WO2012117915A1 - 新規な絶縁膜及び絶縁膜付きプリント配線板 - Google Patents

新規な絶縁膜及び絶縁膜付きプリント配線板 Download PDF

Info

Publication number
WO2012117915A1
WO2012117915A1 PCT/JP2012/054267 JP2012054267W WO2012117915A1 WO 2012117915 A1 WO2012117915 A1 WO 2012117915A1 JP 2012054267 W JP2012054267 W JP 2012054267W WO 2012117915 A1 WO2012117915 A1 WO 2012117915A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
component
spherical organic
fine particles
resin
Prior art date
Application number
PCT/JP2012/054267
Other languages
English (en)
French (fr)
Inventor
由英 関藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US14/002,552 priority Critical patent/US8883894B2/en
Priority to CN201280011273.5A priority patent/CN103430638B/zh
Priority to JP2013502259A priority patent/JP6006716B2/ja
Priority to KR1020137022884A priority patent/KR101899338B1/ko
Publication of WO2012117915A1 publication Critical patent/WO2012117915A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0215Metallic fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution

Definitions

  • the present invention relates to an insulating film having excellent tack-free properties, flexibility capable of withstanding repeated bending, flame retardancy, electrical insulation reliability, small warpage, and a printed wiring board with an insulating film.
  • flexible printed wiring boards are superior in heat resistance, flame retardancy, electrical insulation reliability, chemical resistance, and mechanical properties, so they are excellent in reliability, making printed wiring boards lighter and thinner.
  • it since it is excellent in flexibility, it can be folded and incorporated in a narrow portion, which is advantageous for downsizing of electronic devices.
  • an adhesive coverlay film obtained by applying an adhesive to a film of polyimide or the like is provided with an opening by punching or the like, and after alignment, a circuit is formed by a hot press or the like.
  • a cover lay film obtained by thermocompression bonding, a solution obtained by dissolving a polyimide resin or the like in an organic solvent is directly applied onto the circuit, and the solvent is dried and then cured, and then a cover coat obtained by curing.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2006-307183” International Publication No. 2007/125806 Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-134484”
  • the insulating film obtained from the resin composition described in Patent Document 1 contains a modified polyimide resin containing a flexible skeleton, so that it can withstand repeated bending, electrical insulation reliability, adhesion, and solder heat resistance. Excellent in solvent and solvent resistance and small in warpage, but poor in flame retardancy, and has a large stickiness after drying the coating and is inferior in tack-free properties. There was a problem that sticking occurred.
  • the insulating film obtained from the thermosetting resin composition described in Patent Document 2 contains organic fine particles having a core-shell multilayer structure, it is printable, matte, tack-free, electrical insulating properties, and adhesion.
  • the film has poor flexibility and flame retardancy that can withstand repeated bending, and has a problem that the coating composition after coating and drying the resin composition on the substrate is insufficient.
  • the insulating film obtained from the photosensitive resin composition described in Patent Document 3 has sufficient flame retardancy without using a halogen-based flame retardant, and has electrical insulation reliability, elongation, and an opening solution. Although it was excellent in image quality, there was a problem that the coating film had a large stickiness after drying and was inferior in tack-free property, and lacked flexibility to withstand repeated bending.
  • the inventors of the present application are insulating films having a structure in which fine particles are dispersed, wherein the insulating film contains (A) a binder polymer, and the fine particles are (B) spherical organic.
  • the inventors of the present application are insulating films having a structure in which fine particles are dispersed, and the insulating film contains (A) a compound having a urethane bond in the molecule,
  • the fine particles are (B) spherical organic beads and (C) fine particles containing a phosphorus element, and the (B) spherical organic beads are based on an insulating film surface from any point in the cross section in the thickness direction of the insulating film.
  • the total length of the (B) spherical organic bead region is 20 to 80% of the length of the insulating film region on a line drawn so as to be orthogonal to the substrate surface toward the material surface.
  • the first aspect of the present invention can solve the above-described problems with an insulating film having the following novel structure.
  • the first aspect of the present invention is (A) an insulating film containing a compound containing a binder polymer, wherein the insulating film is at least (B) spherical organic beads, and (C) phosphorus, aluminum and magnesium. Fine particles containing at least one element selected from the group consisting of: (B) spherical organic beads and (C) at least one element selected from the group consisting of phosphorus, aluminum and magnesium. The contained fine particles are dispersed in the insulating film, and the spherical organic beads (B) occupy an area of 20 to 50% in an arbitrary range of 125 ⁇ m ⁇ 15 ⁇ m in the cross section in the thickness direction of the insulating film. Is an insulating film characterized by
  • the (A) binder polymer is preferably a compound containing a urethane bond in the molecule.
  • the fine particles containing (C) at least one element selected from the group consisting of phosphorus, aluminum, and magnesium are fine particles containing a phosphorus element. Is preferred.
  • more than half of the (B) spherical organic beads have a particle diameter of 3 to 15 ⁇ m. Preferably it is present.
  • the total number of the (B) spherical organic beads is present in a particle diameter of 15 ⁇ m or less in an arbitrary range of 125 ⁇ m ⁇ 15 ⁇ m in the cross section in the thickness direction of the insulating film. It is preferable.
  • the blending amount of the (B) spherical organic beads is preferably 30 to 100 parts by weight with respect to 100 parts by weight of the (A) binder polymer.
  • the (B) spherical organic beads are preferably crosslinked spherical organic beads containing a urethane bond in the molecule.
  • the insulating film according to the first aspect of the present invention at least one selected from the group consisting of (C) phosphorus, aluminum and magnesium in an arbitrary range of 125 ⁇ m ⁇ 15 ⁇ m of the cross section in the thickness direction of the insulating film. It is preferable that fine particles containing these elements are present in a particle diameter of 1 to 10 ⁇ m.
  • the fine particles containing the (C) phosphorus element further contain an aluminum element.
  • the insulating film according to the first aspect of the present invention preferably further contains (D) a thermosetting resin.
  • the insulating film according to the first aspect of the present invention further contains (E) a photopolymerization initiator.
  • the printed wiring board with an insulating film according to the first aspect of the present invention is obtained by coating the insulating film on the printed wiring board.
  • the second aspect of the present invention can solve the above-described problems with an insulating film having the following novel configuration.
  • the second aspect of the present invention is (A) an insulating film containing a compound having a urethane bond in the molecule, wherein the insulating film contains at least (B) spherical organic beads and (C) a phosphorus element.
  • the fine particles containing (B) spherical organic beads and the fine particles containing (C) phosphorus element are dispersed in the insulating film, and the (B) spherical organic beads are the insulating particles.
  • the insulating film is characterized in that the total length of the bead regions is 20 to 80%.
  • the spherical organic beads (B) is present on the substrate surface from any point on the surface of the insulating film in the cross section in the thickness direction of the insulating film.
  • the length is preferably 3 to 15 ⁇ m on a line drawn so as to be orthogonal to the substrate surface.
  • the blending amount of the (B) spherical organic beads is 30 to 100 parts by weight with respect to 100 parts by weight of the compound (A) having a urethane bond in the molecule. Preferably there is.
  • the (B) spherical organic beads are preferably crosslinked spherical organic beads having a urethane bond in the molecule.
  • At least one of the fine particles containing the (C) phosphorus element is based on an arbitrary point on the surface of the insulating film in the cross section in the thickness direction of the insulating film. It is preferable that the length is 1 to 10 ⁇ m on a line drawn so as to be orthogonal to the substrate surface toward the material surface.
  • the fine particles containing the (C) phosphorus element further contain an aluminum element.
  • the insulating film according to the second aspect of the present invention is preferably obtained from a resin composition containing (D) a thermosetting resin.
  • the insulating film according to the second aspect of the present invention is preferably obtained from a resin composition containing (E) a photopolymerization initiator.
  • the printed wiring board with an insulating film according to the second aspect of the present invention is one in which the insulating film is coated on the printed wiring board.
  • the insulating film according to the first aspect of the present invention is (A) an insulating film containing a binder polymer, and the insulating film includes at least (B) spherical organic beads, and (C) phosphorus, aluminum. And at least one selected from the group consisting of (B) spherical organic beads and (C) phosphorus, aluminum and magnesium, containing fine particles containing at least one element selected from the group consisting of magnesium and magnesium.
  • the fine particles containing the element are dispersed in the insulating film, and the spherical organic beads (B) have an area of 20 to 50% in an arbitrary range of 125 ⁇ m ⁇ 15 ⁇ m in the cross section in the thickness direction of the insulating film.
  • the insulating film of the first aspect of the present invention is excellent in tack-free property, flexible enough to withstand repeated bending, flame retardancy, electrical insulation. Excellent reliability, warpage is small. Therefore, the insulating film of the first aspect of the present invention can be used as a protective film for various circuit boards, and exhibits excellent effects.
  • the insulating film according to the second aspect of the present invention is, as described above, (A) an insulating film containing a compound having a urethane bond in the molecule, and the insulating film is at least (B) spherical organic beads. And (C) fine particles containing phosphorus element, (B) the spherical organic beads and fine particles containing (C) phosphorus element are dispersed in the insulating film, and (B) ) The length of the insulating film region on the line where the spherical organic beads are drawn so as to be orthogonal to the substrate surface from the arbitrary point on the surface of the insulating film toward the substrate surface in the cross section in the thickness direction of the insulating film.
  • the insulating film of the second aspect of the present invention is excellent in tack-free property and can be repeatedly bent. For enduring flexibility, flame retardancy, and electrical insulation reliability Is, warpage is small. Therefore, the insulating film according to the second aspect of the present invention can be used as a protective film for various circuit boards and exhibits excellent effects.
  • the insulating film of the present invention is a film having insulating properties, preferably a film having a thickness of 5 to 50 ⁇ m.
  • the thickness of the insulating film of the present invention can be measured by any method, for example, it can be measured by a method based on JIS K 5400 3.5. Controlling the thickness within the above range is preferable because the insulating film has excellent flexibility and electrical insulation reliability. When the thickness is 5 ⁇ m or less, the electrical insulation reliability of the insulating film may be reduced, and when the thickness is 50 ⁇ m or more, the flexibility of the insulating film may be reduced.
  • the present inventors have found that the insulating film of the present invention is excellent in various characteristics, but this is presumed to be due to the following reason. That is, since the insulating film of the present invention has a structure in which fine particles are dispersed, irregularities are formed on the surface of the insulating film, and the tack-free property is excellent. Moreover, since the said insulating film contains (A) binder polymer, it is excellent in a softness
  • the fine particles are (B) spherical organic beads, since they are spherical beads, aggregation does not easily occur in the insulating film, and since they are organic, they have excellent affinity with the insulating film serving as a matrix. No decrease in mechanical strength occurs.
  • the fine particles are fine particles containing at least one element selected from the group consisting of (C) phosphorus, aluminum, and magnesium, it is possible to impart excellent flame retardancy to the insulating film, and within the insulating film As a filler component, heat resistance and electrical insulation reliability of the insulation film are not reduced, and bleeding out from the insulation film does not occur. Can be suppressed.
  • the component (B) occupies an area of 20 to 50% in an arbitrary 125 ⁇ m ⁇ 15 ⁇ m range in the cross section in the thickness direction of the insulating film, it is possible to effectively form irregularities on the surface of the insulating film. It is particularly excellent in tack-free properties, and since the filling effect by the component (B) can be obtained, the warping of the insulating film is reduced, and the flexibility to withstand repeated bending by improving the stress relaxation effect and fracture toughness by the component (B). improves. Furthermore, surprisingly, in general, when the filler component is highly filled, the flexibility to withstand repeated bending is reduced.
  • the component (A) penetrates from the surface of the component (B), the components (A) and ( It is presumed that a strong insulating property can be obtained at the interface with the component B), and a flexible insulating film that can withstand repeated bending can be obtained even when used in such a high filling as to occupy an area of 20 to 50%.
  • A binder polymer
  • B spherical organic beads
  • C fine particles containing at least one element selected from the group consisting of phosphorus, aluminum, and magnesium
  • D thermosetting resin
  • E The dispersion state of the photopolymerization initiator, other components, the component (B) and the component (C) in the insulating film, and the area occupied by the component (B) in the cross section in the thickness direction of the insulating film will be described.
  • the (A) binder polymer of the present invention is a polymer that is soluble in an organic solvent and has a weight average molecular weight of 1,000 or more and 1,000,000 or less in terms of polyethylene glycol.
  • the organic solvent is not particularly limited.
  • sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide
  • formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, N, N-dimethylacetamide
  • acetamide solvents such as N, N-diethylacetamide
  • pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, hexamethylphosphoramide, and ⁇ -butyrolactone.
  • these organic polar solvents can be used in combination with an aromatic hydrocarbon such as xylene or toluene.
  • the solubility of the organic solvent which is an index that becomes soluble in the organic solvent, can be measured as a part by weight of the binder polymer that dissolves in 100 parts by weight of the organic solvent, and is soluble in 100 parts by weight of the organic solvent. If the weight part of the binder polymer is 5 parts by weight or more, it can be made soluble in an organic solvent.
  • the organic solvent solubility measurement method is not particularly limited. For example, 5 parts by weight of a binder polymer is added to 100 parts by weight of the organic solvent, stirred at 40 ° C. for 1 hour, cooled to room temperature, and left for 24 hours or longer. It can be measured by a method for confirming that the solution is uniform without generation of insoluble matter or precipitates.
  • the weight average molecular weight of the component (A) of the present invention can be measured, for example, by the following method.
  • the component (A) of the present invention is not particularly limited.
  • polyurethane resin poly (meth) acrylic resin, polyvinyl resin, polystyrene resin, polyethylene resin, polypropylene resin, polyimide resin, polyamide resin, for example.
  • the component (A) easily penetrates into the oil-absorbing component (B). Strong adhesiveness is obtained at the interface between the component (A) and the component (B), and the flexibility and resistance of the cured film obtained by curing the photosensitive resin composition containing the component (A) and the component (B). This is preferable because the foldability is improved and the warp of the cured film is reduced.
  • the compound containing a urethane bond in the molecule suitably used in the present invention is an organic compound containing at least one urethane bond in the molecule.
  • the insulating film of the present invention contains a compound containing a urethane bond in the molecule, for example, by using an oblique cutting device or the like, scraping the insulating film surface several ⁇ m,
  • the continuous phase of the obtained slice of the insulating film is analyzed by micro-infrared absorption spectroscopy ( ⁇ IR), and the presence or absence of a spectrum derived from stretching vibration between C ⁇ O in the urethane bond is confirmed in the vicinity of 1715 to 1730 cm ⁇ 1.
  • ⁇ IR micro-infrared absorption spectroscopy
  • R 1 and X 1 each independently represents a divalent organic group, and n represents an integer of 1 or more), and is obtained as a structure containing a repeating unit containing a urethane bond.
  • the diol compound is not particularly limited as long as it has the above structure.
  • Polycaprolactone diol bisphenol A, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, hydrogenated bisphenol A, ethylene oxide adduct of hydrogenated bisphenol A, propylene oxide adduct of hydrogenated bisphenol A, etc. These can be used alone or in combination of two or more.
  • the diisocyanate compound is not particularly limited as long as it has the above structure.
  • the compound containing a urethane bond in the molecule may further contain at least one organic group selected from the group consisting of (a1) (meth) acryloyl group, (a2) carboxyl group and (a3) imide group.
  • the (a1) (meth) acryloyl group is an acryloyl group and / or a methacryloyl group.
  • the photosensitive film composition is photosensitive when the insulating film is obtained from the photosensitive resin composition. Therefore, it can be cured by ultraviolet irradiation in a short time.
  • thermosetting resin when the thermosetting resin is included in the insulating film, the insulation between the heat resistance of the insulating film and high-temperature and high-humidity conditions due to the reaction between the carboxyl group and the thermosetting resin Reliability can be improved.
  • thermosetting resin when (a3) an imide group is contained, the heat resistance, flame retardancy, and electrical insulation reliability under high temperature and high humidity conditions of the insulating film can be improved.
  • (a1) a compound containing a urethane bond in the molecule containing a (meth) acryloyl group can be obtained by any reaction.
  • the following general formula (4) in addition to the diol compound and the diisocyanate compound, The following general formula (4)
  • R 2 represents an m + 1 valent organic group
  • R 3 represents hydrogen or an alkyl group
  • m represents an integer of 1 to 3
  • the compound containing the hydroxyl group and at least one (meth) acryloyl group is not particularly limited as long as it has the above structure.
  • the compound containing the isocyanate group and at least one (meth) acryloyl group is not particularly limited as long as it has the structure described above.
  • a compound containing a urethane bond in the molecule containing a carboxyl group can be obtained by any reaction.
  • the following general formula ( 6) in addition to the diol compound and the diisocyanate compound, the following general formula ( 6)
  • R 4 represents a trivalent organic group
  • the compound containing two hydroxyl groups and one carboxyl group is not particularly limited as long as it has the above structure.
  • a compound containing a urethane bond in the molecule containing an imide group can be obtained by any reaction.
  • the following general formula ( 7) in addition to the diol compound and the diisocyanate compound, the following general formula ( 7)
  • the tetracarboxylic dianhydride is not particularly limited as long as it has the above structure.
  • reaction with a diisocyanate compound may be performed after mixing 2 or more types of diol compounds, or each diol compound and diisocyanate compound may be made to react separately. Good. Moreover, after making a diol compound and a diisocyanate compound react, you may make the obtained terminal isocyanate compound react with another diol compound, and also make this react with a diisocyanate compound. The same applies when two or more types of diisocyanate compounds are used. In this way, a compound containing a urethane bond in the desired molecule can be produced.
  • the reaction temperature between the diol compound and the diisocyanate compound is preferably 40 to 160 ° C., more preferably 60 to 150 ° C. If it is less than 40 ° C., the reaction time becomes too long. If it exceeds 160 ° C., a three-dimensional reaction occurs during the reaction and gelation tends to occur.
  • the reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed. If necessary, the reaction may be performed in the presence of a catalyst such as a tertiary amine, an alkali metal, an alkaline earth metal, a metal such as tin, zinc, titanium, cobalt, or a metalloid compound.
  • the reaction can be carried out in the absence of a solvent. However, in order to control the reaction, it is desirable to carry out the reaction in an organic solvent system.
  • organic solvent examples include those mentioned in the item ⁇ (A) Binder polymer>. Can be used.
  • the amount of the organic solvent used in the reaction is desirably such that the solute weight concentration in the reaction solution, that is, the solution concentration is 5% by weight or more and 90% by weight or less.
  • the solute weight concentration in the reaction solution is more preferably 10 wt% or more and 80 wt% or less.
  • the poly (meth) acrylic resin suitably used in the present invention is soluble in an organic solvent and can be obtained by copolymerizing (meth) acrylic acid and / or (meth) acrylic acid ester derivatives.
  • the poly (meth) acrylic resin can be obtained by an arbitrary reaction.
  • the (meth) acrylic acid ester derivative is not particularly limited.
  • (meth) acrylic acid ester derivatives it is particularly preferable to use methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate to improve the flexibility and resistance of the cured film of the photosensitive resin composition. It is preferable from the viewpoint of chemical properties.
  • radical polymerization initiator examples include azo compounds such as azobisisobutyronitrile, azobis (2-methylbutyronitrile), 2,2′-azobis-2,4-dimethylvaleronitrile, and t-butyl.
  • Organic peroxides such as hydroperoxide, cumene hydroperoxide, benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, persulfates such as potassium persulfate, sodium persulfate, ammonium persulfate, peracid A valence hydrogen etc. are mentioned, These can be used individually or in combination of 2 or more types.
  • the amount of the radical polymerization initiator used is preferably 0.001 to 5 parts by weight, more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the monomer used. When the amount is less than 0.001 part by weight, the reaction hardly proceeds, and when the amount is more than 5 parts by weight, the molecular weight may be lowered.
  • the amount of the solvent used in the reaction is preferably such that the solute weight concentration in the reaction solution, that is, the solution concentration is 5% by weight or more and 90% by weight or less, and 20% by weight or more and 70% by weight or less. More preferably.
  • the solution concentration is less than 5%, the polymerization reaction is difficult to occur and the reaction rate is lowered, and a desired structural substance may not be obtained.
  • the solution concentration is more than 90% by weight, the reaction solution has a high viscosity. And the reaction may be non-uniform.
  • the reaction temperature is preferably 20 to 120 ° C, more preferably 50 to 100 ° C.
  • the reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed.
  • the (B) spherical organic bead of the present invention is a spherical polymer containing carbon and includes an elliptical one.
  • the average particle diameter of the component (B) of the present invention can be measured, for example, as a volume-based median diameter (particle diameter with respect to an integrated distribution value of 50%) by the following method.
  • the average particle size of the component (B) of the present invention is 3 to 15 ⁇ m.
  • the average particle size is smaller than 3 ⁇ m, unevenness is not effectively formed on the surface of the insulating film and the tack-free property may be inferior.
  • the average particle size is 15 ⁇ m or more, the folding resistance is reduced or the fine pattern is reduced. In some cases, particles are exposed to the opening at the time of formation, resulting in poor resolution.
  • the component (B) of the present invention is not particularly limited.
  • polymethyl methacrylate-based spherical organic beads the product names Gantz Pearl GM-0600W, GM-0600W, cross-linked polymethacrylic acid manufactured by Gantz Kasei Co., Ltd.
  • methyl spherical organic beads include Gantz Pearl GM-0801S, GM-0807S, GM-1001-S, GM-1007S, GM-1505S-S, GMX-0610, GMX-0810, manufactured by Ganz Kasei Co., Ltd.
  • the product name Gun manufactured by Ganz Kasei Co., Ltd. Pearl GB-05S, GB-08S, GB-10S, GB-15S product names made by Sekisui Plastics Co., Ltd.
  • Techpolymer BM30X-5, BM30X-8, and cross-linked acrylic spherical organic beads include Gantz Kasei Co., Ltd.
  • Gantz Pearl GMP-0820 manufactured by Gantz Kasei Co., Ltd. is the product name of Gantz Pearl GBM-55COS, and the product name of Gantz Kasei Co., Ltd. is used as the cross-linked styrene type spherical organic bead.
  • Techpolymers SBX-6, SBX-8, and crosslinked polyacrylate organic beads are products manufactured by Sekisui Plastics Co., Ltd.
  • C-400WA, C-600 transparent, C-800 transparent , C-800WA, P-400T, P-800T, U-600T, CF-600T, JB-400T, JB-800T, CE-400T, CE-800T, etc. Can be used in combination.
  • Component (B) of the present invention uses a crosslinked spherical organic bead that contains a urethane bond in the molecule among the above spherical organic beads, particularly when the insulating film is warped, and the flexibility that can withstand repeated bending is improved.
  • (A) It is preferable for improving the adhesiveness with the component.
  • the blending amount of the component (B) of the present invention is preferably 30 to 100 parts by weight, more preferably 40 to 80 parts by weight with respect to 100 parts by weight of the component (A). It is possible to form concaves and convexes and has excellent tack-free property, and the filling and hardening by the component (B) is obtained, so that the warping of the insulating film is reduced, and the flexibility to withstand repeated bending by improving the stress relaxation effect and fracture toughness Improves.
  • the component (B) When the component (B) is less than 30 parts by weight, it may be inferior in tack-free properties and flexibility that can withstand repeated bending, and when it is more than 100 parts by weight, flame retardancy and when applying a resin composition solution The coatability deteriorates, and appearance defects may occur due to foaming of the coating film during coating or insufficient leveling.
  • Fine particles containing at least one element selected from the group consisting of phosphorus, aluminum, and magnesium are at least one selected from the group consisting of at least one phosphorus, aluminum, and magnesium in the structure. Fine particles having elements.
  • the insulating film of the present invention contains the component (C), it can impart excellent flame retardancy to the insulating film, and since it exists as a filler component in the insulating film, the heat resistance and electrical insulation of the insulating film Since reliability is not reduced and bleeding out from the insulating film does not occur, contact failure of the component mounting portion and contamination / contamination of the insulating film processing step can be suppressed.
  • the average particle diameter of the component (C) of the present invention can be measured, for example, by the same method as the component (B).
  • the average particle size of the component (C) of the present invention is preferably 1 to 10 ⁇ m because the flexibility and flame retardancy of the insulating film are excellent.
  • the average particle size is smaller than 1 ⁇ m, unevenness is not effectively formed on the surface of the insulating film and the tack-free property may be inferior.
  • the average particle size is 10 ⁇ m or more, the folding resistance is reduced or the fine pattern is reduced. In some cases, particles are exposed to the opening at the time of formation, resulting in poor resolution.
  • the component (C) of the present invention is not particularly limited, but examples of the fine particles containing phosphorus element include ammonium polyphosphate, melamine phosphate, and phosphinate, and the fine particles containing aluminum element are examples.
  • examples of the fine particles containing magnesium element include magnesium hydroxide and the like, and these can be used alone or in combination of two or more.
  • the use of phosphinate in particular, can impart excellent flame retardancy to the insulating film, and since there are few bleedouts from the insulating film, contact failure and process contamination are prevented. Since it can suppress, it is preferable.
  • the phosphinate is a compound represented by the following general formula (8).
  • R 5 and R 6 each independently represent a linear or branched alkyl group or aryl group having 1 to 6 carbon atoms
  • M represents Mg, Ca, Al, Sb, Sn, Ge, Ti , Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na
  • K represents a metal selected from the group consisting of metals
  • t is an integer of 1 to 4.
  • the phosphinic acid salt is not particularly limited as long as it has the above structure.
  • aluminum trisdiethylphosphinate, aluminum trismethylethylphosphinate, aluminum trisdiphenylphosphinate, zinc bisdiethylphosphinate, zinc bismethylethylphosphinate , Zinc bisdiphenylphosphinate, titanyl bisdiethylphosphinate, titanyl bismethylethylphosphinate, titanyl bisdiphenylphosphinate, and the like can be used alone or in combination of two or more.
  • the fine particles containing the phosphorus element further contain an aluminum element from the viewpoint of obtaining high flame retardancy, and in particular, aluminum trisdiethylphosphinate and aluminum trismethylethylphosphinate containing the aluminum element are used. If so, it is preferable because higher flame retardancy can be obtained.
  • the fine particles containing aluminum element examples include gibbsite type aluminum hydroxide, boehmite type aluminum hydroxide, aluminum trisdiethylphosphinate, aluminum trismethylethylphosphinate, aluminum trisdiphenylphosphinate, and these can be used alone or Two or more types can be used in combination.
  • the fine particles containing the aluminum element are contained, they are present as fillers in the insulating film, which is preferable because excellent flame retardancy can be imparted without causing a decrease in the glass transition temperature of the insulating film.
  • examples of the fine particles containing magnesium element include magnesium hydroxide and magnesium oxide, and these can be used alone or in combination of two or more.
  • the inclusion of the magnesium element-containing fine particles is preferable because it is present as a filler in the insulating film, so that excellent flame retardancy can be imparted without causing a decrease in the glass transition temperature of the insulating film.
  • the content of the component (C) of the present invention is preferably 20 to 80 parts by weight, more preferably 25 to 75 parts by weight, with respect to 100 parts by weight of the component (A). Excellent in electrical insulation reliability.
  • the amount of the component (E) is less than 20 parts by weight, the flame retardancy may be inferior.
  • the amount is more than 80 parts by weight, the coating property when the resin composition solution is applied deteriorates, and the coating at the time of coating is difficult. Appearance defects may occur due to film foaming or insufficient leveling.
  • thermosetting resin of the present invention is a compound containing at least one thermosetting organic group in the molecule.
  • thermosetting resin-containing insulating film of the present invention is an insulating film obtained using a resin composition containing the (D) component.
  • the insulating film of the present invention contains the component (D), and can impart excellent heat resistance and electrical insulation reliability to the insulating film, as well as the insulating film and various substrates, copper foil, and thermosetting adhesion. Adhesiveness with the agent can be improved.
  • the component (D) is not particularly limited as long as it has the above structure.
  • the component (D) uses a polyfunctional epoxy resin among the above thermosetting resins, and can provide heat resistance to the insulating film and also provides adhesion to conductors such as metal foil and circuit boards. This is preferable because it can be performed.
  • the polyfunctional epoxy resin is a compound containing at least two epoxy groups in the molecule.
  • the bisphenol A type epoxy resin trade names jER828, jER1001, jER1002, and Japan Corporation made by Japan Epoxy Resin Co., Ltd.
  • the product names Epototo YD-115, Epototo YD-127, Epototo YD-128 manufactured by Toto Kasei Co., Ltd., and the bisphenol F type epoxy resin include product names jER806, j manufactured by Japan Epoxy Resin Co., Ltd. R807, trade names Adeka Resin EP-4901E, Adeka Resin EP-4930, Adeka Resin EP-4950 manufactured by ADEKA Corporation, trade names RE-303S, RE-304S, RE-403S, RE-404S, DIC manufactured by Nippon Kayaku Co., Ltd.
  • Epicron EXA-1514, hydrogenated bisphenol A type epoxy resin include trade names jERYX8000, jERYX8034, jERYL7170, and ADEKA RESIN EP- 080E, trade name Epicron EXA-7015 manufactured by DIC Corporation, trade name Epototo YD-3000, Epototo YD-4000D manufactured by Toto Kasei Co., Ltd., and biphenyl type epoxy resin include trade names jERYX4000 manufactured by Japan Epoxy Resins Co., Ltd. jERYL6121H, jERYL6640, jERYL6667, trade names NC-3000, NC-3000H, manufactured by Nippon Kayaku Co., Ltd.
  • the product names Epicron N-660, Epicron N-670, Epicron N-680, Epicron N-695, and trisphenolmethane type epoxy resins manufactured by the company are trade names EPPN-501H and EPPN-501HY manufactured by Nippon Kayaku Co., Ltd. EPPN-50 H, as dicyclopentadiene type epoxy resin, trade name XD-1000 manufactured by Nippon Kayaku Co., Ltd., trade name Epicron HP-7200 manufactured by DIC Corporation, and as amine type epoxy resin, manufactured by Japan Epoxy Resin Co., Ltd.
  • Product names jER604, jER630, Toto Kasei Co., Ltd. product names Epototo YH-434, Epototo YH-434L, Mitsubishi Gas Chemical Co., Ltd.
  • product names TETRAD-X, TERRAD-C, and flexible epoxy resins include Japan Epoxy Trade names jER871, jER872, jERYL7175, jERYL7217 manufactured by Resin Co., Ltd., trade names Epicron EXA-4850 manufactured by DIC Corporation, and urethane-modified epoxy resins include trade names Adeka Resin EPU-6 manufactured by ADEKA Co., Ltd.
  • Adeka Resin EPU-78-11 rubber-modified epoxy resins
  • trade names Adeka Resin EPR-4023, Adeka Resin EPR-4026, Adeka Resin EPR-1309 manufactured by ADEKA Corporation, and ADEKA Corporation as chelate-modified epoxy resins
  • trade names Adeka Resin EP-49-10, Adeka Resin EP-49-20, and heterocyclic-containing epoxy resins include trade names TEPIC manufactured by Nissan Chemical Co., Ltd.
  • the insulating film of the present invention is not particularly limited as a curing agent for the thermosetting resin, for example, phenol novolak resin, cresol novolac resin, naphthalene type phenol resin and the like, amino resin, urea resin, melamine, Dicyandiamide etc. are mentioned, These can be used individually or in combination of 2 or more types.
  • the curing accelerator is not particularly limited.
  • phosphine compounds such as triphenylphosphine; amine compounds such as tertiary amine, trimethanolamine, triethanolamine and tetraethanolamine; 1,8- Borate compounds such as diaza-bicyclo [5,4,0] -7-undecenium tetraphenylborate, imidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-un Imidazoles such as decylimidazole, 1-benzyl-2-methylimidazole, 2-heptadecylimidazole, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl-4-methylimidazole; 2-methylimidazoline, 2- Ethyl imidazoline, -Imidazolines such as isopropylimidazoline, 2-phenylimidazoline, 2-unde
  • the (E) photopolymerization initiator of the present invention is a compound that is activated by energy such as UV and initiates / promotes a reaction of a radical polymerizable group.
  • the insulating film containing the (E) photopolymerization initiator of the present invention is an insulating film obtained using a resin composition containing the (E) component.
  • the insulating film of the present invention can impart excellent photosensitivity to the insulating film by containing the component (E), the curing reaction can be promoted by irradiating the insulating film with ultraviolet rays. Therefore, the fine processability and chemical resistance of the insulating film can be improved.
  • the component (E) is not particularly limited as long as it has the structure described above.
  • the above radical polymerizable compound is a compound containing in its molecule a radical polymerizable group that undergoes a polymerization reaction by a radical polymerization initiator.
  • a resin having at least one unsaturated double bond in the molecule is preferable.
  • the unsaturated double bond is preferably a (meth) acryloyl group or a vinyl group.
  • an aqueous development represented by an alkaline aqueous solution of the photosensitive resin composition is used. This is preferable because the solubility in the solution is improved and the development time is shortened.
  • filler examples include fine inorganic fillers such as silica, mica, talc, barium sulfate, wollastonite, and calcium carbonate.
  • antifoaming agent examples include acrylic compounds, vinyl compounds, and butadiene compounds.
  • leveling agent examples include acrylic compounds and vinyl compounds.
  • Examples of the colorant include phthalocyanine compounds, azo compounds, and carbon black.
  • adhesion assistant also referred to as adhesion-imparting agent
  • adhesion-imparting agent examples include silane coupling agents, triazole compounds, tetrazole compounds, and triazine compounds.
  • polymerization inhibitor examples include hydroquinone and hydroquinone monomethyl ether.
  • the insulating film of the present invention is excellent in flame retardancy because it contains fine particles containing at least one element selected from the group consisting of (C) phosphorus, aluminum, and magnesium, but in order to obtain a higher flame retardant effect.
  • Other flame retardants may be added to.
  • the flame retardant for example, a halogen-containing compound, a phosphorus compound, a melamine compound, or the like can be added.
  • the above various additives can be used alone or in combination of two or more.
  • the (B) component and (C) component of the present invention are dispersed in the insulating film, and the (B) component is observed as an independent spherical or elliptical region in the cross section in the thickness direction of the insulating film, In addition, the component (C) is observed as an independent irregular circular or polygonal region.
  • the components (B), the components (C), or the components (B) and (C) are observed independently, so long as the effects of the present invention are not impaired. It may be observed adjacent.
  • the range that does not impair the effect of the present invention is, on a line drawn so as to be orthogonal to the substrate surface toward the substrate surface from any point on the surface of the insulating film in the cross section in the thickness direction of the insulating film,
  • the total length of the (B) components, the (C) components, or the (B) component and the (C) component region is in a range equal to or less than the thickness of the insulating film.
  • the component (B) and the component (C) are dispersed in the insulating film, it is possible to effectively form unevenness on the surface of the obtained insulating film, and the tack-free property is excellent. Since the filling effect is obtained by the component (B), the warping of the insulating film is reduced, the flexibility to withstand repeated bending is improved by improving the stress relaxation effect and the fracture toughness, and the insulating film is excellent by the component (C). In addition to providing flame retardancy, since it is present as a filler component in the insulating film, it does not cause deterioration of the heat resistance and electrical insulation reliability of the insulating film, and further, bleed out from the insulating film does not occur. It is possible to suppress contact failure and contamination / contamination of the insulating film processing process.
  • the components (B) and (C) of the present invention are dispersed in the insulating film.
  • the continuous phase 2 and the dispersed phase 3 each of which is an independent spherical or elliptical region composed of the component (B), and the component (C).
  • the dispersed phase 4 that is an independent irregular circular or polygonal region exists.
  • the cross section in the thickness direction of the insulating film is a surface cut along the axial direction from the surface of the insulating film toward the base material when the insulating film is laminated on the base material 5 such as a printed wiring board. That is.
  • the component (B) and the component (C) of the present invention are dispersed in the insulating film.
  • a printed wiring board including an insulating film as described below is used. Examples include a method of embedding with a thermosetting resin, polishing a cross section in the thickness direction with an ion beam to obtain a cross section of the insulating film, and observing the cross section of the insulating film with a scanning electron microscope.
  • an organic substance composed of relatively light elements such as carbon, hydrogen, oxygen, and nitrogen, and the spherical (B) component is observed as a dark (black) circular region, and relatively heavy elements such as phosphorus, aluminum,
  • the component (C) which contains at least one element selected from the group consisting of magnesium and is amorphous, is observed as a dim (gray) or bright (white), circular or polygonal region.
  • the component region (B) in the cross section in the thickness direction of the insulating film is analyzed by the micro infrared absorption spectrum method ( ⁇ IR) similar to the component (A), and the C in the urethane bond is located near 1715 to 1730 cm ⁇ 1.
  • ⁇ IR micro infrared absorption spectrum method
  • the dispersion of component (B) and component (C) in the insulating film is measured variation and abnormality detection In order to prevent this, measure 10 points at 5 ⁇ m intervals from any point, measure the average value of the remaining values, rounding down the maximum and minimum values, and change the location 3 times Just measure.
  • ⁇ Area occupied by component (B) in the cross section in the thickness direction of the insulating film >
  • the area occupied by the component (B) in an arbitrary 125 ⁇ m ⁇ 15 ⁇ m range of the cross section in the thickness direction of the insulating film of the present invention can be measured by any method.
  • the component (B) and (C ) In the method for confirming that the component is dispersed in the insulating film, the area of all (B) component regions observed in an arbitrary 125 ⁇ m ⁇ 15 ⁇ m range of the insulating film portion of the scanning electron microscope image It can be measured as a grand total.
  • the measurement method of the area (S2) of the (B) component region is the maximum length (a) and the minimum length along the axis passing through the center of the (B) component region. What is necessary is just to measure (b) as an area calculated by the following formula.
  • the method for measuring the area (S3) of the (B) component region is 125 ⁇ m ⁇ 15 ⁇ m of the (B) component region.
  • the area of the component (B) measured by the above method occupies an area of 20 to 50% in an arbitrary range of 125 ⁇ m ⁇ 15 ⁇ m in the cross section in the thickness direction of the insulating film.
  • the area of the component (B) measured by the above method occupies an area of 20 to 50% in an arbitrary range of 125 ⁇ m ⁇ 15 ⁇ m in the cross section in the thickness direction of the insulating film.
  • the resin composition When the area occupied by the component (B) is less than 20%, it may be inferior in tack-free property or flexibility capable of withstanding repeated bending, and when it exceeds 50%, the resin composition is used to form flame retardancy or an insulating film.
  • the coating property at the time of coating a physical solution may deteriorate, and the appearance defect may occur due to foaming of the coating film or insufficient leveling during coating.
  • the ratio of the area in the arbitrary 125 ⁇ m ⁇ 15 ⁇ m range of the cross section in the thickness direction of the insulating film of the component (B) is at least 1 when measured three times at different locations in order to prevent measurement variation and abnormality detection. May be in the range of 20-50%, or may be in the above range all three times.
  • Examples of means for realizing that the (B) spherical organic beads occupy an area of 20 to 50% in an arbitrary 125 ⁇ m ⁇ 15 ⁇ m range of the cross section in the thickness direction of the insulating film of the present invention include, for example,
  • the amount of component (B) is preferably 30 to 100 parts by weight with respect to 100 parts by weight of (A) binder polymer.
  • the insulating film of the present invention is obtained by mixing the above components (A) to (C) and, if necessary, the components (D), (E) and other components to obtain a resin composition. Then, after applying and drying this resin composition on a substrate, if necessary, a fine opening can be formed by exposure / development, followed by heat treatment.
  • the mixing method is not particularly limited.
  • the mixing is performed using a general kneading apparatus such as a three-roll, bead mill, or ball mill.
  • a general kneading apparatus such as a three-roll, bead mill, or ball mill.
  • the particle diameter of each component in the resin composition after mixing can be measured by a method using a gauge specified in JIS K 5600-2-5.
  • a particle size distribution measuring apparatus is used, an average particle diameter, a particle diameter, and a particle size distribution can be measured.
  • a cured film can be obtained by the following method using the resin composition obtained above.
  • the resin composition is applied to a substrate and dried.
  • Application to the substrate can be performed by screen printing, curtain roll, river roll, spray coating, spin coating using a spinner, or the like.
  • the coating film (preferably having a thickness of 5 to 100 ⁇ m, particularly 10 to 100 ⁇ m) is dried at 120 ° C. or less, preferably 40 to 100 ° C.
  • a negative photomask is placed on the dried coating film, and exposure is performed by irradiating active rays such as ultraviolet rays, visible rays, and electron beams.
  • active rays such as ultraviolet rays, visible rays, and electron beams.
  • the fine opening can be obtained by developing the unexposed portion with a developer using various methods such as shower, paddle, immersion, or ultrasonic wave. Since the time until the pattern is exposed varies depending on the spraying pressure and flow rate of the developing device and the temperature of the etching solution, it is desirable to find the optimum device conditions as appropriate.
  • This developer may contain a water-soluble organic solvent such as methanol, ethanol, n-propanol, isopropanol, or N-methyl-2-pyrrolidone.
  • alkaline compound that gives the alkaline aqueous solution include hydroxides, carbonates, hydrogen carbonates, amine compounds, and the like of alkali metals, alkaline earth metals, or ammonium ions, and specifically sodium hydroxide.
  • Ropiruamin aqueous solution with compounds of other long as it exhibits basicity can also be naturally used.
  • the temperature of the developer depends on the composition of the resin composition and the composition of the alkaline developer, and is generally 0 ° C. or higher and 80 ° C. or lower, more generally 10 ° C. or higher and 60 ° C. or lower. It is preferable to do.
  • the fine openings formed by the development process are rinsed to remove unnecessary residues.
  • the rinsing liquid include water and acidic aqueous solutions.
  • the thickness of the cured film is determined in consideration of the substrate thickness and the like, but is preferably about 2 to 50 ⁇ m.
  • the final heat treatment temperature at this time is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 200 ° C. or lower for the purpose of preventing oxidation of the wiring and the like and not reducing the adhesion with the base material. It is particularly preferably 130 ° C. or higher and 180 ° C. or lower.
  • the heat treatment temperature increases, the oxidative deterioration of the wiring or the like progresses, and the adhesion with the substrate may decrease.
  • the insulating film of the present invention is particularly suitable as an insulating film for a flexible substrate because it has excellent flexibility, flame retardancy, electrical insulation reliability, and small warpage. Furthermore, it is also used for various wiring coating protective agents, heat-resistant adhesives, electric wire / cable insulation coatings, and the like.
  • the insulating film of the present invention is a film having insulating properties, preferably a film having a thickness of 5 to 50 ⁇ m.
  • the thickness of the insulating film of the present invention can be measured by any method, for example, it can be measured by a method based on JIS K 5400 3.5. Controlling the thickness within the above range is preferable because the insulating film has excellent flexibility and electrical insulation reliability. When the thickness is 5 ⁇ m or less, the electrical insulation reliability of the insulating film may be reduced, and when the thickness is 50 ⁇ m or more, the flexibility of the insulating film may be reduced.
  • the present inventors have found that the insulating film of the present invention is excellent in various characteristics, but this is presumed to be due to the following reason. That is, since the insulating film of the present invention has a structure in which fine particles are dispersed, irregularities are formed on the surface of the insulating film, and the tack-free property is excellent. Moreover, since the said insulating film contains the compound which has a urethane bond in (A) molecule
  • the fine particles are (B) spherical organic beads, since they are spherical beads, aggregation does not easily occur in the insulating film, and since they are organic, they have excellent affinity with the insulating film serving as a matrix. No decrease in mechanical strength occurs.
  • the fine particles are fine particles containing (C) phosphorus element, they can impart excellent flame retardancy to the insulating film and also exist as a filler component in the insulating film, so that the heat resistance and electrical properties of the insulating film are improved. Insulation reliability is not lowered and bleeding out from the insulating film does not occur. Therefore, contact failure of the component mounting portion and contamination / contamination in the insulating film processing step can be suppressed.
  • the insulating film is formed on the line (B) in which the spherical organic beads are drawn so as to be orthogonal to the substrate surface from the arbitrary point on the surface of the insulating film toward the substrate surface in the cross section in the thickness direction of the insulating film. Since the total length of the (B) spherical organic bead region is 20 to 80% with respect to the length of the region, it is possible to effectively form irregularities on the surface of the insulating film and is particularly excellent in tack-free property. Moreover, since the filling effect by the component (B) is obtained, the warp of the insulating film is reduced, and the flexibility to withstand repeated bending is improved by the stress relaxation effect and the fracture toughness by the component (B).
  • the flexibility to withstand repeated bending is reduced.
  • the components (A) and ( B) Strong adhesion is obtained at the interface with the component, and on a line drawn so as to be orthogonal to the substrate surface from the arbitrary point on the surface of the insulating film toward the substrate surface in the cross section in the thickness direction of the insulating film.
  • a flexible insulating film that can withstand repeated bending even when used in such a high filling that the total length of the spherical organic bead region (B) is 20 to 80% of the length of the insulating film region can be obtained. I guess.
  • the dispersion state of the component (B) and the component (C) in the insulating film and the cross section in the thickness direction of the insulating film so as to be orthogonal to the substrate surface from the arbitrary point on the surface of the insulating film toward the substrate surface The ratio of the total length of the component region (B) to the length of the insulating film region on the drawn line will be described.
  • the (A) compound having a urethane bond in the molecule of the present invention is an organic compound having at least one urethane bond in the molecule.
  • the insulating film of the present invention contains the component (A) by any method, for example, the insulating film surface obtained by scraping several ⁇ m of the insulating film surface using an oblique cutting device or the like is obtained.
  • ⁇ IR microscopic infrared absorption spectroscopy
  • pyrolysis gas chromatography / mass spectrometry (PyGC / MS) is performed using the obtained section of the insulating film, the library of the MS spectrum of the detected peak is searched, and the component is qualitatively determined.
  • a method for confirming the presence or absence of a peak derived from a diisocyanate compound, which is a raw material for generating a bond confirmation accuracy can be improved.
  • pyrolysis gas chromatography / mass spectrometry is also the same as the description in the above-mentioned (1. 1st aspect of this invention), description is abbreviate
  • the component (A) of the present invention can be obtained by any reaction.
  • the following general formula (1) the following general formula (1)
  • R 1 and X 1 each independently represents a divalent organic group, and n represents an integer of 1 or more), and is obtained as a structure containing a repeating unit having a urethane bond.
  • the diol compound of the present invention is not particularly limited as long as it has the above structure, and examples thereof include the same ones described in the above (1. First aspect of the present invention). It can be used alone or in combination of two or more.
  • the diisocyanate compound of the present invention is not particularly limited as long as it has the above structure, and examples thereof include the same ones described in the above (1. First aspect of the present invention). It can be used alone or in combination of two or more.
  • the compound (A) having a urethane bond in the molecule of the present invention further comprises at least one organic group selected from the group consisting of (a1) (meth) acryloyl group, (a2) carboxyl group and (a3) imide group. You may contain.
  • the (a1) (meth) acryloyl group is an acryloyl group and / or a methacryloyl group.
  • the photosensitive film composition is photosensitive when the insulating film is obtained from the photosensitive resin composition. Therefore, it can be cured by ultraviolet irradiation in a short time.
  • thermosetting resin when the thermosetting resin is included in the insulating film, the insulation between the heat resistance of the insulating film and high-temperature and high-humidity conditions due to the reaction between the carboxyl group and the thermosetting resin Reliability can be improved.
  • thermosetting resin when (a3) an imide group is contained, the heat resistance, flame retardancy, and electrical insulation reliability under high temperature and high humidity conditions of the insulating film can be improved.
  • the component (A) containing (a1) (meth) acryloyl group can be obtained by any reaction.
  • the diol compound and the diisocyanate compound the following general formula (4) )
  • R 2 represents an m + 1 valent organic group
  • R 3 represents hydrogen or an alkyl group
  • m represents an integer of 1 to 3
  • the compound containing a hydroxyl group and at least one (meth) acryloyl group of the present invention is not particularly limited as long as it has the above structure, but is the same as described in (1. First aspect of the present invention) described above. These can be used alone or in combination of two or more.
  • the compound containing an isocyanate group and at least one (meth) acryloyl group of the present invention is not particularly limited as long as it has the above structure.
  • the component (A) containing a carboxyl group can be obtained by an arbitrary reaction.
  • the diol compound and the diisocyanate compound the following general formula (6)
  • R 4 represents a trivalent organic group
  • the compound containing two hydroxyl groups and one carboxyl group of the present invention is not particularly limited as long as it has the above structure. For example, it is the same as described above in (1. First aspect of the present invention). These can be used alone or in combination of two or more.
  • the component (A) containing (a3) an imide group can be obtained by any reaction.
  • the diol compound and the diisocyanate compound the following general formula (7)
  • the tetracarboxylic dianhydride of the present invention is not particularly limited as long as it has the above structure.
  • the same tetracarboxylic dianhydride as described in (1. First aspect of the present invention) may be mentioned. These can be used alone or in combination of two or more.
  • reaction with a diisocyanate compound may be performed after mixing 2 or more types of diol compounds, or each diol compound and diisocyanate compound may be made to react separately. Good. Moreover, after making a diol compound and a diisocyanate compound react, you may make the obtained terminal isocyanate compound react with another diol compound, and also make this react with a diisocyanate compound. The same applies when two or more types of diisocyanate compounds are used. In this way, a desired compound (A) having a urethane bond in the molecule can be produced.
  • the reaction temperature between the diol compound and the diisocyanate compound is preferably 40 to 160 ° C., more preferably 60 to 150 ° C. If it is less than 40 ° C., the reaction time becomes too long. If it exceeds 160 ° C., a three-dimensional reaction occurs during the reaction and gelation tends to occur.
  • the reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed. If necessary, the reaction may be performed in the presence of a catalyst such as a tertiary amine, an alkali metal, an alkaline earth metal, a metal such as tin, zinc, titanium, cobalt, or a metalloid compound.
  • the above reaction can be carried out in the absence of a solvent.
  • the organic solvent include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, N , N-dimethylformamide, N, N-diethylformamide and other formamide solvents, N, N-dimethylacetamide, N, N-diethylacetamide and other acetamide solvents, N-methyl-2-pyrrolidone, N-vinyl-2 -Pyrrolidone solvents such as pyrrolidone, hexamethylphosphoramide, ⁇ -butyrolactone and the like can be mentioned.
  • these organic polar solvents can be used in combination with an aromatic hydrocarbon such as xylene or toluene.
  • the amount of solvent used in the reaction is desirably such that the solute weight concentration in the reaction solution, that is, the solution concentration is 5% by weight or more and 90% by weight or less.
  • the solute weight concentration in the reaction solution is more preferably 10 wt% or more and 80 wt% or less.
  • the (B) spherical organic bead of the present invention is a spherical polymer containing carbon and includes an elliptical one. Since this (B) spherical organic bead is the same as the description in the above-mentioned (1. 1st aspect of this invention), the description is used here and description is abbreviate
  • the fine particles containing phosphorus element (C) of the present invention are fine particles having at least one phosphorus element in the structure.
  • the average particle diameter of the component (C) of the present invention can be measured, for example, by the same method as the component (B).
  • the average particle size of the component (C) of the present invention is preferably 1 to 10 ⁇ m because the flexibility and flame retardancy of the insulating film are excellent.
  • the average particle size is smaller than 1 ⁇ m, unevenness is not effectively formed on the surface of the insulating film and the tack-free property may be inferior.
  • the average particle size is 10 ⁇ m or more, the folding resistance is reduced or the fine pattern is reduced. In some cases, particles are exposed to the opening at the time of formation, resulting in poor resolution.
  • the component (C) of the present invention is not particularly limited, and examples thereof include ammonium polyphosphate, melamine phosphate, phosphinate, and the like, and these can be used alone or in combination of two or more.
  • the component (C) of the present invention in particular, using phosphinates can impart excellent flame retardancy to the insulating film, and bleed out from the insulating film. Since the amount is small, contact failure and process contamination can be suppressed, which is preferable.
  • the phosphinic acid salt of the present invention is a compound represented by the following general formula (8).
  • R 5 and R 6 each independently represent a linear or branched alkyl group or aryl group having 1 to 6 carbon atoms
  • M represents Mg, Ca, Al, Sb, Sn, Ge, Ti , Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na
  • K represents a metal selected from the group consisting of metals
  • t is an integer of 1 to 4.
  • the phosphinic acid salt of the present invention is not particularly limited as long as it has the above structure.
  • aluminum trisdiethylphosphinate, aluminum trismethylethylphosphinate, aluminum trisdiphenylphosphinate, zinc bisdiethylphosphinate, bismethylethylphosphine examples thereof include zinc oxide, zinc bisdiphenylphosphinate, titanyl bisdiethylphosphinate, titanyl bismethylethylphosphinate, titanyl bisdiphenylphosphinate, and the like. These can be used alone or in combination of two or more.
  • the fine particles containing the phosphorus element (C) of the present invention further contain an aluminum element in terms of obtaining high flame retardancy, and in particular, aluminum trisdiethylphosphinate and trismethylethyl containing the aluminum element.
  • aluminum phosphinate is preferable because higher flame retardancy can be obtained.
  • the content of the component (C) of the present invention is preferably 20 to 80 parts by weight, more preferably 25 to 75 parts by weight, with respect to 100 parts by weight of the component (A). Excellent in electrical insulation reliability.
  • the amount of the component (E) is less than 20 parts by weight, the flame retardancy may be inferior.
  • the amount is more than 80 parts by weight, the coating property when the resin composition solution is applied deteriorates, and the coating at the time of coating is difficult. Appearance defects may occur due to film foaming or insufficient leveling.
  • thermosetting resin of the present invention is a compound containing at least one thermosetting organic group in the molecule. Since this (D) thermosetting resin is the same as the description in the above-mentioned (1. 1st aspect of this invention), the description is used here and description is abbreviate
  • the (E) photopolymerization initiator of the present invention is a compound that is activated by energy such as UV and initiates / promotes a reaction of a radical polymerizable group. Since this (E) photoinitiator is the same as the description in the above-mentioned (1. 1st aspect of this invention), the description is used here and description is abbreviate
  • ⁇ Other ingredients> Various additives such as a radical polymerizable compound, a filler, an adhesion assistant, an antifoaming agent, a leveling agent, a colorant, and a polymerization inhibitor can be added to the insulating film of the present invention as necessary. Since this ⁇ other component> is also the same as the description in the above (1. First aspect of the present invention), the description is used here and the description is omitted.
  • the insulating film of this invention is excellent in a flame retardance since it contains the fine particle containing (C) phosphorus element, in order to acquire a higher flame-retardant effect, you may add another flame retardant.
  • the flame retardant for example, a halogen-containing compound, a phosphorus compound, a metal hydroxide, a melamine compound, or the like can be added.
  • the above various additives can be used alone or in combination of two or more.
  • the (B) component and (C) component of the present invention are dispersed in the insulating film, and the (B) component is observed as an independent spherical or elliptical region in the cross section in the thickness direction of the insulating film, In addition, the component (C) is observed as an independent irregular circular or polygonal region.
  • the components (B), the components (C), or the components (B) and (C) are observed independently, so long as the effects of the present invention are not impaired. It may be observed adjacent.
  • the range that does not impair the effect of the present invention is, on a line drawn so as to be orthogonal to the substrate surface toward the substrate surface from any point on the surface of the insulating film in the cross section in the thickness direction of the insulating film,
  • the total length of the (B) components, the (C) components, or the (B) component and the (C) component region is in a range equal to or less than the thickness of the insulating film.
  • the components (B) and (C) of the present invention are dispersed in the insulating film.
  • the continuous phase 2 and the dispersed phase 3 which is an independent spherical or elliptical region composed of the component (B) and the component (C) are formed.
  • Each of them has a configuration in which a dispersed phase 4 ′ that is an independent irregular circular or polygonal region exists.
  • the cross section in the thickness direction of the insulating film is a surface cut along the axial direction from the surface of the insulating film toward the base material when the insulating film is laminated on the base material 5 such as a printed wiring board. That is.
  • the component (B) and the component (C) of the present invention are dispersed in the insulating film.
  • a printed wiring board including an insulating film as described below is used. Examples include a method of embedding with a thermosetting resin, polishing a cross section in the thickness direction with an ion beam to obtain a cross section of the insulating film, and observing the cross section of the insulating film with a scanning electron microscope.
  • the component region (B) in the cross section in the thickness direction of the insulating film is analyzed by the micro infrared absorption spectrum method ( ⁇ IR) similar to the component (A), and the C in the urethane bond is located near 1715 to 1730 cm ⁇ 1.
  • ⁇ IR micro infrared absorption spectrum method
  • the lengths d1 and d2 of the component region (B) observed on the line 6 are orthogonal to the base material surface from any point on the surface of the insulating film toward the base material surface in the cross section in the thickness direction of the insulating film. This is the length of the component (B) on the line drawn in (1).
  • At least one component (B) is preferably 3 to 15 ⁇ m in length because the insulating film is excellent in flexibility and chemical resistance.
  • the length of the component (B) is smaller than 3 ⁇ m, unevenness is not effectively formed on the surface of the insulating film, and the tack-free property may be inferior. Particles may be exposed, resulting in poor resolution.
  • the length of the component (B) was measured at 10 points at intervals of 5 ⁇ m, and the maximum and minimum values of the measured values were rounded down in order to prevent measurement variation and abnormality detection. What is necessary is just to measure the value which averaged the remaining value, and to measure 3 times, changing a place.
  • the length of the component (C) on the line drawn so as to be orthogonal to the substrate surface from the arbitrary point on the surface of the insulating film toward the substrate surface in the cross section in the thickness direction of the insulating film is also the above component (B). It can be measured by the same method as the length.
  • At least one component (C) is preferably 1 to 10 ⁇ m in length because the insulating film is excellent in flexibility and chemical resistance.
  • the length of the component (C) is smaller than 1 ⁇ m, unevenness is not effectively formed on the surface of the insulating film, and the tack-free property may be inferior. In some cases, particles may be exposed to the opening during pattern formation, resulting in poor resolution.
  • the length of the component (C) was measured at 10 points at intervals of 5 ⁇ m, and the maximum and minimum values of the measured values were rounded down to prevent measurement variation and abnormality detection. What is necessary is just to measure the value which averaged the remaining value, and to measure 3 times, changing a place.
  • the cross-section in the thickness direction of the insulating film 1 in the scanning electron microscope image was drawn from an arbitrary point on the insulating film surface toward the base material surface 7 so as to be orthogonal to the base material surface 7.
  • the sum of the lengths d1 and d2 of the component region (B) observed on the line 6 is orthogonal to the substrate surface from an arbitrary point on the surface of the insulating film in the cross section in the thickness direction of the insulating film.
  • (B) is the total length of the component areas on the line drawn.
  • (B) The ratio of the total length of the component area is determined by measuring 10 points at an interval of 5 ⁇ m from the arbitrary position to prevent measurement variation and anomaly detection. The remaining maximum value and minimum value are rounded down.
  • the average value is measured and measured three times at different locations, it may be within the range of 20 to 80% at least once, or may be within the above range all three times.
  • the length of the insulating film region (B ) As an example of means for realizing that the ratio of the total length of the component regions is 20 to 80%, for example, a method for confirming that the component (B) is dispersed in the insulating film In the scanning electron microscope image, in the cross section in the thickness direction of the insulating film, a line is drawn from an arbitrary point on the surface of the insulating film toward the base material surface so as to be orthogonal to the base material surface.
  • the length of at least one component region is 3 to 15 ⁇ m, or the blending amount of component (B) is 30 to 100 parts per 100 parts by weight of the compound (A) having a urethane bond in the molecule. It is preferable to make it a weight part.
  • the insulating film of the present invention is obtained by mixing the above components (A) to (C) and, if necessary, the components (D), (E) and other components to obtain a resin composition. Then, after applying and drying this resin composition on a substrate, if necessary, a fine opening can be formed by exposure / development, followed by heat treatment. Since the method for forming the insulating film is the same as that described in the above section (1. First aspect of the present invention), the description is used here and the description is omitted.
  • the insulating film of the present invention is particularly suitable as an insulating film for a flexible substrate because it has excellent flexibility, flame retardancy, electrical insulation reliability, and small warpage. Furthermore, it is also used for various wiring coating protective agents, heat-resistant adhesives, electric wire / cable insulation coatings, and the like.
  • the obtained resin solution had a solid content concentration of 52%, a weight average molecular weight of 5,600, and a solid content acid value of 22 mgKOH / g.
  • the solid content concentration and the weight average molecular weight were measured by the same method as in Synthesis Example 1a, and the acid value was measured by the following method.
  • the resulting resin solution had a solid content concentration of 50%, a weight average molecular weight of 48,000, and a solid content acid value of 78 mgKOH / g.
  • the solid content concentration and the weight average molecular weight were measured by the same method as in Synthesis Example 1a, and the acid value was measured by the same method as in Synthesis Example 2a.
  • Examples 1a to 7a ⁇ Preparation of resin composition> (A) component obtained in the synthesis example, (B) spherical organic beads, (C) fine particles containing at least one element selected from the group consisting of phosphorus, aluminum and magnesium, (D) thermosetting resin, (E) A resin composition was prepared by adding a photopolymerization initiator, other components, and an organic solvent. Table 1 shows the blending amount of each constituent raw material in the resin solid content and the kind of the raw material. In addition, 1,2-bis (2-methoxyethoxy) ethane which is a solvent in the table is the total amount of the solvent including the solvent contained in the synthesized resin solution.
  • the resin composition was first mixed with a typical stirring device equipped with a stirring blade, and then passed twice with three rolls to obtain a uniform solution.
  • a typical stirring device equipped with a stirring blade When the particle diameter of each component contained in the resin composition was measured with a grindometer, all were 15 ⁇ m or less.
  • the obtained resin composition was subjected to the following evaluation by completely defoaming bubbles in the resin composition with a defoaming apparatus.
  • (Iii) Particle diameter of the component (B) existing in an arbitrary 125 ⁇ m ⁇ 15 ⁇ m range of the cross section in the thickness direction of the insulating film Each (B) actually measured by the observation method similar to the item (i) above
  • the maximum length of the component is defined as the particle size, and among the components (B) existing in an arbitrary 125 ⁇ m ⁇ 15 ⁇ m range in the thickness direction of the insulating film, the maximum particle size, the minimum particle size, 3
  • the ratio of the component (B) having a particle diameter of ⁇ 15 ⁇ m in all the components (B) was measured.
  • (V) Tack-free property The above resin composition is flowed on a 25 ⁇ m polyimide film (manufactured by Kaneka Co., Ltd .: trade name: 25NPI) using a baker-type applicator in an area of 100 mm ⁇ 100 mm so that the final dry thickness is 20 ⁇ m.
  • the coated film was dried and dried at 80 ° C. for 20 minutes to prepare a coating film after drying the solvent.
  • the method for evaluating the tack-free property of the coating film is to cut out the film with the coating film after drying the solvent into 50 mm x 30 mm strips, and the coating film surfaces overlap each other with the coating film on the inside.
  • (Vi) Folding resistance An insulating film laminated film having a thickness of 20 ⁇ m is prepared on the surface of a polyimide film having a thickness of 25 ⁇ m (Apical 25NPI manufactured by Kaneka Corporation) in the same manner as in the above item ⁇ Preparation of cured film on polyimide film>. did.
  • the method for evaluating the folding resistance of the insulating film laminated film is to cut the insulating film laminated film into 50 mm ⁇ 10 mm strips, bend the insulating film to the outside at 180 ° at 25 mm, and apply a 5 kg load to the bent portion for 3 seconds. After loading, the load was removed, and the apex of the bent portion was observed with a microscope.
  • the bent portion was opened, and a 5 kg load was again applied for 3 seconds, and then the load was removed to completely open the cured film laminated film.
  • the above operation was repeated, and the number of occurrences of cracks in the bent portion was defined as the number of bending times.
  • The insulating film has no cracks after being bent five times.
  • delta The number of times of bending is 3 times, and there is no crack in an insulating film.
  • X A crack occurs in the insulating film at the first folding.
  • a 100 V direct current was applied to both terminals of the test piece in an environmental test machine at 85 ° C. and 85% RH, and changes in the insulation resistance value and occurrence of migration were observed.
  • A resistance value of 10 8 or more in 1000 hours after the start of the test, and no occurrence of migration or dendrite.
  • X Migration, dendrite, etc. occurred in 1000 hours after the start of the test.
  • Example 1a In the resin composition of Example 1a, evaluation was performed in the same manner as in Example 1a, except that the blending amount of (B) spherical organic beads was 20.0 parts by weight. The evaluation results are shown in Table 3.
  • reaction solution was poured into 2 liters of water, and the resulting precipitate was collected by filtration, washed with water and dried under reduced pressure to obtain 43.16 g of a bifunctional hydroxyl-terminated imide oligomer powder.
  • 29.94 g (0.015 mol) of polycarbonate diol manufactured by Kuraray Co., Ltd., product name Kuraray Polyol C-2015, weight average molecular weight 2000
  • 2 2-bis (hydroxymethyl) propionic acid 1.01 g (7.50 mmol), 8.54 g (34.09 mmol) of 4,4′-diphenylmethane diisocyanate, and 13.7 g of isophorone were charged at 80 ° C.
  • urethane resin solution had a solid content concentration of 50% by weight and a number average molecular weight of 26000. 10 parts by mass of an epoxy resin (manufactured by Daicel Chemical Industries, Ltd., product name Epolide PB3600, epoxy equivalent 194) and 100 parts by mass of blocked isocyanate (DIC Corporation, product name) with respect to 100 parts by mass of the urethane resin were obtained.
  • the temperature of the reaction solution was lowered to 70 ° C., and 42.4 g of methylenebis (4-cyclohexylisocyanate) (manufactured by Sumika Bayer Urethane Co., Ltd., product name Desmodur-W) was added dropwise over 30 minutes using a dropping funnel. After completion of dropping, the reaction was performed at 80 ° C. for 1 hour, 90 ° C. for 1 hour, and 100 ° C. for 2 hours. After confirming that the isocyanate had almost disappeared, 1.46 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) Then, the reaction was further carried out at 105 ° C. for 1.5 hours.
  • the resulting urethane resin solution had a solid content concentration of 50%, a number average molecular weight of 6,800, and an acid value of solid content of 40 mgKOH / g.
  • 37.5% by mass of epoxy resin manufactured by Japan Epoxy Resin Co., Ltd., product name jER828EL
  • 4% by mass of melamine as a curing accelerator and core shell with respect to 100% by mass of urethane resin
  • a resin composition in which organic fine particles having a multilayer structure manufactured by Ganz Kasei Co., Ltd., product name Staphyloid AC-3816, average particle size 0.5 ⁇ m
  • the physical properties of this resin composition were evaluated in the same manner as in Example 1a. The results are listed in Table 3.
  • the obtained resin solution had a solid content concentration of 52%, a weight average molecular weight of 5,600, and a solid content acid value of 22 mgKOH / g.
  • the solid content concentration and the weight average molecular weight were measured by the same method as in Synthesis Example 1b, and the acid value was measured by the following method.
  • the resin composition was first mixed with a typical stirring device equipped with a stirring blade, and then passed twice with three rolls to obtain a uniform solution. When the particle size of each component contained in the resin composition was measured with a grindometer, all were 15 ⁇ m or less. The obtained resin composition was subjected to the following evaluation by completely defoaming bubbles in the resin composition with a defoaming apparatus.
  • ⁇ Formation of cured film on polyimide film> The resin composition was cast and applied to a 25 ⁇ m polyimide film (manufactured by Kaneka Co., Ltd .: trade name: 25NPI) to an area of 100 mm ⁇ 100 mm so as to have a final dry thickness of 20 ⁇ m using a Baker type applicator. After drying at 20 ° C. for 20 minutes, exposure was performed by irradiating with an ultraviolet ray having an accumulated exposure amount of 300 mJ / cm 2 . Subsequently, spray development was performed for 90 seconds at a discharge pressure of 1.0 kgf / mm 2 using a solution obtained by heating a 1.0 wt% sodium carbonate aqueous solution to 30 ° C. After development, the product was thoroughly washed with pure water, and then cured by heating in an oven at 150 ° C. for 30 minutes to obtain a laminate having a cured film formed on the polyimide film.
  • (V) Tack-free property The above resin composition is flowed on a 25 ⁇ m polyimide film (manufactured by Kaneka Co., Ltd .: trade name: 25NPI) using a baker-type applicator in an area of 100 mm ⁇ 100 mm so that the final dry thickness is 20 ⁇ m.
  • the coated film was dried and dried at 80 ° C. for 20 minutes to prepare a coating film after drying the solvent.
  • the method for evaluating the tack-free property of the coating film is to cut out the film with the coating film after drying the solvent into 50 mm x 30 mm strips, and the coating film surfaces overlap each other with the coating film on the inside.
  • (Vi) Folding resistance An insulating film laminated film having a thickness of 20 ⁇ m is prepared on the surface of a polyimide film having a thickness of 25 ⁇ m (Apical 25NPI manufactured by Kaneka Corporation) in the same manner as in the above item ⁇ Preparation of cured film on polyimide film>. did.
  • the method for evaluating the folding resistance of the insulating film laminated film is to cut the insulating film laminated film into 50 mm ⁇ 10 mm strips, bend the insulating film to the outside at 180 ° at 25 mm, and apply a 5 kg load to the bent portion for 3 seconds. After loading, the load was removed, and the apex of the bent portion was observed with a microscope.
  • the bent portion was opened, and a 5 kg load was again applied for 3 seconds, and then the load was removed to completely open the cured film laminated film.
  • the above operation was repeated, and the number of occurrences of cracks in the bent portion was defined as the number of bending times.
  • The insulating film has no cracks after being bent five times.
  • delta The number of times of bending is 3 times, and there is no crack in an insulating film.
  • X A crack occurs in the insulating film at the first folding.
  • a 100 V direct current was applied to both terminals of the test piece in an environmental test machine at 85 ° C. and 85% RH, and changes in the insulation resistance value and occurrence of migration were observed.
  • A resistance value of 10 8 or more in 1000 hours after the start of the test, and no occurrence of migration or dendrite.
  • X Migration, dendrite, etc. occurred in 1000 hours after the start of the test.
  • reaction solution was poured into 2 liters of water, and the resulting precipitate was collected by filtration, washed with water and dried under reduced pressure to obtain 43.16 g of a bifunctional hydroxyl-terminated imide oligomer powder.
  • 29.94 g (0.015 mol) of polycarbonate diol manufactured by Kuraray Co., Ltd., product name Kuraray Polyol C-2015, weight average molecular weight 2000
  • 2 2-bis (hydroxymethyl) propionic acid 1.01 g (7.50 mmol), 8.54 g (34.09 mmol) of 4,4′-diphenylmethane diisocyanate, and 13.7 g of isophorone were charged at 80 ° C.
  • urethane resin solution had a solid content concentration of 50% by weight and a number average molecular weight of 26000. 10 parts by mass of an epoxy resin (manufactured by Daicel Chemical Industries, Ltd., product name Epolide PB3600, epoxy equivalent 194) and 100 parts by mass of blocked isocyanate (DIC Corporation, product name) with respect to 100 parts by mass of the urethane resin were obtained.
  • the temperature of the reaction solution was lowered to 70 ° C., and 42.4 g of methylenebis (4-cyclohexylisocyanate) (manufactured by Sumika Bayer Urethane Co., Ltd., product name Desmodur-W) was added dropwise over 30 minutes using a dropping funnel. After completion of dropping, the reaction was performed at 80 ° C. for 1 hour, 90 ° C. for 1 hour, and 100 ° C. for 2 hours. After confirming that the isocyanate had almost disappeared, 1.46 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) Then, the reaction was further carried out at 105 ° C. for 1.5 hours.
  • the resulting urethane resin solution had a solid content concentration of 50%, a number average molecular weight of 6,800, and an acid value of solid content of 40 mgKOH / g.
  • 37.5% by mass of epoxy resin manufactured by Japan Epoxy Resin Co., Ltd., product name jER828EL
  • 4% by mass of melamine as a curing accelerator and core shell with respect to 100% by mass of urethane resin
  • a resin composition in which organic fine particles having a multilayer structure manufactured by Ganz Kasei Co., Ltd., product name Staphyloid AC-3816, average particle size 0.5 ⁇ m
  • the physical properties of this resin composition were evaluated in the same manner as in Example 1b. The results are listed in Table 5.
  • (Comparative Example 4b) 70 parts by mass (solid content) of a copolymer (weight average molecular weight 70,000, acid value 117 mg / g) obtained by copolymerizing methacrylic acid, methyl methacrylate and methyl acrylate in a mass ratio of 20:45:35; 30 parts by mass (solid content) of a monomer having a urethane bond (manufactured by Shin-Nakamura Chemical Co., Ltd., product name UA-11), 5 parts by mass of a photopolymerization initiator (manufactured by BASF Japan Ltd., product name Irgacure 651), 13 parts by mass of aluminum aluminum diethylphosphinate (manufactured by Clariant Japan KK, product name Exorit OP-930), thermosetting agent (manufactured by Hitachi Chemical Co., Ltd., 2,2-bis [4- (4-N-maleimide) Nilphenoxy) phenyl] propane) 10 parts by mass,
  • the insulating film of the present invention is particularly suitable as an insulating film for a flexible substrate because it has excellent flexibility, flame retardancy, electrical insulation reliability, and small warpage. Furthermore, it is also used for various wiring coating protective agents, heat-resistant adhesives, electric wire / cable insulation coatings, and the like.
  • Insulating film 2 Continuous phase 3 Dispersed phase (spherical organic beads) 4 Dispersed phase (fine particles containing at least one element selected from the group consisting of phosphorus, aluminum and magnesium) 4 'Dispersed phase (fine particles containing phosphorus element) 5
  • Substrate 6 Line drawn from an arbitrary point on the surface of the insulating film so as to be orthogonal to the substrate surface in the cross section in the thickness direction of the insulating film 7
  • Substrate surface 8 Polyimide on which the resin composition is laminated Film 9 Warpage 10 Smooth base

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Materials For Photolithography (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 (A)バインダーポリマーを含有する絶縁膜であって、前記絶縁膜は少なくとも(B)球状有機ビーズ、及び(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子を含有しており、前記(B)球状有機ビーズ及び前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子は、前記絶縁膜中に所定の状態で分散している。

Description

新規な絶縁膜及び絶縁膜付きプリント配線板
 本発明は、タックフリー性に優れ、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さい絶縁膜、絶縁膜付きプリント配線板に関するものである。
 近年、電子機器や情報端末の高機能化、小型化、軽量化、薄型化への要求に伴いプリント配線板の高密度化、小型化、軽量化が進む中で、プリント配線板に用いられる絶縁膜へも高い信頼性や加工性が求められている。
 プリント配線板の中でもフレキシブルプリント配線板は耐熱性、難燃性、電気絶縁信頼性や耐薬品性、機械特性に優れるポリイミドフィルムが用いられるため信頼性に優れ、プリント配線板の軽量化や薄型化に適しており、また、柔軟性にも優れるため狭い部分に折り曲げて組み込むことが可能となり、電子機器の小型化にも有利である。
 フレキシブルプリント配線板の絶縁膜としては、例えば、ポリイミド等のフィルムに接着剤を塗布した接着剤付きカバーレイフィルムをパンチングなどの打ち抜き加工により開口部を設け、位置合わせをした後に熱プレス等で回路上に熱圧着することにより得られるカバーレイフィルム、ポリイミド樹脂等を有機溶媒に溶解させた溶液を回路上に直接塗布し、溶媒を乾燥させた後に硬化させることにより得られるカバーコート、また、酸変性エポキシアクリレートやエポキシ樹脂等を主体とした感光性樹脂組成物を回路上に直接塗布し、フォトリソグラフィーにより開口部の微細加工を施した後に硬化させることにより得られる感光性ソルダーレジストが用いられてきた。
 しかし、カバーレイフィルムの場合、薄いフィルムに高精度な開口部を設けることは困難であり、また、張り合わせ時の位置合わせは手作業で行われる場合が多いため、位置精度が悪く、張り合わせの作業性も悪く、コスト高となっていた。また、カバーコートの場合、スクリーン印刷などの印刷技術により開口部とその他の部分を塗り分ける必要があるため高精度な開口部を設けることは困難であり、難燃性にも劣る問題があった。また、感光性ソルダーレジストの場合、フォトリソグラフィーにより開口部を形成できるため微細加工性に優れるものの、屈曲性等の柔軟性が悪く、硬化収縮が大きいためフレキシブルプリント配線板などの薄くて柔軟性に富む回路基板に積層した場合、基板の反りが大きくなる問題があった。
 このフレキシブルプリント配線板の絶縁膜として、加工性、柔軟性や難燃性などの各種特性を両立することができる種々の提案がされている。
 例えば、電気絶縁性と密着性の両方が優れ、更に耐熱性、柔軟性、低反り性、耐溶剤性、耐薬品性、耐屈曲性などに優れた新規な変性ポリイミド樹脂を含有する樹脂組成物及び硬化絶縁膜が提案されている(例えば、特許文献1参照。)。
 また、印刷性、タックフリー性、つや消し性、電気絶縁特性及び被塗物との密着性などのバランスに優れた熱硬化性樹脂組成物の硬化物からなる絶縁膜が提案されている(例えば、特許文献2参照。)。
 また、ハロゲン系難燃剤を用いずに十分な難燃性を確保することができ、十分な伸び率を有する絶縁膜を得られる感光性樹脂組成物が提案されている(例えば、特許文献3参照。)。
日本国公開特許公報「特開2006-307183号公報」 国際公開第2007/125806号 日本国公開特許公報「特開2008-134584号公報」
 上記特許文献では、フレキシブルプリント配線板の絶縁膜の課題を解決する種々の方法が提案されている。しかし、特許文献1に記載されている樹脂組成物から得られる絶縁膜は、柔軟骨格を含有する変性ポリイミド樹脂を含有するため繰り返し折り曲げに耐え得る柔軟性、電気絶縁信頼性、密着性、半田耐熱性、耐溶剤性に優れ、反りが小さいものの、難燃性に乏しく、また、塗膜乾燥後のベタツキが大きくタックフリー性に劣るため、塗膜乾燥後のプリント配線板同士を重ねた時の貼り付きが発生するという問題があった。また、特許文献2に記載されている熱硬化性樹脂組成物から得られる絶縁膜は、コアシェル多層構造を持つ有機微粒子を含有するため印刷性、つや消し性、タックフリー性、電気絶縁特性、密着性に優れるものの、繰り返し折り曲げに耐え得る柔軟性や難燃性に乏しく、樹脂組成物を基材上に塗布、乾燥後の塗膜のタックフリー性も不充分である問題があった。また、特許文献3に記載されている感光性樹脂組成物から得られる絶縁膜は、ハロゲン系難燃剤を用いずに十分な難燃性を有し、電気絶縁信頼性、伸び、開口部の解像性に優れるものの、塗膜乾燥後のベタツキが大きくタックフリー性に劣り、繰り返し折り曲げに耐え得る柔軟性に乏しいという問題があった。
 本願発明者らは上記課題を解決すべく鋭意研究した結果、微粒子が分散した構造を有する絶縁膜であって、前記絶縁膜が(A)バインダーポリマーを含有し、前記微粒子が(B)球状有機ビーズ及び(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子であり、絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において、前記(B)が20~50%の面積を占めることを特徴とする絶縁膜から、タックフリー性に優れ、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さい絶縁膜、絶縁膜付きプリント配線板が得られる知見を得、これらの知見に基づいて、本発明の第一の態様に達したものである。
 また、本願発明者らは上記課題を解決すべく鋭意研究した結果、微粒子が分散した構造を有する絶縁膜であって、前記絶縁膜が(A)分子内にウレタン結合を有する化合物を含有し、前記微粒子が(B)球状有機ビーズ及び(C)リン元素を含有する微粒子であり、前記(B)球状有機ビーズが、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して前記(B)球状有機ビーズ領域の合計の長さが20~80%であることを特徴とする絶縁膜から、タックフリー性に優れ、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さい絶縁膜、絶縁膜付きプリント配線板が得られる知見を得、これらの知見に基づいて、本発明の第二の態様に達したものである。
 本願発明の第一の態様は以下の新規な構成の絶縁膜により上記課題を解決しうる。
 すなわち、本願発明の第一の態様は、(A)バインダーポリマーを含有する化合物を含有する絶縁膜であって、前記絶縁膜は少なくとも(B)球状有機ビーズ、及び(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子を含有しており、前記(B)球状有機ビーズ及び前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子は、前記絶縁膜中に分散しており、前記絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において、前記(B)球状有機ビーズが20~50%の面積を占めることを特徴とする絶縁膜である。
 また、本願発明の第一の態様にかかる絶縁膜では、前記(A)バインダーポリマーが、分子内にウレタン結合を含有する化合物であることが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子が、リン元素を含有する微粒子であることが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、絶縁膜の厚み方向の断面の125μm×15μmの任意の範囲において、前記(B)球状有機ビーズの半数以上が3~15μmの粒子径で存在していることが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、絶縁膜の厚み方向の断面の125μm×15μmの任意の範囲において、前記(B)球状有機ビーズの全数が15μm以下の粒子径で存在していることが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、前記(B)球状有機ビーズの配合量が、(A)バインダーポリマー100重量部に対して30~100重量部であることが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、前記(B)球状有機ビーズが分子内にウレタン結合を含有する架橋球状有機ビーズであることが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、絶縁膜の厚み方向の断面の125μm×15μmの任意の範囲において、前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子が1~10μmの粒子径で存在していることが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、前記(C)リン元素を含有する微粒子が更にアルミニウム元素を含有することが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、更に(D)熱硬化性樹脂を含有することが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜では、更に(E)光重合開始剤を含有することが好ましい。
 また、本願発明の第一の態様にかかる絶縁膜付きプリント配線板は、上記絶縁膜をプリント配線板に被覆してなるものである。
 また、本願発明の第二の態様は以下の新規な構成の絶縁膜により上記課題を解決しうる。
 すなわち、本願発明の第二の態様は、(A)分子内にウレタン結合を有する化合物を含有する絶縁膜であって、前記絶縁膜は少なくとも(B)球状有機ビーズ、及び(C)リン元素を含有する微粒子を含有しており、前記(B)球状有機ビーズ及び前記(C)リン元素を含有する微粒子は、前記絶縁膜中に分散しており、前記(B)球状有機ビーズが、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して前記(B)球状有機ビーズ領域の合計の長さが20~80%であることを特徴とする絶縁膜である。
 また、本願発明の第二の態様にかかる絶縁膜では、前記(B)球状有機ビーズの少なくとも1個が、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、3~15μmの長さであることが好ましい。
 また、本願発明の第二の態様にかかる絶縁膜では、前記(B)球状有機ビーズの配合量が、(A)分子内にウレタン結合を有する化合物100重量部に対して30~100重量部であることが好ましい。
 また、本願発明の第二の態様にかかる絶縁膜では、前記(B)球状有機ビーズが分子内にウレタン結合を有する架橋球状有機ビーズであることが好ましい。
 また、本願発明の第二の態様にかかる絶縁膜では、前記(C)リン元素を含有する微粒子の少なくとも1個が、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、1~10μmの長さであることが好ましい。
 また、本願発明の第二の態様にかかる絶縁膜では、前記(C)リン元素を含有する微粒子が更にアルミニウム元素を含有することが好ましい。
 また、本願発明の第二の態様にかかる絶縁膜は、(D)熱硬化性樹脂を含有している樹脂組成物から得られることが好ましい。
 また、本願発明の第二の態様にかかる絶縁膜は、(E)光重合開始剤を含有している樹脂組成物から得られることが好ましい。
 また、本願発明の第二の態様にかかる絶縁膜付きプリント配線板は、上記絶縁膜がプリント配線板に被覆されたものである。
 本願発明の第一の態様の絶縁膜は、以上のように、(A)バインダーポリマーを含有する絶縁膜であって、前記絶縁膜は少なくとも(B)球状有機ビーズ、及び(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子を含有しており、前記(B)球状有機ビーズ及び前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子は、前記絶縁膜中に分散しており、前記絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において、前記(B)球状有機ビーズが20~50%の面積を占める構成を備えているので、本願発明の第一の態様の絶縁膜は、タックフリー性に優れ、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さい。従って、本願発明の第一の態様の絶縁膜は、種々の回路基板の保護膜等に使用でき、優れた効果を奏するものである。
 また、本願発明の第二の態様の絶縁膜は、以上のように、(A)分子内にウレタン結合を有する化合物を含有する絶縁膜であって、前記絶縁膜は少なくとも(B)球状有機ビーズ、及び(C)リン元素を含有する微粒子を含有しており、前記(B)球状有機ビーズ及び前記(C)リン元素を含有する微粒子は、前記絶縁膜中に分散しており、前記(B)球状有機ビーズが、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して前記(B)球状有機ビーズ領域の合計の長さが20~80%である構成を備えているので、本願発明の第二の態様の絶縁膜は、タックフリー性に優れ、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さい。従って、本願発明の第二の態様の絶縁膜は、種々の回路基板の保護膜等に使用でき、優れた効果を奏するものである。
本願発明の第一の態様に関して、微粒子が分散した構造を表している模式図である。 本願発明の第二の態様に関して、微粒子が分散した構造を表している模式図である。 フィルムの反り量を測定している模式図である。
 (1.本願発明の第一の態様)
 以下本願発明の第一の態様について、(I)絶縁膜、(II)絶縁膜の形成方法の順に詳細に説明する。
 (I)絶縁膜
 本願発明の絶縁膜とは、絶縁性を有する膜であり、好ましくは厚さが5~50μmの膜である。
 本願発明の絶縁膜の厚さは、任意の方法により測定することができるが、例えば、JIS K 5400 3.5に準拠した方法で測定することができる。上記範囲内に厚さを制御することにより、絶縁膜の柔軟性、電気絶縁信頼性が優れるため好ましい。厚さが5μm以下の場合は絶縁膜の電気絶縁信頼性が低下する場合があり、厚さが50μm以上の場合は絶縁膜の柔軟性が低下する場合がある。
 ここで、本願発明の絶縁膜は、各種特性に優れる事を、本発明者らは見出したが、これは、以下の理由によるのではないかと推測している。つまり、本願発明の絶縁膜は微粒子が分散した構成を有しているため、絶縁膜表面にも凹凸が形成されタックフリー性に優れる。また、前記絶縁膜が(A)バインダーポリマーを含有するため、バインダーポリマーの柔軟性骨格により柔軟性に優れる。また、特に、前記(A)が分子内にウレタン結合を含有する化合物である場合には、ウレタン結合由来の柔軟性骨格により柔軟性に優れる。また、前記微粒子が(B)球状有機ビーズの場合は、球状ビーズであるため絶縁膜内で凝集が発生し難く、また有機物であるためマトリックスとなる絶縁膜との親和性に優れ、絶縁膜の機械的強度の低下が発生しない。また、前記微粒子が(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子の場合は、絶縁膜に対して優れた難燃性を付与できると共に、絶縁膜内でフィラー成分として存在するため絶縁膜の耐熱性や電気絶縁信頼性の低下を招かず、更に絶縁膜からのブリードアウトが発生しないため、部品実装部の接点障害や絶縁膜加工工程の汚染・コンタミを抑制することができる。また、前記(B)成分が絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において、20~50%の面積を占めるため、絶縁膜表面に効果的に凹凸を形成することが可能となりタックフリー性に特に優れ、また、(B)成分による充填効果が得られるため絶縁膜の反りが低下し、(B)成分による応力緩和効果や破壊靱性の向上により繰り返し折り曲げに耐え得る柔軟性が向上する。更に、驚くべきことに、一般的にはフィラー成分を高充填すると繰り返し折り曲げに耐える柔軟性が低下するが、(B)成分表面から(A)成分が内部に染み込むため、(A)成分と(B)成分との界面で強固な接着性が得られ、20~50%の面積を占める程高充填して用いた場合でも繰り返し折り曲げに耐え得る柔軟な絶縁膜が得られると推測している。
 以下、(A)バインダーポリマー、(B)球状有機ビーズ、(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子、(D)熱硬化性樹脂、(E)光重合開始剤、その他成分、(B)成分及び(C)成分の絶縁膜中での分散状況、絶縁膜の厚み方向の断面の(B)成分が占める面積について説明する。
 <(A)バインダーポリマー>
 本願発明の(A)バインダーポリマーとは、有機溶媒に対して可溶性であり、重量平均分子量が、ポリエチレングリコール換算で1,000以上、1,000,000以下のポリマーである。
 上記有機溶媒とは、特に限定されないが、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、あるいはヘキサメチルホスホルアミド、γ-ブチロラクトンなどを挙げることができる。さらに必要に応じて、これらの有機極性溶媒とキシレンあるいはトルエンなどの芳香族炭化水素とを組み合わせて用いることもできる。
 更に、例えばメチルモノグライム(1,2-ジメトキシエタン)、メチルジグライム(ビス(2-メトキシエテル)エーテル)、メチルトリグライム(1,2-ビス(2-メトキシエトキシ)エタン)、メチルテトラグライム(ビス[2-(2-メトキシエトキシエチル)]エーテル)、エチルモノグライム(1,2-ジエトキシエタン)、エチルジグライム(ビス(2-エトキシエチル)エーテル)、ブチルジグライム(ビス(2-ブトキシエチル)エーテル)等の対称グリコールジエーテル類、メチルアセテート、エチルアセテート、イソプロピルアセテート、n―プロピルアセテート、ブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(別名、カルビトールアセテート、酢酸2-(2-ブトキシエトキシ)エチル))、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、1,3―ブチレングリコールジアセテート等のアセテート類や、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、ジプロピレングリコールn-ブチルエーテル、トリピレングリコールn-プロピルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル、1,3―ジオキソラン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールものエチルエーテル等のエーテル類の溶剤が挙げられる。
 有機溶媒に対して可溶性となる指標である有機溶媒溶解性は、有機溶媒100重量部に対して溶解するバインダーポリマーの重量部として測定することが可能であり、有機溶媒100重量部に対して溶解するバインダーポリマーの重量部が5重量部以上であれば有機溶媒に対して可溶性とすることができる。有機溶媒溶解性測定方法は、特に限定されないが、例えば、有機溶媒100重量部に対してバインダーポリマーを5重量部添加し、40℃で1時間攪拌後、室温まで冷却して24時間以上放置し、不溶解物や析出物の発生なく均一な溶液であることを確認する方法で測定することができる。
 本願発明の(A)成分の重量平均分子量は、例えば、以下の方法で測定することができる。
 (重量平均分子量測定)
使用装置:東ソーHLC-8220GPC相当品
カラム :東ソー TSK gel Super AWM-H(6.0mmI.D.×15cm)×2本
ガードカラム:東ソー TSK guard column Super AW-H
溶離液:30mM LiBr+20mM H3PO4 in DMF
流速:0.6mL/min
カラム温度:40℃
検出条件:RI:ポラリティ(+)、レスポンス(0.5sec)
試料濃度:約5mg/mL
標準品:PEG(ポリエチレングリコール)
 上記範囲内に重量平均分子量を制御することにより、得られる硬化膜の柔軟性、耐薬品性が優れるため好ましい。重量平均分子量が1,000以下の場合は、柔軟性や耐薬品性が低下する場合があり、重量平均分子量が1,000,000以上の場合は感光性樹脂組成物の粘度が高くなる場合がある。
 本願発明の(A)成分は、特に限定されないが、例えば、ポリウレタン系樹脂、ポリ(メタ)アクリル系樹脂、ポリビニル系樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。中でも分子内にウレタン結合を含有する化合物であるポリウレタン系樹脂やポリ(メタ)アクリル系樹脂を用いた場合、(A)成分が吸油性を持つ(B)成分の内部に染み込み易くなるため、(A)成分と(B)成分との界面で強固な接着性が得られ、(A)成分及び(B)成分を含む感光性樹脂組成物を硬化させることにより得られる硬化膜の柔軟性、耐折れ性が向上し、硬化膜の反りが小さくなるため好ましい。
 <分子内にウレタン結合を含有する化合物>
 本願発明に好適に用いられる分子内にウレタン結合を含有する化合物とは、分子内に少なくとも1つのウレタン結合を含有する有機化合物である。
 本願発明の絶縁膜が分子内にウレタン結合を含有する化合物を含有することは任意の方法で確認することが可能であるが、例えば、斜め切削装置等を用いて絶縁膜表面数μmを削り取り、得られた絶縁膜の切片の連続相を顕微赤外吸収スペクトル法(μIR)で分析し、1715~1730cm-1付近にウレタン結合内のC=O間の伸縮振動由来のスペクトルの有無を確認する方法が挙げられる。
 (斜め切削装置)
装置:ダイプラ・ウィンテス株式会社製SAICAS DN-20S型相当品
切り刃:素材/ダイヤモンド、刃幅0.3mm、すくい角20°、にげ角10°
測定モード:低圧モード
 (顕微赤外吸収スペクトル分析)
装置:Thermo SCIENTIFIC社製 NICOLET6700/NICOLET(CONTINUμM)相当品
測定領域:700~4000cm-1
検出器:MCT
分解能:4cm-1
積算回数:500回
測定法:透過法
 また、上記方法に加えて、上記得られた絶縁膜の切片を用いて熱分解ガスクロマトグラフィー/質量分析(PyGC/MS)を行い、検出したピークのMSスペクトルをライブラリ検索し成分定性し、ウレタン結合を生成させる原料であるジイソシアネート化合物由来のピークの有無を確認する方法を実施することにより、確認精度を向上させることが可能である。
 (熱分解ガスクロマトグラフィー/質量分析)
装置:Agilent tschnologies社製 GC/MS-5973N相当品カラム:J&W社製 DB-5MS 0.25mmφ×30m(0.25μm)
カラム温度:35℃(5minホールド)→10℃/min→290℃(19.5minホールド)
キャリヤー:ヘリウム 1mL/min
注入法:スプリット(1:50)
注入口温度:290℃
インターフェイス温度:290℃
熱分解装置:日本分析工業株式会社製 JCI-22型パイロライザー相当品
熱分解条件:250℃×0.5min
 本願発明の分子内にウレタン結合を含有する化合物は、任意の反応により得ることが可能であるが、例えば、下記一般式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、Rは2価の有機基を示す)
で示されるジオール化合物と、下記一般式(2)
Figure JPOXMLDOC01-appb-C000002
(式中、Xは2価の有機基を示す)
で示されるジイソシアネート化合物を反応させることにより、下記一般式(3)
Figure JPOXMLDOC01-appb-C000003
(式中、R及びXはそれぞれ独立に2価の有機基を示し、nは1以上の整数を示す)で示されるウレタン結合を含有する繰り返し単位を含有する構造として得られる。
 上記ジオール化合物は、上記構造であれば特に限定はされないが、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等のアルキレンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、テトラメチレングリコールとネオペンチルグリコールとのランダム共重合体等のポリオキシアルキレンジオール、多価アルコールと多塩基酸とを反応させて得られるポリエステルジオール、カーボネート骨格を有するポリカーボネートジオール、γ-ブチルラクトン、ε-カプロラクトン、δ-バレロラクトン等のラクトン類を開環付加反応させて得られるポリカプロラクトンジオール、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、水添ビスフェノールA、水添ビスフェノールAのエチレンオキサイド付加物、水添ビスフェノールAのプロピレンオキサイド付加物等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 上記ジイソシアネート化合物は、上記構造であれば特に限定はされないが、例えば、ジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメチルジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジエチルジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメトキシジフェニルメタン-2,4′-ジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、ジフェニルメタン-3,3′-ジイソシアネート、ジフェニルメタン-3,4′-ジイソシアネート、ジフェニルエーテル-4,4′-ジイソシアネート、ベンゾフェノン-4,4′-ジイソシアネート、ジフェニルスルホン-4,4′-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4′-[2,2-ビス(4-フェノキシフェニル)プロパン]ジイソシアネートなどの芳香族ジイソシアネート化合物、水添ジフェニルメタンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環族ジイソシアネート化合物、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 上記分子内にウレタン結合を含有する化合物は、更に(a1)(メタ)アクリロイル基、(a2)カルボキシル基及び(a3)イミド基からなる群から選ばれる少なくとも1種の有機基を含有してもよい。(a1)(メタ)アクリロイル基とは、アクリロイル基及び/又はメタクリロイル基のことであり、(a1)(メタ)アクリロイル基を含有する場合は絶縁膜が感光性樹脂組成物から得られる場合、感光性が向上するため短時間での紫外線照射で硬化させることが可能となる。また、(a2)カルボキシル基を含有する場合は絶縁膜に熱硬化性樹脂が含まれる場合、カルボキシル基と熱硬化性樹脂との反応により絶縁膜の耐熱性や高温高湿条件下での電気絶縁信頼性が向上させることが可能となる。また、(a3)イミド基を含有する場合は絶縁膜の耐熱性、難燃性や高温高湿条件下での電気絶縁信頼性が向上させることが可能となる。
 ここで、(a1)(メタ)アクリロイル基を含有する分子内にウレタン結合を含有する化合物は、任意の反応により得ることが可能であるが、例えば、上記ジオール化合物、上記ジイソシアネート化合物に加えて、下記一般式(4)
Figure JPOXMLDOC01-appb-C000004
(式中、Rはm+1価の有機基を示し、Rは水素又はアルキル基を示す。mは1~3の整数を示す)
で示される水酸基及び少なくとも1つの(メタ)アクリロイル基を含有する化合物及び/又は下記一般式(5)
Figure JPOXMLDOC01-appb-C000005
(式中、Xはl+1価の有機基を示し、Xは水素又はアルキル基を示す。lは1~3の整数を示す)
で示されるイソシアネート基及び少なくとも1つの(メタ)アクリロイル基を含有する化合物を反応させることにより得られる。
 上記水酸基及び少なくとも一つの(メタ)アクリロイル基を含有する化合物は、上記構造であれば特に限定はされないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-1-アクリロキシ-3-メタクリロキシプロパン、o-フェニルフェノールグリシジルエーテル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、2-(4-ヒドロキシフェニル)エチル(メタ)アクリレート、N-メチロールアクリルアミド、3,5-ジメチル-4-ヒドロキシベンジルアクリルアミド等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 上記イソシアネート基及び少なくとも一つの(メタ)アクリロイル基を含有する化合物は、上記構造であれば特に限定はされないが、例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート、2-(2-メタクリロイルオキシエチルオキシ)エチルイソシアネート等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 また、(a2)カルボキシル基を含有する分子内にウレタン結合を含有する化合物は、任意の反応により得ることが可能であるが、例えば、上記ジオール化合物、上記ジイソシアネート化合物に加えて、下記一般式(6)
Figure JPOXMLDOC01-appb-C000006
(式中、Rは3価の有機基を示す)
で示される2つの水酸基及び1つのカルボキシル基を含有する化合物を反応させることにより得られる。
 上記2つの水酸基及び1つのカルボキシル基を含有する化合物は、上記構造であれば特に限定はされないが、例えば、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(2-ヒドロキシエチル)プロピオン酸、2,2-ビス(3-ヒドロキシメプロピル)プロピオン酸、2,3-ジヒドロキシ-2-メチルプロピオン酸、2,2-ビス(ヒドロキシメチル)ブタン酸、2,2-ビス(2-ヒドロキシエチル)ブタン酸、2,2-ビス(3-ヒドロキシプロピル)ブタン酸、2,3-ジヒドロキシブタン酸、2,4-ジヒドロキシ-3,3-ジメチルブタン酸、2,3-ジヒドロキシヘキサデカン酸、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 また、(a3)イミド基を含有する分子内にウレタン結合を含有する化合物は、任意の反応により得ることが可能であるが、例えば、上記ジオール化合物、上記ジイソシアネート化合物に加えて、下記一般式(7)
Figure JPOXMLDOC01-appb-C000007
(式中、Yは4価の有機基を示す)
で示されるテトラカルボン酸二無水物を反応させることにより得られる。
 上記テトラカルボン酸二無水物は、上記構造であれば特に限定はされないが、例えば、3,3’,4,4’―ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’―オキシジフタル酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3´,4,4´-テトラカルボン酸二無水物、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’―ビフェニルテトラカルボン酸二無水物、2,3,3’,4―ビフェニルテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等のテトラカルボン酸二無水物等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 上記分子内にウレタン結合を含有する化合物の合成方法は、上記ジオール化合物と上記ジイソシアネート化合物との配合量を、水酸基数とイソシアネート基数との比率が、イソシアネート基/水酸基=0.5以上2.0以下になるように配合し、無溶媒あるいは有機溶媒中で反応させることで得られる。
 また、2種類以上のジオール化合物を用いる場合、ジイソシアネート化合物との反応は、2種類以上のジオール化合物を混合した後に行ってもよいし、それぞれのジオール化合物とジイソシアネート化合物とを別個に反応させてもよい。また、ジオール化合物とジイソシアネート化合物とを反応させた後に、得られた末端イソシアネート化合物をさらに他のジオール化合物と反応させ、さらにこれをジイソシアネート化合物と反応させてもよい。また、2種類以上のジイソシアネート化合物を用いる場合も同様である。このようにして、所望の分子内にウレタン結合を含有する化合物を製造することができる。
 上記ジオール化合物と上記ジイソシアネート化合物との反応温度は、40~160℃とすることが好ましく、60~150℃とすることがより好ましい。40℃未満では反応時間が長くなり過ぎ、160℃を超えると反応中に三次元化反応が生じてゲル化が起こり易い。反応時間は、バッチの規模、採用される反応条件により適宜選択することができる。また、必要に応じて、三級アミン類、アルカリ金属、アルカリ土類金属、錫、亜鉛、チタニウム、コバルト等の金属又は半金属化合物等の触媒存在下に反応を行っても良い。
 上記反応は、無溶媒で反応させることもできるが、反応を制御する為には、有機溶媒系で反応させることが望ましく、例えば有機溶媒としては、上記<(A)バインダーポリマー>の項目で挙げられたものが使用できる。
 反応の際に用いられる有機溶媒量は、反応溶液中の溶質重量濃度すなわち溶液濃度が5重量%以上90重量%以下となるような量とすることが望ましい。反応溶液中の溶質重量濃度は、更に好ましくは、10重量%以上80重量%以下となることが望ましい。溶液濃度が5%以下の場合には、重合反応が起こりにくく反応速度が低下すると共に、所望の構造物質が得られない場合がある。
 <ポリ(メタ)アクリル系樹脂>
 本願発明に好適に用いられる上記ポリ(メタ)アクリル系樹脂とは、有機溶媒に対して可溶性であり、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル誘導体を共重合させることにより得られる繰り返し単位を含有している、重量平均分子量が、ポリエチレングリコール換算で1,000以上、1,000,000以下のポリマーである。
 上記ポリ(メタ)アクリル系樹脂は、任意の反応により得ることが可能であるが、例えば、(メタ)アクリル酸及び/又は(メタ)アクリル酸エステル誘導体を溶媒中、ラジカル重合開始剤存在下で反応させることにより得られる。
 上記(メタ)アクリル酸エステル誘導体は、特に限定はされないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ターシャリーブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベンジル等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。これら(メタ)アクリル酸エステル誘導体の中でも、特に(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルを用いることが、感光性樹脂組成物の硬化膜の柔軟性と耐薬品性の観点から好ましい。
 上記ラジカル重合開始剤としては、例えば、アゾビスイソブチロニトリル、アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス-2,4-ジメチルバレロニトリルなどのアゾ系化合物、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイドなどの有機過酸化物、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩、過酸価水素等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 上記ラジカル重合開始剤の使用量は、使用するモノマー100重量部に対して0.001~5重量部とすることが好ましく、0.01~1重量部とすることがより好ましい。0.001重量部より少ない場合では反応が進行しにくく、5重量部より多い場合では分子量が低下する場合がある。
 上記反応の際に用いられる溶媒量は、反応溶液中の溶質重量濃度すなわち溶液濃度が5重量%以上90重量%以下となるような量とすることが好ましく、20重量%以上70重量%以下とすることがより好ましい。溶液濃度が5%より少ない場合では重合反応が起こりにくく反応速度が低下すると共に、所望の構造物質が得られない場合があり、また、溶液濃度が90重量%より多い場合では反応溶液が高粘度となり反応が不均一となる場合がある。
 上記反応温度は、20~120℃とすることが好ましく、50~100℃とすることがより好ましい。20℃より低い温度の場合では反応時間が長くなり過ぎ、120℃を超えると急激な反応の進行や副反応に伴う三次元架橋によるゲル化を招く恐れがある。反応時間は、バッチの規模、採用される反応条件により適宜選択することができる。
 <(B)球状有機ビーズ>
 本願発明の(B)球状有機ビーズとは、炭素を含む球状ポリマーで、楕円状のものも含まれる。
 本願発明の(B)成分の平均粒子径は、例えば、以下の方法で体積基準のメジアン径(積算分布値50%に対する粒子径)として測定することができる。
 (平均粒子径測定)
装置:株式会社堀場製作所製 LA-950V2相当品
測定方式:レーザー回折/散乱式
 本願発明の(B)成分の平均粒子径は、3~15μmとすることが、絶縁膜の柔軟性、耐薬品性が優れるため好ましい。平均粒子径が3μmより小さい場合は、絶縁膜表面に効果的に凹凸が形成されず、タックフリー性に劣る場合があり、平均粒子径が15μm以上の場合は耐折れ性の低下や、微細パターン形成時の開口部に粒子が露出し解像性不良になる場合がある。
 本願発明の(B)成分は、特に限定はされないが、例えば、ポリメタクリル酸メチル系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールGM-0600、GM-0600W、架橋ポリメタクリル酸メチル系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールGM-0801S、GM-0807S、GM-1001-S、GM-1007S、GM-1505S-S、GMX-0610、GMX-0810、GMP-0800、GMDM-050M、GMDM-080M、GMDM-100M、GMDM-150M、積水化成品工業株式会社製の製品名テクポリマーMBX-5、MBX-8、MBX-12、架橋ポリメタクリル酸ブチル系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールGB-05S、GB-08S、GB-10S、GB-15S、積水化成品工業株式会社製の製品名テクポリマーBM30X-5、BM30X-8、架橋アクリル系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールGMP-0820、アクリルコポリマー系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールGBM-55COS、架橋スチレン系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールGS-0605、GS-1105、積水化成品工業株式会社製の製品名テクポリマーSBX-6、SBX-8、架橋ポリアクリル酸エステル系有機ビーズとしては、積水化成品工業株式会社製の製品名テクポリマーABX-8、AF10X-8、AFX-15、ARX-15、ナイロン系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールGPA-550、シリコーン系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールSI-020、SI-030、SI-045、架橋シリコーン系球状有機ビーズとしては、ガンツ化成株式会社製の製品名ガンツパールSIG-070、架橋ウレタン系球状有機ビーズとしては、大日精化工業株式会社製の商品名ダイミックビーズUCN-8070CMクリヤー、UCN-8150CMクリヤー、UCN-5070Dクリヤー、UCN-5150Dクリヤー、根上工業株式会社製の商品名アートパールC-100透明、C-200透明、C-300透明、C-300WA、C-400透明、C-400WA、C-600透明、C-800透明、C-800WA、P-400T、P-800T、U-600T、CF-600T、JB-400T、JB-800T、CE-400T、CE-800T等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明の(B)成分は、上記球状有機ビーズの中でも、特に分子内にウレタン結合を含有する架橋球状有機ビーズを用いることが、絶縁膜の反り低下、繰り返し折り曲げに耐え得る柔軟性の向上、(A)成分との接着性の向上のために好ましい。
 本願発明の(B)成分の配合量は、好ましくは(A)成分100重量部に対して30~100重量部、より好ましくは40~80重量部とすることにより、得られる絶縁膜表面に効果的に凹凸を形成することが可能となりタックフリー性に優れ、(B)成分による充填硬化が得られるため絶縁膜の反りが低下し、応力緩和効果や破壊靱性の向上により繰り返し折り曲げに耐え得る柔軟性が向上する。(B)成分が30重量部より少ない場合はタックフリー性や繰り返し折り曲げに耐え得る柔軟性に劣る場合があり、100重量部より多い場合は難燃性や樹脂組成物溶液を塗工する際の塗工性が悪化し、塗工時の塗膜の発泡やレベリング不足による外観不良が発生する場合がある。
 <(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子>
 本願発明の(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子とは、構造中に少なくとも1つのリン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を有している微粒子である。
 本願発明の絶縁膜は、(C)成分を含有することにより、絶縁膜に対して優れた難燃性を付与できると共に、絶縁膜内でフィラー成分として存在するため絶縁膜の耐熱性や電気絶縁信頼性の低下を招かず、更に絶縁膜からのブリードアウトが発生しないため、部品実装部の接点障害や絶縁膜加工工程の汚染・コンタミを抑制することができる。
 本願発明の(C)成分の平均粒子径は、例えば、上記(B)成分と同様の方法で測定することができる。
 本願発明の(C)成分の平均粒子径は、1~10μmとすることが、絶縁膜の柔軟性、難燃性が優れるため好ましい。平均粒子径が1μmより小さい場合は、絶縁膜表面に効果的に凹凸が形成されず、タックフリー性に劣る場合があり、平均粒子径が10μm以上の場合は耐折れ性の低下や、微細パターン形成時の開口部に粒子が露出し解像性不良になる場合がある。
 本願発明の(C)成分は、特に限定はされないが、リン元素を含有する微粒子としては、例えば、ポリリン酸アンモニウム、メラミンリン酸塩、ホスフィン酸塩が挙げられ、アルミニウム元素を含有する微粒子としては、例えば、水酸化アルミニウムが挙げられ、マグネシウム元素を含有する微粒子としては、例えば、水酸化マグネシウム等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 上記リン元素を含有する微粒子の中でも、特にホスフィン酸塩を用いることが、絶縁膜に対して優れた難燃性を付与できると共に、絶縁膜からのブリードアウトが少ないため、接点障害や工程汚染を抑制することができるため好ましい。
 上記ホスフィン酸塩とは、下記一般式(8)で示される化合物である。
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRは、それぞれ独立に直鎖状または枝分かれした炭素数1~6のアルキル基またはアリール基を示し、Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Fe、Zr、Zn、Ce、Bi、Sr、Mn、Li、Na及びKからなる群の少なくとも1種より選択される金属類を示し、tは1~4の整数である。)
 上記ホスフィン酸塩は、上記構造であれば特に限定はされないが、例えば、トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウム、ビスジエチルホスフィン酸亜鉛、ビスメチルエチルホスフィン酸亜鉛、ビスジフェニルホスフィン酸亜鉛、ビスジエチルホスフィン酸チタニル、ビスメチルエチルホスフィン酸チタニル、ビスジフェニルホスフィン酸チタニル等を挙げることができ、これらは単独であるいは2種類以上を組み合わせて用いることができる。
 上記リン元素を含有する微粒子が更にアルミニウム元素を含有することが、高い難燃性が得られる点で好ましく、中でも特に、アルミニウム元素を含有するトリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウムを用いた場合、さらに高い難燃性が得られるため好ましい。
 また、アルミニウム元素を含有する微粒子としては、ギブサイト型水酸化アルミニウム、ベーマイト型水酸化アルミニウム、トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウムが挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。上記アルミニウム元素を含有する微粒子を含有する場合、絶縁膜中でフィラーとして存在するため、絶縁膜のガラス転移温度の低下を引き起こすことなく、優れた難燃性を付与することができるため好ましい。
 また、マグネシウム元素を含有する微粒子としては、水酸化マグネシウム、酸化マグネシウムが挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。上記マグネシウム元素を含有する微粒子を含有する場合、絶縁膜中でフィラーとして存在するため、絶縁膜のガラス転移温度の低下を引き起こすことなく、優れた難燃性を付与することができるため好ましい。
 本願発明の(C)成分の含有量は、好ましくは(A)成分100重量部に対して20~80重量部、より好ましくは25~75重量部とすることにより、得られる硬化膜の難燃性、電気絶縁信頼性に優れる。(E)成分が20重量部より少ない場合は難燃性に劣る場合があり、80重量部より多い場合は樹脂組成物溶液を塗工する際の塗工性が悪化し、塗工時の塗膜の発泡やレベリング不足による外観不良が発生する場合がある。
 <(D)熱硬化性樹脂>
 本願発明の(D)熱硬化性樹脂とは、分子内に少なくとも1つの熱硬化性の有機基を含有する化合物である。
 本願発明の(D)熱硬化性樹脂を含有する絶縁膜とは、樹脂組成物中に(D)成分が含まれたものを使用して得られた絶縁膜である。
 本願発明の絶縁膜は、(D)成分を含有することにより、絶縁膜に対して優れた耐熱性、電気絶縁信頼性を付与できると共に、絶縁膜と各種基材、銅箔、熱硬化性接着剤との密着性を向上させることができる。
 上記(D)成分は、上記構造であれば特に限定はされないが、例えば、エポキシ樹脂、オキセタン樹脂、フェノール樹脂、イソシアネート樹脂、ブロックイソシアネート樹脂、ビスマレイミド樹脂、ビスアリルナジイミド樹脂、ポリエステル樹脂(例えば不飽和ポリエステル樹脂等)、ジアリルフタレート樹脂、珪素樹脂、ビニルエステル樹脂、メラミン樹脂、ポリビスマレイミドトリアジン樹脂(BT樹脂)、シアネート樹脂(例えばシアネートエステル樹脂等)、ユリア樹脂、グアナミン樹脂、スルホアミド樹脂、アニリン樹脂、ポリウレア樹脂、チオウレタン樹脂、ポリアゾメチン樹脂、エピスルフィド樹脂、エン-チオール樹脂、ベンゾオキサジン樹脂、これらの共重合体樹脂、これら樹脂を変性させた変性樹脂、又はこれらの樹脂同士もしくは他の樹脂類との混合物等が挙げられる。
 上記(D)成分は、上記熱硬化性樹脂の中でも、特に多官能エポキシ樹脂を用いることが、絶縁膜に対して耐熱性を付与できると共に、金属箔等の導体や回路基板に対する接着性を付与することができるため好ましい。
 上記多官能エポキシ樹脂とは、分子内に少なくとも2つのエポキシ基を含有する化合物であり、例えば、ビスフェノールA型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER828、jER1001、jER1002、株式会社ADEKA製の商品名アデカレジンEP-4100E、アデカレジンEP-4300E、日本化薬株式会社製の商品名RE-310S、RE-410S、DIC株式会社製の商品名エピクロン840S、エピクロン850S、エピクロン1050、エピクロン7050、東都化成株式会社製の商品名エポトートYD-115、エポトートYD-127、エポトートYD-128、ビスフェノールF型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER806、jER807、株式会社ADEKA製の商品名アデカレジンEP-4901E、アデカレジンEP-4930、アデカレジンEP-4950、日本化薬株式会社製の商品名RE-303S、RE-304S、RE-403S,RE-404S、DIC株式会社製の商品名エピクロン830、エピクロン835、東都化成株式会社製の商品名エポトートYDF-170、エポトートYDF-175S、エポトートYDF-2001、ビスフェノールS型エポキシ樹脂としては、DIC株式会社製の商品名エピクロンEXA-1514、水添ビスフェノールA型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jERYX8000、jERYX8034,jERYL7170、株式会社ADEKA製の商品名アデカレジンEP-4080E、DIC株式会社製の商品名エピクロンEXA-7015、東都化成株式会社製の商品名エポトートYD-3000、エポトートYD-4000D、ビフェニル型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jERYX4000、jERYL6121H、jERYL6640、jERYL6677、日本化薬株式会社製の商品名NC-3000、NC-3000H、フェノキシ型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER1256、jER4250、jER4275、ナフタレン型エポキシ樹脂としては、DIC株式会社製の商品名エピクロンHP-4032、エピクロンHP-4700、エピクロンHP-4200、日本化薬株式会社製の商品名NC-7000L、フェノールノボラック型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER152、jER154、日本化薬株式会社製の商品名EPPN-201-L、DIC株式会社製の商品名エピクロンN-740、エピクロンN-770、東都化成株式会社製の商品名エポトートYDPN-638、クレゾールノボラック型エポキシ樹脂としては、日本化薬株式会社製の商品名EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、DIC株式会社製の商品名エピクロンN-660、エピクロンN-670、エピクロンN-680、エピクロンN-695、トリスフェノールメタン型エポキシ樹脂としては、日本化薬株式会社製の商品名EPPN-501H、EPPN-501HY、EPPN-502H、ジシクロペンタジエン型エポキシ樹脂としては、日本化薬株式会社製の商品名XD-1000、DIC株式会社製の商品名エピクロンHP-7200、アミン型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER604、jER630、東都化成株式会社の商品名エポトートYH-434、エポトートYH-434L、三菱ガス化学株式会社製の商品名TETRAD-X、TERRAD-C、可とう性エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER871、jER872、jERYL7175、jERYL7217、DIC株式会社製の商品名エピクロンEXA-4850、ウレタン変性エポキシ樹脂としては、株式会社ADEKA製の商品名アデカレジンEPU-6、アデカレジンEPU-73、アデカレジンEPU-78-11、ゴム変性エポキシ樹脂としては、株式会社ADEKA製の商品名アデカレジンEPR-4023、アデカレジンEPR-4026、アデカレジンEPR-1309、キレート変性エポキシ樹脂としては、株式会社ADEKA製の商品名アデカレジンEP-49-10、アデカレジンEP-49-20、複素環含有エポキシ樹脂としては、日産化学株式会社製の商品名TEPIC等が挙げられる。
 本願発明の絶縁膜には、上記熱硬化性樹脂の硬化剤として、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフタレン型フェノール樹脂等のフェノール樹脂、アミノ樹脂、ユリア樹脂、メラミン、ジシアンジアミド等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 また、硬化促進剤としては、特に限定されないが、例えば、トリフェニルホスフィン等のホスフィン系化合物;3級アミン系、トリメタノールアミン、トリエタノールアミン、テトラエタノールアミン等のアミン系化合物;1,8-ジアザ-ビシクロ[5,4,0]-7-ウンデセニウムテトラフェニルボレート等のボレート系化合物等、イミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-イソプロピルイミダゾール、2,4-ジメチルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール類;2-メチルイミダゾリン、2-エチルイミダゾリン、2-イソプロピルイミダゾリン、2-フェニルイミダゾリン、2-ウンデシルイミダゾリン、2,4-ジメチルイミダゾリン、2-フェニル-4-メチルイミダゾリン等のイミダゾリン類;2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン等のアジン系イミダゾール類等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 <(E)光重合開始剤>
 本願発明の(E)光重合開始剤とは、UVなどのエネルギーによって活性化し、ラジカル重合性基の反応を開始・促進させる化合物である。
 本願発明の(E)光重合開始剤を含有する絶縁膜とは、樹脂組成物中に(E)成分が含まれたものを使用して得られた絶縁膜である。
 本願発明の絶縁膜は、(E)成分を含有することにより、絶縁膜に対して優れた感光性を付与することができるため、絶縁膜に紫外線を照射することにより硬化反応を促進させることが可能となり、絶縁膜の微細加工性、耐薬品性を向上させることができる。
 上記(E)成分は、上記構造であれば特に限定はされないが、例えば、ミヒラ-ズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’,4’’-トリス(ジメチルアミノ)トリフェニルメタン、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ジイミダゾール、アセトフェノン、ベンゾイン、2-メチルベンゾイン、ベンゾインメチルエ-テル、ベンゾインエチルエ-テル、ベンゾインイソプロピルエ-テル、ベンゾインイソブチルエ-テル、2-t-ブチルアントラキノン、1,2-ベンゾ-9,10-アントラキノン、メチルアントラキノン、チオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ジアセチルベンジル、ベンジルジメチルケタ-ル、ベンジルジエチルケタ-ル、2(2’-フリルエチリデン)-4,6-ビス(トリクロロメチル)-S-トリアジン、2[2’(5’’-メチルフリル)エチリデン]-4,6-ビス(トリクロロメチル)-S-トリアジン、2(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-S-トリアジン、2,6-ジ(p-アジドベンザル)-4-メチルシクロヘキサノン、4,4’-ジアジドカルコン、ジ(テトラアルキルアンモニウム)-4,4’-ジアジドスチルベン-2,2’-ジスルフォネ-ト、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-ケトン、ビス(n5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、ヨード二ウム,(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]-ヘキサフルオロフォスフェート(1-)、エチル-4-ジメチルアミノベンゾエート、2-エチルヘキシル-4-ジメチルアミノベンゾエート、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシオム)等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 <その他成分>
 本願発明の絶縁膜には、さらに必要に応じてラジカル重合性化合物、充填剤、接着助剤、消泡剤、レベリング剤、着色剤、重合禁止剤等の各種添加剤を加えることができる。
 上記ラジカル重合性化合物とは、ラジカル重合開始剤により重合反応が進行するラジカル重合性基を分子内に含有する化合物である。その中でも分子内に不飽和二重結合を少なくとも1つ有する樹脂であることが好ましい。さらには、上記不飽和二重結合は、(メタ)アクリロイル基、もしくはビニル基であることが好ましい。
 上記ラジカル重合性化合物としては、例えばビスフェノールF EO変性(n=2~50)ジアクリレート、ビスフェノールA EO変性(n=2~50)ジアクリレート、ビスフェノールS EO変性(n=2~50)ジアクリレート、ビスフェノールF EO変性(n=2~50)ジメタクリレート、ビスフェノールA EO変性(n=2~50)ジメタクリレート、ビスフェノールS EO変性(n=2~50)ジメタクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、エチレングリコールジアクリレート、ペンタエリスリトールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、テトラメチロールプロパンテトラアクリレート、テトラエチレングリコールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ペンタエリスリトールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサメタクリレート、テトラメチロールプロパンテトラメタクリレート、テトラエチレングリコールジメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、β-メタクリロイルオキシエチルハイドロジェンフタレート、β-メタクリロイルオキシエチルハイドロジェンサクシネート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ステアリルメタクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、β-アクリロイルオキシエチルハイドロジェンサクシネート、ラウリルアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、2,2-ビス[4-(メタクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロキシ・ポリエトキシ)フェニル]プロパン、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2-ビス[4-(アクリロキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシ・ポリエトキシ)フェニル]プロパン、2-ヒドロキシ-1-アクリロキシ-3-メタクリロキシプロパン、トリメチロールプロパントリメタクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、メトキシジプロピレングリコールメタクリレート、メトキシトリエチレングリコールアクリレート、ノニルフェノキシポリエチレングリコールアクリレート、ノニルフェノキシポリプロピレングリコールアクリレート、1 - アクリロイルオキシプロピル-2-フタレート、イソステアリルアクリレート、ポリオキシエチレンアルキルエーテルアクリレート、ノニルフェノキシエチレングリコールアクリレート、ポリプロピレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、3-メチル-1,5-ペンタンジオールジメタクリレート、1,6-メキサンジオールジメタクリレート、1,9-ノナンジオールメタクリレート、2,4-ジエチル-1,5-ペンタンジオールジメタクリレート、1,4-シクロヘキサンジメタノールジメタクリレート、ジプロピレングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、2,2-水添ビス[4-(アクリロキシ・ポリエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシ・ポリプロポキシ)フェニル]プロパン、2,4-ジエチル-1,5-ペンタンジオールジアクリレート、エトキシ化トチメチロールプロパントリアクリレート、プロポキシ化トチメチロールプロパントリアクリレート、イソシアヌル酸トリ(エタンアクリレート)、ペンタスリトールテトラアクリレート、エトキシ化ペンタスリトールテトラアクリレート、プロポキシ化ペンタスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールポリアクリレート、イソシアヌル酸トリアリル、グリシジルメタクリレート、グリシジルアリルエーテル、1,3,5-トリアクリロイルヘキサヒドロ-s-トリアジン、トリアリル1,3,5-ベンゼンカルボキシレート、トリアリルアミン、トリアリルシトレート、トリアリルフォスフェート、アロバービタル、ジアリルアミン、ジアリルジメチルシラン、ジアリルジスルフィド、ジアリルエーテル、ザリルシアルレート、ジアリルイソフタレート、ジアリルテレフタレート、1,3-ジアリロキシ-2-プロパノール、ジアリルスルフィドジアリルマレエート、4,4’-イソプロピリデンジフェノールジメタクリレート、4,4’-イソプロピリデンジフェノールジアクリレート等を挙げることができ、これらは単独であるいは2種類以上を組み合わせて用いることができる。特に、ジアクリレートあるいはジメタクリレートの一分子中に含まれるEO(エチレンオキサイド)の繰り返し単位が2~50モル含有されるものを用いた場合、感光性樹脂組成物のアルカリ水溶液に代表される水系現像液への溶解性が向上し、現像時間が短縮されるので好ましい。
 上記充填剤としては、シリカ、マイカ、タルク、硫酸バリウム、ワラストナイト、炭酸カルシウムなどの微細な無機充填剤が挙げられる。
 上記消泡剤としては、例えば、アクリル系化合物、ビニル系化合物、ブタジエン系化合物等が挙げられる。
 上記レベリング剤としては、例えば、アクリル系化合物、ビニル系化合物等が挙げられる。
 上記着色剤としては、例えば、フタロシアニン系化合物、アゾ系化合物、カーボンブラック等が挙げられる。
 上記接着助剤(密着性付与剤ともいう。)としては、シランカップリング剤、トリアゾール系化合物、テトラゾール系化合物、トリアジン系化合物等が挙げられる。
 上記重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル等が挙げられる。
 本願発明の絶縁膜は、(C)リン、アルミニウム、マグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子を含むため難燃性に優れているが、より高い難燃効果を得るために他の難燃剤を加えてもよい。難燃剤としては、例えば、含ハロゲン系化合物、リン系化合物、メラミン系化合物等を添加することができる。上記各種添加剤は、単独で又は2種類以上を組み合わせて使用できる。
 <(B)成分及び(C)成分の絶縁膜中での分散状況>
 本願発明の(B)成分及び(C)成分が絶縁膜中に分散しているとは、絶縁膜の厚み方向の断面において(B)成分がそれぞれ独立した球状又は楕円状の領域として観察され、且つ(C)成分がそれぞれ独立した不定形の円状又は多角状の領域として観察されることである。ここで、(B)成分同士、(C)成分同士、又は(B)成分と(C)成分は、それぞれ独立して観察されることが好ましいが、本願発明の効果を損なわない範囲であれば隣接して観察されても良い。ここで、本願発明の効果を損なわない範囲とは、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、(B)成分同士、(C)成分同士、又は(B)成分と(C)成分領域の合計の長さが絶縁膜の厚み以下の範囲である。
 本願発明の絶縁膜は、(B)成分及び(C)成分が絶縁膜中に分散しているため、得られる絶縁膜表面に効果的に凹凸を形成することが可能となりタックフリー性に優れ、(B)成分によって充填効果が得られるため絶縁膜の反りが低下し、応力緩和効果や破壊靱性の向上により繰り返し折り曲げに耐え得る柔軟性が向上し、(C)成分によって絶縁膜に対して優れた難燃性を付与できると共に、絶縁膜内でフィラー成分として存在するため絶縁膜の耐熱性や電気絶縁信頼性の低下を招かず、更に絶縁膜からのブリードアウトが発生しないため、部品実装部の接点障害や絶縁膜加工工程の汚染・コンタミを抑制することができる。
 本願発明の(B)成分及び(C)成分が絶縁膜中に分散していることについて図1を用いて説明する。図1に示されるように、絶縁膜1の厚み方向の断面中に連続相2と(B)成分からなるそれぞれ独立した球状又は楕円状の領域である分散相3、及び(C)成分からなるそれぞれ独立した不定形の円状又は多角状の領域である分散相4が存在する構成となっている。ここで、絶縁膜の厚み方向の断面とは、絶縁膜がプリント配線板などの基材5に積層されている場合、絶縁膜の表面から基材方向に向かう軸方向に沿って切り取られた面のことである。
 本願発明の(B)成分及び(C)成分が絶縁膜中に分散していることは任意の方法で確認することが可能であるが、例えば、下記のように絶縁膜を含むプリント配線板を熱硬化性樹脂で包埋し、厚み方向の断面をイオンビームで研磨して絶縁膜の断面出しを行い、絶縁膜の断面を走査型電子顕微鏡で観察する方法が挙げられる。
 (絶縁膜の断面出し)
 絶縁膜がプリント配線板などの基材に積層されている場合、5mm×3mmの範囲をカッターナイフで切り出し、エポキシ系包埋樹脂及びカバーガラスを使用して切り出した積層体の絶縁膜側表面及び積層体の基材側表面の両面に保護膜層及びカバーガラス層を形成した後、絶縁膜の厚み方向の断面をイオンビームによるクロスセクションポリッシャ加工を行った。
 (クロスセクションポリッシャ加工)
使用装置:日本電子株式会社製 SM-09020CP相当品
加工条件:加速電圧 6kV
 (絶縁膜の断面観察)
 上記得られた絶縁膜の厚み方向の断面について、走査型電子顕微鏡により観察を行った。
 (走査型電子顕微鏡観察)
使用装置:株式会社日立ハイテクノロジーズ製 S-3000N相当品
観察条件:加速電圧 15kV
検出器:反射電子検出(組成モード)
倍率:1000倍
 ここで用いた反射電子検出(組成モード)は、観察領域の平均原子番号の差がコントラストに強く反映されるため、重元素が存在する領域が明るく(白く)、軽元素が存在する領域が暗く(黒く)観察される。よって炭素、水素、酸素、窒素等の比較的軽元素から構成される有機物で、球状である(B)成分は暗い(黒い)円状領域として観察され、比較的重元素であるリン、アルミニウム、マグネシウムからなる群から選ばれる少なくとも1種の元素を含有し、不定形である(C)成分は薄暗い(グレーの)又は明るい(白い)、円状又は多角状領域として観察される。
 また、絶縁膜の厚み方向の断面中の(B)成分領域を上記(A)成分と同様の顕微赤外吸収スペクトル法(μIR)で分析し、1715~1730cm-1付近にウレタン結合内のC=O間の伸縮振動由来のスペクトルの有無を確認することにより、(B)成分が分子内にウレタン結合を有することを確認することが出来る。
 また、絶縁膜の厚み方向の断面中の(C)成分領域を走査型電子顕微鏡-X線マイクロアナライザー(SEM-EPMA)で分析することにより、(C)成分が含有する元素の情報を得ることができるため、リン、アルミニウム、マグネシウムからなる群から選ばれる少なくとも1種の元素が含有されることを確認することができる。
 (走査型電子顕微鏡-X線マイクロアナライザー分析)
使用装置:株式会社堀場製作所製 EMAX-7000相当品
分析条件:加速電圧 15kV 積算時間900秒
 本願発明における(B)成分及び(C)成分の絶縁膜中での分散状況は、測定ばらつき及び異常検出を防止するために、任意の点を決めてそこから5μm間隔で10点測定し、測定値の最大値と最小値を切り捨てた残りの値を平均した値を測定し、場所を変えて3回測定すればよい。
 <絶縁膜の厚み方向の断面の(B)成分が占める面積>
 本願発明の絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において(B)成分が占める面積は任意の方法で測定することが可能であるが、例えば、上記(B)成分及び(C)成分が絶縁膜中に分散していることを確認する方法において、走査型電子顕微鏡画像の絶縁膜部分の任意の125μm×15μmの範囲において観察された、全ての(B)成分領域の面積の総合計として測定することができる。
 たとえば、(B)成分領域が円状の場合、(B)成分領域の面積(S1)の測定方法は、(B)成分領域の半径(r1)を測定し、下記計算式で計算した面積として測定すればよい。
S1=3.14*(r1)
 また、(B)成分領域が楕円状の場合、(B)成分領域の面積(S2)の測定方法は、(B)成分領域の中心を通る軸に沿った最大長さ(a)と最小長さ(b)を実測し、下記計算式で計算した面積として測定すればよい。
S2=3.14*(a/2)*(b/2)
 また、(B)成分領域の半分以下が部分的に125μm×15μmの範囲に入っている場合、(B)成分領域の面積(S3)の測定方法は、(B)成分領域の125μm×15μmの範囲に入っている半円状部分の曲線部分の中央点である頂点から出発し、125μm×15μmの範囲に入っていない部分も含めた(B)成分領域の中心までの距離である半径(r2)を測定し、上記半径を測定するために引いた直線上において、125μm×15μmの範囲に入っている部分を、半径(r2)から引いた長さ(c)を測定し、下記計算式で計算した面積として測定すればよい。
S3=(r2)*Arccos(c/r2)-c*√{(r2)-c)}
 また、(B)成分領域の半分以上が部分的に125μm×15μmの範囲に入っている場合、(B)成分領域の面積(S4)の測定方法は、(B)成分領域の125μm×15μmの範囲に入っていない半円状部分の曲線部分の中央点である頂点から出発し、125μm×15μmの範囲に入っている部分も含めた(B)成分領域の中心までの距離である半径(r3)を測定し、上記半径を測定するために引いた直線上において、125μm×15μmの範囲に入ってない部分を、半径(r3)から引いた長さ(d)を測定し、下記計算式で計算した面積として測定すればよい。
S4=3.14*(r3)-[(r3)*Arccos(d/r3)-d*√{(r3)-d)}]
 上記方法により測定した(B)成分の面積は、絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において20~50%の面積を占めていることが必須である。前記範囲内にあることにより、絶縁膜表面に効果的に凹凸を形成することが可能となりタックフリー性に優れ、(B)成分による充填硬化が得られるため絶縁膜の反りが低下し、応力緩和効果や破壊靱性の向上により繰り返し折り曲げに耐え得る柔軟性が向上する。(B)成分の占める面積が20%より少ない場合はタックフリー性や繰り返し折り曲げに耐え得る柔軟性に劣る場合があり、50%より多い場合は難燃性や絶縁膜を形成するために樹脂組成物溶液を塗工する際の塗工性が悪化し、塗工時の塗膜の発泡やレベリング不足による外観不良が発生する場合がある。
 ここで(B)成分の絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲における面積の割合は、測定ばらつき及び異常検出を防止するために場所を変えて3回測定した場合、少なくとも1回、20~50%の範囲に入っていてもよいし、3回とも上記範囲に入ってもよい。
 本願発明の絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において、前記(B)球状有機ビーズが20~50%の面積を占めることを実現するための手段の例としては、例えば、(B)成分の配合量が(A)バインダーポリマー100重量部に対して30~100重量部であるようにすることが好ましい。
 (II)絶縁膜の形成方法
 本願発明の絶縁膜は、上記(A)~(C)成分及び必要に応じて(D)成分、(E)成分、その他成分を混合して樹脂組成物を得た後、この樹脂組成物を基材上に塗布・乾燥後、必要に応じて露光・現像により微細開口部を形成後、加熱処理を行うことにより得られることができる。
 混合方法としては、特に限定されるものではないが、例えば、3本ロール、ビーズミル、ボールミル等の一般的な混練装置を用いて行われる。この中でも、特に3本ロールを用いて粉砕・分散させて混同した場合、(C)成分が均一な大きさになるため好ましい。混合後の樹脂組成物中の各成分の粒子径はJIS K 5600-2-5で規定されたゲージを用いる方法で測定することができる。また粒度分布測定装置を使用すれば、平均粒子径、粒子径、粒度分布を測定することができる。
 次いで上記得られた樹脂組成物を用いて以下の方法により硬化膜を得ることができる。先ず、上記樹脂組成物を基材に塗布し乾燥する。基材への塗布はスクリ-ン印刷、カ-テンロ-ル、リバ-スロ-ル、スプレーコーティング、スピンナーを利用した回転塗布等により行うことができる。塗布膜(好ましくは厚み:5~100μm、特に10~100μm)の乾燥は120℃以下、好ましくは40~100℃で行う。
 次いで、必要に応じて乾燥後、乾燥塗布膜にネガ型のフォトマスクを置き、紫外線、可視光線、電子線などの活性光線を照射して露光する。次いで、未露光部分をシャワー、パドル、浸漬または超音波等の各種方式を用い、現像液で現像することにより微細開口部を得ることができる。なお、現像装置の噴霧圧力や流速、エッチング液の温度によりパターンが露出するまでの時間が異なる為、適宜最適な装置条件を見出すことが望ましい。
 上記現像液としては、アルカリ水溶液を使用することが好ましい。この現像液には、メタノ-ル、エタノ-ル、n-プロパノ-ル、イソプロパノ-ル、N-メチル-2-ピロリドン等の水溶性有機溶媒が含有されていてもよい。上記のアルカリ水溶液を与えるアルカリ性化合物としては、例えば、アルカリ金属、アルカリ土類金属またはアンモニウムイオンの、水酸化物または炭酸塩や炭酸水素塩、アミン化合物などが挙げられ、具体的には水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトライソプロピルアンモニウムヒドロキシド、N-メチルジエタノ-ルアミン、N-エチルジエタノ-ルアミン、N,N-ジメチルエタノ-ルアミン、トリエタノ-ルアミン、トリイソプロパノ-ルアミン、トリイソプロピルアミンなどを挙げることができ、水溶液が塩基性を呈するものであればこれ以外の化合物も当然使用することができる。また、現像液の温度は樹脂組成物の組成や、アルカリ現像液の組成に依存しており、一般的には0℃以上80℃以下、より一般的には、10℃以上60℃以下で使用することが好ましい。
 上記現像工程によって形成した微細開口部は、リンスして不用な残分を除去する。リンス液としては、水、酸性水溶液などが挙げられる。
 次いで、加熱処理を行う。加熱処理を行うことにより、耐熱性・耐薬品性に富む硬化膜を得ることができる。硬化膜の厚みは、基材厚み等を考慮して決定されるが、2~50μm程度であることが好ましい。このときの最終加熱処理温度は配線等の酸化を防ぎ、基材との密着性を低下させないことを目的として100℃以上250℃以下であることが好ましく、更に好ましくは120℃以上200℃以下であり、特に好ましくは130℃以上180℃以下である。加熱処理温度が高くなると配線等の酸化劣化が進み、基材との密着性が低下する場合がある。
 本願発明の絶縁膜は、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さいため、フレキシブル基板の絶縁膜として特に適しているのである。また更には、各種配線被覆保護剤、耐熱性接着剤、電線・ケーブル絶縁被膜等にも用いられる。
 (2.本願発明の第二の態様)
 以下本願発明の第二の態様について、(I)絶縁膜、(II)絶縁膜の形成方法の順に詳細に説明する。
 (I)絶縁膜
 本願発明の絶縁膜とは、絶縁性を有する膜であり、好ましくは厚さが5~50μmの膜である。
 本願発明の絶縁膜の厚さは、任意の方法により測定することができるが、例えば、JIS K 5400 3.5に準拠した方法で測定することができる。上記範囲内に厚さを制御することにより、絶縁膜の柔軟性、電気絶縁信頼性が優れるため好ましい。厚さが5μm以下の場合は絶縁膜の電気絶縁信頼性が低下する場合があり、厚さが50μm以上の場合は絶縁膜の柔軟性が低下する場合がある。
 ここで、本願発明の絶縁膜は、各種特性に優れる事を、本発明者らは見出したが、これは、以下の理由によるのではないかと推測している。つまり、本願発明の絶縁膜は微粒子が分散した構成を有しているため、絶縁膜表面にも凹凸が形成されタックフリー性に優れる。また、前記絶縁膜が(A)分子内にウレタン結合を有する化合物を含有するため、ウレタン結合由来の柔軟性骨格により柔軟性に優れる。また、前記微粒子が(B)球状有機ビーズの場合は、球状ビーズであるため絶縁膜内で凝集が発生し難く、また有機物であるためマトリックスとなる絶縁膜との親和性に優れ、絶縁膜の機械的強度の低下が発生しない。また、前記微粒子が(C)リン元素を含有する微粒子の場合は、絶縁膜に対して優れた難燃性を付与できると共に、絶縁膜内でフィラー成分として存在するため絶縁膜の耐熱性や電気絶縁信頼性の低下を招かず、更に絶縁膜からのブリードアウトが発生しないため、部品実装部の接点障害や絶縁膜加工工程の汚染・コンタミを抑制することができる。また、前記(B)球状有機ビーズが、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して前記(B)球状有機ビーズ領域の合計の長さが20~80%であるため、絶縁膜表面に効果的に凹凸を形成することが可能となりタックフリー性に特に優れ、また、(B)成分による充填効果が得られるため絶縁膜の反りが低下し、(B)成分による応力緩和効果や破壊靱性の向上により繰り返し折り曲げに耐え得る柔軟性が向上する。更に、驚くべきことに、一般的にはフィラー成分を高充填すると繰り返し折り曲げに耐える柔軟性が低下するが、(B)成分表面から(A)成分が内部に染み込むため、(A)成分と(B)成分との界面で強固な接着性が得られ、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して前記(B)球状有機ビーズ領域の合計の長さが20~80%である程高充填した用いた場合でも繰り返し折り曲げに耐え得る柔軟な絶縁膜が得られると推測している。
 以下、(A)分子内にウレタン結合を有する化合物、(B)球状有機ビーズ、(C)リン元素を含有する微粒子、(D)熱硬化性樹脂、(E)光重合開始剤、その他成分、(B)成分及び(C)成分の絶縁膜中での分散状況、及び絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合について説明する。
 <(A)分子内にウレタン結合を有する化合物>
 本願発明の(A)分子内にウレタン結合を有する化合物とは、分子内に少なくとも1つのウレタン結合を有する有機化合物である。
 本願発明の絶縁膜が(A)成分を含有することは任意の方法で確認することが可能であるが、例えば、斜め切削装置等を用いて絶縁膜表面数μmを削り取り、得られた絶縁膜の切片の連続相を顕微赤外吸収スペクトル法(μIR)で分析し、1715~1730cm-1付近にウレタン結合内のC=O間の伸縮振動由来のスペクトルの有無を確認する方法が挙げられる。なお、斜め切削装置は、上述の(1.本願発明の第一の態様)中の説明と同一であるため、説明を省略する。
 また、上記方法に加えて、上記得られた絶縁膜の切片を用いて熱分解ガスクロマトグラフィー/質量分析(PyGC/MS)を行い、検出したピークのMSスペクトルをライブラリ検索し成分定性し、ウレタン結合を生成させる原料であるジイソシアネート化合物由来のピークの有無を確認する方法を実施することにより、確認精度を向上させることが可能である。ここで、熱分解ガスクロマトグラフィー/質量分析も上述の(1.本願発明の第一の態様)中の説明と同一であるため、説明を省略する。
 本願発明の(A)成分は、任意の反応により得ることが可能であるが、例えば、下記一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、Rは2価の有機基を示す)
で示されるジオール化合物と、下記一般式(2)
Figure JPOXMLDOC01-appb-C000010
(式中、Xは2価の有機基を示す)
で示されるジイソシアネート化合物を反応させることにより、下記一般式(3)
Figure JPOXMLDOC01-appb-C000011
(式中、R及びXはそれぞれ独立に2価の有機基を示し、nは1以上の整数を示す)で示されるウレタン結合を有する繰り返し単位を含有する構造として得られる。
 本願発明のジオール化合物は、上記構造であれば特に限定はされないが、例えば、上述の(1.本願発明の第一の態様)中に記載のものと同一のものを挙げることができ、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明のジイソシアネート化合物は、上記構造であれば特に限定はされないが、例えば、上述の(1.本願発明の第一の態様)中に記載のものと同一のものを挙げることができ、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明の(A)分子内にウレタン結合を有する化合物は、更に(a1)(メタ)アクリロイル基、(a2)カルボキシル基及び(a3)イミド基からなる群から選ばれる少なくとも1種の有機基を含有してもよい。(a1)(メタ)アクリロイル基とは、アクリロイル基及び/又はメタクリロイル基のことであり、(a1)(メタ)アクリロイル基を含有する場合は絶縁膜が感光性樹脂組成物から得られる場合、感光性が向上するため短時間での紫外線照射で硬化させることが可能となる。また、(a2)カルボキシル基を含有する場合は絶縁膜に熱硬化性樹脂が含まれる場合、カルボキシル基と熱硬化性樹脂との反応により絶縁膜の耐熱性や高温高湿条件下での電気絶縁信頼性が向上させることが可能となる。また、(a3)イミド基を含有する場合は絶縁膜の耐熱性、難燃性や高温高湿条件下での電気絶縁信頼性が向上させることが可能となる。
 ここで、(a1)(メタ)アクリロイル基を含有する(A)成分は、任意の反応により得ることが可能であるが、例えば、上記ジオール化合物、上記ジイソシアネート化合物に加えて、下記一般式(4)
Figure JPOXMLDOC01-appb-C000012
(式中、Rはm+1価の有機基を示し、Rは水素又はアルキル基を示す。mは1~3の整数を示す)
で示される水酸基及び少なくとも1つの(メタ)アクリロイル基を含有する化合物及び/又は下記一般式(5)
Figure JPOXMLDOC01-appb-C000013
(式中、Xはl+1価の有機基を示し、Xは水素又はアルキル基を示す。lは1~3の整数を示す)
で示されるイソシアネート基及び少なくとも1つの(メタ)アクリロイル基を含有する化合物を反応させることにより得られる。
 本願発明の水酸基及び少なくとも一つの(メタ)アクリロイル基を含有する化合物は、上記構造であれば特に限定はされないが、上述の(1.本願発明の第一の態様)中に記載のものと同一のものを挙げることができ、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明のイソシアネート基及び少なくとも一つの(メタ)アクリロイル基を含有する化合物は、上記構造であれば特に限定はされないが、例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート、2-(2-メタクリロイルオキシエチルオキシ)エチルイソシアネート等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 また、(a2)カルボキシル基を含有する(A)成分は、任意の反応により得ることが可能であるが、例えば、上記ジオール化合物、上記ジイソシアネート化合物に加えて、下記一般式(6)
Figure JPOXMLDOC01-appb-C000014
(式中、Rは3価の有機基を示す)
で示される2つの水酸基及び1つのカルボキシル基を含有する化合物を反応させることにより得られる。
 本願発明の2つの水酸基及び1つのカルボキシル基を含有する化合物は、上記構造であれば特に限定はされないが、例えば、上述の(1.本願発明の第一の態様)中に記載のものと同一のものを挙げることができ、これらを単独で又は2種類以上を組み合わせて使用できる。
 また、(a3)イミド基を含有する(A)成分は、任意の反応により得ることが可能であるが、例えば、上記ジオール化合物、上記ジイソシアネート化合物に加えて、下記一般式(7)
Figure JPOXMLDOC01-appb-C000015
(式中、Yは4価の有機基を示す)
で示されるテトラカルボン酸二無水物を反応させることにより得られる。
 本願発明のテトラカルボン酸二無水物は、上記構造であれば特に限定はされないが、例えば、上述の(1.本願発明の第一の態様)中に記載のものと同一のものを挙げることができ、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明の(A)分子内にウレタン結合を有する化合物の合成方法は、例えばジオール化合物とジイソシアネート化合物との配合量を、水酸基数とイソシアネート基数との比率が、イソシアネート基/水酸基=0.5以上2.0以下になるように配合し、無溶媒あるいは有機溶媒中で反応させることで得られる。
 また、2種類以上のジオール化合物を用いる場合、ジイソシアネート化合物との反応は、2種類以上のジオール化合物を混合した後に行ってもよいし、それぞれのジオール化合物とジイソシアネート化合物とを別個に反応させてもよい。また、ジオール化合物とジイソシアネート化合物とを反応させた後に、得られた末端イソシアネート化合物をさらに他のジオール化合物と反応させ、さらにこれをジイソシアネート化合物と反応させてもよい。また、2種類以上のジイソシアネート化合物を用いる場合も同様である。このようにして、所望の(A)分子内にウレタン結合を有する化合物を製造することができる。
 ジオール化合物とジイソシアネート化合物との反応温度は、40~160℃とすることが好ましく、60~150℃とすることがより好ましい。40℃未満では反応時間が長くなり過ぎ、160℃を超えると反応中に三次元化反応が生じてゲル化が起こり易い。反応時間は、バッチの規模、採用される反応条件により適宜選択することができる。また、必要に応じて、三級アミン類、アルカリ金属、アルカリ土類金属、錫、亜鉛、チタニウム、コバルト等の金属又は半金属化合物等の触媒存在下に反応を行っても良い。
 上記反応は、無溶媒で反応させることもできるが、反応を制御する為には、有機溶媒系で反応させることが望ましく、例えば有機溶媒としては、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、あるいはヘキサメチルホスホルアミド、γ-ブチロラクトンなどを挙げることができる。さらに必要に応じて、これらの有機極性溶媒とキシレンあるいはトルエンなどの芳香族炭化水素とを組み合わせて用いることもできる。
 更に、例えばメチルモノグライム(1,2-ジメトキシエタン)、メチルジグライム(ビス(2-メトキシエテル)エーテル)、メチルトリグライム(1,2-ビス(2-メトキシエトキシ)エタン)、メチルテトラグライム(ビス[2-(2-メトキシエトキシエチル)]エーテル)、エチルモノグライム(1,2-ジエトキシエタン)、エチルジグライム(ビス(2-エトキシエチル)エーテル)、ブチルジグライム(ビス(2-ブトキシエチル)エーテル)等の対称グリコールジエーテル類、メチルアセテート、エチルアセテート、イソプロピルアセテート、n―プロピルアセテート、ブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(別名、カルビトールアセテート、酢酸2-(2-ブトキシエトキシ)エチル))、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、1,3―ブチレングリコールジアセテート等のアセテート類や、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、ジプロピレングリコールn-ブチルエーテル、トリピレングリコールn-プロピルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル、1,3―ジオキソラン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールものエチルエーテル等のエーテル類の溶剤を用いることもできる。中でも、副反応が生じにくいことから、対称グリコールジエーテル類を用いることが好ましい。
 反応の際に用いられる溶剤量は、反応溶液中の溶質重量濃度すなわち溶液濃度が5重量%以上90重量%以下となるような量とすることが望ましい。反応溶液中の溶質重量濃度は、更に好ましくは、10重量%以上80重量%以下となることが望ましい。溶液濃度が5%以下の場合には、重合反応が起こりにくく反応速度が低下すると共に、所望の構造物質が得られない場合がある。
 <(B)球状有機ビーズ>
 本願発明の(B)球状有機ビーズとは、炭素を含む球状ポリマーで、楕円状のものも含まれる。本(B)球状有機ビーズは、上述の(1.本願発明の第一の態様)における説明と同一であるため、ここではその記載を援用するとし、説明を省略する。
 <(C)リン元素を含有する微粒子>
 本願発明の(C)リン元素を含有する微粒子とは、構造中に少なくとも1つのリン元素を有している微粒子である。
 本願発明の(C)成分の平均粒子径は、例えば、上記(B)成分と同様の方法で測定することができる。
 本願発明の(C)成分の平均粒子径は、1~10μmとすることが、絶縁膜の柔軟性、難燃性が優れるため好ましい。平均粒子径が1μmより小さい場合は、絶縁膜表面に効果的に凹凸が形成されず、タックフリー性に劣る場合があり、平均粒子径が10μm以上の場合は耐折れ性の低下や、微細パターン形成時の開口部に粒子が露出し解像性不良になる場合がある。
 本願発明の(C)成分は、特に限定はされないが、例えば、ポリリン酸アンモニウム、メラミンリン酸塩、ホスフィン酸塩等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明の(C)成分は、上記リン元素を含有する微粒子の中でも、特にホスフィン酸塩を用いることが、絶縁膜に対して優れた難燃性を付与できると共に、絶縁膜からのブリードアウトが少ないため、接点障害や工程汚染を抑制することができるため好ましい。
 本願発明のホスフィン酸塩とは、下記一般式(8)で示される化合物である。
Figure JPOXMLDOC01-appb-C000016
(式中、R及びRは、それぞれ独立に直鎖状または枝分かれした炭素数1~6のアルキル基またはアリール基を示し、Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Fe、Zr、Zn、Ce、Bi、Sr、Mn、Li、Na及びKからなる群の少なくとも1種より選択される金属類を示し、tは1~4の整数である。)
 本願発明のホスフィン酸塩は、上記構造であれば特に限定はされないが、例えば、トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウム、ビスジエチルホスフィン酸亜鉛、ビスメチルエチルホスフィン酸亜鉛、ビスジフェニルホスフィン酸亜鉛、ビスジエチルホスフィン酸チタニル、ビスメチルエチルホスフィン酸チタニル、ビスジフェニルホスフィン酸チタニル等を挙げることができ、これらは単独であるいは2種類以上を組み合わせて用いることができる。本願発明の(C)リン元素を含有する微粒子が更にアルミニウム元素を含有することが、高い難燃性が得られる点で好ましく、中でも特に、アルミニウム元素を含有するトリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウムを用いた場合、さらに高い難燃性が得られるため好ましい。
 本願発明の(C)成分の含有量は、好ましくは(A)成分100重量部に対して20~80重量部、より好ましくは25~75重量部とすることにより、得られる硬化膜の難燃性、電気絶縁信頼性に優れる。(E)成分が20重量部より少ない場合は難燃性に劣る場合があり、80重量部より多い場合は樹脂組成物溶液を塗工する際の塗工性が悪化し、塗工時の塗膜の発泡やレベリング不足による外観不良が発生する場合がある。
 <(D)熱硬化性樹脂>
 本願発明の(D)熱硬化性樹脂とは、分子内に少なくとも1つの熱硬化性の有機基を含有する化合物である。本(D)熱硬化性樹脂は、上述の(1.本願発明の第一の態様)における説明と同一であるため、ここではその記載を援用するとし、説明を省略する。
 <(E)光重合開始剤>
 本願発明の(E)光重合開始剤とは、UVなどのエネルギーによって活性化し、ラジカル重合性基の反応を開始・促進させる化合物である。本(E)光重合開始剤は、上述の(1.本願発明の第一の態様)における説明と同一であるため、ここではその記載を援用するとし、説明を省略する。
 <その他成分>
 本願発明の絶縁膜には、さらに必要に応じてラジカル重合性化合物、充填剤、接着助剤、消泡剤、レベリング剤、着色剤、重合禁止剤等の各種添加剤を加えることができる。本<その他成分>についても、上述の(1.本願発明の第一の態様)における説明と同一であるため、ここではその記載を援用するとし、説明を省略する。
 なお、本願発明の絶縁膜は、(C)リン元素を含有する微粒子を含むため難燃性に優れているが、より高い難燃効果を得るために他の難燃剤を加えてもよい。難燃剤としては、例えば、含ハロゲン系化合物、リン系化合物、金属水酸化物、メラミン系化合物等を添加することができる。上記各種添加剤は、単独で又は2種類以上を組み合わせて使用できる。
 <(B)成分及び(C)成分の絶縁膜中での分散状況>
 本願発明の(B)成分及び(C)成分が絶縁膜中に分散しているとは、絶縁膜の厚み方向の断面において(B)成分がそれぞれ独立した球状又は楕円状の領域として観察され、且つ(C)成分がそれぞれ独立した不定形の円状又は多角状の領域として観察されることである。ここで、(B)成分同士、(C)成分同士、又は(B)成分と(C)成分は、それぞれ独立して観察されることが好ましいが、本願発明の効果を損なわない範囲であれば隣接して観察されても良い。ここで、本願発明の効果を損なわない範囲とは、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、(B)成分同士、(C)成分同士、又は(B)成分と(C)成分領域の合計の長さが絶縁膜の厚み以下の範囲である。
 本願発明の(B)成分及び(C)成分が絶縁膜中に分散していることについて図2を用いて説明する。図2に示されるように、絶縁膜1の厚み方向の断面中に連続相2と(B)成分からなるそれぞれ独立した球状又は楕円状の領域である分散相3、及び(C)成分からなるそれぞれ独立した不定形の円状又は多角状の領域である分散相4’が存在する構成となっている。ここで、絶縁膜の厚み方向の断面とは、絶縁膜がプリント配線板などの基材5に積層されている場合、絶縁膜の表面から基材方向に向かう軸方向に沿って切り取られた面のことである。
 本願発明の(B)成分及び(C)成分が絶縁膜中に分散していることは任意の方法で確認することが可能であるが、例えば、下記のように絶縁膜を含むプリント配線板を熱硬化性樹脂で包埋し、厚み方向の断面をイオンビームで研磨して絶縁膜の断面出しを行い、絶縁膜の断面を走査型電子顕微鏡で観察する方法が挙げられる。
 (絶縁膜の断面出し)
 絶縁膜がプリント配線板などの基材に積層されている場合、5mm×3mmの範囲をカッターナイフで切り出し、エポキシ系包埋樹脂及びカバーガラスを使用して切り出した積層体の絶縁膜側表面及び積層体の基材側表面の両面に保護膜層及びカバーガラス層を形成した後、絶縁膜の厚み方向の断面をイオンビームによるクロスセクションポリッシャ加工を行った。
 (クロスセクションポリッシャ加工)
使用装置:日本電子株式会社製 SM-09020CP相当品
加工条件:加速電圧 6kV
 (絶縁膜の断面観察)
 上記得られた絶縁膜の厚み方向の断面について、走査型電子顕微鏡により観察を行った。
 (走査型電子顕微鏡観察)
使用装置:株式会社日立ハイテクノロジーズ製 S-3000N相当品
観察条件:加速電圧 15kV
検出器:反射電子検出(組成モード)
倍率:1000倍
 ここで用いた反射電子検出(組成モード)は、観察領域の平均原子番号の差がコントラストに強く反映されるため、重元素が存在する領域が明るく(白く)、軽元素が存在する領域が暗く(黒く)観察される。よって炭素、水素、酸素、窒素等の比較的軽元素から構成される有機物で、球状である(B)成分は暗い(黒い)円状領域として観察され、比較的重元素であるリン元素を含有し、不定形である(C)成分は薄暗い(グレーの)円状又は多角状領域として観察される。
 また、絶縁膜の厚み方向の断面中の(B)成分領域を上記(A)成分と同様の顕微赤外吸収スペクトル法(μIR)で分析し、1715~1730cm-1付近にウレタン結合内のC=O間の伸縮振動由来のスペクトルの有無を確認することにより、(B)成分が分子内にウレタン結合を有することを確認することが出来る。
 また、絶縁膜の厚み方向の断面中の(C)成分領域を走査型電子顕微鏡-X線マイクロアナライザー(SEM-EPMA)で分析することにより、(C)成分が含有する元素の情報を得ることができるため、リン元素が含有されることを確認することができる。
 (走査型電子顕微鏡-X線マイクロアナライザー分析)
使用装置:株式会社堀場製作所製 EMAX-7000相当品
分析条件:加速電圧 15kV 積算時間900秒
 また、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上における(B)成分の長さについて図2を用いて説明する。図2に示されるように、走査型電子顕微鏡画像の絶縁膜1の厚み方向の断面中で絶縁膜表面の任意の点から基材面7に向かって基材面7と直交するように引いた線6上において観察された(B)成分領域の長さd1及びd2が、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上における(B)成分の長さとなっている。
 本願発明における前記(B)成分の長さは、少なくとも1個が3~15μmであることが、絶縁膜の柔軟性、耐薬品性が優れるため好ましい。前記(B)成分の長さが3μmより小さい場合は、絶縁膜表面に効果的に凹凸が形成されず、タックフリー性に劣る場合があり、15μm以上の場合は微細パターン形成時の開口部に粒子が露出し、解像性不良になる場合がある。ここで前記(B)成分の長さは、測定ばらつき及び異常検出を防止するために、任意の点を決めてそこから5μm間隔で10点測定し、測定値の最大値と最小値を切り捨てた残りの値を平均した値を測定し、場所を変えて3回測定すればよい。
 また、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上における(C)成分の長さも上記(B)成分の長さと同様の方法により測定することができる。
 本願発明における前記(C)成分の長さは、少なくとも1個が1~10μmであることが、絶縁膜の柔軟性、耐薬品性が優れるため好ましい。前記(C)成分の長さが1μmより小さい場合は、絶縁膜表面に効果的に凹凸が形成されず、タックフリー性に劣る場合があり、10μm以上の場合は耐折れ性の低下や、微細パターン形成時の開口部に粒子が露出し解像性不良になる場合がある。ここで前記(C)成分の長さは、測定ばらつき及び異常検出を防止するために、任意の点を決めてそこから5μm間隔で10点測定し、測定値の最大値と最小値を切り捨てた残りの値を平均した値を測定し、場所を変えて3回測定すればよい。
 <絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合>
 本願発明の絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合について図2を用いて説明する。図2に示されるように、走査型電子顕微鏡画像の絶縁膜1の厚み方向の断面中で絶縁膜表面の任意の点から基材面7に向かって基材面7と直交するように引いた線6上において観察された(B)成分領域の長さd1及びd2の合計が、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上における(B)成分領域の合計の長さである。
 また、絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合(%)は、下記計算式により算出することが出来る。
((B)成分領域の合計の長さ/絶縁膜領域の長さ)×100
 上記方法により測定した絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合は、20~80%の割合を占めていることが必須であり、20~70%の割合を占めていることが好ましい。前記範囲内にあることにより、絶縁膜表面に効果的に凹凸を形成することが可能となりタックフリー性に優れ、(B)成分による充填効果が得られるため絶縁膜の反りが低下し、応力緩和効果や破壊靱性の向上により繰り返し折り曲げに耐え得る柔軟性が向上する。(B)成分領域の占める長さが20%より少ない場合はタックフリー性や繰り返し折り曲げに耐え得る柔軟性に劣り、80%より多い場合は難燃性や絶縁膜を形成するために樹脂組成物溶液を塗工する際の塗工性が悪化し、塗工時の塗膜の発泡やレベリング不足による外観不良が発生する。
 ここで絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合は、測定ばらつき及び異常検出を防止するために、任意の位置を決めてそこから5μm間隔で10点測定し、測定値の最大値と最小値を切り捨てた残りの値を平均した値を測定し、場所を変えて3回測定した場合、少なくとも1回、20~80%の範囲に入っていてもよいし、3回とも上記範囲に入ってもよい。
 本願発明の絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合が20~80%となることを実現するための手段の例としては、例えば、上記(B)成分が絶縁膜中に分散していることを確認する方法において、走査型電子顕微鏡画像の絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように1本の線を引き、線上の(B)成分領域の少なくとも1個の長さが3~15μmとなるようにすることや、(B)成分の配合量が(A)分子内にウレタン結合を有する化合物100重量部に対して30~100重量部であるようにすることが好ましい。
 (II)絶縁膜の形成方法
 本願発明の絶縁膜は、上記(A)~(C)成分及び必要に応じて(D)成分、(E)成分、その他成分を混合して樹脂組成物を得た後、この樹脂組成物を基材上に塗布・乾燥後、必要に応じて露光・現像により微細開口部を形成後、加熱処理を行うことにより得られることができる。本絶縁膜の形成方法は、上述の(1.本願発明の第一の態様)における説明と同一であるため、ここではその記載を援用するとし、説明を省略する。
 本願発明の絶縁膜は、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さいため、フレキシブル基板の絶縁膜として特に適しているのである。また更には、各種配線被覆保護剤、耐熱性接着剤、電線・ケーブル絶縁被膜等にも用いられる。
 以下本願発明を実施例により具体的に説明するが本願発明はこれらの実施例により限定されるものではない。
 (a.本願発明の第一の態様に関する実施例)
 (合成例1a)
 <(A)バインダーポリマー1>
 攪拌機、温度計、及び窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム(=1,2-ビス(2-メトキシエトキシ)エタン)30.00gを仕込み、これに、ノルボルネンジイソシアネート10.31g(0.050モル)を仕込み、窒素気流下で攪拌しながら80℃に加温して溶解させた。この溶液に、ポリカーボネートジオール50.00g(0.025モル)(旭化成株式会社製:商品名PCDL T5652、重量平均分子量2000)及び2-ヒドロキシエチルメタクリレート6.51g(0.050モル)をメチルトリグライム(30.00g)に溶解した溶液を1時間かけて添加した。この溶液を5時間80℃で加熱攪拌を行い反応させた。上記反応を行うことで分子内にウレタン結合及びメタクリロイル基を含有する樹脂溶液を得た。得られた樹脂溶液の固形分濃度は53%、重量平均分子量は5,200であった。尚、固形分濃度、重量平均分子量は下記の方法で測定した。
 <固形分濃度>
 JIS K 5601-1-2に従って測定を行った。尚、乾燥条件は170℃×1時間の条件を選択した。
 <重量平均分子量>
使用装置:東ソーHLC-8220GPC相当品
カラム :東ソー TSK gel Super AWM-H(6.0mmI.D.×15cm)×2本
ガードカラム:東ソー TSK guard column Super AW-H
溶離液:30mM LiBr+20mM H3PO4 in DMF
流速:0.6mL/min
カラム温度:40℃
検出条件:RI:ポラリティ(+)、レスポンス(0.5sec)
試料濃度:約5mg/mL
 (合成例2a)
 <(A)バインダーポリマー2>
 攪拌機、温度計、及び窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム(=1,2-ビス(2-メトキシエトキシ)エタン)30.00gを仕込み、これに、ノルボルネンジイソシアネート10.31g(0.050モル)を仕込み、窒素気流下で攪拌しながら80℃に加温して溶解させた。この溶液に、ポリカーボネートジオール50.00g(0.025モル)(旭化成株式会社製:商品名PCDL T5652、重量平均分子量2000)及び2,2-ビス(ヒドロキシメチル)ブタン酸3.70g(0.025モル)をメチルトリグライム30.00gに溶解した溶液を1時間かけて添加した。この溶液を5時間80℃で加熱攪拌を行い反応させた。上記反応を行うことで分子内にウレタン結合及びカルボキシル基を含有する樹脂溶液を得た。得られた樹脂溶液の固形分濃度は52%、重量平均分子量は5,600、固形分の酸価は22mgKOH/gであった。尚、固形分濃度、重量平均分子量は合成例1aと同様の方法で、酸価は下記の方法で測定した。
 <酸価>
JIS K 5601-2-1に従って測定を行った。
 (合成例3a)
 <(A)バインダーポリマー3>
 攪拌機、温度計、滴下漏斗、及び窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム(=1,2-ビス(2-メトキシエトキシ)エタン)100.0gを仕込み、窒素気流下で攪拌しながら80℃まで昇温した。これに、室温で予め混合しておいた、メタクリル酸12.0g(0.14モル)、メタクリル酸ベンジル28.0g(0.16モル)、メタクリル酸ブチル60.0g(0.42モル)、ラジカル重合開始剤としてアゾビスイソブチロニトリル0.5gを80℃に保温した状態で3時間かけて滴下漏斗から滴下した。滴下終了後、反応溶液を攪拌しながら90℃まで昇温し、反応溶液の温度を90℃に保ちながら更に2時間攪拌を行い反応させた。上記反応を行うことで分子内にカルボキシル基を含有するアクリル系樹脂溶液を得た。得られた樹脂溶液の固形分濃度は50%、重量平均分子量は48,000、固形分の酸価は78mgKOH/gであった。尚、固形分濃度、重量平均分子量は合成例1aと同様の方法で、酸価は合成例2aと同様の方法で測定した。
 (実施例1a~7a)
 <樹脂組成物の調製>
 合成例で得られた(A)成分、(B)球状有機ビーズ、(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子、(D)熱硬化性樹脂、(E)光重合開始剤、その他成分、及び有機溶媒を添加して樹脂組成物を作製した。それぞれの構成原料の樹脂固形分での配合量及び原料の種類を表1に記載する。なお、表中の溶媒である1,2-ビス(2-メトキシエトキシ)エタンは上記合成した樹脂溶液に含まれる溶剤も含めた全溶剤量である。樹脂組成物ははじめに一般的な攪拌翼のついた攪拌装置で混合し、その後3本ロールで2回パスし均一な溶液とした。グラインドメーターにて樹脂組成物中に含まれる各成分の粒子径を測定したところ、いずれも15μm以下であった。得られた樹脂組成物を脱泡装置で樹脂組成物中の泡を完全に脱泡して下記評価を実施した。
Figure JPOXMLDOC01-appb-T000017
<1>大日精化工業株式会社製 球状有機ビーズ(分子内にウレタン結合を含有する架橋球状有機ビーズ)の製品名、平均粒子径7μm
<2>クラリアントジャパン株式会社製 リン及びアルミニウム元素を含有する微粒子(ジエチルホスフィン酸アルミニウム塩)の製品名、平均粒子径2.5μm
<3>昭和電工株式会社製 アルミニウム元素を含有する微粒子(水酸化アルミニウム)の製品名、平均粒子径1.0μm
<4>タテホ化学工業株式会社製 マグネシウム元素を含有する微粒子(水酸化マグネシウム)の製品名、平均粒子径1.0μm
<5>日産化学株式会社製 熱硬化性樹脂(トリグリシジルイソシアヌレート)の製品名<6>BASFジャパン株式会社製 光重合開始剤の製品名
<7>日立化成工業株式会社製 EO変性ビスフェノールAジメタクリレートの製品名
<8>共栄社化学株式会社製 ブタジエン系消泡剤の製品名
 <ポリイミドフィルム上への硬化膜の形成>
 上記樹脂組成物を、ベーカー式アプリケーターを用いて、25μmのポリイミドフィルム(株式会社カネカ製:商品名25NPI)に最終乾燥厚みが20μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥した後、300mJ/cmの積算露光量の紫外線を照射して露光した。次いで、1.0重量%の炭酸ナトリウム水溶液を30℃に加熱した溶液を用いて、1.0kgf/mmの吐出圧で90秒スプレー現像を行った。現像後、純水で十分洗浄した後、150℃のオーブン中で30分加熱硬化させてポリイミドフィルム上に硬化膜を形成した積層体を得た。
 <硬化膜の評価>
 上記得られた硬化膜について、以下の項目につき評価を行った。評価結果を表2に記載する。
 (i)(B)成分及び(C)成分の絶縁膜中での分散状況
 上記<ポリイミドフィルム上への硬化膜の作成>の項目と同様の方法で得られた硬化膜を形成した積層体において、5mm×3mmの範囲をカッターナイフで切り出し、エポキシ系包埋樹脂及びカバーガラスを使用して切り出した積層体の絶縁膜側表面及びポリイミドフィルム側表面の両面に保護膜層及びカバーガラス層を形成した後、絶縁膜の厚み方向の断面をイオンビームによるクロスセクションポリッシャ加工を行った。
使用装置:日本電子株式会社製 SM-09020CP相当品
加工条件:加速電圧 6kV
 上記得られた絶縁膜の厚み方向の断面について、走査型電子顕微鏡により観察を行った。
使用装置:株式会社日立ハイテクノロジーズ製 S-3000N相当品
観察条件:加速電圧 15kV
検出器:反射電子検出(組成モード)
倍率:1000倍
○:(B)成分がそれぞれ独立した球状又は楕円状の領域として観察され、且つ(C)成分がそれぞれ独立した不定形の円状又は多角状の領域として観察される。
×:(B)成分がそれぞれ独立した球状又は楕円状の領域として観察されない、又は、(C)成分がそれぞれ独立した不定形の円状又は多角状の領域として観察されない。
 (ii)絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において存在している(B)成分が占める面積の割合
 上記(i)の項目と同様の観察方法で、走査型電子顕微鏡画像の絶縁膜部分の任意の125μm×15μmの範囲において観察された、全ての(B)成分領域の最大長さを実測し、実測した長さより算出した(B)成分領域の面積の総合計を算出し、125μm×15μmの範囲における面積割合を測定した。
 (iii)絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において存在している(B)成分の粒子径
 上記(i)の項目と同様の観察方法で実測された、各(B)成分の最大長さを粒子径とし、絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において存在している(B)成分の中で最大粒子の粒子径、最小粒子の粒子径、3~15μmの粒子径を持つ(B)成分の全(B)成分中における割合を測定した。
 (iv)絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において存在している(C)成分の粒子径
 上記(i)の項目と同様の観察方法で実測された、各(C)成分の最大長さを粒子径とし、絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において存在している(C)成分の中で最大粒子の粒子径、最小粒子の粒子径を測定した。
 (v)タックフリー性
 上記樹脂組成物を、ベーカー式アプリケーターを用いて、25μmのポリイミドフィルム(株式会社カネカ製:商品名25NPI)に最終乾燥厚みが20μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥して溶媒乾燥後の塗膜を作製した。塗膜のタックフリー性の評価方法は、作製した溶媒乾燥後の塗膜付きフィルムを50mm×30mmの短冊に切り出して、塗膜を内側にして塗膜面同士を重ね合わせ、重ね合わせた部分に300gの荷重を3秒間のせた後、荷重を取り除き、塗膜面を引き剥がした時の状態を観察した。
○:塗膜同士の貼り付きがなく、塗膜に貼り付き跡も残っていない。
△:塗膜同士が少し貼り付き、塗膜に貼り付き跡が残っている。
×:塗膜同士が完全に貼り付いて引き剥がせない。
 (vi)耐折れ性
 上記<ポリイミドフィルム上への硬化膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製アピカル25NPI)表面に20μm厚みの絶縁膜積層フィルムを作製した。絶縁膜積層フィルムの耐折れ性の評価方法は、絶縁膜積層フィルムを50mm×10mmの短冊に切り出して、絶縁膜を外側にして25mmのところで180°に折り曲げ、折り曲げ部に5kgの荷重を3秒間のせた後、荷重を取り除き、折り曲げ部の頂点を顕微鏡で観察した。顕微鏡観察後、折り曲げ部を開いて、再度5kgの荷重を3秒間乗せた後、荷重を取り除き完全に硬化膜積層フィルムを開いた。上記操作を繰り返し、折り曲げ部にクラックが発生する回数を折り曲げ回数とした。
○:折り曲げ回数5回で絶縁膜にクラックが無いもの。
△:折り曲げ回数3回で絶縁膜にクラックが無いもの。
×:折り曲げ1回目に絶縁膜にクラックが発生するもの。
 (vii)電気絶縁信頼性
 フレキシブル銅貼り積層版(電解銅箔の厚み12μm、ポリイミドフィルムは株式会社カネカ製アピカル25NPI、ポリイミド系接着剤で銅箔を接着している)上にライン幅/スペース幅=100μm/100μmの櫛形パターンを作製し、10容量%の硫酸水溶液中に1分間浸漬した後、純水で洗浄し銅箔の表面処理を行った。その後、上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で櫛形パターン上に20μm厚みの絶縁膜を作製し試験片の作成を行った。85℃、85%RHの環境試験機中で試験片の両端子部分に100Vの直流電流を印加し、絶縁抵抗値の変化やマイグレーションの発生などを観察した。
○:試験開始後、1000時間で10の8乗以上の抵抗値を示し、マイグレーション、デンドライトなどの発生が無いもの。
×:試験開始後、1000時間でマイグレーション、デンドライトなどの発生があるもの。
 (viii)半田耐熱性
 上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、75μm厚みのポリイミドフィルム(株式会社カネカ製アピカル75NPI)表面に20μm厚みの絶縁膜積層フィルムを作製した。
得られた絶縁膜積層フィルムを260℃で完全に溶解してある半田浴に絶縁膜が塗工してある面が接する様に浮かべて10秒後に引き上げた。その操作を3回行い、フィルム表面の状態を観察した。
○:絶縁膜に異常がない。
×:絶縁膜に膨れや剥がれなどの異常が発生する。
 (ix)反り
 上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製アピカル25NPI)表面に20μm厚みの絶縁膜積層フィルムを作製した。
得られた絶縁膜積層フィルムを50mm×50mmの面積に切り出して平滑な台の上に絶縁膜が上面になるように置き、フィルム端部の反り高さを測定した。測定部位の模式図を図3に示す。ポリイミドフィルム表面での反り量が少ない程、プリント配線板表面での応力が小さくなり、プリント配線板の反り量も低下することになる。反り量は5mm以下であることが好ましい。尚、筒状に丸まる場合は×とした。
 (x)難燃性
 プラスチック材料の燃焼性試験規格UL94VTMに従い、以下のように燃焼性試験を行った。上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製:商品名アピカル25NPI)両面に25μm厚みの絶縁膜積層フィルムを作製した。上記作製したサンプルを寸法:50mm幅×200mm長さ×75μm 厚み(ポリイミドフィルムの厚みを含む)に切り出し、125mmの部分に標線を入れ、直径約13mmの筒状に丸め、標線よりも上の重ね合わせ部分(75mmの箇所)、及び、上部に隙間がないようにPIテープを貼り、燃焼性試験用の筒を20本用意した。そのうち10本は(1)23℃/50%相対湿度/48時間で処理し、残りの10本は(2)70℃で168時間処理後無水塩化カルシウム入りデシケーターで4時間以上冷却した。これらのサンプルの上部をクランプで止めて垂直に固定し、サンプル下部にバーナーの炎を3秒間近づけて着火する。3秒間経過したらバーナーの炎を遠ざけて、サンプルの炎や燃焼が何秒後に消えるか測定する。
○:各条件((1)、(2))につき、サンプルからバーナーの炎を遠ざけてから平均(10本の平均)で10秒以内、最高で10秒以内に炎や燃焼が停止し自己消火し、かつ、評線まで燃焼が達していないもの。
×:1本でも10秒以内に消火しないサンプルがあったり、炎が評線以上のところまで上昇して燃焼するもの。
Figure JPOXMLDOC01-appb-T000018
 (比較例1a)
 上記実施例1aの樹脂組成物おいて、(B)球状有機ビーズの配合量を20.0重量部とした以外は実施例1aと同様の方法で評価を行った。評価結果を表3に記載する。
 (比較例2a)
 攪拌機、温度計、窒素導入管、ディーンスタークレシバー及び冷却管を備えた反応容器に、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物58.8g(0.20モル)、3-アミノプロパノール30g(0.40モル)、及びジメチルアセトアミド200ミリリットルを仕込み、窒素雰囲気下、100℃で1時間撹拌した。次いで、トルエン50ミリリットルを加え、180℃4時間加熱し、イミド化反応により生じた水をトルエンと共沸により除いた。反応溶液を水2リットルに投入して、生じた沈殿を濾取し、水洗後減圧乾燥し、2官能性水酸基末端イミドオリゴマー粉末43.16gを得た。次いで、攪拌機、温度計、及び窒素導入管を備えた反応容器に、ポリカーボネートジオール(株式会社クラレ製、製品名クラレポリオールC-2015、重量平均分子量2000)29.94g(0.015モル)、2,2-ビス(ヒドロキシメチル)プロピオン酸1.01g(7.50ミリモル)、4,4’-ジフェニルメタンジイソシアネート8.53g(34.09ミリモル)、イソホロン13.7gを仕込み、窒素雰囲気下、80℃で1.5時間撹拌した。次いで、上記調製した2官能性水酸基末端イミドオリゴマー6.13g(15.00ミリモル)、イソホロン31.9gを加え、80℃で1.5時間撹拌した。得られたウレタン樹脂溶液の固形分濃度は50重量%、数平均分子量は26000であった。上記得られたウレタン樹脂溶液に、ウレタン樹脂100質量部に対してエポキシ樹脂(ダイセル化学工業株式会社製、製品名エポリードPB3600、エポキシ当量194)を10質量部、ブロックイソシアネート(DIC株式会社、製品名バーノックD-550)を20質量部、及びアミン系硬化触媒(四国化成工業株式会社製、製品名キュアゾール2E4MZ)0.8質量部加え、均一に撹拌・混合した。更に微粉状シリカ(日本アエロジル株式会社製、製品名アエロジル130、比表面積(BET法)130m/g)10質量部加え、攪拌・混練して、均一に混合された樹脂組成物を得た。この樹脂組成物を実施例1aと同様の方法で物性評価を行った。その結果を表3に記載する。
 (比較例3a)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリカーボネートジオール(株式会社クラレ製、製品名クラレポリオールC-1065N、重量平均分子量991)70.7g、2,2-ジメチロールブタン酸13.5g、ジエチレングリコールエチルエーテルアセテート128.9gを仕込み、90℃に加熱してすべての原料を溶解した。反応液の温度を70℃まで下げ、滴下ロートによりメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製、製品名デスモジュール-W)42.4gを30分かけて滴下した。滴下終了後、80℃で1時間、90℃で1時間、100℃で2時間反応を行い、ほぼイソシアネートが消失したことを確認した後、イソブタノール(和光純薬(株)製)1.46gを滴下し、さらに105℃にて1.5時間反応を行った。得られたウレタン樹脂溶液の固形分濃度は50%、数平均分子量は6,800、固形分の酸価は40mgKOH/gであった。上記得られたウレタン樹脂溶液に、ウレタン樹脂100質量%に対して、エポキシ樹脂(ジャパンエポキシレジン株式会社製、製品名jER828EL)を37.5質量%、硬化促進剤としてメラミンを4質量%、コアシェル多層構造をもつ有機微粒子(ガンツ化成株式会社製、製品名スタフィロイドAC-3816、平均粒子径 0.5μm)を20質量%の割合で加え、攪拌・混練して、均一に混合された樹脂組成物を得た。この樹脂組成物を実施例1aと同様の方法で物性評価を行った。その結果を表3に記載する。
 (比較例4a)
 メタクリル酸、メタクリル酸メチル及びアクリル酸メチルを20:45:35の質量割合で共重合させた共重合体(重量平均分子量70,000、酸価117mg/g)を70質量部(固形分)、ウレタン結合含有モノマー(新中村化学工業株式会社製、製品名UA-11)を30質量部(固形分)、光重合開始剤(BASFジャパン株式会社製、製品名イルガキュア651)を5質量部、ジエチルホスフィン酸アルミニウム塩(クラリアントジャパン株式会社製、製品名エクソリットOP-930)を13質量部、熱硬化剤(日立化成工業株式会社製、2,2-ビス[4-(4-N-マレイミジニルフェノキシ)フェニル]プロパン)を10質量部、熱重合開始剤(日本油脂株式会社製、製品名パーヘキシン25B)を2質量部、メチルエチルケトンを20質量部加え、攪拌・混練して、均一に混合された樹脂組成物を得た。この樹脂組成物を実施例1aと同様の方法で物性評価を行った。その結果を表3に記載する。
Figure JPOXMLDOC01-appb-T000019
 (b.本願発明の第二の態様に関する実施例)
 (合成例1b)
 <(A)分子内にウレタン結合を有する化合物1>
 攪拌機、温度計、及び窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム(=1,2-ビス(2-メトキシエトキシ)エタン)30.00gを仕込み、これに、ノルボルネンジイソシアネート10.31g(0.050モル)を仕込み、窒素気流下で攪拌しながら80℃に加温して溶解させた。この溶液に、ポリカーボネートジオール50.00g(0.025モル)(旭化成株式会社製:商品名PCDL T5652、重量平均分子量2000)及び2-ヒドロキシエチルメタクリレート6.51g(0.050モル)をメチルトリグライム30.00gに溶解した溶液を1時間かけて添加した。この溶液を5時間80℃で加熱攪拌を行い反応させた。上記反応を行うことで分子内にウレタン結合及びメタクリロイル基を有する樹脂溶液を得た。得られた樹脂溶液の固形分濃度は53%、重量平均分子量は5,200であった。尚、固形分濃度、重量平均分子量は下記の方法で測定した。
 <固形分濃度>
 JIS K 5601-1-2に従って測定を行った。尚、乾燥条件は170℃×1時間の条件を選択した。
 <重量平均分子量>
使用装置:東ソーHLC-8220GPC相当品
カラム :東ソー TSK gel Super AWM-H(6.0mmI.D.×15cm)×2本
ガードカラム:東ソー TSK guard column Super AW-H
溶離液:30mM LiBr+20mM H3PO4 in DMF
流速:0.6mL/min
カラム温度:40℃
検出条件:RI:ポラリティ(+)、レスポンス(0.5sec)
試料濃度:約5mg/mL
 (合成例2b)
 <(A)分子内にウレタン結合を有する化合物2>
 攪拌機、温度計、及び窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム(=1,2-ビス(2-メトキシエトキシ)エタン)30.00gを仕込み、これに、ノルボルネンジイソシアネート10.31g(0.050モル)を仕込み、窒素気流下で攪拌しながら80℃に加温して溶解させた。この溶液に、ポリカーボネートジオール50.00g(0.025モル)(旭化成株式会社製:商品名PCDL T5652、重量平均分子量2000)及び2,2-ビス(ヒドロキシメチル)ブタン酸3.70g(0.025モル)をメチルトリグライム30.00gに溶解した溶液を1時間かけて添加した。この溶液を5時間80℃で加熱攪拌を行い反応させた。上記反応を行うことで分子内にウレタン結合及びカルボキシル基を有する樹脂溶液を得た。得られた樹脂溶液の固形分濃度は52%、重量平均分子量は5,600、固形分の酸価は22mgKOH/gであった。尚、固形分濃度、重量平均分子量は合成例1bと同様の方法で、酸価は下記の方法で測定した。
 <酸価>
JIS K 5601-2-1に従って測定を行った。
 (実施例1b~4b、比較例1b)
 <樹脂組成物の調製>
 合成例1b、2bで得られた(A)成分、(B)球状有機ビーズ、(C)リン元素を含有する微粒子、(D)熱硬化性樹脂、(E)光重合開始剤、その他成分、及び有機溶媒を添加して樹脂組成物を作製した。それぞれの構成原料の樹脂固形分での配合量及び原料の種類を表4に記載する。なお、表中の溶媒である1,2-ビス(2-メトキシエトキシ)エタンは上記合成した樹脂溶液に含まれる溶剤も含めた全溶剤量である。樹脂組成物ははじめに一般的な攪拌翼のついた攪拌装置で混合し、その後3本ロールで2回パスし均一な溶液とした。グラインドメーターにて樹脂組成物中に含まれる各成分の粒子径を測定したところ、いずれも15μm以下であった。得られた樹脂組成物を脱泡装置で樹脂組成物中の泡を完全に脱泡して下記評価を実施した。
Figure JPOXMLDOC01-appb-T000020
<1>大日精化工業株式会社製 球状有機ビーズ(分子内にウレタン結合を有する架橋球状有機ビーズ)の製品名、平均粒子径7μm
<2>クラリアントジャパン株式会社製 リン元素を含有する微粒子(ジエチルホスフィン酸アルミニウム塩)の製品名、平均粒子径2.5μm
<3>日産化学株式会社製 熱硬化性樹脂(トリグリシジルイソシアヌレート)の製品名<4>BASFジャパン株式会社製 光重合開始剤の製品名
<5>日立化成工業株式会社製 EO変性ビスフェノールAジメタクリレートの製品名
<6>共栄社化学株式会社製 ブタジエン系消泡剤の製品名。
 <ポリイミドフィルム上への硬化膜の形成>
 上記樹脂組成物を、ベーカー式アプリケーターを用いて、25μmのポリイミドフィルム(株式会社カネカ製:商品名25NPI)に最終乾燥厚みが20μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥した後、300mJ/cmの積算露光量の紫外線を照射して露光した。次いで、1.0重量%の炭酸ナトリウム水溶液を30℃に加熱した溶液を用いて、1.0kgf/mmの吐出圧で90秒スプレー現像を行った。現像後、純水で十分洗浄した後、150℃のオーブン中で30分加熱硬化させてポリイミドフィルム上に硬化膜を形成した積層体を得た。
 <硬化膜の評価>
 上記得られた硬化膜について、以下の項目につき評価を行った。評価結果を表5に記載する。
 (i)(B)成分及び(C)成分の絶縁膜中での分散状況
 上記<ポリイミドフィルム上への硬化膜の作成>の項目と同様の方法で得られた硬化膜を形成した積層体において、5mm×3mmの範囲をカッターナイフで切り出し、エポキシ系包埋樹脂及びカバーガラスを使用して切り出した積層体の絶縁膜側表面及びポリイミドフィルム側表面の両面に保護膜層及びカバーガラス層を形成した後、絶縁膜の厚み方向の断面をイオンビームによるクロスセクションポリッシャ加工を行った。
使用装置:日本電子株式会社製 SM-09020CP相当品
加工条件:加速電圧 6kV
 上記得られた絶縁膜の厚み方向の断面について、走査型電子顕微鏡により観察を行った。
使用装置:株式会社日立ハイテクノロジーズ製 S-3000N相当品
観察条件:加速電圧 15kV
検出器:反射電子検出(組成モード)
倍率:1000倍
○:(B)成分がそれぞれ独立した球状又は楕円状の領域として観察され、且つ(C)成分がそれぞれ独立した不定形の円状又は多角状の領域として観察される。
×:(B)成分がそれぞれ独立した球状又は楕円状の領域として観察されない、又は、(C)成分がそれぞれ独立した不定形の円状又は多角状の領域として観察されない。
 (ii)絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して(B)成分領域の合計の長さの割合
 上記(i)の項目と同様の観察方法で、走査型電子顕微鏡画像の絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように1本の線を引き、線上の(B)成分領域の長さの合計を測定し、絶縁膜領域の長さに対する割合を測定した。
 (iii)絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上における(B)成分の長さ
 上記(i)の項目と同様の観察方法で、走査型電子顕微鏡画像の絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように1本の線を引き、線上の(B)成分領域の最大・最小長さを測定した。
 (iv)絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交する点に向かって引いた線上における(C)成分の長さ
 上記(i)の項目と同様の観察方法で、走査型電子顕微鏡画像の絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面と直交する点に向かって1本の線を引き、(C)成分領域の最大・最小長さを測定した。
 (v)タックフリー性
 上記樹脂組成物を、ベーカー式アプリケーターを用いて、25μmのポリイミドフィルム(株式会社カネカ製:商品名25NPI)に最終乾燥厚みが20μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥して溶媒乾燥後の塗膜を作製した。塗膜のタックフリー性の評価方法は、作製した溶媒乾燥後の塗膜付きフィルムを50mm×30mmの短冊に切り出して、塗膜を内側にして塗膜面同士を重ね合わせ、重ね合わせた部分に300gの荷重を3秒間のせた後、荷重を取り除き、塗膜面を引き剥がした時の状態を観察した。
○:塗膜同士の貼り付きがなく、塗膜に貼り付き跡も残っていない。
△:塗膜同士が少し貼り付き、塗膜に貼り付き跡が残っている。
×:塗膜同士が完全に貼り付いて引き剥がせない。
 (vi)耐折れ性
 上記<ポリイミドフィルム上への硬化膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製アピカル25NPI)表面に20μm厚みの絶縁膜積層フィルムを作製した。絶縁膜積層フィルムの耐折れ性の評価方法は、絶縁膜積層フィルムを50mm×10mmの短冊に切り出して、絶縁膜を外側にして25mmのところで180°に折り曲げ、折り曲げ部に5kgの荷重を3秒間のせた後、荷重を取り除き、折り曲げ部の頂点を顕微鏡で観察した。顕微鏡観察後、折り曲げ部を開いて、再度5kgの荷重を3秒間乗せた後、荷重を取り除き完全に硬化膜積層フィルムを開いた。上記操作を繰り返し、折り曲げ部にクラックが発生する回数を折り曲げ回数とした。
○:折り曲げ回数5回で絶縁膜にクラックが無いもの。
△:折り曲げ回数3回で絶縁膜にクラックが無いもの。
×:折り曲げ1回目に絶縁膜にクラックが発生するもの。
 (vii)電気絶縁信頼性
 フレキシブル銅貼り積層版(電解銅箔の厚み12μm、ポリイミドフィルムは株式会社カネカ製アピカル25NPI、ポリイミド系接着剤で銅箔を接着している)上にライン幅/スペース幅=100μm/100μmの櫛形パターンを作製し、10容量%の硫酸水溶液中に1分間浸漬した後、純水で洗浄し銅箔の表面処理を行った。その後、上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で櫛形パターン上に20μm厚みの絶縁膜を作製し試験片の作成を行った。85℃、85%RHの環境試験機中で試験片の両端子部分に100Vの直流電流を印加し、絶縁抵抗値の変化やマイグレーションの発生などを観察した。
○:試験開始後、1000時間で10の8乗以上の抵抗値を示し、マイグレーション、デンドライトなどの発生が無いもの。
×:試験開始後、1000時間でマイグレーション、デンドライトなどの発生があるもの。
 (viii)半田耐熱性
 上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、75μm厚みのポリイミドフィルム(株式会社カネカ製アピカル75NPI)表面に20μm厚みの絶縁膜積層フィルムを作製した。
得られた絶縁膜積層フィルムを260℃で完全に溶解してある半田浴に絶縁膜が塗工してある面が接する様に浮かべて10秒後に引き上げた。その操作を3回行い、フィルム表面の状態を観察した。
○:絶縁膜に異常がない。
×:絶縁膜に膨れや剥がれなどの異常が発生する。
 (ix)反り
 上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製アピカル25NPI)表面に20μm厚みの絶縁膜積層フィルムを作製した。
得られた絶縁膜積層フィルムを50mm×50mmの面積に切り出して平滑な台の上に絶縁膜が上面になるように置き、フィルム端部の反り高さを測定した。測定部位の模式図を図3に示す。ポリイミドフィルム表面での反り量が少ない程、プリント配線板表面での応力が小さくなり、プリント配線板の反り量も低下することになる。反り量は5mm以下であることが好ましい。尚、筒状に丸まる場合は×とした。
 (x)難燃性
 プラスチック材料の燃焼性試験規格UL94VTMに従い、以下のように燃焼性試験を行った。上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製:商品名アピカル25NPI)両面に25μm厚みの絶縁膜積層フィルムを作製した。 上記作製したサンプルを寸法:50mm幅×200mm長さ×75μm 厚み(ポリイミドフィルムの厚みを含む)に切り出し、125mmの部分に標線を入れ、直径約13mmの筒状に丸め、標線よりも上の重ね合わせ部分(75mmの箇所)、及び、上部に隙間がないようにPIテープを貼り、燃焼性試験用の筒を20本用意した。 そのうち10本は(1)23℃/50%相対湿度/48時間で処理し、残りの10本は(2)70℃で168時間処理後無水塩化カルシウム入りデシケーターで4時間以上冷却した。これらのサンプルの上部をクランプで止めて垂直に固定し、サンプル下部にバーナーの炎を3秒間近づけて着火する。3秒間経過したらバーナーの炎を遠ざけて、サンプルの炎や燃焼が何秒後に消えるか測定する。
○:各条件((1)、(2))につき、サンプルからバーナーの炎を遠ざけてから平均(10本の平均)で10秒以内、最高で10秒以内に炎や燃焼が停止し自己消火し、かつ、評線まで燃焼が達していないもの。
×:1本でも10秒以内に消火しないサンプルがあったり、炎が評線以上のところまで上昇して燃焼するもの。
Figure JPOXMLDOC01-appb-T000021
 (比較例2b)
 攪拌機、温度計、窒素導入管、ディーンスタークレシバー及び冷却管を備えた反応容器に、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物58.8g(0.20モル)、3-アミノプロパノール30g(0.40モル)、及びジメチルアセトアミド200ミリリットルを仕込み、窒素雰囲気下、100℃で1時間撹拌した。次いで、トルエン50ミリリットルを加え、180℃4時間加熱し、イミド化反応により生じた水をトルエンと共沸により除いた。反応溶液を水2リットルに投入して、生じた沈殿を濾取し、水洗後減圧乾燥し、2官能性水酸基末端イミドオリゴマー粉末43.16gを得た。次いで、攪拌機、温度計、及び窒素導入管を備えた反応容器に、ポリカーボネートジオール(株式会社クラレ製、製品名クラレポリオールC-2015、重量平均分子量2000)29.94g(0.015モル)、2,2-ビス(ヒドロキシメチル)プロピオン酸1.01g(7.50ミリモル)、4,4’-ジフェニルメタンジイソシアネート8.53g(34.09ミリモル)、イソホロン13.7gを仕込み、窒素雰囲気下、80℃で1.5時間撹拌した。次いで、上記調製した2官能性水酸基末端イミドオリゴマー6.13g(15.00ミリモル)、イソホロン31.9gを加え、80℃で1.5時間撹拌した。得られたウレタン樹脂溶液の固形分濃度は50重量%、数平均分子量は26000であった。上記得られたウレタン樹脂溶液に、ウレタン樹脂100質量部に対してエポキシ樹脂(ダイセル化学工業株式会社製、製品名エポリードPB3600、エポキシ当量194)を10質量部、ブロックイソシアネート(DIC株式会社、製品名バーノックD-550)を20質量部、及びアミン系硬化触媒(四国化成工業株式会社製、製品名キュアゾール2E4MZ)0.8質量部加え、均一に撹拌・混合した。更に微粉状シリカ(日本アエロジル株式会社製、製品名アエロジル130、比表面積(BET法)130m/g)10質量部加え、攪拌・混練して、均一に混合された樹脂組成物を得た。この樹脂組成物を実施例1bと同様の方法で物性評価を行った。その結果を表5に記載する。
 (比較例3b)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリカーボネートジオール(株式会社クラレ製、製品名クラレポリオールC-1065N、重量平均分子量991)70.7g、2,2-ジメチロールブタン酸13.5g、ジエチレングリコールエチルエーテルアセテート128.9gを仕込み、90℃に加熱してすべての原料を溶解した。反応液の温度を70℃まで下げ、滴下ロートによりメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製、製品名デスモジュール-W)42.4gを30分かけて滴下した。滴下終了後、80℃で1時間、90℃で1時間、100℃で2時間反応を行い、ほぼイソシアネートが消失したことを確認した後、イソブタノール(和光純薬(株)製)1.46gを滴下し、さらに105℃にて1.5時間反応を行った。得られたウレタン樹脂溶液の固形分濃度は50%、数平均分子量は6,800、固形分の酸価は40mgKOH/gであった。上記得られたウレタン樹脂溶液に、ウレタン樹脂100質量%に対して、エポキシ樹脂(ジャパンエポキシレジン株式会社製、製品名jER828EL)を37.5質量%、硬化促進剤としてメラミンを4質量%、コアシェル多層構造をもつ有機微粒子(ガンツ化成株式会社製、製品名スタフィロイドAC-3816、平均粒子径 0.5μm)を20質量%の割合で加え、攪拌・混練して、均一に混合された樹脂組成物を得た。この樹脂組成物を実施例1bと同様の方法で物性評価を行った。その結果を表5に記載する。
 (比較例4b)
 メタクリル酸、メタクリル酸メチル及びアクリル酸メチルを20:45:35の質量割合で共重合させた共重合体(重量平均分子量70,000、酸価117mg/g)を70質量部(固形分)、ウレタン結合を有するモノマー(新中村化学工業株式会社製、製品名UA-11)を30質量部(固形分)、光重合開始剤(BASFジャパン株式会社製、製品名イルガキュア651)を5質量部、ジエチルホスフィン酸アルミニウム塩(クラリアントジャパン株式会社製、製品名エクソリットOP-930)を13質量部、熱硬化剤(日立化成工業株式会社製、2,2-ビス[4-(4-N-マレイミジニルフェノキシ)フェニル]プロパン)を10質量部、熱重合開始剤(日本油脂株式会社製、製品名パーヘキシン25B)を2質量部、メチルエチルケトンを20質量部加え、攪拌・混練して、均一に混合された樹脂組成物を得た。この樹脂組成物を実施例1bと同様の方法で物性評価を行った。その結果を表5に記載する。
 本願発明の絶縁膜は、繰り返し折り曲げに耐え得る柔軟性、難燃性、電気絶縁信頼性に優れ、反りが小さいため、フレキシブル基板の絶縁膜として特に適しているのである。また更には、各種配線被覆保護剤、耐熱性接着剤、電線・ケーブル絶縁被膜等にも用いられる。
 1  絶縁膜
 2  連続相
 3  分散相(球状有機ビーズ)
 4  分散相(リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子)
 4’ 分散相(リン元素を含有する微粒子)
 5  基材
 6  絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線
 7  基材面
 8  樹脂組成物を積層したポリイミドフィルム
 9  反り量
 10  平滑な台
 
 
 
 

Claims (21)

  1.  (A)バインダーポリマーを含有する絶縁膜であって、
     前記絶縁膜は少なくとも(B)球状有機ビーズ、及び(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子を含有しており、
     前記(B)球状有機ビーズ及び前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子は、前記絶縁膜中に分散しており、
     前記絶縁膜の厚み方向の断面の任意の125μm×15μmの範囲において、前記(B)球状有機ビーズが20~50%の面積を占めることを特徴とする絶縁膜。
  2.  前記(A)バインダーポリマーが、分子内にウレタン結合を含有する化合物であることを特徴とする請求項1に記載の絶縁膜。
  3.  前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子が、リン元素を含有する微粒子であることを特徴とする請求項1または2に記載の絶縁膜。
  4.  前記絶縁膜の厚み方向の断面の125μm×15μmの任意の範囲において、前記(B)球状有機ビーズの半数以上が3~15μmの粒子径で存在していることを特徴とする請求項1~3のいずれか1項に記載の絶縁膜。
  5.  前記絶縁膜の厚み方向の断面の125μm×15μmの任意の範囲において、前記(B)球状有機ビーズの全数が15μm以下の粒子径で存在していることを特徴とする請求項1~4のいずれか1項に記載の絶縁膜。
  6.  前記(B)球状有機ビーズの配合量が、(A)バインダーポリマー100重量部に対して30~100重量部であることを特徴とする請求項1~5のいずれか1項に記載の絶縁膜。
  7.  前記(B)球状有機ビーズが、分子内にウレタン結合を含有する架橋球状有機ビーズであることを特徴とする請求項1~6のいずれか1項に記載の絶縁膜。
  8.  前記絶縁膜の厚み方向の断面の125μm×15μmの任意の範囲において、前記(C)リン、アルミニウム及びマグネシウムからなる群から選ばれる少なくとも1種の元素を含有する微粒子が1~10μmの粒子径で存在していることを特徴とする請求項1~7のいずれか1項に記載の絶縁膜。
  9.  前記(C)リン元素を含有する微粒子が更にアルミニウム元素を含有することを特徴とする請求項3に記載の絶縁膜。
  10.  更に(D)熱硬化性樹脂を含有することを特徴とする請求項1~9のいずれか1項に記載の絶縁膜。
  11.  更に(E)光重合開始剤を含有することを特徴とする請求項1~10のいずれか1項に記載の絶縁膜。
  12.  少なくとも請求項1~11のいずれか1項に記載の絶縁膜をプリント配線板に被覆した絶縁膜付きプリント配線板。
  13.  (A)分子内にウレタン結合を有する化合物を含有する絶縁膜であって、
     前記絶縁膜は少なくとも(B)球状有機ビーズ、及び(C)リン元素を含有する微粒子を含有しており、
     前記(B)球状有機ビーズ及び前記(C)リン元素を含有する微粒子は、前記絶縁膜中に分散しており、
     前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、絶縁膜領域の長さに対して前記(B)球状有機ビーズ領域の合計の長さが20~80%であることを特徴とする絶縁膜。
  14.  前記(B)球状有機ビーズの少なくとも1個が、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、3~15μmの長さであることを特徴とする請求項13に記載の絶縁膜。
  15.  前記(B)球状有機ビーズの配合量が、(A)分子内にウレタン結合を有する化合物100重量部に対して30~100重量部であることを特徴とする請求項13または14に記載の絶縁膜。
  16.  前記(B)球状有機ビーズが、分子内にウレタン結合を有する架橋球状有機ビーズであることを特徴とする請求項13~15のいずれか1項に記載の絶縁膜。
  17.  前記(C)リン元素を含有する微粒子の少なくとも1個が、前記絶縁膜の厚み方向の断面中で絶縁膜表面の任意の点から基材面に向かって基材面と直交するように引いた線上において、1~10μmの長さであることを特徴とする請求項13~16のいずれか1項に記載の絶縁膜。
  18.  前記(C)リン元素を含有する微粒子が更にアルミニウム元素を含有することを特徴とする請求項13~17のいずれか1項に記載の絶縁膜。
  19.  前記絶縁膜は、(D)熱硬化性樹脂を含有している樹脂組成物から得られることを特徴とする請求項13~18のいずれか1項に記載の絶縁膜。
  20.  前記絶縁膜は、(E)光重合開始剤を含有している樹脂組成物から得られることを特徴とする請求項13~19のいずれか1項に記載の絶縁膜。
  21.  少なくとも請求項13~20のいずれか1項に記載の絶縁膜がプリント配線板に被覆された絶縁膜付きプリント配線板。
     
     
PCT/JP2012/054267 2011-03-03 2012-02-22 新規な絶縁膜及び絶縁膜付きプリント配線板 WO2012117915A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/002,552 US8883894B2 (en) 2011-03-03 2012-02-22 Insulating film and printed wiring board provided with insulating film
CN201280011273.5A CN103430638B (zh) 2011-03-03 2012-02-22 新颖的绝缘膜及附带绝缘膜的印刷线路板
JP2013502259A JP6006716B2 (ja) 2011-03-03 2012-02-22 新規な絶縁膜及び絶縁膜付きプリント配線板
KR1020137022884A KR101899338B1 (ko) 2011-03-03 2012-02-22 신규인 절연막 및 절연막 부착 프린트 배선판

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-046765 2011-03-03
JP2011046765 2011-03-03
JP2011-097504 2011-04-25
JP2011-097506 2011-04-25
JP2011097506 2011-04-25
JP2011097504 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012117915A1 true WO2012117915A1 (ja) 2012-09-07

Family

ID=46757853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054267 WO2012117915A1 (ja) 2011-03-03 2012-02-22 新規な絶縁膜及び絶縁膜付きプリント配線板

Country Status (6)

Country Link
US (1) US8883894B2 (ja)
JP (1) JP6006716B2 (ja)
KR (1) KR101899338B1 (ja)
CN (1) CN103430638B (ja)
TW (1) TWI506119B (ja)
WO (1) WO2012117915A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128922A (ja) * 2010-12-14 2016-07-14 株式会社カネカ 新規な感光性樹脂組成物及びその利用
CN106279930A (zh) * 2016-09-12 2017-01-04 山东理工大学 菱沸石‑红磷协同阻燃剂的制备方法
JP2019011383A (ja) * 2017-06-29 2019-01-24 富士ゼロックス株式会社 ポリイミド前駆体溶液、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
WO2023031987A1 (ja) * 2021-08-30 2023-03-09 昭和電工マテリアルズ株式会社 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579309B2 (ja) * 2015-05-01 2019-09-25 味の素株式会社 硬化性組成物
CN110856367B (zh) * 2019-11-22 2021-05-18 湖南东神自动化设备有限公司 一种电路板覆膜机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013033A (ja) * 1998-06-25 2000-01-14 Denso Corp プリント配線板及び電子装置
JP2007270137A (ja) * 2006-03-09 2007-10-18 Showa Denko Kk 熱硬化性樹脂組成物及びその用途
WO2007125806A1 (ja) * 2006-04-28 2007-11-08 Showa Denko K.K. 熱硬化性樹脂組成物およびその用途
WO2008108357A1 (ja) * 2007-03-05 2008-09-12 Toagosei Co., Ltd. 感光性組成物、ソルダーレジストおよび感光性ドライフィルム
JP2009016671A (ja) * 2007-07-06 2009-01-22 Ube Ind Ltd テープキャリアパッケージ用柔軟性配線板
JP2009271445A (ja) * 2008-05-09 2009-11-19 Kaneka Corp 新規な感光性樹脂組成物及びその利用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239312B2 (ja) * 1994-03-31 2001-12-17 川崎製鉄株式会社 耐食性に優れた電気絶縁被膜を有する電磁鋼板
JP3492316B2 (ja) * 2000-09-22 2004-02-03 住友ベークライト株式会社 絶縁膜用材料、絶縁膜用コーティングワニス及びこれらを用いた絶縁膜並びに半導体装置
KR101271989B1 (ko) 2005-03-28 2013-06-05 우베 고산 가부시키가이샤 폴리이미드 수지 및 경화성 수지 조성물
EP1991618A1 (en) * 2006-03-09 2008-11-19 Showa Denko K.K. Thermosetting resin composition and uses thereof
JP5082566B2 (ja) 2006-11-01 2012-11-28 日立化成工業株式会社 感光性樹脂組成物、感光性フィルム、レジストパターンの形成方法及びプリント配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013033A (ja) * 1998-06-25 2000-01-14 Denso Corp プリント配線板及び電子装置
JP2007270137A (ja) * 2006-03-09 2007-10-18 Showa Denko Kk 熱硬化性樹脂組成物及びその用途
WO2007125806A1 (ja) * 2006-04-28 2007-11-08 Showa Denko K.K. 熱硬化性樹脂組成物およびその用途
WO2008108357A1 (ja) * 2007-03-05 2008-09-12 Toagosei Co., Ltd. 感光性組成物、ソルダーレジストおよび感光性ドライフィルム
JP2009016671A (ja) * 2007-07-06 2009-01-22 Ube Ind Ltd テープキャリアパッケージ用柔軟性配線板
JP2009271445A (ja) * 2008-05-09 2009-11-19 Kaneka Corp 新規な感光性樹脂組成物及びその利用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128922A (ja) * 2010-12-14 2016-07-14 株式会社カネカ 新規な感光性樹脂組成物及びその利用
CN106279930A (zh) * 2016-09-12 2017-01-04 山东理工大学 菱沸石‑红磷协同阻燃剂的制备方法
JP2019011383A (ja) * 2017-06-29 2019-01-24 富士ゼロックス株式会社 ポリイミド前駆体溶液、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
WO2023031987A1 (ja) * 2021-08-30 2023-03-09 昭和電工マテリアルズ株式会社 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法

Also Published As

Publication number Publication date
US20130333931A1 (en) 2013-12-19
JP6006716B2 (ja) 2016-10-12
US8883894B2 (en) 2014-11-11
JPWO2012117915A1 (ja) 2014-07-07
CN103430638B (zh) 2016-02-03
KR20140009329A (ko) 2014-01-22
TW201245401A (en) 2012-11-16
CN103430638A (zh) 2013-12-04
TWI506119B (zh) 2015-11-01
KR101899338B1 (ko) 2018-09-17

Similar Documents

Publication Publication Date Title
JP5639284B2 (ja) 黒色感光性樹脂組成物及びその利用
JP6134403B2 (ja) 新規な感光性樹脂組成物及びその利用
JP5797279B2 (ja) 新規な顔料含有絶縁膜用樹脂組成物を用いた顔料含有絶縁膜付きプリント配線板
JP6134264B2 (ja) 新規な感光性樹脂組成物及びその利用
JP2009271445A (ja) 新規な感光性樹脂組成物及びその利用
JP6006716B2 (ja) 新規な絶縁膜及び絶縁膜付きプリント配線板
JP5760099B2 (ja) 新規な絶縁膜用樹脂組成物及びその利用
JP2012237864A (ja) 新規な黒色感光性樹脂組成物及びその利用
JP5764371B2 (ja) 新規な感光性樹脂組成物及びその利用
JP5739209B2 (ja) 新規な感光性樹脂組成物及びその利用
JP6134188B2 (ja) 黒色感光性樹脂組成物及びその利用
JP5764368B2 (ja) 新規な感光性樹脂組成物及びその利用
JP6066653B2 (ja) 新規な感光性樹脂組成物及びその利用
JP6134187B2 (ja) 黒色感光性樹脂組成物及びその利用
JP6387130B2 (ja) 黒色感光性樹脂組成物及びその利用
JP2017058618A (ja) 回路基板用絶縁膜およびその製造方法
JP6043066B2 (ja) 新規な絶縁膜及びその利用、並びに絶縁膜の生産方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502259

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137022884

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752502

Country of ref document: EP

Kind code of ref document: A1