WO2012117869A1 - Rtm成形装置及びrtm成形方法、並びに半成形体 - Google Patents

Rtm成形装置及びrtm成形方法、並びに半成形体 Download PDF

Info

Publication number
WO2012117869A1
WO2012117869A1 PCT/JP2012/053798 JP2012053798W WO2012117869A1 WO 2012117869 A1 WO2012117869 A1 WO 2012117869A1 JP 2012053798 W JP2012053798 W JP 2012053798W WO 2012117869 A1 WO2012117869 A1 WO 2012117869A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
cavity
molding
rtm
Prior art date
Application number
PCT/JP2012/053798
Other languages
English (en)
French (fr)
Inventor
宣也 林
将征 金升
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA2819121A priority Critical patent/CA2819121C/en
Priority to RU2013123130/05A priority patent/RU2551517C2/ru
Priority to BR112013013130A priority patent/BR112013013130B1/pt
Priority to EP12752819.8A priority patent/EP2682247B1/en
Priority to US13/989,931 priority patent/US9919463B2/en
Priority to CN201280003928.4A priority patent/CN103237642B/zh
Publication of WO2012117869A1 publication Critical patent/WO2012117869A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/547Measures for feeding or distributing the matrix material in the reinforcing structure using channels or porous distribution layers incorporated in or associated with the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet

Definitions

  • the present invention relates to an RTM molding apparatus, an RTM molding method, and a semi-molded body for RTM molding by impregnating a fiber reinforced base material with a resin.
  • CFRP Fiber Reinforced Plastics
  • CFRP Fiber Reinforced Plastics
  • RTM Resin Transfer Molding
  • a fiber reinforced base is placed in a pair of female and male molds, the mold is closed, and then a resin is injected into the reduced pressure mold from a resin injection port. In this method, the material is impregnated with resin.
  • FIG. 1 In a general RTM molding method, as shown in FIG.
  • the resin is injected from the resin injection line 2 provided at the end portion, flows in the reinforcing fiber substrate 11 in the surface direction, and is provided at the opposite end portion.
  • the suction line 3 is discharged.
  • the resin since the resin flows in the fiber reinforced base material, low viscosity and high fluidity of the resin are indispensable characteristics.
  • RTM method has the advantage that it can be molded with very high shape accuracy.
  • the resin since the resin is impregnated from the end portion of the fiber reinforced base material toward the opposite end portion, when the member is increased in size and thickened, it takes much time for the resin impregnation. In some cases, an unimpregnated region may occur. If the injection pressure is increased in order to increase the resin injection speed for the purpose of shortening the impregnation time, the pressure loss increases and there is a risk of causing fiber meandering.
  • FIG. 10 shows a method in which a plurality of injection ports are arranged in the upper mold, the resin is supplied to the fiber reinforced base material, and impregnated in the thickness direction of the fiber reinforced base material.
  • FIG. 11 shows a method in which the porous plate 41 and the intermediate member 40 are placed on the fiber reinforced base material and impregnated from substantially the entire surface of the fiber reinforced base material in the plate thickness direction.
  • the intermediate member 40 a resin-made perforated film or the like is used as the intermediate member 40.
  • the resin viscosity and the toughness of the molded article are contradictory. That is, the toughness of the molded article formed by lowering the viscosity of the resin by impregnating the fiber-reinforced base material by decreasing the molecular weight or the like is lower than that when using a resin having a large molecular weight and a high viscosity. Therefore, it is desirable to impregnate the fiber reinforced base material with high viscosity.
  • the present invention has been made in view of such circumstances, and can impregnate a resin without causing impregnation, fiber meandering, etc. even for large members and thick plate members, and has high toughness and
  • An object of the present invention is to provide an RTM molding apparatus and an RTM molding method capable of obtaining a highly accurate molded body, and to provide a semi-molded body applicable to the RTM molding apparatus.
  • the present invention comprises a mold having a cavity formed therein, a resin injection line and a suction line communicating with the cavity, and a fiber reinforced base material is disposed in the cavity.
  • An RTM molding apparatus configured to form a molded body by reducing the pressure in the cavity and injecting a resin composition into the cavity and impregnating the fiber reinforced base material, and the fiber reinforced base material and A surface molding layer that is disposed between the molding die, has a plurality of through holes, and has a rigidity that does not substantially change in thickness under pressure in the cavity when the inside of the cavity is decompressed;
  • a resin diffusion part including a resin flow channel located on the side of the surface molding layer opposite to the fiber reinforced base and formed in communication with a plurality of through-holes of the surface molding layer; Providing RTM molding device comprising at least one side of the.
  • the diameter of the through hole of the surface molding layer is set to a predetermined value or less at which the shape is not transferred to the molded body under a pressure when the inside of the cavity is decompressed.
  • the said resin diffusion part is equipped with the said resin diffusion part in the at least one surface of the side in which the resin of the said fiber reinforced base material is inject
  • the resin flow path communicates with the resin injection line, and when the resin diffusion portion is provided on the fiber reinforced base material discharge side, the resin flow path Is preferably communicated with the suction line.
  • the resin diffusion portion having the above-described configuration, it is possible to maintain a void area where the resin injected into the cavity can be quickly diffused in the surface direction. Thereby, it is possible to supply the resin from the entire surface of the fiber reinforced base material and impregnate it in the thickness direction. Moreover, it becomes possible to discharge
  • the surface molding layer in contact with the fiber reinforced base material is formed in such a size that the hole shape is not transferred to the fiber reinforced base material, the surface of the molded body can be a surface without unevenness.
  • the surface molding layer has a rigidity that does not substantially change in thickness even under pressure in the cavity at the time of resin injection.
  • the rigid porous member does not act as a damper in the step of impregnating the fiber reinforced base material with the resin, so that high thickness accuracy of the molded body can be ensured.
  • substantially no change in thickness means including a change in thickness within a range allowed by the dimensional accuracy required when forming a molded body. For example, primary structural members of aircraft may require dimensional accuracy of about ⁇ 0.1 mm or less.
  • the resin diffusion portion is formed with a plurality of through-holes having a diameter larger than a through-hole formed in a layer adjacent to the fiber reinforced base material side, and is substantially under the pressure. It has at least one resin diffusion layer disposed between the surface molding layer and the molding die, and has a rigidity that does not change in thickness, and a through hole formed in each layer is formed in another adjacent layer A resin flow path may be formed in communication with the formed through hole.
  • the fiber reinforced base material can be impregnated with the resin composition in a shorter time, more evenly and without meandering the fibers without processing into a mold. It becomes possible.
  • the resin diffusion layer has a rigidity that does not substantially change in thickness even under pressure in the cavity at the time of resin injection. As a result, the rigid porous member does not act as a damper in the step of impregnating the fiber reinforced base material with the resin, so that high thickness accuracy of the molded body can be ensured. Since the resin diffusion layer is formed larger than the through-hole formed in the layer located on the fiber reinforced substrate side, the injected resin is quickly diffused. Since the size of the holes formed in the resin diffusion layer gradually decreases toward the surface molding layer side, it is possible to prevent one layer from falling into the holes of the other layer.
  • the resin diffusion layer is preferably a perforated plate made of a punching metal.
  • the surface molding layer is preferably a perforated plate made of a punching metal.
  • punched metal is less expensive than perforated film, it can be made disposable. This facilitates cleaning of the mold after release. Moreover, the punching metal has higher rigidity than a perforated film or the like, and the thickness does not substantially change even under pressure in the cavity.
  • the diameter of the through hole formed in the surface molding layer is preferably 0.3 mm or more and 2 mm or less.
  • the hole diameter is 0.3 mm to 2 mm, preferably 0.5 mm to 1 mm. If the hole diameter is too large, the rigidity of the fiber may be lost depending on conditions, and the hole shape may be transferred to the surface of the molded body. If the pore diameter is too small, the resin composition may hardly flow depending on conditions.
  • the through holes formed in the surface molding layer and the resin diffusion layer are formed in a shape different from the through holes formed in other adjacent layers. In the aspect of the invention described above, it is preferable that the through holes formed in the surface molding layer and the resin diffusion layer are arranged out of phase with the through holes formed in other adjacent layers.
  • the said resin diffusion part contains the groove
  • a resin flow path may be formed.
  • the resin diffusion portion includes a groove formed on the surface of the mold on the fiber reinforced base side, and the groove communicates with the suction line and the through hole of the adjacent layer. Thus, a resin flow path may be formed.
  • the groove serves as a resin flow path and can support the diffusion of the resin in the surface direction.
  • the groove is preferably V-shaped.
  • a fiber reinforced base material is disposed in a cavity formed inside a mold, the inside of the cavity is decompressed, and a resin composition is injected into the cavity to impregnate the fiber reinforced base material.
  • a plurality of through-holes are formed on the fiber reinforced base material disposed in the cavity, and the pressure in the cavity is reduced when the pressure in the cavity is reduced.
  • a step of disposing a surface molding layer having rigidity that does not substantially change in thickness; and a resin diffusion part including a resin path on the side of the surface molding layer opposite to the fiber-reinforced base material Providing an RTM molding method comprising: providing a surface molding layer so as to communicate with a through hole of the surface molding layer.
  • the diameter of the through hole of the surface molding layer is set to a predetermined value or less at which the shape is not transferred to the molded body under a pressure when the inside of the cavity is decompressed.
  • the resin composition when the resin diffusion part and the surface molding layer having the rigidity that does not deform under the pressure in the cavity are provided on the resin supply side, the resin composition is diffused, so that the fiber reinforced base material can be dispersed from substantially the entire surface.
  • the resin composition can be supplied and impregnated in the thickness direction.
  • a high-quality molded article can be formed in a shorter time without causing unimpregnated regions and fiber meandering.
  • a highly viscous resin composition with improved toughness can be applied, a molded article with high toughness can be formed.
  • the resin composition can be discharged from substantially the entire surface of the fiber reinforced base material. By doing so, it becomes possible to impregnate the fiber reinforced substrate with the resin composition in a shorter time, more evenly and without meandering the fibers.
  • a plurality of through holes having a diameter larger than the through holes formed in the layer adjacent to the fiber reinforced substrate side are formed, and under the pressure At least one resin diffusion layer having rigidity that does not substantially change in thickness is formed between the surface molding layer and the molding die, and through holes formed in each layer are formed in other adjacent layers. You may arrange
  • the resin diffusion part By making the resin diffusion part a resin diffusion layer, the resin composition is impregnated into the fiber reinforced base material in a shorter time, more evenly, and without causing the fibers to meander without being processed into a mold. It becomes possible.
  • the surface molding layer is preferably a perforated plate made of a punching metal.
  • the diameter of the through-hole formed in the said surface molding layer shall be 0.3 mm or more and 2 mm or less.
  • the hole diameter is 0.3 mm or more and 2 mm or less, preferably 0.5 mm or more and 1 mm or less. By doing so, it is possible to prevent the hole shape from being transferred to the molded body more reliably.
  • the layers in which through holes having different shapes are formed are arranged adjacent to each other.
  • the layers in which a plurality of through holes are formed in different phases are adjacent to each other.
  • a groove communicating with the resin injection line and a through hole of an adjacent layer may be formed on the surface of the mold on the side of the fiber reinforced substrate.
  • a groove communicating with the suction line and the through hole of the adjacent layer may be formed on the surface of the molding die on the fiber reinforced base side. good. By doing so, the groove becomes a resin flow path, and the diffusion of the resin in the surface direction can be supported. In consideration of cleaning after mold release, the groove may be formed in a V shape.
  • the present invention also includes a molding die having a cavity formed therein, a resin injection line and a suction line communicating with the cavity, a fiber reinforced base material is disposed in the cavity, and the inside of the cavity is decompressed. And a semi-molded body applied to an RTM molding device configured to mold a molded body by injecting a resin composition into the cavity and impregnating the fiber-reinforced base material, wherein a plurality of through holes are formed. And a surface molding layer having a rigidity that does not substantially change in thickness under the pressure in the cavity when the inside of the cavity is decompressed, and on the side of the surface molding layer opposite to the fiber-reinforced substrate.
  • a semi-molded body provided with a resin diffusion part including a resin flow path formed in communication with a plurality of through-holes of the surface molding layer disposed on one side or both sides of the fiber reinforced base material. .
  • the diameter of the through hole of the surface molding layer is set to a predetermined value or less at which the shape is not transferred to the molded body under the pressure in the cavity when the inside of the cavity is decompressed. Is preferred.
  • the fiber reinforced base material is placed on a rigid member, it can be prevented from being deformed or damaged during transportation.
  • the resin composition is diffused by the surface molding layer and the resin diffusion portion, supplied or discharged from substantially the entire surface of the fiber reinforced base material, and impregnated in the plate thickness direction.
  • a molded article with high dimensional accuracy can be formed in a short time without causing unimpregnation or meandering of fibers.
  • a tough structural member can be molded. The molded body formed in this way can be applied to a primary member of an aircraft.
  • FIG. 1 sectional drawing of the RTM shaping
  • An RTM molding apparatus 100 according to this embodiment includes a molding die 1, a resin injection line 2, a suction line 3, a surface molding layer 4, and a resin diffusion portion 5.
  • Mold 1 is composed of an upper mold and a lower mold.
  • a cavity is formed inside by joining the upper mold to the lower mold.
  • a sealing member 6 is disposed on the joint surface between the upper die and the lower die so that the inside of the cavity is sealed when the upper die and the lower die are joined.
  • the resin injection line 2 and the suction line 3 are provided in communication with the cavity.
  • one end of the resin injection line 2 is disposed at the upper end of one end surface in the cavity
  • one end of the suction line 3 is disposed at the lower end of the other end surface in the cavity.
  • the surface molding layer 4 is formed with a plurality of holes 7 penetrating in the thickness direction.
  • the hole diameter of the hole 7 is set such that the hole shape of the surface molding layer 4 is not transferred to the surface of the molded body, and is preferably 0.3 mm or more and 2 mm or less, more preferably 0.5 mm or more and 1 mm or less.
  • the aperture ratio may be 51% or less.
  • the shape of the hole 7 is a circle, an oval, a quadrangle, a hexagon, a rectangle, or the like, and is appropriately selected.
  • the arrangement of the holes 7 is a zigzag arrangement, a lattice arrangement, or the like and is appropriately selected.
  • the surface molding layer 4 is made of a material having a rigidity that does not substantially change in thickness even when a pressure is applied in the cavity when the resin is impregnated.
  • a punching metal made of stainless steel, aluminum, iron, copper, or the like may be used.
  • the thickness of the surface molding layer 4 is, for example, about 0.2 mm to 3 mm, preferably 0.3 mm to 2 mm, and more preferably 0.5 mm to 1 mm.
  • the resin diffusion portion 5 includes a resin diffusion layer 8, and in FIG. 1, the resin diffusion layers 8a and 8b are laminated.
  • a lower resin diffusion layer 8 a is laminated on the surface molding layer 4.
  • a plurality of holes 9 penetrating in the thickness direction are formed in the lower resin diffusion layer 8a.
  • the hole 9 has a diameter larger than that of the hole 7 formed in the surface molding layer 4.
  • the opening ratio of the lower resin diffusion layer 8a is preferably higher than the opening ratio of the surface molding layer 4, and the larger the opening ratio, the more advantageous for resin impregnation. In determining the dimensions of the holes 9, it is important that the surface molding layer 4 does not fall into the holes 9 of the lower resin diffusion layer 8a during molding.
  • the shape of the hole 9 may be a circle, an oval, a quadrangle, a hexagon, a rectangle, or the like, and a shape different from the shape of the hole formed by the surface molding layer 4 may be selected.
  • the arrangement of the holes 9 is a zigzag arrangement, a lattice arrangement, or the like, and is appropriately selected. However, in order to shift the phase from the holes 7 formed in the surface molding layer 4, it is preferable to use an arrangement different from that of the surface molding layer 4. .
  • the lower resin diffusion layer 8a is made of a material that does not substantially change in thickness even when a pressure is applied to the cavity when the resin is impregnated.
  • a punching metal made of stainless steel, aluminum, iron, copper, or the like is preferably used.
  • the opening ratio of the lower resin diffusion layer 8a is easily available, for example, about 10% to 60%, but can be further increased by making the shape of the hole rectangular.
  • the thickness of the punching metal is preferably about 1 mm to 4 mm.
  • An upper resin diffusion layer 8b is stacked on the lower resin diffusion layer 8a.
  • the upper resin diffusion layer 8b is arranged such that one surface (upper surface) is in contact with the upper mold and the resin is directly injected from the resin supply line.
  • the upper resin diffusion layer 8b has a plurality of holes 10 penetrating in the thickness direction.
  • the diameter of the hole 10 is larger than the diameter of the hole 9 formed in the lower resin diffusion layer 8a.
  • the hole area ratio of the upper resin diffusion layer 8b is set to be higher than the hole area ratio of the lower resin diffusion layer 8a.
  • the shape of the hole 10 may be a circle, an oval, a quadrangle, a hexagon, a rectangle, or the like, and a shape different from the shape of the hole 9 formed by the lower resin diffusion layer 8a may be selected.
  • the arrangement of the holes 10 may be a zigzag arrangement, a lattice arrangement, or the like, and is selected as appropriate. Is preferred.
  • the upper resin diffusion layer 8b is made of a material that does not substantially change in thickness even when a pressure is applied in the cavity when the resin is impregnated.
  • the upper resin diffusion layer 8b is preferably made of a punching metal made of stainless steel, aluminum, iron, copper, or the like.
  • the thickness of the upper resin diffusion layer 8b is preferably about 1 mm to 4 mm.
  • FIGS. 2 to 4 are examples of punching metal used in the surface molding layer 4 or the resin diffusion layer 8. As shown in FIGS. 2 to 4, it is assumed that the punching metal is not trimmed.
  • the holes 7, 9, and 10 formed in each layer communicate with each other by overlapping with the holes 7, 9, and 10 formed in other layers, and the thickness direction And the resin flow path in which resin can flow to the surface direction is formed.
  • the reinforcing fibers used in the present embodiment are carbon fibers, glass fibers, aramid fibers, metal fibers, boron fibers, alumina fibers, silicon carbide high-strength synthetic fibers, and the like, and carbon fibers are particularly preferable.
  • the form of the fiber reinforced base material 11 is not particularly limited, and a unidirectional sheet, a woven fabric, or the like can be employed.
  • the fiber reinforced base material 11 may be formed as a semi-molded body formed in a state where it is placed on the rigid porous member composed of the surface molding layer 4 and the resin diffusion layer 8.
  • thermosetting resins include epoxy resins, unsaturated polyester resins, polyvinyl ester resins, phenol resins, guanamine resins, polyimide resins such as bismaleide and triazine resins, furan resins, polyurethane resins, polydiallyl phthalate resins, Examples include melamine resin, urea resin, and amino resin. Also, a resin obtained by blending a plurality selected from thermosetting resins, thermoplastic resins, and rubbers can be used.
  • the fiber reinforced base material 11 is disposed in the cavity of the lower mold.
  • the surface molding layer 4, the lower resin diffusion layer 8a, and the upper resin diffusion layer 8b are sequentially placed.
  • the holes 7, 9, and 10 of adjacent layers communicate with each other to form a resin flow path.
  • the upper die is joined to the lower die and clamped.
  • a mold release cloth (peel ply) may be inserted between the fiber reinforced substrate 11 and the surface molding layer 4.
  • suction is performed from the suction line 3 to reduce the pressure in the cavity.
  • resin is injected under pressure into the upper resin diffusion layer 8b in the cavity through the resin injection line 2.
  • FIG. 5 shows a cross-sectional view for explaining the flow of the resin.
  • the resin diffusion layer 8 is assumed to be one layer.
  • the resin flows so as to sew holes formed in the upper and lower layers (the resin diffusion layer 8 and the surface molding layer 4). Since the holes formed in the upper and lower layers have different sizes, the holes formed in one layer can communicate with two or more holes formed in the other layer. If the holes A in one cross-section, even if the hole of the upper and lower layers as the hole B 1 is not communicated with the holes A are hole B in the other section (e.g., paper depth direction of FIG.
  • the resin diffused through the resin flow path is supplied to almost the entire surface of the fiber reinforced base material 11 from the holes 7 formed in the surface molding layer 4 and permeates in the thickness direction of the fiber reinforced base material 11. Is done. At this time, excess resin is discharged from the suction line 3. When the resin is impregnated throughout the fiber reinforced substrate 11, the suction is stopped. Thereafter, the inside of the cavity is maintained at a predetermined pressure, for example, 1 atm (101325 Pa) or more, and the resin is cured. When punching metal is used as the surface molding layer 4 and the resin diffusion layer 8, the punching metal may be discarded after releasing the molded body. This facilitates cleaning of the mold after release.
  • the fiber reinforced base material could be impregnated with the resin in about 10 minutes.
  • a flat plate-shaped structural member was molded by a conventional method in which resin is impregnated from one end of a fiber reinforced base as shown in FIG. 9, it took about 35 minutes to impregnate the fiber reinforced base with resin. . From the said result, according to this embodiment, it turned out that resin can be made to impregnate a fiber reinforced base material in a short time.
  • the shape of the molded body is a C shape.
  • FIG. 6 shows an example of a C-shaped structural member. 6A is a top view and FIG. 6B is a cross-sectional view.
  • the size of the C-shaped structural member is 300 mm ⁇ 180 mm ⁇ plate thickness 40 mm and the recess 100 mm ⁇ 100 mm.
  • FIG. 7 shows a cross-sectional view of an RTM molding apparatus 200 for molding the C-shaped structural member shown in FIG. Similar to the first embodiment, the RTM molding apparatus 200 includes a molding die 21, a resin injection line 22, a suction line 23, a surface molding layer 24, and a resin diffusion portion.
  • the mold 21 is composed of an upper mold and a lower mold.
  • a cavity is formed inside by joining the upper mold to the lower mold.
  • a seal member 26 is disposed on the joint surface between the upper die and the lower die so that the inside of the cavity is sealed when the upper die and the lower die are joined.
  • the resin injection line 22 and the suction line 23 are provided in communication with the cavity.
  • one end portion of the resin injection line 22 is disposed on one end surface side in the C-type cavity
  • one end portion of the suction line 23 is disposed on the other end surface side in the C-type cavity.
  • the surface molding layer 24 is the same as that of the first embodiment.
  • the resin diffusion portion is composed of a single resin diffusion layer 28 and a groove (not shown) formed on the surface of the mold in contact with the resin diffusion layer 28. In some cases, the resin diffusion layer 28 may not be included.
  • the resin diffusion layer 28 is the same as the upper resin diffusion layer 8b of the first embodiment. In this embodiment, since the shape of the molded body to be molded is C-shaped, the thickness of the resin diffusion layer (punching metal) 28 is preferably 1 mm to 4 mm. By doing so, R can follow.
  • the groove formed in the molding die is a streak groove communicating with the resin injection line 22.
  • the shape of the streak is preferably V-shaped (triangle). By doing so, cleaning after mold release becomes easy.
  • the formation position of the streak is appropriately set.
  • the fiber reinforced base material 31 is disposed in the cavity, and the surface molding layer 24 and the resin diffusion layer 28 are sequentially placed thereon. At this time, the groove formed in the mold and the hole formed in the resin diffusion layer 28 and the hole of the surface molding layer 24 and the hole of the resin diffusion layer 28 communicate with each other to form a resin flow path.
  • a mold release cloth (peel ply) may be inserted between the fiber reinforced base material 31 and the surface molding layer 24. While sucking in the suction line 23 to reduce the pressure in the cavity, the resin is pressurized and injected from the resin injection line 22.
  • the resin pressure-injected into the cavity from the resin injection line 22 enters the resin diffusion layer 28 and diffuses in the surface direction of the resin diffusion layer 28 that contacts the mold 21 through the streak groove. Thereby, even when the resin diffusion layer 28 is one layer, the resin can be quickly diffused into the surface molding layer 24.
  • Resin is diffused in the surface direction and thickness direction through the resin flow path.
  • the resin is supplied to the substantially entire surface of the fiber reinforced base 31 from the plurality of holes formed in the surface molding layer 24 and permeates in the plate thickness direction of the fiber reinforced base 31. At this time, excess resin is discharged from the suction line 23.
  • suction is stopped. Thereafter, the inside of the cavity is held at a predetermined pressure, and the resin is cured to obtain a molded body.
  • the resin injected under pressure into the cavity is diffused and supplied from substantially the entire surface of the fiber reinforced base material. Can do. Further, since the resin is caused to flow toward the plate thickness direction of the fiber reinforced base material, the distance of the resin passing through the fiber reinforced base material is shorter than that in the conventional method (FIG. 8). Thereby, even when a high-viscosity resin is used, the fiber-reinforced base material can be impregnated with the resin without causing meandering of the fiber. Moreover, even if the thickness of the molded body is about 40 mm, the fiber-reinforced base material can be impregnated in a short time without leaving an unimpregnated region.
  • the surface molding layer is pressed to the fiber-reinforced substrate side, but by reducing the diameter of the holes formed in the surface molding layer, the hole shape of the surface molding layer is transferred to the surface of the molded body. Can be prevented.
  • the surface molding layer and the resin diffusion layer have rigidity that is not deformed by the pressure in the cavity during molding. Therefore, even when the surface molding layer and the resin diffusion layer are interposed between the molding die and the fiber reinforced base material, high dimensional (plate thickness) accuracy of the molded body can be ensured.
  • the surface molding layer and the resin diffusion portion are provided on the resin injection side of the fiber reinforced base material, but the positions where the surface molding layer and the resin diffusion portion are provided are not limited thereto.
  • the surface molding layer and the resin diffusing portion may be provided on the resin discharge side of the fiber reinforced base material or on both surfaces of the resin injection side and the resin discharge side.
  • the RTM molding apparatus having the above-described configuration, it is possible to mold molded bodies having different plate thicknesses by using the same molding die by adjusting the number and thickness of the resin diffusion layers. That is, it is not necessary to prepare a new mold if the thickness is slightly changed.
  • the semi-molded product which shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 大型部材及び厚板部材に対しても未含浸や繊維の蛇行等を引き起こさずに樹脂を含浸させることができ、高靭性且つ高精度な成形体を得ることのできるRTM成形装置及びRTM成形方法を提供することを目的とする。RTM成形装置(100)は、繊維強化基材(11)と成形型(1)との間に配置され、貫通孔(7)が複数形成され、且つ、キャビティ内を減圧したときのキャビティ内の圧力下において実質的に厚さが変化しない剛性を有する表面成形層(4)と、表面成形層(4)の繊維強化基材(11)と反対の側に位置し、表面成形層(4)の複数の貫通孔(7)と連通して形成された樹脂流路を含む樹脂拡散部(5)と、を繊維強化基材(11)の少なくとも一方の面側に備える。

Description

RTM成形装置及びRTM成形方法、並びに半成形体
 本発明は、繊維強化基材に樹脂を含浸させてRTM成形するためのRTM成形装置及びRTM成形方法、並びに半成形体に関するものである。
 繊維強化プラスチック(FRP:Fiber Reinforced Plastics)等の複合材は、軽量かつ高強度であるため、航空機、自動車、船舶等の構造部材として広く用いられている。複合材の成形方法の一つとして、RTM(Resin Transfer Molding)成形法がある。RTM成形法は、雌、雄一対の成形金型内に繊維強化基材を配置し、型を閉締した後、減圧された金型内へ樹脂注入口より樹脂を注入することで繊維強化基材に樹脂を含浸させて成形する方法である。
 一般的なRTM成形方法では、図9に示すように、樹脂は、端部に設けられた樹脂注入ライン2から注入され、強化繊維基板11内を面方向に流動して、逆端部に設けられた吸引ライン3から排出される。RTM成形方法では、繊維強化基材の中を樹脂が流動するため、樹脂の低粘度・高流動性は不可欠な特性となる。
 RTM法は、非常に高い形状精度で成形できるという利点がある。しかしながら、上記RTM成形法では、繊維強化基材の端部から逆端部に向けて樹脂を含浸させるため、部材が大型化・厚板化すると、樹脂含浸に多大な時間を要するようになるとともに、未含浸領域が発生するなどの問題が生じる場合がある。含浸時間の短縮を目的として、樹脂の注入速度を速めるため注入圧力を上げると、圧損が大きくなり、繊維の蛇行を引き起こす恐れがある。
 上記課題を解決するために、図10及び図11に示すような板厚方向へ樹脂を含浸させる方法が提案されている。図10は、上型に複数の注入口を配置して、樹脂を繊維強化基材に供給し、繊維強化基材の板厚方向に向けて含浸させる方法である。図11は、繊維強化基材の上に多孔板41と中間部材40とを載置し、繊維強化基材の略全面から板厚方向に向けて含浸させる方法である。中間部材40としては、樹脂製の孔あきフィルムなどが用いられる。
 図10のように複数の注入口を配置する方法では、注入口の設置箇所の最適化に多大な労力を要し、さらなる大型部材・厚板部材への対応に問題がある。また、一般に金型は、離型後に清掃して繰り返し使用されるが、注入口が複数設けられることで、清掃に手間がかかるようになる。
 図11のように中間部材40を載置する方法では、中間部材40に剛性がないため、金型内を真空環境としたときに中間部材40が変形してダンパーとして作用し、成形品の寸法(板厚)精度を確保できなくなるという問題がある。
 また、航空機などの構造部材では、高い靭性が要求される。一般に、樹脂粘度と成形体の靭性とは相反すると言われている。すなわち、分子量を小さくするなどして樹脂の粘度を下げて繊維強化基材に含浸させ、成形した成形体の靭性は、分子量の大きな粘度の高い樹脂を用いた場合と比べて低くなる。そのため、樹脂は高粘度で繊維強化基材に含浸させることが望ましい。
 本発明は、このような事情に鑑みてなされたものであって、大型部材及び厚板部材に対しても未含浸や繊維の蛇行等を引き起こさずに樹脂を含浸させることができ、高靭性且つ高精度な成形体を得ることのできるRTM成形装置及びRTM成形方法を提供するとともに、上記RTM成形装置に適用可能な半成形体を提供することを目的とする。
 上記課題を解決するために、本発明は、内部にキャビティが形成された成形型と、前記キャビティに連通する樹脂注入ライン及び吸引ラインと、を備え、前記キャビティに繊維強化基材を配置し、前記キャビティ内を減圧するとともに、樹脂組成物を前記キャビティ内に注入して前記繊維強化基材に含浸させて成形体を成形するよう構成されたRTM成形装置であって、前記繊維強化基材と前記成形型との間に配置され、貫通孔が複数形成され、且つ、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において実質的に厚さが変化しない剛性を有する表面成形層と、前記表面成形層の前記繊維強化基材と反対の側に位置し、前記表面成形層の複数の貫通孔と連通して形成された樹脂流路を含む樹脂拡散部と、を前記繊維強化基材の少なくとも一方の面側に備えるRTM成形装置を提供する。
 上記発明の一態様において、前記表面成形層の前記貫通孔の径が、前記キャビティ内を減圧したときの圧力下において、前記成形体に形状が転写されない所定値以下とされることが好ましい。
 上記発明の一態様において、前記繊維強化基材の樹脂が注入される側または樹脂が排出される側の少なくとも一方の面に前記樹脂拡散部を備え、前記樹脂拡散部が前記繊維強化基材の樹脂が注入される側に設けられる場合、前記樹脂流路が前記樹脂注入ラインと連通し、前記樹脂拡散部が前記繊維強化基材の樹脂が排出される側に設けられる場合、前記樹脂流路が前記吸引ラインと連通することが好ましい。
 上記構成の樹脂拡散部を備えることで、キャビティ内に注入した樹脂を素早く面方向に拡散できる空隙領域を保持することができる。それによって、繊維強化基材の全面から樹脂を供給して板厚方向に向けて含浸させることが可能となる。また、表面成形層及び樹脂拡散部を、繊維強化基材の樹脂排出側に備えることで、繊維強化基材の全面から樹脂を排出することが可能となる。それにより、より短時間で、より均等に、且つ、繊維を蛇行させることなく繊維強化基材に樹脂組成物を含浸させることが可能となる。
 繊維強化基材に接する表面成形層は、孔形状が繊維強化基材へと転写されない大きさで形成されているため、成形体の表面を凹凸のない面とすることができる。表面成形層は、樹脂注入時のキャビティ内の圧力下においても厚さが実質的に変化しない剛性を有する。それによって、繊維強化基材へ樹脂を含浸させる工程において、剛性多孔部材がダンパーとして作用することがないため、成形体の高い板厚精度を確保することができる。「実質的に厚さが変化しない」とは、成形体としたときに要求される寸法精度で許容される範囲の厚さ変化を含むことを意味する。例えば、航空機の一次構成部材では±0.1mm以下程度の寸法精度が要求される場合がある。
 上記発明の一態様において、前記樹脂拡散部が、前記繊維強化基材側に隣接する層に形成された貫通孔よりも大きな径を有する貫通孔が複数形成され、且つ、前記圧力下において実質的に厚さが変化しない剛性を有する、前記表面成形層と前記成形型との間に配置される少なくとも1の樹脂拡散層からなり、各層に形成された貫通孔が、隣接する他の層に形成された貫通孔と連通して樹脂流路を形成しても良い。
 樹脂拡散部を樹脂拡散層とすることで、成形型に加工することなく、より短時間で、より均等に、且つ、繊維を蛇行させることなく繊維強化基材に樹脂組成物を含浸させることが可能となる。
 樹脂拡散層は、樹脂注入時のキャビティ内の圧力下においても厚さが実質的に変化しない剛性を有する。それによって、繊維強化基材へ樹脂を含浸させる工程において、剛性多孔部材がダンパーとして作用することがないため、成形体の高い板厚精度を確保することができる。
 樹脂拡散層は繊維強化基材側に位置する層に形成された貫通孔よりも大きく形成されているため、注入された樹脂は、素早く拡散される。
 樹脂拡散層に形成された孔の大きさは、表面成形層側に向けて段階的に小さくなるため、一の層が他の層の孔に落ち込むことを防止することができる。
 上記発明の一態様において、前記樹脂拡散層が、パンチングメタルからなる多孔板であることが好ましい。また、上記発明の一態様において、前記表面成形層が、パンチングメタルからなる多孔板であることが好ましい。
 パンチングメタルは、孔あきフィルムなどよりも安価であるため、使い捨てとすることが可能である。それによって、離型後の成形型の清掃が容易となる。また、パンチングメタルは、孔あきフィルムなどよりも剛性が高く、キャビティ内での圧力下においても厚さが実質的に変化することはない。
 上記発明の一態様において、前記表面成形層に形成された貫通孔の径が0.3mm以上2mm以下であることが好ましい。
 孔径は、0.3mm以上2mm以下、好ましくは0.5mm以上1mm以下とすること良い。孔径を大きくしすぎると、条件によっては繊維の剛性が負けてたわんでしまい、成形体表面に孔形状が転写されてしまう恐れがある。孔径を小さくしすぎると、条件によっては、樹脂組成物が流れ難くなる可能性がある。
 上記発明の一態様において、前記表面成形層及び前記樹脂拡散層に形成された貫通孔が、隣接する他の層に形成された貫通孔と異なる形状で形成されることが好ましい。また、上記発明の一態様において、前記表面成形層及び前記樹脂拡散層に形成された貫通孔が、隣接する他の層に形成された貫通孔と位相をずらして配置されることが好ましい。
 そうすることで、各層を積層させたときに、隣接する層にそれぞれ形成された孔同士が完全に重なることがなくなるため、樹脂経路をより確実に形成することが可能となる。
 上記発明の一態様において、前記樹脂拡散部が、成形型の前記繊維強化基材側の面に形成された溝を含み、該溝が、前記樹脂注入ライン及び隣接する層の貫通孔と連通して樹脂流路を形成しても良い。また、上記発明の一態様において、前記樹脂拡散部が、成形型の前記繊維強化基材側の面に形成された溝を含み、該溝が、前記吸引ライン及び隣接する層の貫通孔と連通して樹脂流路を形成しても良い。
 上記構成とすることで、溝が樹脂流路となり、面方向への樹脂の拡散をサポートすることができる。離型後の清掃を考慮すると、溝はV字形状とされることが好ましい。
 また、本発明は、成形型の内部に形成されたキャビティに繊維強化基材を配置し、前記キャビティ内を減圧するとともに、樹脂組成物を前記キャビティ内に注入し、前記繊維強化基材に含浸させて成形体を成形するRTM成形方法であって、前記キャビティに配置した繊維強化基材上に、貫通孔が複数形成され、且つ、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において実質的に厚さが変化しない剛性を有する表面成形層を配置する工程と、前記表面成形層の前記繊維強化基材と反対の側に、樹脂経路を含む樹脂拡散部を、前記樹脂経路が前記表面成形層の貫通孔と連通するよう設ける工程と、を備えるRTM成形方法を提供する。
 上記発明の一態様において、前記表面成形層の前記貫通孔の径を、前記キャビティ内を減圧したときの圧力下において、前記成形体に形状が転写されない所定値以下とすることが好ましい。
 上記発明によれば、樹脂拡散部及びキャビティ内の圧力下で変形しない剛性を有する表面成形層を樹脂供給側に設けた場合、樹脂組成物を拡散させることで、繊維強化基材の略全面から樹脂組成物を供給し、板厚方向に含浸させることが可能となる。これによって、未含浸領域や繊維の蛇行を生じさせることなく、より短時間で高品質の成形体を成形することができる。また、タフ化を向上させた高粘度の樹脂組成物を適用することができるため、靭性の高い成形体を成形することもできる。
 樹脂拡散部及び表面成形層を樹脂排出側に設けた場合、繊維強化基材の略全面から樹脂組成物を排出することが可能となる。そうすることで、より短時間で、より均等に、且つ、繊維を蛇行させることなく繊維強化基材に樹脂組成物を含浸させることが可能となる。
 前記樹脂拡散部を設ける工程において、前記樹脂拡散部として、前記繊維強化基材側に隣接する層に形成された貫通孔よりも大きな径を有する貫通孔が複数形成され、且つ、前記圧力下において実質的に厚さが変化しない剛性を有する少なくとも1の樹脂拡散層を、前記表面成形層と前記成形型との間に、各層に形成された貫通孔が、隣接する他の層に形成された貫通孔と連通して樹脂流路を形成するよう配設しても良い。
 樹脂拡散部を樹脂拡散層とすることで、成形型に加工することなく、樹脂をより短時間で、より均等に、且つ、繊維を蛇行させることなく繊維強化基材に樹脂組成物を含浸させることが可能となる。
 上記発明の一態様において、前記樹脂拡散層を、パンチングメタルからなる多孔板とすることが好ましい。また、上記発明の一態様において、前記表面成形層を、パンチングメタルからなる多孔板とすることが好ましい。
 パンチングメタルを用いることで、低コストで容易に寸法精度の高い成形体を成形することができる。
 上記発明の一態様において、前記表面成形層に形成された貫通孔の径を0.3mm以上2mm以下とすることが好ましい。
 孔径は、0.3mm以上2mm以下、好ましくは0.5mm以上1mm以下とすること良い。そのようにすることで、より確実に成形体に孔形状が転写されないようにすることができる。
 上記発明の一態様において、前記樹脂拡散部を設ける工程において、互いに異なる形状の貫通孔が形成された層を、隣接させて配置することが好ましい。また、上記発明の一態様において、前記樹脂拡散部を設ける工程において、異なる位相で複数の貫通孔が形成された層同士を隣接させて配置するが好ましい。
 そうすることで、各層を積層させたときに、隣接する層にそれぞれ形成された孔同士が完全に重なることがなくなるため、樹脂経路をより確実に形成することが可能となる。
 上記発明の一態様において、前記樹脂拡散部を設ける工程において、成形型の前記繊維強化基材側の面に、前記樹脂注入ライン及び隣接する層の貫通孔と連通する溝を形成しても良い。また、上記発明の一態様において、前記樹脂拡散部を設ける工程において、成形型の前記繊維強化基材側の面に、前記吸引ライン及び隣接する層の貫通孔と連通する溝を形成しても良い。
 そのようにすることで、溝が樹脂流路となり、面方向への樹脂の拡散をサポートすることができる。離型後の清掃を考慮すると、溝をV字形状で形成すると良い。
 また、本発明は、内部にキャビティが形成された成形型と、前記キャビティに連通する樹脂注入ライン及び吸引ラインと、を備え、前記キャビティに繊維強化基材を配置し、前記キャビティ内を減圧するとともに、樹脂組成物を前記キャビティ内に注入して前記繊維強化基材に含浸させて成形体を成形するよう構成されたRTM成形装置に適用される半成形体であって、貫通孔が複数形成され、且つ、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において実質的に厚さが変化しない剛性を有する表面成形層と、前記表面成形層の前記繊維強化基材と反対の側に配置された、前記表面成形層の複数の貫通孔と連通して形成された樹脂流路を含む樹脂拡散部とを、前記繊維強化基材の片面または両面に備える半成形体を提供する。
 上記発明の一態様において、前記表面成形層の前記貫通孔の径が、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において、前記成形体に形状が転写されない所定値以下とされることが好ましい。
 上記発明によれば、繊維強化基材は剛性を有する部材に載置されているため、輸送時に変形や損傷することを防止できる。
 本発明によれば、表面成形層及び樹脂拡散部で樹脂組成物を拡散させて繊維強化基材の略全面から供給または排出し、板厚方向に含浸させることで、大型部材や厚板部材に対しても未含浸や繊維の蛇行等を引き起こさずに、短時間で高い寸法精度の成形体を成形することが可能となる。また、タフ化を向上させた高粘度の樹脂を適用することも可能となるため、高靭性の構造部材を成形することができる。このように成形された成形体は、航空機の一次部材への適用も可能となる。
第1実施形態に係るRTM成形装置の断面図である。 パンチングメタルの一例を示す上面図である。 パンチングメタルの一例を示す上面図である。 パンチングメタルの一例を示す上面図である。 樹脂の流れを説明する断面図である。 C型構造部材の一例を示す図である。 第2実施形態に係るRTM成形装置の断面図である。 従来のRTM成形装置の断面図である。 従来のRTM成形装置の断面図である。 従来のRTM成形装置の断面図である。 従来のRTM成形装置の断面図である。
〔第1実施形態〕
 本実施形態では、平板型構造部材を成形するRTM成形装置及びRTM成形方法について説明する。
 図1に、本実施形態に係るRTM成形装置100の断面図を示す。本実施形態に係るRTM成形装置100は、成形型1、樹脂注入ライン2、吸引ライン3、表面成形層4、及び樹脂拡散部5を備えている。
 成形型1は、上型と下型から構成されている。上型を下型に接合させることで内部にキャビティが形成される。上型と下型との接合面には、上型と下型とを接合させた際にキャビティ内が密閉されるようシール部材6が配置される。
 樹脂注入ライン2及び吸引ライン3は、キャビティ内に連通して設けられている。図1では、樹脂注入ライン2の一端部がキャビティ内の一端面上部、吸引ライン3の一端部がキャビティ内の他端面下部に配置されている。
 表面成形層4は、厚さ方向に貫通した複数の孔7が形成されている。孔7の孔径は、成形体の表面に表面成形層4の孔形状が転写されないような大きさとされ、好ましくは0.3mm以上2mm以下、更に好ましくは0.5mm以上1mm以下とされる。開孔率は、例えば51%以下とされると良い。孔7の形状は、丸、長丸、四角形、六角形、長方形などとされ、適宜選択される。孔7の配列は、千鳥配列、格子配列などとされ、適宜選択される。
 表面成形層4は、樹脂を含浸させる際のキャビティ内に係る圧力が付加されても実質的に厚さが変化しない剛性を有する材質からなる。表面成形層4は、例えば、ステンレス鋼、アルミニウム、鉄または銅などからなるパンチングメタルを用いると良い。表面成形層4の厚さは、例えば、0.2mmから3mm程度、好ましくは0.3mmから2mm、更に好ましくは0.5mmから1mmとされる。
 本実施形態において樹脂拡散部5は、樹脂拡散層8からなり、図1では、樹脂拡散層8a,8bが積層された構成とされている。
 表面成形層4の上には、下部樹脂拡散層8aが積層されている。下部樹脂拡散層8aには、厚さ方向に貫通した複数の孔9が形成されている。孔9の孔径は、表面成形層4に形成された孔7よりも大きな径とされる。下部樹脂拡散層8aの開孔率は表面成形層4の開孔率よりも高い方が好ましく、大きい程樹脂の含浸には有利である。孔9の寸法を決定する上で、重要となるのは、成形時に表面成形層4が下部樹脂拡散層8aの孔9に落ち込まない様にすることである。例えば、長丸または長方形であれば短径,短辺、または丸や六角形であれば直径,対角線を基準に表面成形層4の剛性とのバランスをとる必要がある。そのため、前述の孔の寸法の制約から下部樹脂拡散層8aの開孔率には限界がある。
 孔9の形状は、丸、長丸、四角形、六角形、長方形などとされ、表面成形層4で形成された孔の形状とは別の形状が選択されると良い。孔9の配列は、千鳥配列、格子配列などとされ、適宜選択されるが、表面成形層4で形成された孔7と位相をずらすため、表面成形層4とは異なる配列とすることが好ましい。
 下部樹脂拡散層8aは、樹脂を含浸させる際のキャビティ内に係る圧力が付加されても実質的に厚さが変化しない材質からなる。下部樹脂拡散層8aは、例えば、ステンレス鋼、アルミニウム、鉄または銅などからなるパンチングメタルを用いると良い。下部樹脂拡散層8aの開口率は、例えば、10%から60%程度が入手しやすいが、孔の形状を長方形にするなどの工夫により、それ以上も可能である。パンチングメタルの厚さは、1mmから4mm程度とされると良い。
 下部樹脂拡散層8aの上には、上部樹脂拡散層8bが積層されている。図1において、上部樹脂拡散層8bは、片面(上面)が上型に接し、樹脂供給ラインから樹脂が直接注入されるよう配置されている。上部樹脂拡散層8bは、厚さ方向に貫通した複数の孔10が形成されている。孔10の孔径は、下部樹脂拡散層8aに形成された孔9よりも大きな径とされる。上部樹脂拡散層8bの開孔率は、下部樹脂拡散層8aの開孔率よりも高い範囲とされる。孔10の形状は、丸、長丸、四角形、六角形、長方形などとされ、下部樹脂拡散層8aで形成された孔9の形状とは別の形状が選択されると良い。孔10の配列は、千鳥配列、格子配列などとされ、適宜選択されるが、下部樹脂拡散層8aで形成された孔9と位相をずらすため、下部樹脂拡散層8aとは異なる配列とすることが好ましい。
 上部樹脂拡散層8bは、樹脂を含浸させる際のキャビティ内に係る圧力が付加されても実質的に厚さが変化しない材質からなる。上部樹脂拡散層8bは、ステンレス鋼、アルミニウム、鉄または銅などからなるパンチングメタルを用いると良い。上部樹脂拡散層8bの厚さは、1mmから4mm程度とされると良い。
 図2から図4は、表面成形層4または樹脂拡散層8で用いられるパンチングメタルの一例である。図2から図4に示すように、パンチングメタルは縁取りされていないものとする。
 上記構成の表面成形層4及び樹脂拡散層8では、各層に形成された孔7,9,10が、他の層に形成された孔7,9,10と重なることで連通し、厚さ方向及び面方向へと樹脂が流動可能な樹脂流路が形成されている。
 次に、本実施形態に係るRTM成形方法を説明する。
 本実施形態で用いられる強化繊維は、炭素繊維、ガラス繊維、アラミド繊維、金属繊維、ボロン繊維、アルミナ繊維、炭化ケイ素高強度合成繊維等とされ、特に、炭素繊維が好ましい。繊維強化基材11の形態は特に限定されず、一方向シートや織物等を採用でき、通常、これらを複数枚積層して基材を形成し、必要に応じて事前に賦形した半成形体の形態で用いる。その際、繊維強化基材11を表面成形層4及び樹脂拡散層8から構成された剛性多孔部材の上に載置した状態で賦形した半成形体としておいても良い。また、繊維強化基材11を2の剛性多孔部材で挟んだ状態で賦形した半成形体としてRTM成形装置100に供しても良い。
 本実施形態では樹脂として、熱硬化性樹脂または熱可塑性樹脂を形成するRIM用(Resin Injection Molding)モノマーなどが用いられる。熱硬化性樹脂としては、たとえば、エポキシ樹脂、不飽和ポリエステル樹脂、ポリビニルエステル樹脂、フェノール樹脂、グアナミン樹脂、また、ビスマレイド・トリアジン樹脂等のポリイミド樹脂、フラン樹脂、ポリウレタン樹脂、ポリジアリルフタレート樹脂、さらにメラミン樹脂やユリア樹脂やアミノ樹脂等が挙げられる。
 また、熱硬化性樹脂、熱可塑性樹脂、ゴムから選ばれた複数をブレンドした樹脂を用いることもできる。
 本実施形態に係るRTM成形方法では、まず、下型のキャビティ内に繊維強化基材11を配置する。繊維強化基材11の上に、表面成形層4、下部樹脂拡散層8a、及び上部樹脂拡散層8bを順次載置させる。このとき、隣接する各層の孔7、9、10が連通し、樹脂流路が形成される。その後、上型を下型に接合させて型締めする。繊維強化基材11と表面成形層4との間には、離型用クロス(ピールプライ)を挿入しても良い。次に、吸引ライン3から吸引し、キャビティ内を減圧する。そして樹脂注入ライン2を通してキャビティ内の上部樹脂拡散層8bへ樹脂を加圧注入する。
 注入された樹脂は、樹脂流路を通って、面方向及び厚さ方向に拡散される。図5に、樹脂の流れを説明する断面図を示す。説明の簡略化のため、樹脂拡散層8は1層とした。図5において、樹脂は、上下の層(樹脂拡散層8及び表面成形層4)に形成された孔を縫うように流れる。上下の層に形成された孔はそれぞれ大きさが異なるため、一の層に形成された孔が他の層に形成された2以上の孔と連通することが可能となる。仮に、一断面において孔A、孔Bのように上下の層の孔が連通していない場合であっても、孔Aは、他断面(例えば、図5の紙面奥行き方向)にある孔B(不図示)と連通しているため、樹脂は、孔Bを介して面方向に流動することができる。異なる形状の孔を有する層を隣接させると、より確実に樹脂流路を形成させることができる。また、異なる配列で穿孔された層を隣接させると、より確実に樹脂流路を形成させることができる。
 樹脂流路を経由して拡散された樹脂は、表面成形層4に形成された孔7から繊維強化基材11の略全面へと供給され、繊維強化基材11の板厚方向に向けて浸透される。このとき、余剰な樹脂は吸引ライン3から排出される。樹脂が繊維強化基材11の全体に含浸されたところで、吸引を停止する。その後、キャビティ内を所定圧力、例えば、1気圧(101325Pa)以上に保持し、樹脂を硬化させる。表面成形層4及び樹脂拡散層8としてパンチングメタルを用いた場合、該パンチングメタルは成形体を離型後、廃棄しても良い。それによって、離型後の成形型の清掃が容易となる。
 本実施形態に従って180mm×150mm×板厚25mmの平板型構造部材を成形したところ、繊維強化基材に樹脂を約10分で含浸させることができた。同様に平板型構造部材を、図9に示すような繊維強化基材の一端部から樹脂を含浸させる従来法で成形したところ、繊維強化基材に樹脂を含浸させるのに約35分を要した。上記結果から、本実施形態によれば、樹脂を短時間で繊維強化基材に含浸させることができることがわかった。
〔第2実施形態〕
 本実施形態では、成形体の形状をC型とする。図6に、C型構造部材の一例を示す。図6(a)が上面図、図6(b)が断面図である。図6において、C型構造部材の大きさは、300mm×180mm×板厚40mm、凹部100mm×100mmとする。
 図7に、図6に示すC型構造部材を成形するためのRTM成形装置200の断面図を示す。RTM成形装置200は、第1実施形態と同様に、成形型21、樹脂注入ライン22、吸引ライン23、及び表面成形層24及び樹脂拡散部を備えている。
 成形型21は、上型と下型から構成されている。上型を下型に接合させることで内部にキャビティが形成される。上型と下型との接合面には、上型と下型とを接合させた際にキャビティ内が密閉されるようシール部材26が配置される。
 樹脂注入ライン22及び吸引ライン23は、キャビティ内に連通して設けられている。図7では、樹脂注入ライン22の一端部がC型のキャビティ内の一端面側、吸引ライン23の一端部がC型のキャビティ内の他端面側に配置されている。
 表面成形層24は、第1実施形態と同様とされる。
 樹脂拡散部は、1層の樹脂拡散層28と、該樹脂拡散層28が接する成形型の面に形成された溝(不図示)から構成されている。場合によっては、樹脂拡散層28を含まなくても良い。
 樹脂拡散層28は、第1実施形態の上部樹脂拡散層8bと同様とされる。なお、本実施形態では成形する成形体の形状がC型であるため、樹脂拡散層(パンチングメタル)28の厚さは、1mmから4mmとされることが好ましい。そのようにすることで、Rが追従することができる。
 成形型に形成された溝は、樹脂注入ライン22と連通した筋溝とされる。筋溝の形状は、V字(三角)とさせると良い。そうすることで、離型後の清掃が容易となる。筋溝の形成位置は適宜設定される。
 次に、本実施形態に係るRTM成形方法について説明する。キャビティ内に繊維強化基材31を配置し、その上に表面成形層24及び樹脂拡散層28を順次載置する。このとき、成形型に形成された溝と樹脂拡散層28に形成された孔、及び表面成形層24の孔と樹脂拡散層28の孔とが連通し、樹脂流路が形成される。繊維強化基材31と表面成形層24との間には、離型用クロス(ピールプライ)を挿入しても良い。吸引ライン23により吸引してキャビティ内を減圧するとともに、樹脂注入ライン22より樹脂を加圧注入する。
 樹脂注入ライン22からキャビティ内に加圧注入された樹脂は、樹脂拡散層28に入るとともに、筋溝内を通って成形型21に接触する樹脂拡散層28の面方向へと拡散される。それによって、樹脂拡散層28が1層であった場合でも、表面成形層24へと樹脂を素早く拡散させることができる。
 樹脂は、樹脂流路を通って、面方向及び厚さ方向に拡散される。樹脂は、表面成形層24に形成された複数の孔から繊維強化基材31の略全面へと供給され、繊維強化基材31の板厚方向に浸透する。このとき、余剰な樹脂は吸引ライン23から排出される。樹脂が繊維強化基材31の全体に含浸されたところで、吸引を停止する。その後、キャビティ内を所定圧力に保持し、樹脂を硬化させて成形体とする。
 第1実施形態及び第2実施形態によれば、表面成形層及び樹脂拡散部を備えることで、キャビティ内に加圧注入された樹脂を拡散させて、繊維強化基材の略全面から供給することができる。また、樹脂を繊維強化基材の板厚方向に向けて流動させるため、従来法(図8)と比較して、樹脂の繊維強化基材内を通る距離が短くなる。それによって、高粘度の樹脂を用いた場合であっても、繊維の蛇行等を引き起こさずに樹脂を繊維強化基材に含浸させることができる。また、成形体の厚さが40mm程度の厚さとなっても、未含浸領域を残すことなく、短時間で樹脂を繊維強化基材に含浸させることができる。成形中、表面成形層は繊維強化基材側に押圧された状態となるが、表面成形層に形成された孔の径を小さくすることで、成形体表面に表面成形層の孔形状が転写されることを防止できる。表面成形層及び樹脂拡散層は、成形中のキャビティ内の圧力では変形しない剛性を有する。そのため、表面成形層及び樹脂拡散層を成形型と繊維強化基材との間に介在させた場合であっても、成形体の高い寸法(板厚)精度を確保することができる。
 第1実施形態及び第2実施形態において、表面成形層及び樹脂拡散部を繊維強化基材の樹脂注入側に設けたが、表面成形層及び樹脂拡散部を設ける位置はこれに限定されない。表面成形層及び樹脂拡散部は、繊維強化基材の樹脂排出側、または樹脂注入側及び樹脂排出側の両面に設けられても良い。
 上記構成のRTM成形装置によれば、樹脂拡散層の枚数や厚さを調整することで、同じ成形型を用いて、異なる板厚の成形体を成形することもできる。すなわち、多少の厚さの変更であれば、型を新たに用意する必要がない。また、剛性多孔部材と繊維強化基材を共に賦形させた半成形品を適用することができる。このような半成形品は、輸送時に損傷や変形することを防止できる。
1,21 成形型
2,22 樹脂注入ライン
3,23 吸引ライン
4,24 表面成形層
5 樹脂拡散部
6,26 シール部材
7,9,10 孔
8,8a,8b 樹脂拡散層
11,31 繊維強化基材
40 中間部材
41 多孔板
100,200 RTM成形装置
 

Claims (23)

  1.  内部にキャビティが形成された成形型と、
     前記キャビティに連通する樹脂注入ライン及び吸引ラインと、を備え、
     前記キャビティに繊維強化基材を配置し、前記キャビティ内を減圧するとともに、樹脂組成物を前記キャビティ内に注入して前記繊維強化基材に含浸させて成形体を成形するよう構成されたRTM成形装置であって、
     前記繊維強化基材と前記成形型との間に配置され、貫通孔が複数形成され、且つ、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において実質的に厚さが変化しない剛性を有する表面成形層と、
     前記表面成形層の前記繊維強化基材と反対の側に位置し、前記表面成形層の複数の貫通孔と連通して形成された樹脂流路を含む樹脂拡散部と、
    を前記繊維強化基材の少なくとも一方の面側に備えるRTM成形装置。
  2.  前記表面成形層の前記貫通孔の径が、前記キャビティ内を減圧したときの圧力下において、前記成形体に形状が転写されない所定値以下とされる請求項1に記載のRTM成形装置。
  3.  前記繊維強化基材の樹脂が注入される側または樹脂が排出される側の少なくとも一方の面に前記樹脂拡散部を備え、
     前記樹脂拡散部が前記繊維強化基材の樹脂が注入される側に設けられる場合、前記樹脂流路が前記樹脂注入ラインと連通し、
     前記樹脂拡散部が前記繊維強化基材の樹脂が排出される側に設けられる場合、前記樹脂流路が前記吸引ラインと連通する請求項1または請求項2に記載のRTM成形装置。
  4.  前記樹脂拡散部が、前記繊維強化基材側に隣接する層に形成された貫通孔よりも大きな径を有する貫通孔が複数形成され、且つ、前記圧力下において実質的に厚さが変化しない剛性を有する、前記表面成形層と前記成形型との間に配置される少なくとも1の樹脂拡散層からなり、各層に形成された貫通孔が、隣接する他の層に形成された貫通孔と連通して樹脂流路を形成する請求項1乃至請求項3のいずれかに記載のRTM成形装置。
  5.  前記樹脂拡散層が、パンチングメタルからなる多孔板である請求項4に記載のRTM成形装置。
  6.  前記表面成形層が、パンチングメタルからなる多孔板である請求項1乃至請求項5のいずれかに記載のRTM成形装置。
  7.  前記表面成形層に形成された貫通孔の径が0.3mm以上2mm以下である請求項1乃至請求項6のいずれかに記載のRTM成形装置。
  8.  前記表面成形層及び前記樹脂拡散層に形成された貫通孔が、隣接する他の層に形成された貫通孔と異なる形状で形成される請求項4乃至請求項7のいずれかに記載のRTM成形装置。
  9.  前記表面成形層及び前記樹脂拡散層に形成された貫通孔が、隣接する他の層に形成された貫通孔と位相をずらして配置される請求項4乃至請求項8のいずれかに記載のRTM成形装置。
  10.  前記樹脂拡散部が、前記成形型の前記繊維強化基材側の面に形成された溝を含み、
     該溝が、前記樹脂注入ライン及び隣接する層の貫通孔と連通して樹脂流路を形成する請求項1乃至請求項9のいずれかに記載のRTM成形装置。
  11.  前記樹脂拡散部が、前記成形型の前記繊維強化基材側の面に形成された溝を含み、
     該溝が、前記吸引ライン及び隣接する層の貫通孔と連通して樹脂流路を形成する請求項1乃至請求項10に記載のRTM成形装置。
  12.  成形型の内部に形成されたキャビティに繊維強化基材を配置し、前記キャビティ内を減圧するとともに、樹脂組成物を前記キャビティ内に注入し、前記繊維強化基材に含浸させて成形体を成形するRTM成形方法であって、
     前記キャビティに配置した繊維強化基材上に、貫通孔が複数形成され、且つ、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において実質的に厚さが変化しない剛性を有する表面成形層を配置する工程と、
     前記表面成形層の前記繊維強化基材と反対の側に、樹脂経路を含む樹脂拡散部を、前記樹脂経路が前記表面成形層の貫通孔と連通するよう設ける工程と、
    を備えるRTM成形方法。
  13.  前記表面成形層の前記貫通孔の径を、前記キャビティ内を減圧したときの圧力下において、前記成形体に形状が転写されない所定値以下とする請求項12に記載のRTM成形方法。
  14.  前記樹脂拡散部を設ける工程において、
     前記樹脂拡散部として、前記繊維強化基材側に隣接する層に形成された貫通孔よりも大きな径を有する貫通孔が複数形成され、且つ、前記圧力下において実質的に厚さが変化しない剛性を有する少なくとも1の樹脂拡散層を、前記表面成形層と前記成形型との間に、各層に形成された貫通孔が、隣接する他の層に形成された貫通孔と連通して樹脂流路を形成するよう配設する請求項12または請求項13に記載のRTM成形方法。
  15.  前記樹脂拡散層を、パンチングメタルからなる多孔板とする請求項14に記載のRTM成形方法。
  16.  前記表面成形層を、パンチングメタルからなる多孔板とする請求項12乃至請求項15のいずれかに記載のRTM成形方法。
  17.  前記表面成形層に形成された貫通孔の径を0.3mm以上2mm以下とする請求項12乃至請求項16のいずれかに記載のRTM成形方法。
  18.  前記樹脂拡散部を設ける工程において、互いに異なる形状の貫通孔が形成された層を、隣接させて配置する請求項14乃至請求項17のいずれかに記載のRTM成形方法。
  19.  前記樹脂拡散部を設ける工程において、異なる位相で複数の貫通孔が形成された層同士を隣接させて配置する請求項14乃至請求項17のいずれかに記載のRTM成形方法。
  20.  前記樹脂拡散部を設ける工程において、前記成形型の前記繊維強化基材側の面に、前記樹脂注入ライン及び隣接する層の貫通孔と連通する溝を形成する請求項12乃至請求項19のいずれかに記載のRTM成形方法。
  21.  前記樹脂拡散部を設ける工程において、前記成形型の前記繊維強化基材側の面に、前記吸引ライン及び隣接する層の貫通孔と連通する溝を形成する請求項12乃至請求項20のいずれかに記載のRTM成形方法。
  22.  内部にキャビティが形成された成形型と、前記キャビティに連通する樹脂注入ライン及び吸引ラインと、を備え、前記キャビティに繊維強化基材を配置し、前記キャビティ内を減圧するとともに、樹脂組成物を前記キャビティ内に注入して前記繊維強化基材に含浸させて成形体を成形するよう構成されたRTM成形装置に適用される半成形体であって、
     貫通孔が複数形成され、且つ、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において実質的に厚さが変化しない剛性を有する表面成形層と、
     前記表面成形層の前記繊維強化基材と反対の側に配置された、前記表面成形層の複数の貫通孔と連通して形成された樹脂流路を含む樹脂拡散部と、
    を、前記繊維強化基材の片面または両面に備える半成形体。
  23.  前記表面成形層の前記貫通孔の径が、前記キャビティ内を減圧したときの前記キャビティ内の圧力下において、前記成形体に形状が転写されない所定値以下とされる請求項22に記載の半成形体。
     
PCT/JP2012/053798 2011-02-28 2012-02-17 Rtm成形装置及びrtm成形方法、並びに半成形体 WO2012117869A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2819121A CA2819121C (en) 2011-02-28 2012-02-17 Rtm molding device, rtm molding method, and semi-molded body
RU2013123130/05A RU2551517C2 (ru) 2011-02-28 2012-02-17 Устройство трансферного формования полимеров (rtm), способ rtm формования и полуфабрикат формованного изделия
BR112013013130A BR112013013130B1 (pt) 2011-02-28 2012-02-17 dispositivo de moldagem rtm, método de moldagem rtm, e corpo semi-moldado
EP12752819.8A EP2682247B1 (en) 2011-02-28 2012-02-17 Rtm molding device, rtm molding method, and semi-molded body
US13/989,931 US9919463B2 (en) 2011-02-28 2012-02-17 RTM molding device, RTM molding method, and semi-molded body
CN201280003928.4A CN103237642B (zh) 2011-02-28 2012-02-17 Rtm成形装置、rtm成形方法以及半成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011043185A JP5693296B2 (ja) 2011-02-28 2011-02-28 Rtm成形装置及びrtm成形方法、並びに半成形体
JP2011-043185 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117869A1 true WO2012117869A1 (ja) 2012-09-07

Family

ID=46757808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053798 WO2012117869A1 (ja) 2011-02-28 2012-02-17 Rtm成形装置及びrtm成形方法、並びに半成形体

Country Status (8)

Country Link
US (1) US9919463B2 (ja)
EP (1) EP2682247B1 (ja)
JP (1) JP5693296B2 (ja)
CN (1) CN103237642B (ja)
BR (1) BR112013013130B1 (ja)
CA (1) CA2819121C (ja)
RU (1) RU2551517C2 (ja)
WO (1) WO2012117869A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154589A1 (de) * 2013-03-28 2014-10-02 Universität Stuttgart Verfahren und vorrichtung zum imprägnieren von faserhalbzeugen
RU2628392C2 (ru) * 2015-10-20 2017-08-16 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Способ изготовления сферообразных двухслойных изделий из полиуретана
US10457000B2 (en) * 2013-04-23 2019-10-29 Airbus Defence and Space GmbH Flow aid for infusion structure, infusion structure comprising a flow aid and method for infiltrating fibre material with resin
DE102021208517A1 (de) 2021-08-05 2023-02-09 Innfa Gmbh Verfahren, Vorrichtung und Spule zum Behandeln, insbesondere Imprägnieren, von Endlosfasern

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201727A (ja) * 2013-04-09 2014-10-27 トヨタ自動車株式会社 繊維強化樹脂材の製造方法
CN103753829A (zh) * 2013-12-18 2014-04-30 奇瑞汽车股份有限公司 一种rtm预制体及应用该预制体的rtm快速成型模具
EP3090863A1 (fr) * 2015-04-25 2016-11-09 Institut de Recherche et de Technologie Jules Verne Procédé et dispositif pour la fabrication d'un moule composite comprenant une face antiadhérente
AU2016222310B2 (en) * 2016-08-29 2022-09-29 The Boeing Company Method of locally influencing resin permeability of a dry preform
RU2656317C1 (ru) * 2017-03-27 2018-06-04 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ изготовления деталей из волокнистого полимерного композиционного материала
US11225942B2 (en) * 2017-07-05 2022-01-18 General Electric Company Enhanced through-thickness resin infusion for a wind turbine composite laminate
US10759124B2 (en) 2017-11-21 2020-09-01 The Boeing Company Apparatus and method for manufacturing liquid molded composites using a discrete network of tool surface resin distribution grooves
US10807324B2 (en) * 2017-11-21 2020-10-20 The Boeing Company Apparatus and method for manufacturing liquid molded composites using a discrete network of tool surface resin distribution grooves
EP3693156A1 (en) * 2019-02-07 2020-08-12 LM Wind Power A/S A method of manufacturing a wind turbine blade
IT201900017420A1 (it) * 2019-09-27 2021-03-27 Leonardo Spa Metodo e attrezzo per la fabbricazione di un telaio in materiale composito di una finestra di un velivolo
CN111844521B (zh) * 2020-06-19 2022-07-08 哈尔滨工业大学 连续纤维增强热塑性预浸带的熔融浸渍装置与制备方法
FR3126915A1 (fr) * 2021-09-14 2023-03-17 Institut De Recherche Technologique Jules Verne Procédé de fabrication d’une pièce en matériau composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181627A (ja) * 2002-10-09 2004-07-02 Toray Ind Inc Rtm成形方法
JP2008036997A (ja) * 2006-08-08 2008-02-21 Mitsubishi Heavy Ind Ltd Rtm成形装置
JP2008290441A (ja) * 2007-04-25 2008-12-04 Sekisui Chem Co Ltd 強化プラスチック製サンドイッチ材の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052906A (en) 1989-03-30 1991-10-01 Seemann Composite Systems, Inc. Plastic transfer molding apparatus for the production of fiber reinforced plastic structures
ATE135961T1 (de) 1991-08-01 1996-04-15 Scrimp Systems Llc Vakuumformung und gegenstand zur vakuumformung von faserverstärkte harzverbundwerkstoffe
US5439635A (en) * 1993-02-18 1995-08-08 Scrimp Systems, Llc Unitary vacuum bag for forming fiber reinforced composite articles and process for making same
DE19922850C1 (de) 1999-04-12 2000-08-10 Eurocopter Deutschland Vorrichtung zur Herstellung von Bauelementen aus Faserverbundwerkstoffen
DE10013409C1 (de) * 2000-03-17 2000-11-23 Daimler Chrysler Ag Verfahren und Vorrichtung zur Herstellung von faserverstärkten Bauteilen mittels eines Injektionsverfahrens
JP4257011B2 (ja) 2000-03-17 2009-04-22 前澤工業株式会社 パネルの成形型枠の製造方法
US6537470B1 (en) 2000-09-01 2003-03-25 Honeywell International Inc. Rapid densification of porous bodies (preforms) with high viscosity resins or pitches using a resin transfer molding process
US6627142B2 (en) * 2001-08-01 2003-09-30 Lockheed Martin Corporation Apparatus for making composite structures and method for making same
US6630095B2 (en) 2001-08-01 2003-10-07 Lockheed Martin Corporation Method for making composite structures
EP2644364A3 (en) 2002-10-09 2014-08-13 Toray Industries, Inc. Method of RTM molding
JP4542588B2 (ja) 2002-10-09 2010-09-15 東レ株式会社 Rtm成形方法
US7686608B2 (en) 2003-08-14 2010-03-30 Lockheed-Martin Corporation Apparatus and methods for distributing a substance
JP4442256B2 (ja) 2004-03-08 2010-03-31 東レ株式会社 Rtm成形方法
DK176150B1 (da) 2004-11-30 2006-10-16 Lm Glasfiber As Fremgangsmåde og apparat til fremstilling af fiberkompositemner ved vakuuminfusion
DK176135B1 (da) 2004-11-30 2006-09-18 Lm Glasfiber As Vakuuminfusion ved hjælp af semipermeabel membran
FR2879498B1 (fr) * 2004-12-16 2009-01-30 Snecma Propulsion Solide Sa Densification de structures fibreuses par rtm pour la realisation de pieces en materiau composite
DE602007007905D1 (de) * 2007-05-07 2010-09-02 Siemens Ag Verfahren zur Herstellung eine Windturbinenschaufel
JP2009214386A (ja) 2008-03-10 2009-09-24 Toray Ind Inc 真空rtm成形方法
US8696965B2 (en) * 2008-10-20 2014-04-15 Cytec Technology Corp. Prepregs with improved processing
JP5584224B2 (ja) 2008-10-23 2014-09-03 ヘクセル ランフォルセマン 複合部品の作製に適した新規な補強材料
RU97086U1 (ru) * 2010-04-08 2010-08-27 Открытое акционерное общество "Национальный институт авиационных технологий" (ОАО НИАТ) Оснастка для формования окантовки иллюминатора

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181627A (ja) * 2002-10-09 2004-07-02 Toray Ind Inc Rtm成形方法
JP2008036997A (ja) * 2006-08-08 2008-02-21 Mitsubishi Heavy Ind Ltd Rtm成形装置
JP2008290441A (ja) * 2007-04-25 2008-12-04 Sekisui Chem Co Ltd 強化プラスチック製サンドイッチ材の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154589A1 (de) * 2013-03-28 2014-10-02 Universität Stuttgart Verfahren und vorrichtung zum imprägnieren von faserhalbzeugen
US10457000B2 (en) * 2013-04-23 2019-10-29 Airbus Defence and Space GmbH Flow aid for infusion structure, infusion structure comprising a flow aid and method for infiltrating fibre material with resin
RU2628392C2 (ru) * 2015-10-20 2017-08-16 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Способ изготовления сферообразных двухслойных изделий из полиуретана
DE102021208517A1 (de) 2021-08-05 2023-02-09 Innfa Gmbh Verfahren, Vorrichtung und Spule zum Behandeln, insbesondere Imprägnieren, von Endlosfasern
DE102021208517B4 (de) 2021-08-05 2024-05-02 Innfa Gmbh Verfahren, Verwendung einer Anlage und Spule zum Behandeln, insbesondere Imprägnieren, von Endlosfasern

Also Published As

Publication number Publication date
JP5693296B2 (ja) 2015-04-01
CN103237642A (zh) 2013-08-07
EP2682247A4 (en) 2017-01-25
US9919463B2 (en) 2018-03-20
CN103237642B (zh) 2016-06-29
CA2819121C (en) 2014-11-18
BR112013013130B1 (pt) 2020-04-07
EP2682247B1 (en) 2018-11-21
RU2013123130A (ru) 2015-04-10
CA2819121A1 (en) 2012-09-07
EP2682247A1 (en) 2014-01-08
JP2012179760A (ja) 2012-09-20
BR112013013130A2 (pt) 2016-08-23
US20130280483A1 (en) 2013-10-24
RU2551517C2 (ru) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5693296B2 (ja) Rtm成形装置及びrtm成形方法、並びに半成形体
KR101151966B1 (ko) Rtm 성형방법 및 장치
US8420002B2 (en) Method of RTM molding
JP5322920B2 (ja) 真空rtm成形方法
KR20130111552A (ko) 섬유 강화 플라스틱의 제조 방법
JPWO2011043253A1 (ja) 繊維強化プラスチックの製造方法および装置
JP4365660B2 (ja) 繊維強化樹脂構造体の製造方法及び、その製造装置
JPWO2018030470A1 (ja) 繊維強化樹脂成形品の製造方法
JP2006192745A (ja) 強化繊維基材、プリフォーム、繊維強化樹脂成形体およびその製造方法
JP2011031481A (ja) 繊維強化樹脂部品およびその製造方法並びに製造装置
JP4805375B2 (ja) Frp構造体の製造方法
CN108712951B (zh) 复合材料的制造方法
JP4333204B2 (ja) 繊維強化樹脂製部材の製造方法およびその成形用両面金型
JP4338550B2 (ja) Frp構造体の製造方法
JP2005271247A (ja) Frpの補強・補修方法
JP2007176163A (ja) 繊維強化プラスチックの製造方法
JP2009090646A (ja) Rtm成形方法
JP4104413B2 (ja) Rtm成形方法
JP2004130599A (ja) 繊維強化樹脂成形体の製造方法
JP3121855B2 (ja) 複合材の成形装置
JP2020116771A (ja) 成形方法
JP5906082B2 (ja) 樹脂含浸材の製造方法
KR20210007307A (ko) 초고강도강이 삽입된 샌드위치형 탄소섬유 강화 플라스틱 구조체
JP2003136548A (ja) Rtm成形用資材およびその資材を用いたrtm成形法
JP2007261212A (ja) サンドイッチ積層板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2819121

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13989931

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013123130

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013013130

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013013130

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130527