窓32は、温度センサ34の測定波長域において光(赤外線)の高い透過率を有する窓材によって構成されている。この透過率は、0%よりも高いことが好ましい。
 このような窓材は、例えばゲルマニウム、シリコン、ジンクセレン、サファイア又は石英を主成分とする。
 温度センサ34は、測定用窓32の外側に設けられ、測定用窓32を通して熱処理品1の被測定面1aの表面温度を測定する。この温度センサ34は、水による光(赤外線)の吸収率が少ない測定波長域を有する。この吸収率は100%未満であることが好ましい。
 この測定波長域は、好ましくは1.95μm~2.5μmの赤外線領域である。また、温度センサ34は、好ましくは、1.95μm~2.5μmの測定波長域を有する赤外線温度センサである。
 温度補正装置36は、温度センサ34により温度測定された温度測定値を、熱処理品の放射率の補正係数、窓材の透過率による補正係数、又はミスト濃度による補正係数に基づいて補正する。
 上述した温度測定装置30の構成により、冷却中のミストの流れとミスト温度の影響を受け難いので、熱処理品1の表面温度を炉外から極めて正確に測定することができる。そのため、熱処理品の品質を大幅に高めることが可能となる。
 図2は、本実施例に係る熱処理品の温度測定方法の全体フロー図である。
 この図において、本実施例の温度測定方法は、S1~S5の各ステップ(工程)からなる。
 ステップS1(波長域の設定)では、水による吸収率が少ない波長域を設定する。この波長域は、後述の実施例では1.95~2.5μmである。
 ステップS2(温度センサの選定)では、設定した波長域を測定波長域とし熱処理品1の被測定面を非接触で測定可能な温度センサ34を選定する。
 この温度センサ34は、後述の実施例では赤外線温度センサである。
 ステップS3(窓材の選定)では、設定した波長域(測定波長域)において高い透過率を有する窓材を選定する。
 この窓材は、後述の実施例ではゲルマニウムである。
 ステップS4では、選定した窓材からなる測定用窓32を通して温度センサ34により熱処理品1の被測定面1aの表面温度を測定する。
 ステップS5では、温度センサにより測定された温度測定値を、熱処理品の放射率の補正係数、窓材の透過率による補正係数、又はミスト濃度による補正係数に基づいて補正する。
 上述した温度測定方法により、冷却中のミストの流れとミスト温度の影響を受け難いので、熱処理品1の表面温度を炉外から極めて正確に測定することができる。また、熱処理品1の組成変化を考慮して冷却速度をコントロールできる。そのため、焼割れ防止や低歪化が実現でき、熱処理品1の品質を大幅に高めることが可能となる。
(水の吸収率が少ない領域と窓材について)
 図3は、大気の波長別吸収率を示す図である。この図から、両矢印で示す波長1~2.5μm、3~5μm、7~14μmの範囲は大気による吸収率が小さく、「大気の窓」と呼ばれる。吸収率が高い波長域には、主に吸収する大気の主成分が示されている。図3より大気の窓の波長域では、水による吸収率が少ないことがわかる。
 図4は、一般的な窓材の透過率を示す図である。この図に示すように、石英は、波長1~2.5μm及び3~4μmでは透過率が高いが、波長2.5~3μm及び4~4.5μmで透過率が大きく減少し、波長4.5μmより大きい波長では、ほとんど透過できないことがわかる。
 これに対し、Ge(ゲルマニウム)、Si(シリコン)、ZnSe(ジンクセレン)は、波長1.8~20μmの短波長から長波長まで高い透過率を持つことがわかる。
 本実施例では、水による吸収率が少ない波長域を測定波長域とする温度センサ34を選定し、さらにその波長域(測定波長域)で高い透過率をもつ窓材を組み合わせることにより、ミスト冷却中の処理品温度の測定を可能にした。
 窓材として、耐熱ガラス(登録商標:パイレックス)とGe(ゲルマニウム)を選定し、温度センサとして、測定波長域8~13μmと1.95~2.5μmの赤外線温度センサを選定した。
 また熱処理品1のテストピースとして、直径80mm、高さ80mmのステンレス鋼(SUS304)を用いた。このテストピースの表面から5mmの位置に熱電対を埋め込んでその位置の温度を測定し、同時に選定した2種の温度センサにより表面温度を測定した。以下、測定波長域8~13μmの赤外線温度センサを「長波長温度センサ」、測定波長域1.95~2.5μmの赤外線温度センサを「短波長温度センサ」と呼ぶ。
 約850℃まで加熱したテストピースを室温までミスト冷却し、ミスト冷却中の温度測定を熱電対(T/C)と温度センサ(長波長温度センサと短波長温度センサ)で実施し、その測定データを比較した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、長波長(測定波長域8~13μm)では、耐熱ガラスとゲルマニウムの2種の窓材の両方とも温度測定ができなかった(温度測定不可能)。また、短波長(測定波長域1.95~2.5μm)では、耐熱ガラスは温度測定不可能であったが、Geは温度測定が可能であった(温度測定可能)。
 以下、この理由を説明する。
(1)耐熱ガラス窓×長波長温度センサの場合
 図5は、耐熱ガラスの波長と透過率の関係図である。
 耐熱ガラス(登録商標:パイレックス)は、主成分がホウケイ酸ガラスであり、高い透過率を持つ波長域は0.4~2.4μmである。そのため、テストピースから放出された測定波長(長波長温度センサの測定波長:8~13μm)の赤外線は耐熱ガラス窓に吸収され、正しく温度測定できなかったと考えられる。
(2)Ge窓×長波長温度センサの場合
 図6は、Ge窓と長波長温度センサの組み合わせによる温度測定結果を示す図である。この図において、破線は熱電対の測定温度と、実線は長波長温度センサによる測定温度である。
 この試験結果から、両者は異なる傾きとなっていたため、この組み合わせでの正確な温度測定は不可能と判断した。
(3)耐熱ガラス窓×短波長温度センサの場合
 図7は、耐熱ガラス窓と短波長温度センサの組み合わせによる温度測定結果を示す図である。この図において、破線は熱電対の測定温度と、実線は短波長温度センサによる測定温度である。
 この試験結果から、両者はほぼ同一の勾配(傾き)を示す温度域もあるが、テストピースでは短波長赤外線の放射率(0.05)が極端に小さく、信頼性の高いデータではないため、この組み合わせでの温度測定は不可能と判断した。
(4)Ge窓×短波長温度センサの場合
 図8は、Ge窓と短波長温度センサの組み合わせによる温度測定結果を示す図である。この図において、破線は熱電対の測定温度と、実線は短波長温度センサによる測定温度である。
 この例では、テストピースの冷却として、高温域(0~200sec)と低温域(380~500sec)で、10秒ごとにミスト噴霧と停止を繰り返し、短波長温度センサによる測定温度が450℃の付近で200~380secの180秒間ミスト噴霧を停止するパターンで冷却(ミスト冷却)を行った。
 この試験結果から、熱電対と短波長温度センサによる測定データの傾きはほぼ一致しており、短波長温度センサによる測定データを補正することによりミスト冷却中の処理品表面温度の測定が可能であるといえる。
 また、図8において、ミスト冷却中における短波長温度センサによる測定温度は、ミストを噴霧しない場合と比較して上下に変動している。しかし、ミスト冷却中の測定温度の平均値はミストを噴霧しない場合とほぼ同一である。
 従って、測定温度に対するミスト濃度の影響は少ないといえる。
(温度センサ測定データの補正について)
(1)温度センサの放射率補正
 赤外線温度センサは温度測定する物体表面の状態に大きな影響を受ける。例えば金属表面の場合、光輝性の高いステンレス鋼は放射率を0.45、酸化膜が付着した鋼では放射率を0.69に補正する必要がある。
 そこで、事前試験としてテストピースの表面に熱電対を接触させて温度測定した値と、同じ位置を上述した温度センサ(短波長温度センサ)で温度測定した値を比較し、両者が同一になるように放射率の補正係数を決定する。
(2)窓材の透過率による補正
 窓材の材質により波長ごとの透過率が異なる。事前試験として、テストピース表面に熱電対を接触させて温度測定した値と、窓材を通して上述した温度センサ(短波長温度センサ)で同じ位置を温度測定した値を比較し、両者が同一になるように窓材透過率による補正係数を決定する。
(3)ミストの濃度による補正
 ミスト濃度によって、赤外線を吸収する量が変化する。処理品の表面近くに熱電対を埋め込んで温度測定した値と炉外から温度センサで温度測定した値を比較し、ミスト濃度と温度センサ温度測定値の関係を明らかにし、ミスト濃度の変化が温度測定値に及ぼす影響を補正することのできるミスト濃度による補正係数を導く。
 以上の補正方法を補正式にまとめると、下記の式(1)で表される。
 表面温度補正値=
(放射率の補正係数)×(窓材透過率による補正係数)×(ミスト濃度による補正係数)×温度センサ温度測定値・・・(1)
 上述した本実施例の装置及び方法によれば、温度センサ34が水による吸収率が100%未満となる測定波長域(例えば1.95~2.5μm)を有しており、測定用窓32が前記測定波長域において0%よりも高い透過率を有する窓材(例えばゲルマニウム)によって構成されているので、測定用窓32の外側に設けられた温度センサ34(赤外線温度センサ)により、測定用窓32を通して熱処理品1の被測定面1aの表面温度を非接触で測定することが可能となる。
 また、熱処理品1の表面(被測定面1a)がミストと直接接触しても、熱処理品1の表面からの赤外線放射はミストの流れと温度の影響を受けない。また、測定用窓32の外側から窓材を通して熱処理品1の被測定面1aの表面温度を測定するので、炉外からの挿入口がなく、挿入口から外気等の外乱を受けるおそれがない。
 従って、冷却中のミストの流れとミスト温度の影響を受け難いので、熱処理品1の被測定面1aの表面温度を炉外から極めて正確に測定することができる。そのため、熱処理品1の品質を大幅に高めることが可能となる。
 また、熱処理品1の組成変化を考慮して冷却速度をコントロールできるため、焼割れ防止や低歪化が実現でき、熱処理品1の品質を大幅に高めることが可能となる。
 すなわち、ミスト冷却中の処理温度測定により、速い冷却速度を要する期間を把握し、その期間のみミスト急速冷却を行うことができる。また鋼の相変化が開始する温度Ms点と相変化が終了するMf点を監視することで、温度域に適した冷却速度にコントロールできる。これにより熱処理品1の焼き割れ防止、低歪化が実現できる。このようなミスト冷却中に処理品温度を管理・温度制御する技術は、品質向上に大きな効果を有するといえる。
 なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。
1 熱処理品(被処理物)、1a 被測定面、
10 熱処理炉、12 炉体、
20 ミスト冷却装置、
30 温度測定装置、
32 測定用窓、
34 温度センサ(赤外線温度センサ)、
36 温度補正装置

 

Claims (7)

  1.  冷却液の液滴を含むミストで冷却するミスト冷却装置を備えた熱処理炉内に収容された熱処理品の温度測定装置であって、
     前記熱処理炉に設けられ前記熱処理品の被測定面を直視可能な測定用窓と、
     該測定用窓の外側に設けられ、測定用窓を通して前記被測定面の表面温度を非接触で測定可能な温度センサとを備え、
     前記温度センサは、水による吸収率が100%未満となる測定波長域を有し、
     前記測定用窓は、前記測定波長域において0%よりも高い透過率を有する窓材によって構成されている、熱処理品の温度測定装置。
  2.  前記温度センサにより測定された温度測定値を、熱処理品の放射率の補正係数、窓材の透過率による補正係数、又はミスト濃度による補正係数に基づいて補正する温度補正装置を備える、請求項1に記載の温度測定装置。
  3.  前記温度センサは、1.95μm~2.5μmの測定波長域を有する赤外線温度センサである、請求項1又は2に記載の温度測定装置。
  4.  前記測定用窓の窓材は、ゲルマニウム、シリコン、ジンクセレン、サファイア又は石英を主成分とする、請求項1~3のいずれか一項に記載の温度測定装置。
  5.  前記測定用窓は、水平に対して下向きに傾いて前記熱処理炉に設けられている、請求項1~4のいずれか一項に記載の温度測定装置。
  6.  冷却液の液滴を含むミストで冷却するミスト冷却装置を備えた熱処理炉内に収容された熱処理品の温度測定方法であって、
     (A)水による吸収率が100%未満となる波長域を測定波長域とし熱処理品の被測定面の表面温度を非接触で測定可能な温度センサと、該波長域において0%よりも高い透過率を有する窓材とを選定し、
     (B)前記窓材からなる測定用窓を通して前記温度センサにより熱処理品の被測定面の表面温度を測定する、熱処理品の温度測定方法。
  7.  前記温度センサにより測定された温度測定値を、熱処理品の放射率の補正係数、窓材の透過率による補正係数、又はミスト濃度による補正係数に基づいて補正する、請求項6に記載の温度測定方法。
PCT/JP2012/054793 2011-02-28 2012-02-27 熱処理品の温度測定装置と方法 WO2012118016A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280010787.9A CN103534547B (zh) 2011-02-28 2012-02-27 热处理品的温度测定装置和温度测定方法
KR1020137021406A KR20130114728A (ko) 2011-02-28 2012-02-27 열처리품의 온도 측정 장치와 방법
DE112012001031T DE112012001031T5 (de) 2011-02-28 2012-02-27 Vorrichtung und Verfahren zum Messen der Temperatur eines wärmebehandelten Werkstücks
JP2013502334A JP6153466B2 (ja) 2011-02-28 2012-02-27 熱処理品の温度測定装置と方法
US14/011,564 US9377360B2 (en) 2011-02-28 2013-08-27 Device and method for measuring temperature of heat-treated workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011041792 2011-02-28
JP2011-041792 2011-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/011,564 Continuation US9377360B2 (en) 2011-02-28 2013-08-27 Device and method for measuring temperature of heat-treated workpiece

Publications (1)

Publication Number Publication Date
WO2012118016A1 true WO2012118016A1 (ja) 2012-09-07

Family

ID=46757950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054793 WO2012118016A1 (ja) 2011-02-28 2012-02-27 熱処理品の温度測定装置と方法

Country Status (6)

Country Link
US (1) US9377360B2 (ja)
JP (1) JP6153466B2 (ja)
KR (1) KR20130114728A (ja)
CN (1) CN103534547B (ja)
DE (1) DE112012001031T5 (ja)
WO (1) WO2012118016A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067602A (ja) * 2015-09-30 2017-04-06 新日鐵住金株式会社 鋼材温度測定装置及び鋼材温度測定方法
JP2019203186A (ja) * 2018-05-25 2019-11-28 光洋サーモシステム株式会社 熱処理装置および金属部品の製造方法
JP2019203185A (ja) * 2018-05-25 2019-11-28 光洋サーモシステム株式会社 熱処理装置および金属部品の製造方法
TWI720855B (zh) * 2020-03-25 2021-03-01 中國鋼鐵股份有限公司 用於量測爐內溫度的方法及系統
CN112611228A (zh) * 2020-11-19 2021-04-06 衡阳鸿宇化工有限责任公司 一种生产车间反应炉用冷却水循环设备及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016107168A1 (de) * 2016-04-18 2017-10-19 Carl Zeiss 3D Automation Gmbh Vorrichtung und Verfahren zum Abkühlen von Werkstücken
TWI614080B (zh) * 2016-09-13 2018-02-11 財團法人工業技術研究院 加工恆溫控制系統及其利用方法
CN109280750B (zh) * 2018-10-10 2020-02-04 武汉纺织大学 一种奥铁体球铁转变控制冷却装置
KR102257355B1 (ko) * 2019-01-22 2021-05-31 조선내화 주식회사 내화물의 온도측정 방법 및 시스템
CN110951952A (zh) * 2019-12-18 2020-04-03 上海始金新材料科技有限公司 一种真空水淬设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288041A (ja) * 1987-05-20 1988-11-25 Fujitsu Ltd 気相成長膜表面の評価方法
JPH09316544A (ja) * 1996-05-31 1997-12-09 Kawasaki Steel Corp 水冷熱処理における鋼板の表面温度測定装置
JPH11153386A (ja) * 1997-11-25 1999-06-08 Ishikawajima Harima Heavy Ind Co Ltd 多室式マルチ冷却真空炉
JP2007171112A (ja) * 2005-12-26 2007-07-05 Mitsubishi Heavy Ind Ltd プラズマ溶融炉におけるスラグ温度計測方法及び装置
JP2010002150A (ja) * 2008-06-23 2010-01-07 Takuma Co Ltd 炉内監視装置及び炉内監視方法並びにこれらを用いた炉の操業制御方法
JP2010249332A (ja) * 2009-04-10 2010-11-04 Ihi Corp 熱処理装置及び熱処理方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1390351A (en) * 1971-02-16 1975-04-09 Tetronics Research Dev Co Ltd High temperature treatment of materials
US4270898A (en) * 1979-07-16 1981-06-02 Pollution Control Products Co. Control method for a reclamation furnace
US4463437A (en) * 1981-04-27 1984-07-31 Bethlehem Steel Corp. Furnace burden thermographic method and apparatus
JPS61193036A (ja) * 1985-02-21 1986-08-27 Nireko:Kk 放射温度計
US4770630A (en) * 1986-08-23 1988-09-13 Toray Industries, Inc. Heat treatment apparatus
DE4208485C2 (de) * 1992-03-17 1997-09-04 Wuenning Joachim Verfahren und Vorrichtung zum Abschrecken metallischer Werkstücke
US5992159A (en) * 1995-05-25 1999-11-30 Edwards; Christopher Francis Method and apparatus for heat extraction by controlled spray cooling
US5981919A (en) * 1997-02-11 1999-11-09 Bouillon, Inc. Method and apparatus for characterizing and controlling the heat treatment of a metal alloy
US20020104597A1 (en) * 1999-07-09 2002-08-08 Ipsco Enterprises Inc. Method and apparatus for producing steel
US6443214B1 (en) * 1999-12-07 2002-09-03 Honda Giken Kogyo Kabushiki Kaisha Method for heat treating mold cast product
DE60012474T2 (de) * 2000-03-13 2004-11-25 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Bildgebendes pyrometer
JP2001281064A (ja) * 2000-03-31 2001-10-10 Shibaura Mechatronics Corp 単色放射温度計の較正方法
CA2470127C (en) * 2001-12-13 2009-02-17 Jerzy H. Sokolowski Method and apparatus for universal metallurgical simulation and analysis
US7041931B2 (en) * 2002-10-24 2006-05-09 Applied Materials, Inc. Stepped reflector plate
US6940047B2 (en) * 2003-11-14 2005-09-06 Asm International N.V. Heat treatment apparatus with temperature control system
FI118743B (fi) * 2004-11-04 2008-02-29 Andritz Oy Hiillospedin ohjaus talteenottokattilassa
CN100456004C (zh) * 2006-06-08 2009-01-28 江苏技术师范学院 高温温度场图像的检测装置及其检测方法
KR100796767B1 (ko) * 2007-02-28 2008-01-22 최병길 분위기가스 소모 최소화 및 이산화탄소 가스 발생 최소화를위한 열처리장치
US7968044B2 (en) * 2007-04-30 2011-06-28 Spraying Systems Co. Sinter processing system
JP2009035792A (ja) 2007-08-03 2009-02-19 Nissan Motor Co Ltd 熱処理方法及び熱処理装置
JP4263761B1 (ja) * 2008-01-17 2009-05-13 トヨタ自動車株式会社 減圧式加熱装置とその加熱方法および電子製品の製造方法
JP2010038531A (ja) 2008-07-10 2010-02-18 Ihi Corp 熱処理装置
JP5588661B2 (ja) 2009-12-11 2014-09-10 株式会社Ihi ミスト冷却装置及び熱処理装置
CN201697455U (zh) * 2010-04-22 2011-01-05 福建省闽发铝业股份有限公司 用于加热铝棒的电磁感应加热炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288041A (ja) * 1987-05-20 1988-11-25 Fujitsu Ltd 気相成長膜表面の評価方法
JPH09316544A (ja) * 1996-05-31 1997-12-09 Kawasaki Steel Corp 水冷熱処理における鋼板の表面温度測定装置
JPH11153386A (ja) * 1997-11-25 1999-06-08 Ishikawajima Harima Heavy Ind Co Ltd 多室式マルチ冷却真空炉
JP2007171112A (ja) * 2005-12-26 2007-07-05 Mitsubishi Heavy Ind Ltd プラズマ溶融炉におけるスラグ温度計測方法及び装置
JP2010002150A (ja) * 2008-06-23 2010-01-07 Takuma Co Ltd 炉内監視装置及び炉内監視方法並びにこれらを用いた炉の操業制御方法
JP2010249332A (ja) * 2009-04-10 2010-11-04 Ihi Corp 熱処理装置及び熱処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067602A (ja) * 2015-09-30 2017-04-06 新日鐵住金株式会社 鋼材温度測定装置及び鋼材温度測定方法
JP2019203186A (ja) * 2018-05-25 2019-11-28 光洋サーモシステム株式会社 熱処理装置および金属部品の製造方法
JP2019203185A (ja) * 2018-05-25 2019-11-28 光洋サーモシステム株式会社 熱処理装置および金属部品の製造方法
JP7139151B2 (ja) 2018-05-25 2022-09-20 株式会社ジェイテクトサーモシステム 熱処理装置および金属部品の製造方法
TWI720855B (zh) * 2020-03-25 2021-03-01 中國鋼鐵股份有限公司 用於量測爐內溫度的方法及系統
CN112611228A (zh) * 2020-11-19 2021-04-06 衡阳鸿宇化工有限责任公司 一种生产车间反应炉用冷却水循环设备及其使用方法

Also Published As

Publication number Publication date
KR20130114728A (ko) 2013-10-17
US20140044148A1 (en) 2014-02-13
DE112012001031T5 (de) 2013-11-28
JPWO2012118016A1 (ja) 2014-07-07
CN103534547B (zh) 2015-08-19
JP6153466B2 (ja) 2017-06-28
US9377360B2 (en) 2016-06-28
CN103534547A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
JP6153466B2 (ja) 熱処理品の温度測定装置と方法
JP6382290B2 (ja) レーザ処理システム内の粒子制御
EP3048086B1 (en) Use of a burner for inner surface treatment of medical glass container
RU2621235C2 (ru) Улучшенные стеклоприпойные материалы и/или способ изготовления вакуумных стеклопакетов, содержащих эти материалы
JP7272768B2 (ja) 基板の処理方法及び基板の処理装置
CN106029277B (zh) 羧酸气体浓度的估算方法及焊接装置
TW201233988A (en) Low temperature measurement and control using low temperature pyrometry
JPH03232968A (ja) 成膜方法及び成膜装置
CN106165079B (zh) 处理系统及校准、验证工件工艺及在高温处理工件的方法
US20140308621A1 (en) Sintering apparatus
US20170011974A1 (en) Substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
CN109564206A (zh) 用于确定金属产品微观结构的设备和方法以及冶金系统
CN109990906A (zh) 一种高温高压密闭腔内红外测温系统及方法
Ni et al. Water diffusion in dacitic melt
JP5333933B2 (ja) 表面温度測定方法及び鋼材の製造方法
KR101544218B1 (ko) 확산로에서의 제트 적층 납땜 장치
CN106092324A (zh) 一种用于低温面源黑体的防结霜装置
Guillevic et al. Fabrication of highly homogeneous As2Se3 glass under argon flow
JP5515411B2 (ja) 鋼材加熱方法、加熱制御装置およびプログラム
JP5366157B2 (ja) 加圧式ランプアニール装置
JP2008098214A (ja) 熱処理温度の補正方法及び熱処理方法
WO2021106597A1 (ja) 基板処理装置及び基板処理方法
JP2005233741A (ja) 温度測定治具及び該治具を用いた加熱炉及び該加熱炉における炉内温度制御方法
JPH0561574B2 (ja)
CN114754586B (zh) 一种高温炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502334

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137021406

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012001031

Country of ref document: DE

Ref document number: 1120120010310

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752825

Country of ref document: EP

Kind code of ref document: A1