WO2015058676A1 - Heat treatment apparatus and auto-turning temperature control method therefor - Google Patents

Heat treatment apparatus and auto-turning temperature control method therefor Download PDF

Info

Publication number
WO2015058676A1
WO2015058676A1 PCT/CN2014/089059 CN2014089059W WO2015058676A1 WO 2015058676 A1 WO2015058676 A1 WO 2015058676A1 CN 2014089059 W CN2014089059 W CN 2014089059W WO 2015058676 A1 WO2015058676 A1 WO 2015058676A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
pid calculation
coefficient
value
auto
Prior art date
Application number
PCT/CN2014/089059
Other languages
French (fr)
Inventor
Feng Wang
Qian Zhang
Original Assignee
Beijing Sevenstar Electronic Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sevenstar Electronic Co., Ltd. filed Critical Beijing Sevenstar Electronic Co., Ltd.
Publication of WO2015058676A1 publication Critical patent/WO2015058676A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means

Definitions

  • the present invention generally relates to the field of automatic temperature control, more particularly, to a heat treatment apparatus and the temperature control method for the heat treatment apparatus.
  • the vertical heat treatment apparatus comprises a cylindrical reaction container having an opening at the bottom, a lid to open or close the bottom of the reaction container, a boat holding the objects to be processed at a predetermined interval, and a furnace body positioned around the reaction container.
  • a heater is installed inside the furnace body to heat the objects inside the reaction container.
  • a temperature control system need to be provided for the heat treatment apparatus to accurately control the heating temperature.
  • the temperature control system usually utilizes PID control, thus the parameter settings of the PID control is critical to the temperature control for the heat treatment apparatus.
  • the inner space of the furnace body is divided into multiple temperature zones, each provided with a temperature sensor and a heater, so as to perform individual temperature control in each of the temperature zones.
  • the manual adjustment has the defects that the staff are required to wait all the time, the system control is greatly affected by the subjective factors and is easily influenced by the artificial error, and the real-time performance is poor.
  • the off-line calculation and adjustment since the environment to be adjusted is in ideal condition, various unknown and non-quantifiable or non-modeling factors in the real process cannot be added into the setting conditions of the off-line environment, thus, the off-line calculation which expends time and energy may not achieve the expected effect and may even cause oscillation instability of the control system.
  • an object of the present invention is to provide a heat treatment apparatus and a temperature control method therefor which enables online adjustment and auto-turning of the temperature control parameters, so as to overcome the disadvantages of the conventional techniques.
  • the present invention provides a heat treatment apparatus comprising:
  • reaction container for holding multiple substrates to be treated
  • a heating furnace arranged outside the reaction container having an inner surface provided with heating elements which are divided into a plurality of zones vertically;
  • control device for performing PID calculation for each zone according to control parameters corresponding to each zone, and the error value between a setting temperature and the actual temperature of each zone; and individually controlling the heating elements of each zone according to the PID calculation result for each zone;
  • control parameters include a proportional coefficient term, an integral coefficient term, and a differential coefficient term
  • the control device includes a PID control unit having a first parameter section setting the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; a second parameter section setting the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; and a calculation section obtaining the control parameters for each zone by adding the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone to the corresponding auto-turning values, and obtaining the PID calculation result for each zone according to the control parameters and the error value of the zone; wherein the second parameter section sets the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for the current zone according to the error value of the current zone and the error values of the adjacent zones.
  • control device performs incremental PID calculation, which meets the following formula:
  • ⁇ u i (t) (K ip (t) + ⁇ K ip (t) ) (e i (t) -e i (t-1) ) + (K ii (t) + ⁇ K ii (t)) e i (t)
  • each of the auto-turning values includes a first term which is a product of the error value of the current zone and a first weighting coefficient, and a second term which is the sum of products each obtained from multiplying the error value of an adjacent zone by a second weighting coefficient; the first weighting coefficient is greater than the second weighting coefficient.
  • the auto-turning value ⁇ K ip (t) of the proportional coefficient of the PID calculation for the i th zone at time t meets the following formula:
  • ⁇ i11 is the first weighting coefficient of the auto-turning value of the proportional coefficient of the PID calculation for the i th zone
  • ⁇ i12 is the second weighting coefficient of the auto-turning value of the proportional coefficient of the PID calculation for the i th zone
  • ⁇ i21 is the first weighting coefficient of the auto-turning value of the integral coefficient of the PID calculation for the i th zone
  • ⁇ i22 is the second weighting coefficient of the auto-turning value of the integral coefficient of the PID calculation for the i th zone
  • ⁇ i31 is the first weighting coefficient of the auto-turning value of the differential coefficient of the PID calculation for the i th zone
  • ⁇ i32 is the second weighting coefficient of the auto-turning value of the differential coefficient of the PID calculation for the i th zone
  • n is the number of the zones.
  • the value ranges of ⁇ i11 , ⁇ i21 , ⁇ i31 , ⁇ i12 , ⁇ i22 and ⁇ i32 are from 0 to 1.
  • the control device further includes a supervision unit which adjusts the PID calculation result for each zone according to the error value of each zone.
  • the supervision unit directly adjusts the PID calculation result for the zone to obtain an adjusted result as an output value from the PID control unit for the zone, it could make the error value obtained from the output value less than the error threshold.
  • the supervision unit takes the PID calculation result for the zone as the output value from the PID control unit for the zone.
  • the supervision unit adjusts the PID calculation result for each zone according to the following formula:
  • u i (t) is the output value from the PID control unit for the i th zone at time t
  • u ic (t) is the PID calculation result for the i th zone at time t
  • u is (t) is an adjustment term for the i th zone at time t;
  • (t) is an adjustment value for the i th zone
  • e imax is the error threshold of the i th zone.
  • the present invention further provides an auto-turning temperature control method for a heat treatment apparatus.
  • the heat treatment apparatus includes a reaction container for holding multiple substrates to be treated, a heating furnace arranged outside the reaction container having an inner surface provided with heating elements which are divided into a plurality zones vertically; temperature sensors arranged at positions corresponding to the plurality of zones for measuring the actual temperature of each zone; and a control device for individually controlling the heating elements of each region by PID calculation;
  • the auto-turning temperature control method includes the following steps:
  • the auto-turning temperature control method further includes: comparing the current error value of each zone with an error threshold of each zone; when the current error value of one zone is greater than the error threshold of the same zone, directly adjusting the PID calculation result for the zone to obtain an adjusted result as an output value of the PID calculation for the zone which makes the error value obtained from the output value less than the error threshold of the zone; when the current error value of one zone is less than or equal to the error threshold of the same zone, taking the PID calculation result for the zone as the output value of the PID calculation for the zone.
  • individual PID calculation can be performed to each temperature zone of the heat treatment apparatus in consideration of not only the error value of the current zone but also the error values of the zones adjacent to the current zone, and the control parameters of the PID calculation can be set and adjusted on-line, which realizes the real-time automatic temperature control for the heat treatment apparatus and improves the temperature control accuracy and precision.
  • Fig. 1 is a structural view of the heat treatment apparatus according to an embodiment of the present invention.
  • Fig. 2 is a block chart of the control device of the heat treatment apparatus according to an embodiment of the present invention.
  • Fig. 3 is a process flow chart of the auto-turning temperature control method according to an embodiment of the present invention.
  • Fig. 1 is a structural view of the heat treatment apparatus according to an embodiment of the present invention.
  • the vertical heat treatment apparatus in Fig. 1 is illustrative, which can include more or less elements.
  • the heat treatment apparatus can perform various heat treatment processes such as oxidation, diffusion and CVD.
  • the heat treatment apparatus includes a cylindrical reaction container 20 for holding multiple substrates to be treated, such as the semiconductor wafers, and a cylindrical heating furnace 10 concentrically arranged outside the reaction container 20.
  • the inner surface of the heating furnace 10 is provided with heating elements 11, such as the heating resistors.
  • the heating elements 11 are divided into a plurality of zones vertically, and the temperature of each zone can be individually controlled. In the embodiment, the heating elements 11 are divided into five zones A1 ⁇ A5.
  • An insulating element (not shown in Fig. 1) is provided between the heating elements 11 and the casing of the heating furnace 10. External terminals (not shown in Fig. 1) are joined with the heating elements 11by passing through the insulating element along the radial direction, and are connected to a control device 30 which will be described below, thus the control device 30 can control the heating elements 11 of each zone individually.
  • the reaction container 20 is generally made by quartz and has a gas intake unit introducing the process gas into the reaction container 20 and a gas exhaust unit (not shown in the drawing) discharging the gas out of the reaction container 20 at its lower part.
  • the gas intake unit is connected to a gas supply tube 21 extended upwards in the reaction container 20.
  • the gas supply tube 21 is provided with multiple gas supply holes in the vertical direction.
  • the upper end of the reaction container 20 is sealed and the bottom end has an opening which can be closed by a lid (not shown in the drawing) .
  • a pedestal 24 is mounted on the lid.
  • a boat 23 is hold on the pedestal 24 for supporting a plurality of substrates to be processed at a predetermined interval along the vertical direction.
  • Temperature sensors for measuring the actual temperature of each zone are also provided in the heat treatment apparatus, arranged corresponding to each of the zones.
  • the temperature sensors include multiple inner temperature sensors 22 at the inside of the reaction container to measure the temperature near the substrates to be treated and multiple outer temperature sensors 12 disposed between the reaction container and the heating elements to measure the temperature near the heating elements.
  • the inner temperature sensors 22 and the outer temperature sensors 12 which can be thermocouples are arranged at positions corresponding to the plurality of zones. Therefore, the actual temperature of each zone can be obtained according to the temperatures measured by the inner temperature sensors 22 and the outer temperature sensors 12.
  • the control device 30 is electrically connected to the temperature sensors (including the inner temperature sensors 22 and the outer temperature sensors 12) and the heating elements 11 to control the temperature of each zone to the desired temperature.
  • control device 30 performs PID calculation to each zone according to the PID control parameters for each zone and an error value between the setting temperature and the actual temperature of each zone, wherein the actual temperature of the zone is measured by the inner and the outer temperature sensor corresponding to the zone. Furthermore, the control device 30 outputs a corresponding power control signal to the heating elements of each zone according to the PID calculation result for the zone to perform individual control, so that desired temperature distribution can be obtained at the inside of the reaction container.
  • the control device 30 includes a PID control unit 32.
  • the PID control unit 32 includes a first parameter section 321, a second parameter section 322, and a calculation section 323.
  • the first and the second parameter section 321, 322 are used to set the PID control parameters.
  • the first parameter section 321 sets the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone;
  • the second parameter section 322 sets the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone.
  • the second parameter section 322 sets the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for the current zone according to the error value of the current zone and the error values of the adjacent zones.
  • the error value of the current zone is the difference value between the setting temperature and the actual temperature of the current zone
  • the error value of each adjacent zone is the difference value between the setting temperature and the actual temperature of the adjacent region. Therefore, according to the present invention, the auto-turning of the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone not only bases on the error value of the current zone, but also considers the influence on the PID calculation by the error values of the adjacent zones.
  • the calculation section 323 adds the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone to the corresponding auto-turning values, so as to obtain the control parameters for each zone, that is, the proportional coefficient term, the integral coefficient term, and the differential coefficient term of the PID calculation for each zone. Then, the calculation section 323 builds a PID model for each zone according to the control parameters, and then performs calculation to the PID model for each zone in reference with the error value between the setting temperature and the actual temperature of each zone, so as to obtain the PID calculation result for each zone.
  • the control device 30 also includes a power output unit 33 connected to the PID control unit 32, such as a PLC (Programmable Logic Controller) and a SCR (Silicon Controlled Rectifier) , which converts the PID calculation result for each zone to a corresponding power signal and outputs it to the heating elements 11 of each zone.
  • the control device 30 since the temperature sensors include inner temperature sensors and outer temperature sensors, the control device 30 also includes a temperature calculation unit 31, which calculates the temperatures measured by the inner temperature sensors and/or the outer temperature sensors to obtain the actual temperature of each zone.
  • the PID control unit 32 of the control device in the heat treatment apparatus of the present invention will be fully described here after with the example of performing PID control to one of the zones.
  • the PID control unit 32 performs incremental PID calculation, which meets the following formula:
  • ⁇ u i (t) (K ip (t) + ⁇ K ip (t) ) (e i (t) -e i (t-1) ) + (K ii (t) + ⁇ K ii (t) ) e i (t)
  • i is a serial number of the plurality of zones; e i (t) , e i (t-1) ande i (t-2) are the error values of the i th zone at time t, t-1, and t-2 respectively.
  • ⁇ u i (t) is the PID add value for the i th zone at time t
  • u i (t+1) is the PID calculation result for the i th zone at time t+1
  • u i (t) is the PID calculation result for the i th zone at time t.
  • K ip (t) is the initial value of the proportional coefficient of the PID calculation for the i th zone at time t;
  • K ii (t) is the initial value of the integral coefficient of the PID calculation for the i th zone at time t;
  • K id (t) is the initial value of the differential coefficient of the PID calculation for the i th zone at time t;
  • ⁇ K ip (t) is the auto-turning value of the proportional coefficient of the PID calculation for the i th zone at time t;
  • ⁇ K ii (t) is the auto-turning value of the integral coefficient of the PID calculation for the i th zone at time t;
  • ⁇ K id (t) is the auto-turning value of the differential coefficient of the PID calculation for the i th zone at time t.
  • each of the auto-turning values includes a term related to the error value of the current zone and a term related to the error values of the adjacent zones.
  • each of the auto-turning values includes a first term which is a product of the error value of the current zone and a first weighting coefficient set for the current zone, and a second term which is the sum of the products each obtained from multiplying the error value of one adjacent zone by a second weighting coefficient set for the current zone. Since the error value of the current zone has greater influence on the current zone than the error values of the adjacent zones, for each zone, the first weighting coefficient is set greater than the second weighting coefficient.
  • the three auto-turning values ⁇ K ip (t) , ⁇ K ii (t) and ⁇ K id (t) of the PID calculation for the i th zone at time t are represented as follows:
  • ⁇ i11 is the first weighting coefficient of the auto-turning value of the proportional coefficient for the i th zone
  • ⁇ i12 is the second weighting coefficient of the auto-turning value of the proportional coefficient for the i th zone
  • ⁇ i21 is the first weighting coefficient of the auto-turning value of the integral coefficient for the i th zone
  • ⁇ i22 is the second weighting coefficient of the auto-turning value of the integral coefficient for the i th zone
  • ⁇ i31 is the first weighting coefficient of the auto-turning value of the differential coefficient for the i th zone
  • ⁇ i32 is the second weighting coefficient of the auto-turning value of the differential coefficient for the i th zone
  • n is the number of the zones.
  • the auto-turning value of each PID coefficient for the zone is zero, which means no adjustment to the initial values of the PID coefficients for the zone.
  • each PID coefficient Kp, Ki and Kd can be adjusted on-line during the PID calculation process, especially be adjusted in consideration of the combined impact of the error value of the current zone and the error values of the adjacent zones, which makes the PID calculation results more consistent with the actual conditions of each zone, so as to improve the temperature control precision.
  • the control device 30 also includes a supervision unit 34.
  • the supervision unit 34 adjusts the PID calculation result of each zone according to the current error value of each zone.
  • the supervision unit 34 directly adjusts the PID calculation result for the zone to obtain an adjusted result as an output value from the PID control unit for the zone, which makes the error value obtained from the output value less than the error threshold of the zone, so as to forcibly convert the error value beyond the threshold value into an error value within the allowed range.
  • the supervision unit 34 takes the PID calculation result of the zone as the output value from the PID control unit for the zone.
  • the supervision unit adjusts the PID calculation result according to the following formula:
  • u i (t) is the output value from the PID control unit for the i th zone at time t
  • u ic (t) is the PID calculation result for the i th zone at time t
  • u is (t) is an adjustment term for the i th zone at time t;
  • (t) is an adjustment value of the i th zone
  • e imax is the error threshold of the i th zone.
  • the supervision unit plays a role to draw the PID control from nearly instable state back to the stable state, thereby effectively suppressing the system oscillation.
  • Fig. 3 is a process flow chart of the method according to an embodiment of the present invention. The method includes the following steps:
  • S5 performing PID calculation to each zone according to the error value and the control parameters of each zone, and individually controlling the heating element of each zone according to the PID calculation result for each zone.
  • the auto-turning temperature control method of the present invention further includes: comparing the current error value of each zone with an error threshold of each zone; when the current error value of one zone is greater than the error threshold of the same zone, directly adjusting the PID calculation result of the zone to obtain an adjusted result which is used as an output value of the PID calculation for the zone which makes the error value obtained from the output value less than the error threshold of the zone; when the current error value of a zone is less than or equal to the error threshold of the same zone, taking the PID calculation result for the zone as the output value from the PID calculation for the zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

A heat treatment apparatus includes a reaction container (20), a heating furnace (10) having heating elements (11) divided into a plurality of zones, temperature sensors (22) positioned corresponding to the zones and a control device (30) performing PID calculation to individually control the heating elements (11) of each zone. The control device (30) has a PID control unit (32) including a first and a second parameter sections (321, 322) setting the initial values and the auto-turning values of the proportional, integral and differential coefficients of the PID calculation for each zone, and a calculation section (323) to calculate the control parameters for each zone from the initial and auto-turning values and obtain the PID calculation result for each zone. The second parameter section (322) sets the auto-turning values of the PID coefficients for each zone according to the error value of the current zone and the error values of the adjacent zones.

Description

HEAT TREATMENT APPARATUS AND AUTO-TURNING TEMPERATURECONTROL METHOD THEREFOR
CROSS-REFERENCES TO RELATED APPLICATIONS
This application claims the priority of Chinese patent application number 201310504946.7, filed on 23.10.2013, the entire contents of which are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention generally relates to the field of automatic temperature control, more particularly, to a heat treatment apparatus and the temperature control method for the heat treatment apparatus.
BACKGROUND
During the semiconductor process, various heat treatment apparatus are used to perform heat treatments including oxidation, diffusion, CVD, and annealing to the objects to be processed, such as the semiconductor wafers. In general, the vertical heat treatment apparatus comprises a cylindrical reaction container having an opening at the bottom, a lid to open or close the bottom of the reaction container, a boat holding the objects to be processed at a predetermined interval, and a furnace body positioned around the reaction container. A heater is installed inside the furnace body to heat the objects inside the reaction container.
According to the process requirement, a temperature control system need to be provided for the heat treatment apparatus to accurately control the heating temperature. The temperature control system usually utilizes PID control, thus the parameter settings of the PID control is critical to the temperature control for the heat treatment apparatus. In general, the inner space of the furnace body is divided into multiple temperature zones, each provided with a temperature sensor and a heater, so as to perform individual temperature control in each of the temperature zones.
However, due to the thermal interference occurred among these temperature zones, it is undesirable to perform the temperature control for each temperature zone only by considering the current temperature of its own. The main conventional solution is manual adjustment by experience or calculation and adjustment off-line.
The manual adjustment has the defects that the staff are required to wait all the time, the system control is greatly affected by the subjective factors and is easily influenced by the artificial error, and the real-time performance is poor. As for the off-line calculation and adjustment, since the environment to be adjusted is in ideal condition, various unknown and non-quantifiable or non-modeling factors in the real process cannot be added into the setting conditions of the off-line environment, thus, the off-line calculation which expends time and energy may not achieve the expected effect and may even cause oscillation instability of the control system.
BRIEF SUMMARY OF THE DISCLOSURE
Therefore, an object of the present invention is to provide a heat treatment apparatus and a temperature control method therefor which enables online adjustment and auto-turning of the temperature control parameters, so as to overcome the disadvantages of the conventional techniques.
To achieve these and other advantages and in accordance with the objective of the invention, the present invention provides a heat treatment apparatus comprising:
a reaction container for holding multiple substrates to be treated;
a heating furnace arranged outside the reaction container having an inner surface provided with heating elements which are divided into a plurality of zones vertically;
temperature sensors arranged at positions corresponding to the plurality of zones for measuring the actual temperature of each zone;
a control device for performing PID calculation for each zone according to control parameters corresponding to each zone, and the error value between a setting temperature and the actual temperature of each zone; and individually  controlling the heating elements of each zone according to the PID calculation result for each zone;
wherein the control parameters include a proportional coefficient term, an integral coefficient term, and a differential coefficient term; the control device includes a PID control unit having a first parameter section setting the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; a second parameter section setting the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; and a calculation section obtaining the control parameters for each zone by adding the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone to the corresponding auto-turning values, and obtaining the PID calculation result for each zone according to the control parameters and the error value of the zone; wherein the second parameter section sets the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for the current zone according to the error value of the current zone and the error values of the adjacent zones.
Preferably, the control device performs incremental PID calculation, which meets the following formula:
ui (t+1) =ui (t) +Δui (t) ; wherein
Δui (t) = (Kip (t) +ΔKip (t) ) (ei (t) -ei (t-1) ) + (Kii (t) +ΔKii (t)) ei (t) 
                                                              ;
+ (Kid (t) +ΔKid (t) ) (ei (t) -2ei (t-1) +ei (t-2)) 
wherein, i is the serial number of the plurality of zones; t is the sampling time; ei (t) , ei (t-1) andei (t-2) are the error values of the ith zone at time t, time t-1, and time t-2 respectively; Δui (t) is the PID add value of the PID calculation for the ith zone at time t;ui (t+1) is the PID calculation result for the ith zone at time t+1; ui (t) is the PID calculation result for the ith zone at time t; Kip (t) is the initial value of the proportional coefficient of the PID calculation for the ith zone at time t; Kii (t) is the initial value of  the integral coefficient of the PID calculation for the ith zone at time t; Kid (t) is the initial value of the differential coefficient of the PID calculation for the ith zone at time t; ΔKip (t) is the auto-turning value of the proportional coefficient of the PID calculation for the ith zone at time t; ΔKii (t) is the auto-turning value of the integral coefficient of the PID calculation for the ith zone at time t; ΔKid (t) is the auto-turning value of the differential coefficient of the PID calculation for the ith zone at time t.
Preferably, each of the auto-turning values includes a first term which is a product of the error value of the current zone and a first weighting coefficient, and a second term which is the sum of products each obtained from multiplying the error value of an adjacent zone by a second weighting coefficient; the first weighting coefficient is greater than the second weighting coefficient.
Preferably, the auto-turning value ΔKip (t) of the proportional coefficient of the PID calculation for the ith zone at time t meets the following formula:
Figure PCTCN2014089059-appb-000001
the auto-turning value ΔKii (t) of the integral coefficient of the PID calculation for the ith zone at time t meets the following formula:
Figure PCTCN2014089059-appb-000002
the auto-turning value ΔKid (t) of the differential coefficient of the PID calculation for the ith zone at time t meets the following formula:
Figure PCTCN2014089059-appb-000003
wherein, αi11 is the first weighting coefficient of the auto-turning value of the proportional coefficient of the PID calculation for the ith zone, αi12 is the second weighting coefficient of the auto-turning value of the proportional coefficient of the PID calculation for the ith zone, αi21 is the first weighting coefficient of the auto-turning value of the integral coefficient of the PID calculation for the ith zone, αi22 is the second weighting coefficient of the auto-turning value of the integral coefficient of the PID calculation for the ith zone, αi31 is the first weighting coefficient of the auto-turning value of the differential coefficient of the PID calculation for the ith zone, αi32is the second weighting coefficient of the auto-turning value of the differential coefficient of the PID calculation for the ith zone, εis the minimum error value, n is the number of the zones.
Preferably, the value ranges of αi11, αi21, αi31, αi12, αi22 and αi32 are from 0 to 1.
Preferably, αi11=0.4, αi12=0.2, αi21=0.02, αi22=0.01, αi31=0.1, αi32=0.05, ε=0.1.
Preferably, the control device further includes a supervision unit which adjusts the PID calculation result for each zone according to the error value of each zone. When the current error value of one zone is greater than an error threshold of the same zone, the supervision unit directly adjusts the PID calculation result for the zone to obtain an adjusted result as an output value from the PID control unit for the zone, it could make the error value obtained from the output value less than the error threshold. When the current error value of one zone is less than or equal to the error threshold of the same zone, the supervision unit takes the PID calculation result for the zone as the output value from the PID control unit for the zone.
Preferably, the supervision unit adjusts the PID calculation result for each zone according to the following formula:
ui (t) =uic (t) -uis (t) ;
wherein ui (t) is the output value from the PID control unit for the ith zone at time t, uic (t) is the PID calculation result for the ith zone at time t, uis (t) is an adjustment term for the ith zone at time t; wherein
Figure PCTCN2014089059-appb-000004
wherein 
Figure PCTCN2014089059-appb-000005
 (t) is an adjustment value for the ith zone, eimax is the error threshold of the ith zone.
The present invention further provides an auto-turning temperature control method for a heat treatment apparatus. The heat treatment apparatus includes a reaction container for holding multiple substrates to be treated, a heating furnace arranged outside the reaction container having an inner surface provided with heating elements which are divided into a plurality zones vertically; temperature sensors arranged at positions corresponding to the plurality of zones for measuring the actual temperature of each zone; and a control device for individually controlling the heating elements of each region by PID calculation; the auto-turning temperature control method includes the following steps:
receiving the measured temperatures from the temperature sensors corresponding to the plurality of zones to obtain the actual temperature of each zone;
obtaining the error value of each zone according to the setting temperature and the actual temperature of each zone;
setting initial values and auto-turning values of the proportional coefficient, the integral coefficient and the differential coefficient of the PID calculation for each zone, wherein each of the auto-turning values is obtained based on the error value of the current zone and the error values of the adjacent zones;
adding the initial values of the proportional coefficient, the integral coefficient and the differential coefficient to the corresponding auto-turning values to obtain the control parameters for each zone;
performing the PID calculation to each zone according to the error value, and the control parameters of each zone, and individually controlling the heating elements of each zone according to the PID calculation result for each zone.
Preferably, the auto-turning temperature control method further includes: comparing the current error value of each zone with an error threshold of each zone; when the current error value of one zone is greater than the error threshold of the same zone, directly adjusting the PID calculation result for the zone to obtain an adjusted result as an output value of the PID calculation for the zone which makes the error value obtained from the output value less than the error threshold of the zone; when the current error value of one zone is less than or equal to the error threshold of the same zone, taking the PID calculation result for the zone as the output value of the PID calculation for the zone.
According to the present invention, individual PID calculation can be performed to each temperature zone of the heat treatment apparatus in consideration of not only the error value of the current zone but also the error values of the zones adjacent to the current zone, and the control parameters of the PID calculation can be set and adjusted on-line, which realizes the real-time automatic temperature control for the heat treatment apparatus and improves the temperature control accuracy and precision.
BRIEF DESCRIPTION OF THE DRAWINGS
In order that objects, characteristics, and advantages of the present invention may be more fully understood, the embodiments of the present invention will now be described in detail hereafter with reference to the accompanying drawings, wherein
Fig. 1 is a structural view of the heat treatment apparatus according to an embodiment of the present invention;
Fig. 2 is a block chart of the control device of the heat treatment apparatus according to an embodiment of the present invention;
Fig. 3 is a process flow chart of the auto-turning temperature control method according to an embodiment of the present invention.
DETAILED DESCRIPTION
In order that the technology scheme of the embodiments according to the present invention may be more fully understood, the accompanying drawings will now be descried simply hereinafter. Obviously, the accompanying drawings in follow description are only some embodiments of the present invention, with reference to which those who skilled in the art can further obtain other accompanying drawings without giving creative work.
Fig. 1 is a structural view of the heat treatment apparatus according to an embodiment of the present invention. The vertical heat treatment apparatus in Fig. 1 is illustrative, which can include more or less elements.
Referring to Fig. 1, the heat treatment apparatus can perform various heat treatment processes such as oxidation, diffusion and CVD. The heat treatment apparatus includes a cylindrical reaction container 20 for holding multiple substrates to be treated, such as the semiconductor wafers, and a cylindrical heating furnace 10 concentrically arranged outside the reaction container 20. The inner surface of the heating furnace 10 is provided with heating elements 11, such as the heating resistors. The heating elements 11 are divided into a plurality of zones vertically, and the temperature of each zone can be individually controlled. In the embodiment, the heating elements 11 are divided into five zones A1~A5. An insulating element (not shown in Fig. 1) is provided between the heating elements 11 and the casing of the  heating furnace 10. External terminals (not shown in Fig. 1) are joined with the heating elements 11by passing through the insulating element along the radial direction, and are connected to a control device 30 which will be described below, thus the control device 30 can control the heating elements 11 of each zone individually.
The reaction container 20 is generally made by quartz and has a gas intake unit introducing the process gas into the reaction container 20 and a gas exhaust unit (not shown in the drawing) discharging the gas out of the reaction container 20 at its lower part. The gas intake unit is connected to a gas supply tube 21 extended upwards in the reaction container 20. The gas supply tube 21 is provided with multiple gas supply holes in the vertical direction. The upper end of the reaction container 20 is sealed and the bottom end has an opening which can be closed by a lid (not shown in the drawing) . A pedestal 24 is mounted on the lid. A boat 23 is hold on the pedestal 24 for supporting a plurality of substrates to be processed at a predetermined interval along the vertical direction.
Temperature sensors for measuring the actual temperature of each zone are also provided in the heat treatment apparatus, arranged corresponding to each of the zones. In the embodiment, the temperature sensors include multiple inner temperature sensors 22 at the inside of the reaction container to measure the temperature near the substrates to be treated and multiple outer temperature sensors 12 disposed between the reaction container and the heating elements to measure the temperature near the heating elements. The inner temperature sensors 22 and the outer temperature sensors 12 which can be thermocouples are arranged at positions corresponding to the plurality of zones. Therefore, the actual temperature of each zone can be obtained according to the temperatures measured by the inner temperature sensors 22 and the outer temperature sensors 12.
The control device 30 is electrically connected to the temperature sensors (including the inner temperature sensors 22 and the outer temperature sensors 12) and the heating elements 11 to control the temperature of each zone to the desired temperature.
In specific, the control device 30 performs PID calculation to each zone according to the PID control parameters for each zone and an error value between  the setting temperature and the actual temperature of each zone, wherein the actual temperature of the zone is measured by the inner and the outer temperature sensor corresponding to the zone. Furthermore, the control device 30 outputs a corresponding power control signal to the heating elements of each zone according to the PID calculation result for the zone to perform individual control, so that desired temperature distribution can be obtained at the inside of the reaction container.
As shown in Fig. 1, the control device 30 includes a PID control unit 32. The PID control unit 32 includes a first parameter section 321, a second parameter section 322, and a calculation section 323. The first and the  second parameter section  321, 322 are used to set the PID control parameters. Specifically, the first parameter section 321 sets the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; the second parameter section 322 sets the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone. It is noted that the second parameter section 322 sets the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for the current zone according to the error value of the current zone and the error values of the adjacent zones. Wherein, the error value of the current zone is the difference value between the setting temperature and the actual temperature of the current zone, and the error value of each adjacent zone is the difference value between the setting temperature and the actual temperature of the adjacent region. Therefore, according to the present invention, the auto-turning of the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone not only bases on the error value of the current zone, but also considers the influence on the PID calculation by the error values of the adjacent zones. The calculation section 323 adds the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone to the corresponding auto-turning values, so as to obtain the control parameters for each zone, that is, the proportional coefficient term, the integral coefficient term, and the differential coefficient term of the PID calculation for each zone. Then, the calculation section 323 builds a PID model for each zone according to the control parameters, and then performs calculation to the PID model for each  zone in reference with the error value between the setting temperature and the actual temperature of each zone, so as to obtain the PID calculation result for each zone. The control device 30 also includes a power output unit 33 connected to the PID control unit 32, such as a PLC (Programmable Logic Controller) and a SCR (Silicon Controlled Rectifier) , which converts the PID calculation result for each zone to a corresponding power signal and outputs it to the heating elements 11 of each zone. In the embodiment, since the temperature sensors include inner temperature sensors and outer temperature sensors, the control device 30 also includes a temperature calculation unit 31, which calculates the temperatures measured by the inner temperature sensors and/or the outer temperature sensors to obtain the actual temperature of each zone.
The PID control unit 32 of the control device in the heat treatment apparatus of the present invention will be fully described here after with the example of performing PID control to one of the zones.
Firstly, the error value at time t is defined as e (t) =rin (t) -yout (t) t=1, 2, … , wherein rin (t) is a reference signal, that is, the setting temperature; yout (t) is a feedback signal, that is, the actual temperature; t is a sampling time.
In the embodiment, the PID control unit 32 performs incremental PID calculation, which meets the following formula:
ui (t+1) =ui (t) +Δui (t) ; wherein
Δui (t) = (Kip (t) +ΔKip (t) ) (ei (t) -ei (t-1) ) + (Kii (t) +ΔKii (t) ) ei (t) 
                                                                       .
+ (Kid (t) +ΔKid (t) ) (ei (t) -2ei (t-1) +ei (t-2) ) 
In the formula mentioned above, i is a serial number of the plurality of zones; ei (t) , ei (t-1) andei (t-2) are the error values of the ith zone at time t, t-1, and t-2 respectively. Δui (t) is the PID add value for the ith zone at time t, ui (t+1) is the PID calculation result for the ith zone at time t+1; ui (t) is the PID calculation result for the ith zone at time t. Kip (t) is the initial value of the proportional coefficient of the PID calculation for the ith zone at time t; Kii (t) is the initial value of the integral coefficient of the PID calculation for the ith zone at time t; Kid (t) is the initial value of  the differential coefficient of the PID calculation for the ith zone at time t; ΔKip (t) is the auto-turning value of the proportional coefficient of the PID calculation for the ith zone at time t; ΔKii (t) is the auto-turning value of the integral coefficient of the PID calculation for the ith zone at time t; ΔKid (t) is the auto-turning value of the differential coefficient of the PID calculation for the ith zone at time t.
In the embodiment, each of the auto-turning values includes a term related to the error value of the current zone and a term related to the error values of the adjacent zones. In other words, each of the auto-turning values includes a first term which is a product of the error value of the current zone and a first weighting coefficient set for the current zone, and a second term which is the sum of the products each obtained from multiplying the error value of one adjacent zone by a second weighting coefficient set for the current zone. Since the error value of the current zone has greater influence on the current zone than the error values of the adjacent zones, for each zone, the first weighting coefficient is set greater than the second weighting coefficient.
In a preferred embodiment, the three auto-turning values ΔKip (t) , ΔKii (t) and ΔKid (t) of the PID calculation for the ith zone at time t are represented as follows:
Figure PCTCN2014089059-appb-000006
Figure PCTCN2014089059-appb-000007
Figure PCTCN2014089059-appb-000008
wherein αi11 is the first weighting coefficient of the auto-turning value of the proportional coefficient for the ith zone, αi12 is the second weighting coefficient of the auto-turning value of the proportional coefficient for the ith zone, αi21 is the first weighting coefficient of the auto-turning value of the integral coefficient for the ith zone, αi22 is the second weighting coefficient of the auto-turning value of the integral coefficient for the ith zone, αi31 is the first weighting coefficient of the auto-turning value of the differential coefficient for the ith zone, αi32is the second weighting coefficient of the auto-turning value of the differential coefficient for the ith zone, εis the minimum error value, n is the number of the zones. When the error value of a zone is less than the minimum error value, the auto-turning value of each PID coefficient for the zone is zero, which means no adjustment to the initial values of the PID coefficients for the zone. In one specific embodiment, αi11=0.4, αi12=0.2, αi21=0.02, αi22=0.005, αi31=0.1, αi32=0.05, ε=0.1.
According to the control device of the present invention, each PID coefficient Kp, Ki and Kd can be adjusted on-line during the PID calculation process, especially be adjusted in consideration of the combined impact of the error value of  the current zone and the error values of the adjacent zones, which makes the PID calculation results more consistent with the actual conditions of each zone, so as to improve the temperature control precision.
Referring to Fig. 2, in order to avoid the oscillation and instability of the PID control, in a preferred embodiment of the present invention, the control device 30 also includes a supervision unit 34. The supervision unit 34 adjusts the PID calculation result of each zone according to the current error value of each zone. When the current error value of one zone is greater than the error threshold of the same zone, the supervision unit 34 directly adjusts the PID calculation result for the zone to obtain an adjusted result as an output value from the PID control unit for the zone, which makes the error value obtained from the output value less than the error threshold of the zone, so as to forcibly convert the error value beyond the threshold value into an error value within the allowed range. When the current error value of a zone is less than the error threshold of the same zone, the supervision unit 34 takes the PID calculation result of the zone as the output value from the PID control unit for the zone.
In specific, the supervision unit adjusts the PID calculation result according to the following formula:
ui (t) =uic (t) -uis (t) ;
wherein ui (t) is the output value from the PID control unit for the ith zone at time t, uic (t) is the PID calculation result for the ith zone at time t, uis (t) is an adjustment term for the ith zone at time t; wherein
Figure PCTCN2014089059-appb-000009
wherein
Figure PCTCN2014089059-appb-000010
 (t) is an adjustment value of the ith zone, eimaxis the error threshold of the ith zone.
From above, when the error value of the ith zone exceeds the warning range (error threshold) , the supervision unit plays a role to draw the PID control from nearly instable state back to the stable state, thereby effectively suppressing the system oscillation.
In addition, the present invention further provides an auto-turning temperature control method for the aforementioned heat treatment apparatus. Fig. 3 is a process flow chart of the method according to an embodiment of the present invention. The method includes the following steps:
S1: receiving the measured temperatures from the temperature sensors corresponding to the plurality of zones to obtain the actual temperature of each zone;
S2: obtaining the error value of each zone according to the setting temperature and the actual temperature of each zone;
S3: setting the initial values and auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; wherein each of the auto-turning values is obtained based on the error value of the current zone and the error values of the adjacent zones;
S4: adding the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient to the corresponding auto-turning values to obtain the control parameters for each zone;
S5: performing PID calculation to each zone according to the error value and the control parameters of each zone, and individually controlling the heating element of each zone according to the PID calculation result for each zone.
Furthermore, the auto-turning temperature control method of the present invention further includes: comparing the current error value of each zone with an error threshold of each zone; when the current error value of one zone is greater than the error threshold of the same zone, directly adjusting the PID calculation result of the zone to obtain an adjusted result which is used as an output value of the PID calculation for the zone which makes the error value obtained from the output value less than the error threshold of the zone; when the current error value of a zone is less than or equal to the error threshold of the same zone, taking the PID calculation result for the zone as the output value from the PID calculation for the zone.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made herein without  departing from the spirit and scope of the invention as defined by the appended claims.

Claims (10)

  1. A heat treatment apparatus including:
    a reaction container for holding multiple substrates to be treated;
    a heating furnace arranged outside the reaction container having an inner surface provided with heating elements which are divided into a plurality of zones vertically;
    temperature sensors arranged at positions corresponding to the plurality of zones for measuring the actual temperature of each zone;
    a control device for performing PID calculation for each zone according to control parameters corresponding to each zone, and the error value between a setting temperature and the actual temperature of each zone; and individually controlling the heating elements of each zone according to the PID calculation result for each zone;
    wherein the control parameters include a proportional coefficient term, an integral coefficient term, and a differential coefficient term; the control device includes a PID control unit having a first parameter section setting the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; a second parameter section setting the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone; and a calculation section obtaining the control parameters for each zone by adding the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone to the corresponding auto-turning values, and obtaining the PID calculation result for each zone according to the control parameters and the error value of the zone; wherein the second parameter section sets the auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for the current zone according to the error value of the current zone and the error values of the adjacent zones.
  2. The heat treatment apparatus according to claim 1, wherein the control device performs incremental PID calculation, which meets the following formula:
    ui (t+1) =ui (t) +Δui (t) ; wherein
    Δui (t) = (Kip (t) +ΔKip (t) ) (ei (t) -ei (t-1) ) + (Kii (t) +ΔKii (t) ) ei (t)
                                        ;
    +(Kid (t) +ΔKid (t) ) (ei (t) -2ei (t-1) +ei (t-2) ) 
    wherein, i is the serial number of the plurality of zones; t is the sampling time; ei (t) , ei (t-1) and ei (t-2) are the error values of the ith zone at time t, time t-1, and time t-2 respectively; Δui (t) is the PID add value of the PID calculation for the ith zone at time t;ui (t+1) is the PID calculation result for the ith zone at time t+1; ui (t) is the PID calculation result for the ith zone at time t; Kip (t) is the initial value of the proportional coefficient of the PID calculation for the ith zone at time t; Kii (t) is the initial value of the integral coefficient of the PID calculation for the ith zone at time t; Kid (t) is the initial value of the differential coefficient of the PID calculation for the ith zone at time t; ΔKip (t) is the auto-turning value of the proportional coefficient of the PID calculation for the ith zone at time t; ΔKii (t) is the auto-turning value of the integral coefficient of the PID calculation for the ith zone at time t; ΔKid (t) is the auto-turning value of the differential coefficient of the PID calculation for the ith zone at time t.
  3. The heat treatment apparatus according to claim 1, wherein each of the auto-turning values includes a first term which is a product of the error value of the current zone and a first weighting coefficient, and a second item which is the sum of products each obtained from multiplying the error value of an adjacent zone by a second weighting coefficient; the first weighting coefficient is greater than the second weighting coefficient.
  4. The heat treatment apparatus according to claim 3, wherein the auto-turning value ΔKip (t) of the proportional coefficient of the PID calculation for the ith zone at time t meets the following formula:
    Figure PCTCN2014089059-appb-100001
    the auto-turning value ΔKii (t) of the integral coefficient of the PID calculation for the ith zone at time t meets the following formula:
    Figure PCTCN2014089059-appb-100002
    the auto-turning value ΔKid (t) of the differential coefficient of the PID calculation for the ith zone at time t meets the following formula:
    Figure PCTCN2014089059-appb-100003
    wherein αi11 is the first weighting coefficient of the auto-turning value of the proportional coefficient of the PID calculation for the ith zone, αi12 is the second weighting coefficient of the auto-turning value of the proportional coefficient of the PID calculation for the ith zone, αi21 is the first weighting coefficient of the auto-turning value of the integral coefficient of the PID calculation for the ith zone, αi22 is the second weighting coefficient of the auto-turning value of the integral coefficient of the PID calculation for the ith zone, αi31 is the first weighting coefficient of the auto-turning value of the differential coefficient of the PID calculation for the ith zone, αi32 is the second weighting coefficient of the auto-turning value of the differential coefficient of the PID calculation for the ith zone, ε is the minimum error value, n is the number of the zones.
  5. The heat treatment apparatus according to claim 3, wherein the value ranges of αi11, αi21, αi31, αi12, αi22 and αi32 are from 0 to 1.
  6. The heat treatment apparatus according to claim 5, wherein αi11=0.4, αi12=0.2, αi21=0.02, αi22=0.01, αi31=0.1, αi32=0.05, ε=0.1.
  7. The heat treatment apparatus according to claim 5, wherein the control device further includes a supervision unit which adjusts the PID calculation result for each zone according to the error value of each zone; when the current error value of one zone is greater than an error threshold of the same zone, the supervision unit directly adjusts the PID calculation result for the zone to obtain an adjusted result as an output value from the PID control unit for the zone which makes the error value obtained from the output value less than the error threshold; when the current error value of one zone is less than or equal to the error threshold of the same zone, the supervision unit takes the PID calculation result for the zone as the output value from the PID control unit for the zone.
  8. The heat treatment apparatus according to claim 7, wherein the supervision unit adjusts the PID calculation result for each zone according to the following formula:
    ui (t) =uic (t) -uis (t) ;
    wherein ui (t) is the output value from the PID control element for the ith zone at time t, uic (t) is the PID calculation result for the ith zone at time t, uis (t) is an adjustment item for the ith zone at time t; wherein
    Figure PCTCN2014089059-appb-100004
    wherein
    Figure PCTCN2014089059-appb-100005
    is an adjustment value for the ith zone, eimax is the error threshold of the ith zone.
  9. An auto-turning temperature control method for a heat treatment apparatus, the heat treatment apparatus includes a reaction container for holding multiple substrates to be treated, a heating furnace arranged outside the reaction container having an inner surface provided with heating elements which are divided into a plurality of zones vertically; temperature sensors arranged at positions corresponding to the plurality of zones for measuring the actual temperature of each zone; and a control device for individually controlling the heating elements of each zone by PID calculation; the auto-turning temperature control method includes the following steps:
    receiving the measured temperatures from the temperature sensors corresponding to the plurality of zones to obtain the actual temperature of each zone;
    obtaining the error value of each zone according to the setting temperature and the actual temperature of the each zone;
    setting initial values and auto-turning values of the proportional coefficient, the integral coefficient, and the differential coefficient of the PID calculation for each zone, wherein each of the auto-turning values is obtained based on the error value of the current zone and the error values of the adjacent zones;
    adding the initial values of the proportional coefficient, the integral coefficient, and the differential coefficient to the corresponding auto-turning values to obtain the control parameters for each zone;
    performing the PID calculation to each zone according to the error value and the control parameters of each zone, and individually controlling the heating elements of each zone according to the PID calculation result for each zone.
  10. The auto-turning temperature control method according to claim 9, further includes:
    comparing the current error value of each zone with an error threshold of each zone; when the current error value of one zone is greater than the error threshold of the same zone, directly adjusting the PID calculation result for the zone to obtain an adjusted result as an output value of the PID calculation for the zone, which makes the error value obtained from the output value less than the error threshold of the zone; when the current error value of one zone is less than or equal to the error threshold of the same zone, taking the PID calculation result for the zone as the output value of the PID calculation for the zone.
PCT/CN2014/089059 2013-10-23 2014-10-21 Heat treatment apparatus and auto-turning temperature control method therefor WO2015058676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310504946.7 2013-10-23
CN201310504946.7A CN103576672B (en) 2013-10-23 2013-10-23 The temperature control system automatic correcting method of LPCVD equipment and device

Publications (1)

Publication Number Publication Date
WO2015058676A1 true WO2015058676A1 (en) 2015-04-30

Family

ID=50048675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089059 WO2015058676A1 (en) 2013-10-23 2014-10-21 Heat treatment apparatus and auto-turning temperature control method therefor

Country Status (2)

Country Link
CN (1) CN103576672B (en)
WO (1) WO2015058676A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292785A (en) * 2015-05-18 2017-01-04 广东兴发铝业有限公司 Aluminum-bar heating furnace ignition temperature automaton based on neutral net
CN116571190A (en) * 2023-07-14 2023-08-11 昆明理工大学 Reaction kettle control system and method for lignin modified phenolic resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576672B (en) * 2013-10-23 2016-03-02 北京七星华创电子股份有限公司 The temperature control system automatic correcting method of LPCVD equipment and device
CN115963730B (en) * 2023-03-16 2023-06-02 广州市景泰科技有限公司 Selective control method for liquid temperature of injection dispensing valve cavity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099442A (en) * 1989-11-04 1992-03-24 Ohkura Electric Co., Ltd. Furnace temperature control apparatus using adjustment input
US5867384A (en) * 1997-07-08 1999-02-02 Johnson Services Company Feedback controller
JP2002108408A (en) * 2000-09-29 2002-04-10 Hitachi Kokusai Electric Inc Method for controlling temperature of semiconductor manufacturing device
US20070095799A1 (en) * 2005-10-31 2007-05-03 Matsushita Electric Industrial Co., Ltd. Film deposition apparatus, film deposition method, monitoring program for film deposition apparatus, and recording medium thereof
CN101221451A (en) * 2008-01-30 2008-07-16 北京英华达电力电子工程科技有限公司 Temperature regulation method and device
CN101962708A (en) * 2010-10-19 2011-02-02 西安石油大学 Temperature uniformity control system for multi-temperature zone of large plate vacuum annealing furnace and control method thereof
CN103076826A (en) * 2012-12-11 2013-05-01 光垒光电科技(上海)有限公司 Multi-temperature-zone temperature control system and control method thereof
CN103123460A (en) * 2011-11-21 2013-05-29 才秀君 Temperature control system and temperature control method
CN103543742A (en) * 2013-10-23 2014-01-29 北京七星华创电子股份有限公司 Self-correcting method device for temperature control and time delay system for LPCVD equipment
CN103576672A (en) * 2013-10-23 2014-02-12 北京七星华创电子股份有限公司 Self-correcting method and device for temperature control system of LPCVD equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461979B1 (en) * 2002-02-13 2002-10-08 Taiwan Semiconductor Manufacturing Company LPCVD furnace uniformity improvement by temperature ramp down deposition system
CN101949009B (en) * 2010-09-07 2012-09-26 理想能源设备(上海)有限公司 Temperature control method of plasma chemical vapor deposition base
CN202543323U (en) * 2012-04-26 2012-11-21 汉能科技有限公司 Low pressure chemical vapor deposition (LPCVD) preheating cavity temperature control system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099442A (en) * 1989-11-04 1992-03-24 Ohkura Electric Co., Ltd. Furnace temperature control apparatus using adjustment input
US5867384A (en) * 1997-07-08 1999-02-02 Johnson Services Company Feedback controller
JP2002108408A (en) * 2000-09-29 2002-04-10 Hitachi Kokusai Electric Inc Method for controlling temperature of semiconductor manufacturing device
US20070095799A1 (en) * 2005-10-31 2007-05-03 Matsushita Electric Industrial Co., Ltd. Film deposition apparatus, film deposition method, monitoring program for film deposition apparatus, and recording medium thereof
CN101221451A (en) * 2008-01-30 2008-07-16 北京英华达电力电子工程科技有限公司 Temperature regulation method and device
CN101962708A (en) * 2010-10-19 2011-02-02 西安石油大学 Temperature uniformity control system for multi-temperature zone of large plate vacuum annealing furnace and control method thereof
CN103123460A (en) * 2011-11-21 2013-05-29 才秀君 Temperature control system and temperature control method
CN103076826A (en) * 2012-12-11 2013-05-01 光垒光电科技(上海)有限公司 Multi-temperature-zone temperature control system and control method thereof
CN103543742A (en) * 2013-10-23 2014-01-29 北京七星华创电子股份有限公司 Self-correcting method device for temperature control and time delay system for LPCVD equipment
CN103576672A (en) * 2013-10-23 2014-02-12 北京七星华创电子股份有限公司 Self-correcting method and device for temperature control system of LPCVD equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292785A (en) * 2015-05-18 2017-01-04 广东兴发铝业有限公司 Aluminum-bar heating furnace ignition temperature automaton based on neutral net
CN116571190A (en) * 2023-07-14 2023-08-11 昆明理工大学 Reaction kettle control system and method for lignin modified phenolic resin
CN116571190B (en) * 2023-07-14 2023-09-12 昆明理工大学 Reaction kettle control system and method for lignin modified phenolic resin

Also Published As

Publication number Publication date
CN103576672B (en) 2016-03-02
CN103576672A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
KR100676543B1 (en) Heat treatment apparatus of batch-type and control method of the same
JP5788355B2 (en) Heat treatment system, heat treatment method, and program
TWI442479B (en) Heat treatment apparatus, method of processing substrate and method for manufacturing semiconductor device
WO2015058676A1 (en) Heat treatment apparatus and auto-turning temperature control method therefor
JP7326344B2 (en) Virtual sensor for spatially resolved wafer temperature control
JP5101243B2 (en) Substrate processing apparatus, substrate processing apparatus control method, and program
KR101648082B1 (en) Apparatus and method for controlling heating of base within chemical vapour deposition chamber
KR101700257B1 (en) Temperature controller for semiconductor manufacturing equipment, method for calculating pid constants in semiconductor manufacturing, and method for operating temperature controller for semiconductor manufacturing equipment
KR102287466B1 (en) Substrate processing apparatus, semiconductor device manufacturing method and program
JP2008262492A (en) Heat treatment device, automatic adjustment method for control constant and storage medium
JP2008218558A (en) Heat treatment system, heat treatment method, and program
JP2016157771A (en) Heat treatment system, heat treatment method and program
US20130256293A1 (en) Heat treatment system, heat treatment method, and non-transitory computer-readable recording medium
JP2001077041A (en) Temperature calibrating method for thermal process device
CN114388405A (en) Temperature compensation method and semiconductor process equipment
KR20120113665A (en) Heat treatment apparatus and heat treatment method
JP6353802B2 (en) Processing system, processing method, and program
JP2013161857A (en) Thermal treatment apparatus and method of controlling thermal treatment apparatus
US20100098855A1 (en) Furnace temperature control method for thermal budget balance
KR20210129165A (en) Substrate processing apparatus, semiconductor device manufacturing method and program
JP4222461B2 (en) Batch type heat treatment method
JP2011191008A (en) Temperature control method and temperature control device for heating object
JP2016143794A (en) Processing system, processing method and program
KR100849012B1 (en) Heat treatment system and heat treatment method
CN220672518U (en) Temperature control module for wafer processing equipment and wafer processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856773

Country of ref document: EP

Kind code of ref document: A1