WO2012117838A1 - 充電器、充電システム、および、充電方法 - Google Patents

充電器、充電システム、および、充電方法 Download PDF

Info

Publication number
WO2012117838A1
WO2012117838A1 PCT/JP2012/053278 JP2012053278W WO2012117838A1 WO 2012117838 A1 WO2012117838 A1 WO 2012117838A1 JP 2012053278 W JP2012053278 W JP 2012053278W WO 2012117838 A1 WO2012117838 A1 WO 2012117838A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
natural energy
charging
power supply
time
Prior art date
Application number
PCT/JP2012/053278
Other languages
English (en)
French (fr)
Inventor
英史 小倉
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP12751800.9A priority Critical patent/EP2683056A4/en
Priority to US13/634,667 priority patent/US20130002190A1/en
Priority to CN201280000951.8A priority patent/CN102812615A/zh
Priority to BR112012023558A priority patent/BR112012023558A2/pt
Publication of WO2012117838A1 publication Critical patent/WO2012117838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present technology relates to a charger, a charging system, and a charging method.
  • the present invention relates to a charger, a charging system, and a charging method that use power generated by natural energy.
  • Natural energy power In recent years, effective use of power generated by natural energy such as solar light, wind power, water power or geothermal heat (hereinafter referred to as “natural energy power”) has been regarded as important from the viewpoint of environmental protection. Natural energy is also called green energy or renewable energy. Since the amount of generation of this natural energy power often depends on the weather, a power supply method using commercial power, which is stably supplied regardless of the weather, in combination with natural energy power is often used for power supply. .
  • a charging device when charging a secondary battery, a charging device is proposed that charges with commercial power until the remaining capacity of the secondary battery reaches a certain amount, and charges with a solar cell after the remaining capacity reaches a certain amount. (See Patent Document 1).
  • the charging device estimates the remaining capacity from battery voltage or charging time in charge control. Specifically, when the battery voltage is less than the threshold or the charging time by commercial power is less than a predetermined time, the charging device determines that the remaining capacity has not reached a predetermined amount, and Continue charging.
  • the above-mentioned charging device charges with commercial power, as long as the remaining capacity does not reach a certain amount, even when there is a margin before the time to complete charging.
  • the natural energy power generated within the period until the remaining capacity reaches a certain amount is not used for charging the secondary battery and is wasted.
  • the present technology has been created in view of such a situation, and it is an object of the present invention to provide a charger that effectively uses natural energy power when there is room for completion of charging.
  • the present technology has been made to solve the above-mentioned problems, and a first aspect of the present technology relates to a setting unit that sets a completion time, which is a time when charging of the secondary battery should be completed, and natural energy
  • An output value acquiring unit for acquiring an output value of voltage or current from a natural energy power supply device that is a power supply device generating natural energy power, and acquiring an amount of power to be supplied before charging of the secondary battery is completed A power amount acquisition unit; a predicted time calculation unit that calculates, as a predicted time, a time when charging of the secondary battery is completed only by the natural energy power based on the output value and the power amount; And a control unit for charging the secondary battery with only the natural energy power if the time is earlier than the completion time, and a charging method using the charger.
  • the predicted time is earlier than the completion time, the secondary battery is charged only with the natural energy power.
  • control unit may also charge the secondary battery with power generated by a power supply other than the natural energy power supply when the predicted time is after the completion time. it can. As a result, when the predicted time is after the completion time, the secondary battery is charged by the power generated by the power supply device other than the natural energy power supply device.
  • control unit may further supply the natural energy power to charge the secondary battery when the predicted time is after the completion time. This brings about the effect that natural energy power is further supplied to the secondary battery when the predicted time is after the completion time.
  • information indicating the charge capacity of the secondary battery by the natural energy power and the charge capacity of the secondary battery by power other than the natural energy power is generated and output as charge data
  • the power supply apparatus other than the natural energy power supply apparatus receives AC power in which a power supply identification signal for identifying a power supply source is superimposed on the AC waveform, and
  • the apparatus may further include a separation unit that separates a power supply identification signal, and the charge data generation unit may generate the charge data based on the separated power supply identification signal. This brings about the effect
  • the control unit charges the secondary battery only with the natural energy power when the remaining time from the current time to the completion time is equal to or longer than a predetermined time. It can also be done. As a result, when the remaining time is equal to or longer than a predetermined time, the secondary battery is charged only by the natural energy power.
  • control unit can also charge the secondary battery only with the natural energy power when the remaining capacity of the secondary battery is equal to or more than a predetermined capacity.
  • the control unit can also charge the secondary battery only with the natural energy power when the remaining capacity of the secondary battery is equal to or more than a predetermined capacity.
  • the setting unit further sets weather forecast data indicating the forecasted weather
  • the output value acquiring unit stores predicted value of the output value for each weather.
  • a predicted value acquisition unit for reading out the predicted value corresponding to the weather indicated by the weather forecast data from the predicted value storage unit the predicted time calculation unit calculating the read predicted value read
  • the predicted time can also be calculated based on the amount of power. This brings about the effect
  • a setting unit configured to set a completion time that is a time to complete charging of a secondary battery, and a natural energy power supply device that is a power supply device generating natural energy power from natural energy.
  • An output value acquiring unit acquiring an output value of the voltage or current, an electric energy acquiring unit acquiring an electric energy to be supplied before the charging of the secondary battery is completed, the output value and the electric energy Based on the predicted time calculation unit that calculates the time at which charging of the secondary battery is completed only by the natural energy power as a predicted time, and when the predicted time is earlier than the completion time, the above 2
  • the secondary battery is charged, and when the predicted time is after the completion time, the secondary battery is charged with power generated by a power supply device other than the natural energy power supply device.
  • a charge data generation unit that generates and outputs, as charge data, information indicating a control unit to be controlled, a charge capacity of the secondary battery by the natural energy power, and a charge capacity of the secondary battery by power other than the natural energy power
  • a charge data storage unit storing the output charge data, and a battery pack including the secondary battery.
  • the power supply apparatus other than the natural energy power supply apparatus receives AC power in which a power supply identification signal for identifying a power supply source is superimposed on an AC waveform, and the charger is configured to
  • the apparatus may further include a separation unit that separates the power supply identification signal from the AC waveform, and the charge data generation unit may generate the charge data based on the separated power supply identification signal. This brings about the effect
  • a display unit for displaying a charge capacity of the secondary battery by the natural energy power and a charge capacity of the secondary battery by power other than the natural energy power based on the charge data. It can also be equipped further. This brings about an effect that the charge capacity of the secondary battery by natural energy power and the charge capacity of the secondary battery by power other than the natural energy power are maintained.
  • FIG. 1 is an overall view showing one configuration example of the charging system in the first embodiment.
  • the charging system includes a solar cell 110, a power outlet 210, a charger 300, and a battery pack 700.
  • the battery pack 700 contains a battery in a housing, and includes a battery 710 as a battery.
  • the battery 710 is a secondary battery that stores the electricity charged by the charger 300.
  • the charger 300 charges the battery 710, and includes a boost converter 310, a diode 320, an AC adapter 330, a completion time setting unit 400, and a charging circuit 500.
  • the solar cell 110 generates natural energy power from solar energy.
  • the solar cell 110 supplies the generated natural energy power to the boost converter 310.
  • the power outlet 210 supplies AC power to the AC adapter 330.
  • This AC power is not natural energy power, but is commercial power generated from petroleum combustion energy and the like.
  • the boost converter 310 boosts the voltage of the DC power to a constant voltage.
  • boost converter 310 receives natural energy power from solar cell 110, converts the voltage into a constant voltage, and outputs the voltage to diode 320.
  • the voltage to be converted is set to a voltage higher than the battery voltage Vb of the battery 710.
  • the diode 320 is an element that allows current to flow only in one direction.
  • the anode of diode 320 is connected to boost converter 310, and the cathode is connected to charging circuit 500. Therefore, the backflow of current from charging circuit 500 to boost converter 310 is prevented.
  • the direct current power from the solar cell 110 is supplied to the charging circuit 500 via the signal line 802 via the diode 320.
  • the AC adapter 330 converts AC power output from the power outlet 210 into DC power. AC adapter 330 supplies the converted DC power to charging circuit 500 via signal line 803.
  • the completion time setting unit 400 sets a time at which charging of the battery 710 should be completed (hereinafter referred to as “completion time Ts”).
  • the completion time Ts for example, the user inputs a time until the charging is completed with reference to the current time Tc.
  • the completion time setting unit 400 acquires the current time Tc, and sets the completion time Ts by adding the input time to the current time Tc.
  • the current time Tc is acquired, for example, in units of hours, minutes, and seconds.
  • the set completion time Ts is output to the charging circuit 500 via the signal line 801.
  • the charging circuit 500 controls the charger 300 to charge the battery 710. Specifically, charging circuit 500 determines whether charging of battery 710 is completed by completion time Ts by supplying only natural energy power to battery 710. If it is determined that the charging is completed, the charging circuit 500 charges the battery 710 only with the natural energy power. If it is determined that the process is not completed, the charging circuit 500 charges the battery 710 with the natural energy power and the power from the AC power source (ie, the power outlet 210).
  • the AC power source ie, the power outlet 210
  • the solar cell 110 is an example of the natural energy power supply device as described in a claim.
  • the completion time setting unit 400 is an example of a setting unit described in the claims.
  • the battery 710 is an example of a secondary battery described in the claims.
  • FIG. 2 is a block diagram showing a configuration example of the charging circuit 500 in the first embodiment.
  • the charging circuit 500 includes an output current measurement unit 510, a power amount acquisition unit 520, a predicted time calculation unit 530, and a control unit 600.
  • the control unit 600 controls the operation of the charging circuit 500, and includes a comparison unit 610, a control cycle timer 620, a power supply control unit 630, a charge completion determination unit 640, and switches 650 and 660.
  • the output current measurement unit 510 measures the value of the output current Ig output from the solar cell 110 via the signal line 802. For example, milliampere (mA) is used as a unit of measurement value.
  • the output current measurement unit 510 outputs the measured value of the output current Ig to the prediction time calculation unit 530 via the signal line 811.
  • the power amount acquisition unit 520 is for acquiring the power amount Q to be supplied before the charging of the battery 710 is completed. For example, milliwatt hour (mWh) is used as a unit of power amount Q. The method of acquiring the power amount Q will be described later.
  • the power amount acquisition unit 520 outputs the acquired power amount Q to the predicted time calculation unit 530 via the signal line 813. Further, the power amount acquisition unit 520 measures the battery voltage Vb of the battery 710 and outputs the voltage value to the charge completion determination unit 640 via the signal line 812. As a unit of the battery voltage Vb, for example, a volt (V) is used.
  • the predicted time calculation unit 530 calculates a time at which charging of the battery 710 is completed only by natural energy power (hereinafter, referred to as “predicted time Tg”).
  • the predicted time Tg is calculated, for example, in seconds.
  • the predicted time calculation unit 530 receives the values of the output current Ig and the power amount Q from the output current measurement unit 510 and the power amount acquisition unit 520.
  • the predicted time calculation unit 530 adds the current time Tc to a value obtained by dividing the unit of the power amount Q into milliampere hours (mAh) by the output current Ig, and sets the time after addition as the predicted time Tg.
  • the predicted time calculation unit 530 outputs the calculated predicted time Tg to the comparison unit 610 via the signal line 814.
  • the switch 650 opens and closes a signal line between the AC adapter 330 and the battery 710 according to the control of the power supply control unit 630.
  • the switch 650 closes the signal line, the power from the AC adapter 330 is supplied to the battery 710, and when the switch 650 opens the signal line, the power supply from the AC adapter 330 is cut off.
  • One terminal of the switch 650 is connected to the AC adapter 330, and the other terminal is connected to the switch 660.
  • the switch 660 opens and closes a signal line between the power supply (i.e., the solar cell 110 and the power outlet 210) and the battery 710 according to the control of the charge completion determination unit 640.
  • the switch 660 closes the signal line to supply power from the power source to the battery 710, and the switch 660 opens the signal line to cut off the power supply to the battery 710.
  • One terminal of the switch 660 is connected to the switch 650 and the diode 320, and the other terminal is connected to the battery 710.
  • the comparison unit 610 compares the completion time Ts with the predicted time Tg.
  • the comparison unit 610 outputs the comparison result to the feed control unit 630.
  • the control cycle timer 620 counts time in the control cycle.
  • the control cycle is a cycle for determining whether to switch the charging method.
  • the control cycle is set to 60 seconds, and the control cycle timer 620 counts the time within the control cycle in seconds.
  • the power supply control unit 630 determines whether or not to switch the charging method every control cycle, and switches the charging method based on the determination result. Specifically, the power supply control unit 630 refers to the timer value Tc of the control cycle timer 620, and refers to the comparison result of the comparison unit 610 if the timer value Tc is a predetermined value (for example, 60 seconds). If the comparison result indicates that the predicted time Tg is earlier than the completion time Ts (that is, if the charging is completed by the natural energy power only by the completion time Ts), the power supply control unit 630 causes the switch 650 Open the signal line. As a result, only the natural energy power from the solar cell 110 is supplied to the battery 710.
  • the power supply control unit 630 When the comparison result indicates that the predicted time Tg is after the completion time Ts (that is, when the charging is not completed by the natural energy power alone by the completion time Ts), the power supply control unit 630 The signal line is closed at 650. As a result, the power from the solar cell 110 and the AC adapter 330 is supplied to the battery 710.
  • the charge completion determination unit 640 determines whether or not charging of the battery 710 is completed at each control cycle. Specifically, the charge completion determination unit 640 refers to the timer value Tc of the control cycle timer 620, and if the timer value Tc is a predetermined value (for example, 60 seconds), the battery voltage measured by the power amount acquisition unit 520 Based on the value of Vb, it is determined whether the charging is completed. For example, if the battery voltage Vb is equal to or higher than the predetermined threshold value Vth, the charge completion determination unit 640 determines that the charge of the battery 710 is completed. If it is determined that the charging is completed, the charging completion determination unit 640 causes the switch 660 to open the signal line to end the charging. If it is determined that the charging is not completed, the charging completion determination unit 640 causes the switch 660 to close the signal line to continue the charging.
  • the timer value Tc for example, 60 seconds
  • the output current measurement unit 510 is an example of the output value acquisition unit described in the claims.
  • FIG. 3 is a block diagram showing one configuration example of the power amount acquisition unit 520 in the first embodiment.
  • the power amount acquisition unit 520 includes a battery voltage measurement unit 521, a power amount calculation unit 522, and a charging rate conversion table 523.
  • the battery voltage measurement unit 521 measures the battery voltage Vb. Battery voltage measurement unit 521 outputs the measured voltage value to power amount calculation unit 522 and charge completion determination unit 640.
  • the charging rate conversion table 523 associates and stores the battery voltage Vb and the charging rate R.
  • the charging rate R is a ratio of the remaining capacity to the total capacity of the battery 710, and the unit is, for example, a percentage (%).
  • the charging rate conversion table 523 stores the battery voltage Vb and the charging rate R, which are measured in advance, in association with each other.
  • the power amount calculation unit 522 calculates the power amount Q from the battery voltage Vb. Specifically, first, the power amount calculation unit 522 reads the charging rate R corresponding to the battery voltage Vb from the charging rate conversion table 523. Then, the power amount calculation unit 522 calculates the power amount Q by substituting the read charging rate R into the following equation (1).
  • Q [mWh] C [mWh] (1-R [%] / 100) (1)
  • C is the full capacity of the battery 710.
  • the power amount calculation unit 522 outputs the calculated power amount Q to the predicted time calculation unit 530.
  • FIG. 4 is a diagram showing an example of a configuration of the charging rate conversion table 523 in the first embodiment.
  • the fully charged battery voltage Vb is 4.2 [V]
  • 100 [%] as the charging rate R is stored in association with the battery voltage Vb.
  • the measured value of the battery voltage Vb when discharging the capacity for 2% of the full capacity from the fully charged state is 4.1 [V]
  • the battery voltage Vb has a charging rate R of 98 [%] Are stored in association with each other.
  • FIG. 5 is a table showing an example of the operation of the power supply control unit 630 in the first embodiment.
  • the power supply control unit 630 refers to the comparison result of the comparison unit 610. If the predicted time Tg is earlier than the completion time Ts, the power supply control unit 630 charges the battery 710 with the natural energy power from the solar cell 110. On the other hand, when the predicted time Tg is after the completion time Ts, the power supply control unit 630 charges the battery 710 only with the power from the solar cell 110 and the AC power supply (that is, the power outlet 210).
  • FIG. 6 is a flowchart showing an example of the operation of the charger 300 according to the first embodiment. This operation starts when the charger 300 is connected to the solar cell 110 and the power outlet 210 and the battery pack 700 is attached to the charger 300.
  • Charger 300 receives an input of the time from the current time Tc to the completion of charging.
  • Completion time setting unit 400 in charger 300 sets a time obtained by adding the input time to the current time as completion time Ts in charging circuit 500 (step S 910).
  • the charger 300 measures the output current Ig from the solar cell 110 (step S920), and acquires the electric energy Q based on the battery voltage Vb (step S930). Then, charger 300 executes power supply control processing to determine whether to switch the charging method (step S950).
  • the charger 300 determines whether a predetermined time (for example, 60 seconds) has elapsed (step S 970). If the predetermined time has not elapsed (step S970: No), the charger 300 returns to step S970. If the predetermined time has elapsed (step S 970: Yes), the charger 300 determines whether the charging is completed (step S 980). If charging has not been completed (step S 980: No), the charger 300 returns to step S 910. If the charging is completed (step S 980: Yes), the charger 300 ends the charging.
  • a predetermined time for example, 60 seconds
  • FIG. 7 is a flowchart showing an example of the power supply control process according to the first embodiment.
  • the predicted time calculation unit 530 calculates the predicted time Tg based on the electric energy Q and the output current Ig (step S953).
  • Control unit 600 determines whether predicted time Tg is earlier than completion time Ts (step S956). If the predicted time Tg is earlier than the completion time Ts (step S956: Yes), the power supply control unit 630 charges the battery 710 only with the natural energy power from the solar cell 110 (step S957). If the predicted time Tg is after the completion time Ts (step S956: No), the power supply control unit 630 charges the battery 710 with the power from the solar cell 110 and the AC power supply (step S958). After step S957 or S958, the control unit 600 ends the power supply control process.
  • charging circuit 500 charges battery 710 only with natural energy power based on output current Ig and power amount Q.
  • the predicted time Tg at which is completed is calculated.
  • the charging circuit 500 charges the battery 710 with only natural energy power.
  • the battery 710 is charged only with the natural energy power, so that the natural energy power is effectively used.
  • the charging circuit 500 since the charging circuit 500 is charged by the power from the AC power supply and the natural energy power when the predicted time Tg is after the completion time Ts, the charging circuit 500 completes charging by the completion time Ts.
  • the charger 300 is charged by the natural energy electric power which the solar cell 110 produced
  • the charger 300 may use natural energy power generated by a wind power generation device or a hydroelectric power generation device.
  • the charger 300 performs constant voltage charging and measures the output current Ig from the solar cell 110
  • constant current charging may be performed and the output voltage from the solar cell 110 may be measured.
  • the predicted time calculation unit 530 calculates the predicted time Tg from the measured output voltage and the electric energy Q.
  • the power amount acquisition unit 520 reads the charging rate R corresponding to the battery voltage Vb from the charging rate conversion table 523, it defines a relational expression indicating a relationship between the battery voltage Vb and the charging rate R Incidentally, the charging rate R can also be determined by calculation based on this relational expression.
  • the power amount acquisition unit 520 calculates the power amount Q from the charging rate R
  • a table in which the power amount Q calculated in advance is stored for each battery voltage Vb is used instead of the charging rate conversion table 523. It is also possible to read out the power amount Q from the table.
  • the charge completion determination unit 640 determines whether the charge is completed by comparing the battery voltage Vb with the threshold value, the charge is completed by another method based on the characteristics of the battery 710. It can also be judged whether or not it has been made. For example, if the battery 710 has a characteristic that the battery voltage slightly drops when the battery reaches full charge, the charge completion determination unit 640 terminates charging when detecting the voltage drop (- ⁇ V). Can be used. Alternatively, if the battery 710 has a characteristic of generating heat when it approaches full charge, the charge completion determination unit 640 measures the temperature of the battery 710, and the temperature detection control method of terminating the charge when the temperature reaches a certain value. Can also be used.
  • FIG. 8 is an overall view showing one configuration example of the charging circuit 501 in the second embodiment.
  • Charging circuit 501 is based on the time from current time Tc to completion time Ts (hereinafter referred to as “remaining time Tr”) and the remaining remaining amount of battery 710 (hereinafter referred to as “remaining amount of battery Cr”). Is different from the first charging circuit 500 in that charge control is performed.
  • the charging circuit 501 includes a control unit 601 instead of the control unit 600.
  • the control unit 601 differs from the control unit 600 of the first embodiment in that the control unit 601 includes a power supply control unit 631 instead of the power supply control unit 630, and further includes a remaining time determination unit 670 and a battery remaining amount determination unit 680.
  • the completion time setting unit 400 according to the second embodiment of the present technology outputs the completion time Ts to the remaining time determination unit 670 in addition to the comparison unit 610.
  • the power amount acquisition unit 520 in the second embodiment of the present technology also outputs the measured value of the battery voltage Vb to the battery remaining amount determination unit 680.
  • the remaining time determination unit 670 determines whether the remaining time Tr is equal to or longer than a predetermined set time (for example, 12 hours). Remaining time determination unit 670 outputs the determination result to power supply control unit 631.
  • the battery remaining amount determination unit 680 determines whether the battery remaining amount Cr is equal to or greater than a predetermined set capacity (for example, a capacity for 10% of the total capacity).
  • the unit of the battery residual amount Cr is, for example, milliwatt hour (mWh).
  • the battery remaining amount determination unit 680 outputs the determination result to the power supply control unit 631.
  • the power supply control unit 631 charges only natural energy power when the remaining time Tr is equal to or longer than the set time, the battery remaining amount Cr is equal to or greater than the set capacity, and the predicted time Tg is earlier than the completion time Ts. Otherwise, the power supply control unit 631 charges the battery with natural energy power and power from the AC power supply.
  • FIG. 9 is a table showing an example of the operation of the power supply control unit 631 in the second embodiment.
  • the power supply control unit 631 uses only the power from the solar cell 110 to To charge. If the remaining time Tr is less than the set time, or if the remaining battery capacity Cr is less than the set capacity, or if the predicted time Tg is equal to or after the completion time Ts, the power supply control unit 631 controls the solar cell 110 and the AC. The battery 710 is charged by the power from the power supply.
  • FIG. 10 is a flowchart showing an example of a power supply control process according to the second embodiment.
  • the feed control process in the second embodiment is different from the feed control process in the first embodiment in that steps S954 and S955 are further executed.
  • the power supply control unit 631 determines whether the remaining time Tr is equal to or longer than the set time (step S954). If the remaining time Tr is equal to or longer than the set time (step S954: YES), the power supply control unit 631 determines whether the remaining battery amount Cr is equal to or higher than the set capacity (step S955). If the remaining battery amount Cr is equal to or greater than the set capacity (step S955: YES), the power supply control unit 631 determines whether the predicted time Tg is earlier than the completion time Ts (step S956).
  • step S954: No If the remaining time Tr is less than the set time (step S954: No), if the remaining battery capacity Cr is less than the set capacity (step S955: No), or if the predicted time Tg is after the completion time Ts (step S95) S956: No) will be described.
  • the power supply control unit 631 charges the battery 710 with the power from the solar cell 110 and the AC power supply (step S958).
  • the power supply control unit 631 charges the battery 710 with the power from the solar cell 110 and the AC power supply. As a result, it is possible to prevent the charging from becoming in time until the completion time Ts.
  • the power supply control unit 631 charges the battery 710 with the power from the solar cell 110 and the AC power supply. As a result, the time for charging to the set capacity is shortened, and the convenience for the user is improved.
  • the charger 300 of the third embodiment is different from that of the first embodiment in that the predicted time Tg is calculated based on weather forecast data.
  • the charger 300 of the third embodiment differs from the charger 300 of the first embodiment in that the completion time setting unit 402 and the charging circuit 502 are provided instead of the completion time setting unit 400 and the charging circuit 500.
  • FIG. 11 is an overall view showing one configuration example of the charging circuit 502 in the third embodiment.
  • the charging circuit 502 differs from the charging circuit 500 of the first embodiment in that the charging circuit 502 includes a predicted time calculation unit 531 instead of the predicted time calculation unit 530, and further includes a function acquisition unit 511 and a function table 512.
  • the completion time setting unit 402 further sets weather forecast data in addition to the completion time Ts.
  • the weather forecast data is information indicating the forecast period and the forecasted weather in the forecast period. For example, when it is predicted that the weather will be fine on January 1, weather forecast data indicating "January 1" as the forecasting period and "fine” as the weather is set.
  • the completion time setting unit 402 outputs the set weather forecast data to the function acquisition unit 511 via the signal line 805.
  • the function table 512 stores, for each weather, a function indicating the characteristic of the predicted output current Ig. Since the amount of power generation of the solar cell 110 increases or decreases according to the amount of sunlight, the value of the output current Ig generally rises with the passage of time from early morning to daytime, and over time from daytime to evening It decreases with it. Based on the characteristics of the output current Ig, it is possible to approximate changes in the time series of the value of the predicted output current Ig to a function (for example, a quadratic function) of time t. In addition, the amount of sunlight varies according to the weather. Therefore, different functions are defined for each weather and stored in the function table 512.
  • the function acquisition unit 511 acquires a function Ig (t) corresponding to the weather. Specifically, when receiving the weather forecast data, the function obtaining unit 511 reads out the function Ig (t) corresponding to the weather indicated by the weather forecast data from the function table 512 via the signal line 915. The function acquisition unit 511 outputs the read function Ig (t) and the forecast period indicated by the weather forecast data to the forecasted time calculation unit 531 through the signal line 916.
  • the predicted time calculation unit 531 calculates the predicted time Tg from the function Ig (t). Specifically, the predicted time calculation unit 531 calculates a time t at which a value obtained by converting an integrated value of Ig (t) in the period from the current time Tc to the elapse of the forecast period equals the power amount Q becomes equal to the power amount Q. Do.
  • the predicted time calculation unit 531 outputs the integrated value of the function Ig (t) until the forecast period elapses and the output after the forecast period elapses A time t in which the amount of power corresponding to the addition value with the integral value of the current Ig becomes equal to the amount of power Q is calculated.
  • the predicted time calculation unit 531 sets a value obtained by adding the calculated time t to the current time Tc as a predicted time Tg.
  • the predicted time calculation unit 531 calculates the predicted time Tg from the measured output current Ig.
  • the function acquisition unit 511 is an example of a predicted value acquisition unit described in the claims.
  • the function table 512 is an example of a predicted value storage unit described in the claims.
  • 12A to 12C are graphs showing an example of a function showing characteristics of the output current in the third embodiment.
  • a function indicated by a dotted line is a function indicating a change in predicted value of the output current Ig in an ideal environment.
  • the function shown by a solid line is a function that approximates the change of the actually measured output current Ig. Since the power generation amount of the solar cell 110 varies depending on the area and the installation environment, the actual measurement value is often different from the ideal value. If the actual value is not obtained, the function based on the ideal value is stored in the function table 512. If the actual value is obtained, the function indicated by the dotted line is stored in the function table 512 with the function corrected based on the actual value. Be done.
  • FIG. 12A is an example of a function showing the characteristics of the output current Ig on a sunny day
  • FIG. 12B is an example of a function showing the characteristics of the output current Ig on a cloudy day
  • FIG. 12C is an example of a function indicating the characteristics of the output current Ig on a rainy day.
  • FIG. 13 is a table showing an example of the operation of the charger 300 in the third embodiment.
  • the operation of the charger 300 according to the third embodiment is different from the operation of the charger 300 according to the first embodiment in that step S940 is further performed.
  • the charger 300 acquires the electric energy Q (step S930), and receives the input of the weather forecast data.
  • the completion time setting unit 402 sets the weather forecast data in the charging circuit 502 (step S940). Then, charger 300 executes the power supply control process (step S950).
  • FIG. 14 is a flowchart showing an example of power supply control processing in the third embodiment.
  • the feed control process of the third embodiment is different from the feed control process of the first embodiment in that steps S951 and S952 are further executed.
  • the charging circuit 502 determines whether weather forecast data has been acquired (step S951). If the weather forecast data is acquired (step S 951: Yes), the predicted time calculation unit 531 calculates the predicted time Tg based on the function Ig (t) corresponding to the weather indicated by the weather forecast data (Ste S952). If the weather forecast data is not acquired (step S951: No), the predicted time calculation unit 531 calculates the predicted time Tg based on the measured output current Ig (step S953). After step S952 or S953, the control unit 600 determines whether the predicted time Tg is earlier than the completion time Ts (step S956).
  • the charging circuit 502 when the weather forecast data is set, the charging circuit 502 reads out the predicted value corresponding to the weather indicated by the weather forecast data from the function table 512.
  • the predicted time Tg is calculated based on the predicted value and the power amount Q.
  • the charging circuit 502 can calculate the predicted time Tg more accurately, based on the fluctuation of the natural energy power associated with the weather.
  • the weather forecast data is configured to be input by the user, it may be configured to acquire the weather forecast data by the charger 300 performing wireless or wired communication.
  • the charging circuit 502 is configured to store the function of the output current Ig for each weather, the predicted value that is not a function may be stored for each weather.
  • the charging circuit 502 can store the average value and the median value of the output current Ig for each weather.
  • the charging circuit 502 is configured to include both the function acquisition unit 511, the function table 512, and the output current measurement unit 510. However, the charging circuit 502 may be configured to include only one of the function acquisition unit 511, the function table 512, and the output current measurement unit 510.
  • the charging system of the fourth embodiment is different from the charging system of the first embodiment in that the charging capacity by natural energy power and the charging capacity by power other than natural energy power are stored.
  • FIG. 15 is an overall view showing one configuration example of the charging system in the fourth embodiment.
  • the charging system of the fourth embodiment is different from the charging system of the first embodiment in that a charger 303 and a battery pack 703 are provided instead of the charger 300 and the battery pack 700.
  • the charger 303 is different from the charging circuit 500 of the first embodiment in that the charging circuit 503 is provided instead of the charging circuit 500.
  • Battery pack 703 differs from battery pack 700 of the first embodiment in that it further includes memory 720.
  • the charging circuit 503 generates, as metadata, information indicating a charging capacity by natural energy power and a charging capacity by power other than natural energy power.
  • the charging circuit 503 outputs the metadata to the memory 720 via the signal line 806.
  • the memory 720 is for storing metadata.
  • the metadata stored in the memory 720 is read by the electronic device 750 powered by the battery pack 703.
  • the electronic device 750 reads metadata from the memory 720, and displays the charging capacity by natural energy power and the charging capacity by power other than natural energy power based on the metadata.
  • the metadata is an example of charging data described in the claims.
  • the memory 720 is an example of a charge data storage unit described in the claims.
  • the electronic device 750 is an example of the display portion described in the claims.
  • FIG. 16 is a block diagram showing a configuration example of the charging circuit 503 in the fourth embodiment.
  • the charging circuit 503 is different from the charging circuit 500 of the first embodiment in that the charging circuit 503 further includes a metadata generation unit 540.
  • the metadata generation unit 540 generates and outputs metadata.
  • the metadata generation unit 540 acquires a switching signal for controlling the switch 650 from the power supply control unit 630 via the signal line 831. For example, a value of “1” is set to the switching signal when the switch 650 is to close the signal line, and a value of “0” is set to open the circuit.
  • the metadata generation unit 540 acquires a control signal for controlling the switch 660 from the charge completion determination unit 640 via the signal line 832. For example, a value of “1” is set to the control signal when the switch 660 closes the signal line, and a value of “0” is set to open the circuit.
  • the metadata generation unit 540 acquires the measurement value of the output current Ig from the output current measurement unit 510, and acquires the timer value Tc via the signal line 833. Then, the metadata generation unit 540 adds a value obtained by integrating the timer value Tc to the measured value of the output current Ig when charging by the power from the solar cell 110 to the charging capacity by the natural energy power. In addition, when charging with power from the AC power supply, the metadata generation unit 540 adds a value obtained by integrating the timer value Tc to the output current of the AC adapter 330 to the charging capacity of power other than natural energy power. The metadata generation unit 540 generates metadata indicating each charge capacity and outputs the metadata to the memory 720.
  • the metadata generation unit 540 is an example of a charge data generation unit described in the claims.
  • FIG. 17 is a block diagram showing an exemplary configuration of the metadata generation unit 540 in the fourth embodiment.
  • the metadata generation unit 540 includes an integration unit 541 and a metadata generation and update unit 542.
  • the integration unit 541 calculates a charge amount Cg which is a value obtained by converting an integrated value of the output current Ig in the control cycle into an electric energy.
  • the unit of the charge amount Cg is, for example, milliwatt hour (mWh).
  • the integration unit 541 outputs the charge amount Cg to the metadata generation and update unit 542.
  • the metadata generation and update unit 542 generates and updates metadata.
  • the case where the switch 660 closes the signal line and the switch 650 opens the signal line (that is, the case where charging is performed only by the power from the solar cell 110) will be described.
  • the metadata generation and update unit 542 adds the charge amount Cg to the charge capacity of the natural energy power.
  • the case where switches 660 and 650 both close the signal line (that is, when charging by the power from solar cell 110 and AC power supply) will be described.
  • the metadata generation and update unit 542 adds the charge amount Cg to the charge capacity by natural energy power, and integrates the output current of the AC adapter 330 in the control cycle into a charge capacity by power other than natural energy power.
  • the metadata generation and update unit 542 generates and outputs information indicating the charge capacity as metadata. After generating the metadata, the metadata generation and update unit 542 updates each charge capacity in the metadata in the memory 720 as the timer value Tc increases. When the switch 660 opens the signal line (that is, when the charging is completed), the metadata generation and update unit 542 ends the metadata update.
  • FIG. 18 is a table showing an example of the operation of the metadata generation / updating unit 542 in the fourth embodiment.
  • the case where the value of the control signal of the charge completion determination unit 640 is “1” and the value of the switching signal of the power supply control unit 630 is “0” will be described.
  • the metadata generation and update unit 542 adds the charge capacity of the solar cell 110 (that is, the charge amount Cg) to the charge capacity of the natural energy power.
  • the metadata generation / updating unit 542 adds the charge capacity of the solar cell 110 to the charge capacity of natural energy power, and adds the charge capacity of the AC power source to the charge capacity of power other than natural energy power.
  • the metadata generation and update unit 542 ends the metadata update.
  • FIG. 19 is a flow chart showing an example of the operation of the charger 303 in the fourth embodiment.
  • the operation of the charger 303 is different from the operation of the charger 300 of the first embodiment in that the step S960 is further performed.
  • the charger 303 executes power supply control processing (step S950), generates and updates metadata (step S960). Then, the charger 303 determines whether a predetermined time has elapsed (step S 970).
  • FIG. 20 is a diagram showing an exemplary configuration of metadata in the fourth embodiment.
  • the metadata includes an area 551 for storing a charge capacity by natural energy power and an area 552 for storing a charge capacity by power other than the natural energy power. For example, when the capacity of 4800 [mWh] is charged by natural energy power and the capacity of 2800 [mWh] is charged by power other than natural energy power, data indicating “4800” is stored in area 551, and Stores data indicating "2800".
  • FIG. 21 is a display example of contents indicated by metadata in the fourth embodiment.
  • the electronic device 750 displays the charging capacity by natural energy power and the charging capacity by power other than the natural energy power so that the user can easily identify. For example, the electronic device 750 displays the total capacity of the battery with a single bar, and displays in black the portion of the length obtained by multiplying the natural energy power charging rate by the total length of the bar. In addition, the electronic device 750 displays in gray the part of the length obtained by multiplying the charging rate by the power that is not the natural energy power by the total length of the bar in gray and the remaining part in white.
  • the charging circuit 503 outputs metadata indicating a charging capacity by natural energy power and a charging capacity by power other than natural energy power.
  • the electronic device 750 can display each charge capacity. The display of the charge capacity for each power supply allows the user to easily grasp how much natural energy power has been used in charging.
  • metadata is stored in the memory 720 in the battery pack 703. Therefore, even if the device is an external device of the charger 303, each charging capacity can be acquired as long as the battery pack 703 can be attached.
  • the charger 303 may further include a display unit configured to display the content indicated by the metadata.
  • the charging system of the fifth embodiment differs from the charging system of the fourth embodiment in that the source of AC power is acquired to generate metadata.
  • FIG. 22 is an overall view showing one configuration example of the charging system in the fifth embodiment.
  • the charging system according to the fifth embodiment is different from the charging system according to the fourth embodiment in that the charging system further includes a conversion switching unit 220, and includes a charger 304 instead of the charger 303.
  • the conversion switching unit 220 receives commercial power and natural energy power from a commercial power source and a natural energy power source, and supplies either of them to the power outlet 210.
  • the natural energy power source is, for example, an external solar power generation device having a different installation place from the solar battery 110. Further, the conversion switching unit 220 superimposes the power supply identifier ID on the AC waveform of the supplied AC power using a PLC (Power Line Communications) module or the like.
  • the power supply identifier ID is an identifier for identifying an AC power supply source. For example, a value of “0” is set to the power supply identifier ID when AC power is supplied from a commercial power supply, and a value of “1” is set to power supply identifier ID when supplied from a natural energy power supply.
  • the charger 304 differs from the charger 303 of the fourth embodiment in that the AC adapter 340 and the charging circuit 504 are provided instead of the AC adapter 330 and the charging circuit 503.
  • the AC adapter 340 separates the power supply identifier ID from the AC waveform of the received AC power.
  • the AC adapter 340 converts the AC power into DC power and supplies the DC power via the signal line 803 to the charging circuit 504, and outputs the power supply identifier ID to the charging circuit 504 via the signal line 807.
  • the charging circuit 504 When charging with AC power, the charging circuit 504 updates the value of the charging capacity corresponding to the supply source indicated by the power supply identifier ID in the metadata.
  • the AC adapter 340 is an example of the separation unit described in the claims.
  • the power supply identifier ID is an example of a power supply identification signal described in the claims.
  • FIG. 23 is a block diagram showing a configuration example of the conversion switching unit 220 in the fifth embodiment.
  • the conversion switching unit 220 includes an inverter 221, a switching control unit 222, power supply identifier superposition units 223 and 224, a power supply identifier storage unit 225, and a switch 226.
  • the inverter 221 converts DC power supplied from a natural energy power source into AC power.
  • the inverter 221 outputs the converted AC power to the power supply identifier superposition unit 223.
  • the switching control unit 222 performs control of switching the AC power supply source. Specifically, the switching control unit 222 monitors the amount of power generation of natural energy power, and controls the switch 226 based on the amount of power generation. For example, the switching control unit 222 switches the AC power supply source to the natural energy power source when the power generation amount of the natural energy power is equal to or greater than the threshold value, and switches the power source to the commercial power source when the power generation amount is less than the threshold value.
  • the power supply identifier superposition unit 223 acquires the power supply identifier ID corresponding to the natural energy power supply from the power supply identifier storage unit 225, and superimposes the power supply identifier ID on the AC waveform of the AC power supplied from the inverter 221.
  • the AC power in which the power supply identifier ID is superimposed on the AC waveform is output to the input terminal of the switch 226.
  • the power supply identifier superposition unit 224 acquires the power supply identifier ID corresponding to the commercial power supply from the power supply identifier storage unit 225, and superimposes the power supply identifier ID on the AC waveform of the AC power supplied from the commercial power supply.
  • the AC power in which the power supply identifier ID is superimposed on the AC waveform is output to the input terminal of the switch 226.
  • the power source identifier storage unit 225 stores a power source identifier ID for each power source.
  • the switch 226 switches the AC power supply source according to the control of the switching control unit 222.
  • the switch 226 has two input terminals and one output terminal. One input terminal is connected to the power supply identifier superposition unit 223, and the other input terminal is connected to the power supply identifier superposition unit 224.
  • the output terminal is connected to the power outlet 210 via a transformer or the like.
  • FIG. 24 is a block diagram showing a configuration example of the metadata generation unit 545 in the fifth embodiment.
  • the metadata generation unit 545 of the fifth embodiment differs from the metadata generation unit 540 of the fourth embodiment in that a metadata generation and update unit 543 is provided instead of the metadata generation and update unit 542.
  • the metadata generation and update unit 543 receives the power supply identifier ID from the AC adapter 340 in addition to the switching signal and the control signal from the power supply control unit 630 and the charge completion determination unit 640.
  • the metadata generation and update unit 543 identifies the AC power supply source with reference to the power supply identifier ID when the battery 710 is charged by the power from the solar cell 110 and the AC power supply.
  • the metadata generation and update unit 543 adds the charging capacity by the AC power supply and the power from the solar cell 110 in the home to the charging capacity by the natural energy power.
  • the commercial power source is a supply source of AC power
  • the metadata generation and update unit 543 adds the charge capacity of the solar cell 110 to the charge capacity of natural energy power, and the charge capacity of the AC power source is power of other than natural energy Add to the charge capacity.
  • FIG. 25 is a table showing an example of the operation of the metadata generation and update unit 543 in the fifth embodiment.
  • the case where the value of the control signal of the charge completion determination unit 640 and the value of the switching signal of the power supply control unit 630 are both “1” and the power supply identifier ID is “0” will be described.
  • the metadata generation and update unit 543 adds the charge capacity of the solar cell 110 to the charge capacity of natural energy power, and adds the charge capacity of the AC power supply to the charge capacity of power other than natural energy power.
  • each value of the switching signal and the control signal is “1” and the power supply identifier ID is “1” will be described.
  • the electric power from the solar cell 110 in the home and the electric power from the external solar cell are supplied to the battery 710. Therefore, the metadata generation and update unit 543 adds the charge capacity of the solar cell 110 and the AC power supply in the home to the charge capacity of the natural energy power.
  • the charging circuit 504 acquires the power supply identifier ID, and generates metadata based on the power supply identifier ID. Thereby, even if there are a plurality of AC power supply sources, the charge capacity can be calculated for each supply source.
  • the conversion switching unit 220 superimposes a power supply identifier ID for identifying whether or not the supply source is a natural energy power supply, even if an identifier for identifying the type of natural energy power supply is superimposed. Good.
  • the conversion switching unit 220 may superimpose a power supply identifier for identifying each power supply such as a hydroelectric power generation device, a solar power generation device, or a geothermal power generation device.
  • the charger 304 calculates the charging capacity by the natural energy power and the charging capacity by the power other than the natural energy power
  • the charging capacity may be calculated for each supply source of the natural energy power.
  • the charger 304 calculates the charging capacity by the solar cell 110 in the home, the charging capacity by the external solar cell, and the charging capacity by the commercial power source.
  • the charger 304 generates metadata indicating each charge capacity as shown in FIG.
  • the metadata a plurality of areas for storing information indicating the power supply and an area for storing information indicating the charge capacity are provided in association with each other.
  • the conversion switching unit 220 superimposes the power supply identifier ID on both of the AC power from the commercial power supply and the AC power from the natural energy power supply, it may be superimposed on only one of them.
  • FIG. 27 is an overall view showing one configuration example of the charging system in the sixth embodiment.
  • the charging system in the sixth embodiment differs from the charging system in the fifth embodiment in that the electronic device 751 is further provided.
  • the electronic device 751 is a device using the battery pack 703 as a power source, and includes an electronic device control unit 760 and a display unit 770.
  • the electronic device control unit 760 controls the entire electronic device 751.
  • the electronic device control unit 760 receives DC power from the charger 304 via the signal line 804, and receives metadata via the signal line 806.
  • the electronic device control unit 760 outputs the received DC power to the battery 710 via the signal line 808, and outputs the metadata to the memory 720 via the signal line 809.
  • the electronic device control unit 760 reads the metadata from the memory 720 and causes the display unit 770 to display the content indicated by the metadata.
  • the display unit 770 displays the content indicated by the metadata.
  • FIG. 28 is a block diagram showing a configuration example of the electronic device control unit 760 in the sixth embodiment.
  • the electronic device control unit 760 includes a processor 761, a memory 762, and a bus 763.
  • the processor 761 controls the entire electronic device 751.
  • the processor 761 outputs the metadata received from the charger 304 to the battery pack 703.
  • the processor 761 also reads the metadata stored in the battery pack 703, generates data for displaying the content indicated by the metadata, and outputs the data to the display unit 770 via the signal line 881.
  • the memory 762 is a main storage directly accessible by the processor 761.
  • the bus 763 is a common path for the processor 761 and the memory 762 to transmit and receive data.
  • the charger 304 charges the battery pack 703 via the electronic device 751.
  • the charger 304 can charge the battery pack 703 with the battery pack 703 attached to the electronic device 751, and the convenience of the user is improved.
  • the memory 720 is provided in the battery pack 703, the memory 720 may be provided not in the battery pack 703 but in the electronic device 751. This eliminates the need for providing the memory 720 in the battery pack 703.
  • FIG. 29 is a block diagram showing one configuration example of the charging circuit 506 of the modification.
  • the charging circuit 506 is different from the charging circuit 500 of the first embodiment in that a control unit 606 is provided instead of the control unit 600.
  • the control unit 606 is different from the control unit 600 of the first embodiment in that a switch 651 is provided instead of the switch 650.
  • the switch 651 has two input terminals and one output terminal. One input terminal of the switch 651 is connected to the diode 320, and the other input terminal is connected to the AC adapter 330. The output terminal of the switch 651 is connected to the switch 660.
  • the feed control unit 630 switches the input destination of the switch 651 to the diode 320 when the predicted time Tg is earlier than the completion time Ts, and switches the input destination of the switch 651 to the AC adapter 330 when the predicted time Tg is later than the completion time Ts. Switch to Thus, when predicted time Tg is after completion time Ts, battery 710 is charged only with AC power. According to this configuration, only either one of the natural energy power and the power from the AC power source is supplied, and therefore overcharging may occur compared to the charger system of the first embodiment that supplies both. Becomes lower.
  • the processing procedure described in the above-described embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute the series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (Mini Disc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray Disc (registered trademark), or the like can be used.
  • the present technology can also be configured as follows.
  • An output value acquisition unit that acquires an output value of voltage or current from a natural energy power supply device that is a power supply device that generates natural energy power from natural energy;
  • An electric energy acquisition unit for acquiring an electric energy to be supplied before charging of the secondary battery is completed, and charging of the secondary battery is completed only by the natural energy electric power based on the output value and the electric energy
  • a predicted time calculation unit that calculates the time of day as the predicted time;
  • the control unit charges the secondary battery with power generated by a power supply device other than the natural energy power supply device, when the predicted time is after the completion time.
  • the control unit further supplies the natural energy power to charge the secondary battery when the predicted time is after the completion time.
  • the setting unit further sets weather forecast data indicating weather.
  • the output value acquisition unit predicts the output value for each weather based on the set weather forecast data,
  • the predicted time calculation unit calculates the predicted time based on the output value and the power amount for each predicted weather.
  • a charge data generation unit for generating and outputting information indicating charge capacity of the secondary battery by the natural energy power and charge capacity of the secondary battery by the power other than the natural energy power as charge data Equipped
  • the charger according to any one of the above (2) to (4).
  • the power supply apparatus other than the natural energy power supply apparatus receives AC power in which a power supply identification signal for identifying a power supply source is superimposed on an AC waveform, and separates the power supply identification signal from the AC waveform Further equipped with a separation unit, The charge data generation unit generates the charge data based on the separated power supply identification signal.
  • the charger according to (5).
  • the control unit charges the secondary battery only with the natural energy power when the remaining time which is the time from the current time to the completion time is equal to or longer than a predetermined time.
  • the control unit charges the secondary battery only with the natural energy power when the remaining capacity of the secondary battery is equal to or greater than a predetermined capacity.
  • the setting unit further sets weather forecast data indicating the weather,
  • the output value acquisition unit predicts the output value for each weather based on the set weather forecast data,
  • the predicted time calculation unit calculates the predicted time based on the output value and the power amount for each predicted weather.
  • a predicted time calculation unit that calculates a time when charging of the secondary battery is completed as a predicted time; and charging the secondary battery with only the natural energy power if the predicted time is earlier than the completion time, the prediction
  • a charger and a charging capacity and the charging data generation unit for generating and outputting a charging data information indicating the charge capacity of the secondary battery by the electric power other than the natural energy power of the secondary battery according to the energy power,
  • the power supply apparatus other than the natural energy power supply apparatus receives AC power in which a power supply identification signal for identifying a power supply source is superimposed on an AC waveform
  • the charger further includes a separation unit that separates the power supply identification signal from the AC waveform, and the charge data generation unit generates the charge data based on the separated power supply identification signal.
  • the display device is further provided with a display unit that displays the charge capacity of the secondary battery with the natural energy power and the charge capacity of the secondary battery with power other than the natural energy power based on the charge data.
  • the charging system according to (10) or (11).
  • (13) a setting procedure for setting a completion time which is a time at which charging of the secondary battery should be completed;
  • An output value acquisition procedure for acquiring an output value of voltage or current from a natural energy power supply device that is a power supply device generating natural energy power from natural energy;
  • the charging of the secondary battery is completed only by the natural energy power based on an electric energy acquisition procedure for acquiring an electric energy to be supplied before the charging of the secondary battery is completed, the output value and the electric energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】充電を完了すべき時刻までに余裕がある場合において自然エネルギー電力を有効に利用する充電器を提供する。 【解決手段】完了時刻設定部は、2次電池の充電を完了すべき時刻である完了時刻を設定する。出力電流測定部は、自然エネルギー電源装置からの電流の出力値を取得する。電力量取得部は、2次電池の充電が完了するまでに供給すべき電力量を取得する。予測時刻算出部は、出力値と電力量とに基づいて自然エネルギー電力のみにより2次電池の充電が完了する時刻を予測時刻として算出する。制御部は、予測時刻が完了時刻より早い場合には自然エネルギー電力のみにより2次電池を充電させる。

Description

充電器、充電システム、および、充電方法
 本技術は、充電器、充電システム、および、充電方法に関する。詳しくは、自然エネルギーにより発電された電力を利用する充電器、充電システム、および、充電方法に関する。
 近年、太陽光、風力、水力または地熱などの自然エネルギーによって発電された電力(以下、「自然エネルギー電力」と称する。)を有効に活用することが環境保護の観点から重要視されている。自然エネルギーは、グリーンエネルギーや再生可能エネルギーとも呼ばれる。この自然エネルギー電力の発電量は、天候に左右されることが多いため、給電においては、天候に左右されずに安定に供給される商用電力を、自然エネルギー電力と併用する給電方式がよく用いられる。
 例えば、2次電池を充電する場合に2次電池の残存容量が一定量に達するまでは商用電力により充電し、残存容量が一定量に達した後は太陽電池により充電する充電装置が提案されている(特許文献1参照。)。この充電装置は、充電制御において、電池電圧または充電時間から残存容量を推定している。具体的には、充電装置は、電池電圧が閾値未満である場合、または、商用電力による充電時間が所定時間未満である場合において残存容量が一定量に達していないと判断して、商用電力による充電を継続する。
特開平11-113189号公報
 しかし、上述の従来技術では、自然エネルギー電力が有効に利用されないことがあった。例えば、上述の充電装置は、充電を完了すべき時刻までに余裕がある場合であっても、残存容量が一定量に達しない限り、商用電力により充電を行う。このような充電装置では、残存容量が一定量に達するまでの期間内に発電された自然エネルギー電力が2次電池の充電に使用されず、無駄になってしまうという問題があった。
 本技術はこのような状況に鑑みて生み出されたものであり、充電を完了すべき時刻までに余裕がある場合において自然エネルギー電力を有効に利用する充電器を提供することを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、2次電池の充電を完了すべき時刻である完了時刻を設定する設定部と、自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得部と、上記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得部と、上記出力値と上記電力量とに基づいて上記自然エネルギー電力のみにより上記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出部と、上記予測時刻が上記完了時刻より早い場合には上記自然エネルギー電力のみにより上記2次電池を充電させる制御部とを具備する充電器、および、その充電器による充電方法である。これにより、予測時刻が完了時刻より早い場合には自然エネルギー電力のみにより2次電池が充電されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記予測時刻が上記完了時刻以降である場合には上記自然エネルギー電源装置以外の電源装置が生成した電力により上記2次電池を充電させることもできる。これにより、予測時刻が完了時刻以降である場合には自然エネルギー電源装置以外の電源装置が生成した電力により2次電池が充電されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記予測時刻が上記完了時刻以降である場合には上記自然エネルギー電力をさらに供給して上記2次電池を充電させることもできる。これにより、予測時刻が完了時刻以降である場合には自然エネルギー電力がさらに2次電池に供給されるという作用をもたらす。
 また、この第1の側面において、上記自然エネルギー電力による上記2次電池の充電容量と上記自然エネルギー電力以外の電力による上記2次電池の充電容量とを示す情報を充電データとして生成して出力する充電データ生成部をさらに具備してもよい。これにより、自然エネルギー電力による2次電池の充電容量と自然エネルギー電力以外の電力による2次電池の充電容量とを示す充電データが出力されるという作用をもたらす。
 また、この第1の側面において、上記自然エネルギー電源装置以外の電源装置は、電力の供給源を識別するための電源識別信号が交流波形に重畳された交流電力を受電し、上記交流波形から上記電源識別信号を分離する分離部をさらに具備し、上記充電データ生成部は、上記分離された電源識別信号に基づいて上記充電データを生成することもできる。これにより、電源識別信号に基づいて充電データが生成されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、現在時刻から上記完了時刻までの時間である残り時間が所定の時間以上である場合には上記自然エネルギー電力のみにより上記2次電池を充電させることもできる。これにより、残り時間が所定の時間以上である場合には自然エネルギー電力のみにより上記2次電池が充電されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記2次電池の残存容量が所定の容量以上である場合には上記自然エネルギー電力のみにより上記2次電池を充電させることもできる。これにより、残存容量が所定の容量以上である場合には自然エネルギー電力のみにより上記2次電池が充電されるという作用をもたらす。
 また、この第1の側面において、上記設定部は、予報された天候を示す天候予報データをさらに設定し、上記出力値取得部は、上記出力値の予測値を天候ごとに記憶する予測値記憶部と、上記天候予報データの示す上記天候に対応する上記予測値を上記予測値記憶部から読み出す予測値取得部と、を備え、上記予測時刻算出部は、上記読み出された予測値および上記電力量に基づいて上記予測時刻を算出することもできる。これにより、予報された天候に対応する予測値および電力量に基づいて予測時刻が算出されるという作用をもたらす。
 また、本技術の第2の側面は、2次電池の充電を完了すべき時刻である完了時刻を設定する設定部と、自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得部と、上記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得部と、上記出力値と上記電力量とに基づいて上記自然エネルギー電力のみにより上記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出部と、上記予測時刻が上記完了時刻より早い場合には上記自然エネルギー電力のみにより上記2次電池を充電させ、上記予測時刻が上記完了時刻以降である場合には上記自然エネルギー電源装置以外の電源装置が生成した電力により上記2次電池を充電させる制御部と、上記自然エネルギー電力による上記2次電池の充電容量と上記自然エネルギー電力以外の電力による上記2次電池の充電容量とを示す情報を充電データとして生成して出力する充電データ生成部とを備える充電器と、上記出力された充電データを記憶する充電データ記憶部と、上記2次電池とを備える電池パックとを具備する充電システムである。これにより、予測時刻が完了時刻より早い場合には自然エネルギー電力のみにより2次電池が充電され、自然エネルギー電力による2次電池の充電容量と自然エネルギー電力以外の電力による2次電池の充電容量とを示す充電データが記憶されるという作用をもたらす。
 また、この第2の側面において、上記自然エネルギー電源装置以外の電源装置は、電力の供給源を識別するための電源識別信号が交流波形に重畳された交流電力を受電し、上記充電器は、上記交流波形から上記電源識別信号を分離する分離部をさらに備え、上記充電データ生成部は、上記分離された電源識別信号に基づいて上記充電データを生成することもできる。これにより、電源識別信号に基づいて充電データが生成されるという作用をもたらす。
 また、この第2の側面において、上記充電データに基づいて上記自然エネルギー電力による上記2次電池の充電容量と上記自然エネルギー電力以外の電力による上記2次電池の充電容量とを表示する表示部をさらに具備することもできる。これにより、自然エネルギー電力による2次電池の充電容量と自然エネルギー電力以外の電力による2次電池の充電容量とが表維持されるという作用をもたらす。
 本技術によれば、充電を完了すべき時刻までに余裕がある場合において自然エネルギー電力が有効に利用されるという優れた効果を奏し得る。
第1の実施の形態における充電システムの一構成例を示す全体図である。 第1の実施の形態における充電回路の一構成例を示すブロック図である。 第1の実施の形態における電力量取得部の一構成例を示すブロック図である。 第1の実施の形態における充電率変換テーブルの一構成例を示す図である。 第1の実施の形態における給電制御部の動作の一例を示す表である。 第1の実施の形態における充電器の動作の一例を示すフローチャートである。 第1の実施の形態における給電制御処理の一例を示すフローチャートである。 第2の実施の形態における充電回路の一構成例を示すブロック図である。 第2の実施の形態における給電制御部の動作の一例を示す表である。 第2の実施の形態における給電制御処理の一例を示すフローチャートである。 第3の実施の形態における充電回路の一構成例を示すブロック図である。 第3の実施の形態における出力電流の特性を示す関数の一例を示すグラフである。 第3の実施の形態における出力電流の特性を示す関数の一例を示すグラフである。 第3の実施の形態における出力電流の特性を示す関数の一例を示すグラフである。 第3の実施の形態における充電器の動作の一例を示す表である。 第3の実施の形態における給電制御処理の一例を示すフローチャートである。 第4の実施の形態における充電システムの一構成例を示す全体図である。 第4の実施の形態における充電回路の一構成例を示すブロック図である。 第4の実施の形態におけるメタデータ生成部の一構成例を示すブロック図である。 第4の実施の形態におけるメタデータ生成更新部の動作の一例を示す表である。 第4の実施の形態における充電器の動作の一例を示すフローチャートである。 第4の実施の形態におけるメタデータの一構成例を示す図である。 第4の実施の形態におけるメタデータの示す内容の表示例を示す図である。 第5の実施の形態における充電システムの一構成例を示す全体図である。 第5の実施の形態における変換切替部の一構成例を示すブロック図である。 第5の実施の形態におけるメタデータ生成部の一構成例を示すブロック図である。 第5の実施の形態におけるメタデータ生成更新部の動作の一例を示す表である。 第5の実施の形態の変形例におけるメタデータの一構成例を示す図である。 第6の実施の形態における充電システムの一構成例を示す全体図である。 第6の実施の形態における電子機器制御部の一構成例を示すブロック図である。 変形例における充電回路の一構成例を示すブロック図である。
以下、本技術を実施するための形態(以下、実施の形態と称する。)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(充電制御:完了時刻と予測時刻とを比較する例)
 2.第2の実施の形態(充電制御:残り時間およびバッテリ残量を監視する例)
 3.第3の実施の形態(充電制御:天候予報データを利用する例)
 4.第4の実施の形態(充電制御:メタデータを生成する例)
 5.第5の実施の形態(充電制御:電源識別子を取得する例)
 6.第6の実施の形態(充電制御:電子機器を経由して充電する例)
 7.変形例
 <1.第1の実施の形態>
 [充電システムの構成例]
 図1は、第1の実施の形態における充電システムの一構成例を示す全体図である。充電システムは、太陽電池110、電源コンセント210、充電器300、および、電池パック700を備える。電池パック700は、電池を筐体に収めたものであり、電池としてバッテリ710を備える。バッテリ710は、充電器300により充電された電気を蓄える2次電池である。充電器300は、バッテリ710を充電するものであり、昇圧コンバータ310、ダイオード320、交流アダプタ330、完了時刻設定部400、および、充電回路500を備える。
 太陽電池110は、太陽光エネルギーから自然エネルギー電力を生成するものである。太陽電池110は、生成した自然エネルギー電力を昇圧コンバータ310に供給する。電源コンセント210は、交流電力を交流アダプタ330に供給するものである。この交流電力は、自然エネルギー電力ではなく、石油の燃焼エネルギーなどから生成された商用電力である。
 昇圧コンバータ310は、直流電力の電圧を一定の電圧に昇圧するものである。詳細には、昇圧コンバータ310は、太陽電池110から自然エネルギー電力を受電し、その電圧を一定の電圧に変換してダイオード320に出力する。変換される電圧は、バッテリ710のバッテリ電圧Vbよりも高い電圧に設定される。ダイオード320は、電流を一方向にのみ流す素子である。ダイオード320のアノードが昇圧コンバータ310に接続され、カソードが充電回路500に接続される。このため、充電回路500から昇圧コンバータ310への電流の逆流が防止される。太陽電池110からの直流電力は、ダイオード320を経由して信号線802を介して充電回路500に供給される。
 交流アダプタ330は、電源コンセント210から出力された交流電力を直流電力に変換するものである。交流アダプタ330は、変換した直流電力を充電回路500に信号線803を介して供給する。
 完了時刻設定部400は、バッテリ710の充電を完了すべき時刻(以下、「完了時刻Ts」と称する。)を設定するものである。完了時刻Tsの設定において、例えば、現在時刻Tcを基準として、充電を完了するまでの時間をユーザが入力する。完了時刻設定部400は、現在時刻Tcを取得し、入力された時間を現在時刻Tcに加算することにより完了時刻Tsを設定する。現在時刻Tcは、例えば、時、分、秒の単位まで取得される。設定された完了時刻Tsは、充電回路500に信号線801を介して出力される。
 充電回路500は、充電器300を制御して、バッテリ710を充電させるものである。具体的には、充電回路500は、自然エネルギー電力のみをバッテリ710に供給することにより、完了時刻Tsまでにバッテリ710の充電が完了するか否かを判断する。完了すると判断した場合、充電回路500は、自然エネルギー電力のみによりバッテリ710を充電させる。完了しないと判断した場合、充電回路500は、自然エネルギー電力と、交流電源(すなわち、電源コンセント210)からの電力とによりバッテリ710を充電させる。
 なお、太陽電池110は、特許請求の範囲に記載の自然エネルギー電源装置の一例である。完了時刻設定部400は、特許請求の範囲に記載の設定部の一例である。バッテリ710は、特許請求の範囲に記載の2次電池の一例である。
 [充電回路の構成例]
 図2は、第1の実施の形態における充電回路500の一構成例を示すブロック図である。充電回路500は、出力電流測定部510、電力量取得部520、予測時刻算出部530、および、制御部600を備える。制御部600は、充電回路500の動作を制御するものであり、比較部610と、制御周期タイマ620と、給電制御部630と、充電完了判断部640と、スイッチ650および660とを備える。
 出力電流測定部510は、太陽電池110から信号線802を介して出力された出力電流Igの値を測定するものである。測定値の単位として、例えば、ミリアンペア(mA)が用いられる。出力電流測定部510は、測定した出力電流Igの値を予測時刻算出部530に信号線811を介して出力する。
 電力量取得部520は、バッテリ710の充電が完了するまでに供給すべき電力量Qを取得するものである。電力量Qの単位として、例えば、ミリワットアワー(mWh)が用いられる。電力量Qの取得方法については後述する。電力量取得部520は、取得した電力量Qを予測時刻算出部530に信号線813を介して出力する。また、電力量取得部520は、バッテリ710のバッテリ電圧Vbを測定し、その電圧値を充電完了判断部640に信号線812を介して出力する。バッテリ電圧Vbの単位として、例えば、ボルト(V)が用いられる。
 
 予測時刻算出部530は、自然エネルギー電力のみによりバッテリ710の充電が完了する時刻(以下、「予測時刻Tg」と称する。)を算出するものである。予測時刻Tgは、例えば、秒単位で算出される。具体的には、予測時刻算出部530は、出力電流測定部510および電力量取得部520から出力電流Igおよび電力量Qの各値を受け取る。予測時刻算出部530は、電力量Qの単位をミリアンペアアワー(mAh)に換算した値を出力電流Igで除算した値に現在時刻Tcを加算し、加算後の時刻を予測時刻Tgとする。予測時刻算出部530は、算出した予測時刻Tgを比較部610に信号線814を介して出力する。
 スイッチ650は、給電制御部630の制御に従って、交流アダプタ330とバッテリ710との間の信号線を開閉するものである。スイッチ650が信号線を閉路することにより、交流アダプタ330からの電力がバッテリ710に供給され、スイッチ650が信号線を開路することにより交流アダプタ330からの電力供給が遮断される。スイッチ650の一方の端子は、交流アダプタ330に接続され、他方の端子は、スイッチ660に接続されている。
 スイッチ660は、充電完了判断部640の制御に従って、電源(すなわち、太陽電池110および電源コンセント210)とバッテリ710との間の信号線を開閉するものである。スイッチ660が信号線を閉路することにより、電源からの電力がバッテリ710に供給され、スイッチ660が信号線を開路することによりバッテリ710への電力供給が遮断される。スイッチ660の一方の端子は、スイッチ650およびダイオード320に接続され、他方の端子はバッテリ710に接続されている。
 比較部610は、完了時刻Tsと予測時刻Tgとを比較するものである。比較部610は、比較結果を給電制御部630に出力する。
 制御周期タイマ620は、制御周期内の時刻を計時するものである。ここで、制御周期は、充電方式を切り替えるか否かの判断を行う周期である。例えば、制御周期は60秒に設定され、制御周期タイマ620は、秒単位で制御周期内の時刻を計時する。
 給電制御部630は、制御周期ごとに充電方式を切り替えるか否かを判断し、判断結果に基づいて充電方式を切り替えるものである。具体的には、給電制御部630は、制御周期タイマ620のタイマ値Tcを参照し、タイマ値Tcが所定値(例えば、60秒)であれば、比較部610の比較結果を参照する。予測時刻Tgが完了時刻Tsより早いことを比較結果が示していた場合(すなわち、自然エネルギー電力のみにより、完了時刻Tsまでに充電が完了する場合)には、給電制御部630は、スイッチ650に信号線を開路させる。この結果、太陽電池110からの自然エネルギー電力のみがバッテリ710に供給される。一方、予測時刻Tgが完了時刻Ts以降であることを比較結果が示していた場合(すなわち、自然エネルギー電力のみでは完了時刻Tsまでに充電が完了しない場合)には、給電制御部630は、スイッチ650に信号線を閉路させる。この結果、太陽電池110および交流アダプタ330からの電力がバッテリ710に供給される。
 充電完了判断部640は、制御周期ごとにバッテリ710の充電が完了したか否かを判断するものである。具体的には、充電完了判断部640は、制御周期タイマ620のタイマ値Tcを参照し、タイマ値Tcが所定値(例えば、60秒)であれば、電力量取得部520が測定したバッテリ電圧Vbの値に基づいて充電が完了したか否かを判断する。例えば、バッテリ電圧Vbが所定の閾値Vth以上であれば、充電完了判断部640は、バッテリ710の充電が完了したと判断する。充電が完了したと判断した場合、充電完了判断部640は、スイッチ660に信号線を開路させて充電を終了させる。充電が完了していないと判断した場合、充電完了判断部640は、スイッチ660に信号線を閉路させて充電を継続させる。
 なお、出力電流測定部510は、特許請求の範囲に記載の出力値取得部の一例である。
 図3は、第1の実施の形態における電力量取得部520の一構成例を示すブロック図である。電力量取得部520は、バッテリ電圧測定部521、電力量演算部522、および、充電率変換テーブル523を備える。
 バッテリ電圧測定部521は、バッテリ電圧Vbを測定するものである。バッテリ電圧測定部521は、測定した電圧値を電力量演算部522および充電完了判断部640に出力する。
 充電率変換テーブル523は、バッテリ電圧Vbと充電率Rとを対応付けて記憶するものである。この充電率Rは、バッテリ710の全容量に対する、残存容量の割合であり、単位は、例えば、パーセント(%)である。充電率変換テーブル523には、予め測定された、バッテリ電圧Vbおよび充電率Rが対応付けて格納されている。
 電力量演算部522は、バッテリ電圧Vbから電力量Qを演算するものである。具体的には、まず、電力量演算部522は、バッテリ電圧Vbに対応する充電率Rを充電率変換テーブル523から読み出す。そして、電力量演算部522は、読み出した充電率Rを下記の式(1)に代入して電力量Qを演算する。
  Q[mWh]=C[mWh](1-R[%]/100)・・・(1)
 上記式(1)において、Cは、バッテリ710の全容量である。電力量演算部522は、演算した電力量Qを予測時刻算出部530に出力する。
 図4は、第1の実施の形態における充電率変換テーブル523の一構成例を示す図である。例えば、満充電のバッテリ電圧Vbが4.2[V]であった場合、そのバッテリ電圧Vbに、充電率Rとして100[%]が対応付けて格納される。満充電の状態から全容量の2%分の容量を放電したときのバッテリ電圧Vbの測定値が4.1[V]であった場合、そのバッテリ電圧Vbに、充電率Rとして98[%]が対応付けて格納される。
 [充電器の動作例]
 図5~図7を参照して、充電器300の動作例について説明する。図5は、第1の実施の形態における給電制御部630の動作の一例を示す表である。タイマ値Tcが60秒であった場合、給電制御部630は、比較部610の比較結果を参照する。予測時刻Tgが完了時刻Tsより早い場合には、給電制御部630は、太陽電池110からの自然エネルギー電力によりバッテリ710を充電させる。一方、予測時刻Tgが完了時刻Ts以降である場合には、給電制御部630は、太陽電池110および交流電源(すなわち、電源コンセント210)からの電力のみによりバッテリ710を充電させる。
 図6は、第1の実施の形態における充電器300の動作の一例を示すフローチャートである。この動作は、充電器300が太陽電池110および電源コンセント210に接続され、電池パック700が充電器300に装着されたときに開始する。充電器300は、現在時刻Tcから充電が完了するまでの時間の入力を受け付ける。充電器300内の完了時刻設定部400は、入力された時間を現在時刻に加算した時刻を完了時刻Tsとして充電回路500に設定する(ステップS910)。充電器300は、太陽電池110からの出力電流Igを測定し(ステップS920)、バッテリ電圧Vbに基づいて電力量Qを取得する(ステップS930)。そして、充電器300は、充電方式を切り替えるか否かを判断する給電制御処理を実行する(ステップS950)。
 充電器300は、一定時間(例えば、60秒)が経過したか否かを判断する(ステップS970)。一定時間が経過していなければ(ステップS970:No)、充電器300は、ステップS970に戻る。一定時間が経過したのであれば(ステップS970:Yes)、充電器300は、充電が完了したか否かを判断する(ステップS980)。充電が完了していなければ(ステップS980:No)、充電器300は、ステップS910に戻る。充電が完了したのであれば(ステップS980:Yes)、充電器300は、充電を終了する。
 図7は、第1の実施の形態における給電制御処理の一例を示すフローチャートである。予測時刻算出部530は、電力量Qおよび出力電流Igに基づいて予測時刻Tgを演算する(ステップS953)。制御部600は、予測時刻Tgが完了時刻Tsより早いか否かを判断する(ステップS956)。予測時刻Tgが完了時刻Tsより早い場合には(ステップS956:Yes)、給電制御部630は、太陽電池110からの自然エネルギー電力のみによりバッテリ710を充電させる(ステップS957)。予測時刻Tgが完了時刻Ts以降である場合には(ステップS956:No)、給電制御部630は、太陽電池110および交流電源からの電力によりバッテリ710を充電させる(ステップS958)。ステップS957またはS958の後、制御部600は、給電制御処理を終了する。
 このように、本技術の第1の実施の形態によれば、完了時刻Tsが設定されると、充電回路500は、出力電流Igおよび電力量Qに基づいて自然エネルギー電力のみによりバッテリ710の充電が完了する予測時刻Tgを算出する。そして、予測時刻Tgが完了時刻Tsより早い場合には、充電回路500は、自然エネルギー電力のみによりバッテリ710を充電させる。この構成によれば、完了時刻Tsまでに余裕がある場合において、自然エネルギー電力のみによりバッテリ710が充電されるため、自然エネルギー電力が有効に利用される。
 また、充電回路500は、予測時刻Tgが完了時刻Ts以降である場合には交流電源からの電力と自然エネルギー電力とにより充電させるため、完了時刻Tsまでに確実に充電を完了する。
 なお、充電器300は、太陽電池110が生成した自然エネルギー電力により充電しているが、太陽電池110以外の電源装置が生成した自然エネルギー電力により充電を行ってもよい。例えば、充電器300は、風力発電装置や水力発電装置が生成した自然エネルギー電力を利用してもよい。
 また、充電器300は、定電圧充電を行い、太陽電池110からの出力電流Igを測定しているが、定電流充電を行い、太陽電池110からの出力電圧を測定してもよい。この場合、予測時刻算出部530は、測定された出力電圧と電力量Qとから予測時刻Tgを算出する。
 また、電力量取得部520は、充電率変換テーブル523から、バッテリ電圧Vbに対応する充電率Rを読み出しているが、バッテリ電圧Vbと充電率Rとの間の関係を示す関係式を定義しておき、この関係式に基づく演算により充電率Rを求めることもできる。
 また、電力量取得部520は、充電率Rから電力量Qを演算しているが、予め演算しておいた電力量Qをバッテリ電圧Vbごとに記憶したテーブルを充電率変換テーブル523の代わりに備え、そのテーブルから電力量Qを読み出すこともできる。
 また、充電完了判断部640は、バッテリ電圧Vbと閾値とを比較することにより、充電が完了したか否かを判断しているが、バッテリ710の特性に基づいて、他の方式により充電が完了したか否かを判断することもできる。例えば、バッテリ710が、満充電に達するとバッテリ電圧がわずかに降下する特性をもつ場合、充電完了判断部640は、その電圧降下(-ΔV)を検出したときに充電を終了する-ΔV制御方式を使用することができる。あるいは、バッテリ710が満充電に近づくと発熱する特性をもつ場合、充電完了判断部640は、バッテリ710の温度を計測し、その温度が一定値に達したときに充電を終了する温度検出制御方式を使用することもできる。
 <2.第2の実施の形態>
 [充電回路の構成例]
 次に、図8~図10を参照して、本技術の第2の実施の形態について説明する。図8は、第2の実施の形態における充電回路501の一構成例を示す全体図である。充電回路501は、現在時刻Tcから完了時刻Tsまでの時間(以下、「残り時間Tr」と称する。)とバッテリ710の残存残量(以下、「バッテリ残量Cr」と称する。)とに基づいて充電制御を行う点において第1の充電回路500と異なる。充電回路501は、制御部600の代わりに制御部601を備える。制御部601は、給電制御部630の代わりに給電制御部631を備え、残り時間判断部670およびバッテリ残量判断部680をさらに備える点において第1の実施の形態の制御部600と異なる。本技術の第2の実施の形態における完了時刻設定部400は、比較部610のほか、残り時間判断部670にも完了時刻Tsを出力する。また、本技術の第2の実施の形態における電力量取得部520は充電完了判断部640のほか、バッテリ残量判断部680にも、バッテリ電圧Vbの測定値を出力する。
 残り時間判断部670は、残り時間Trが所定の設定時間(例えば、12時間)以上であるか否かを判断するものである。残り時間判断部670は、判断結果を給電制御部631に出力する。
 バッテリ残量判断部680は、バッテリ残量Crが所定の設定容量(例えば、全容量のうちの10%分の容量)以上であるか否かを判断するものである。バッテリ残量Crの単位は、例えば、ミリワットアワー(mWh)である。バッテリ残量判断部680は、判断結果を給電制御部631に出力する。
 給電制御部631は、残り時間Trが設定時間以上であり、バッテリ残量Crが設定容量以上であり、かつ、予測時刻Tgが完了時刻Tsより早い場合に自然エネルギー電力のみにより充電させる。そうでない場合、給電制御部631は、自然エネルギー電力と交流電源からの電力とにより充電させる。
 [充電器の動作例]
 図9および図10を参照して、第2の実施の形態における充電器300の動作例について説明する。図9は、第2の実施の形態における給電制御部631の動作の一例を示す表である。残り時間Trが設定時間以上であり、バッテリ残量Crが設定容量以上であり、かつ、予測時刻Tgが完了時刻Tsより早い場合に、給電制御部631は太陽電池110からの電力のみによりバッテリ710を充電させる。残り時間Trが設定時間未満である場合、または、バッテリ残量Crが設定容量未満である場合、あるいは、予測時刻Tgが完了時刻Ts以降である場合に、給電制御部631は太陽電池110および交流電源からの電力によりバッテリ710を充電させる。
 図10は、第2の実施の形態における給電制御処理の一例を示すフローチャートである。第2の実施の形態における給電制御処理は、ステップS954およびS955をさらに実行する点において第1の実施の形態の給電制御処理と異なる。
 予測時間Tgが演算されると(ステップS953)、給電制御部631は、残り時間Trが設定時間以上であるか否かを判断する(ステップS954)。残り時間Trが設定時間以上である場合(ステップS954:Yes)、給電制御部631は、バッテリ残量Crが設定容量以上であるか否かを判断する(ステップS955)。バッテリ残量Crが設定容量以上である場合(ステップS955:Yes)、給電制御部631は、予測時刻Tgが完了時刻Tsより早いか否かを判断する(ステップS956)。残り時間Trが設定時間未満である場合(ステップS954:No)、バッテリ残量Crが設定容量未満である場合(ステップS955:No)、または、予測時刻Tgが完了時刻Ts以降である場合(ステップS956:No)について説明する。この場合、給電制御部631は太陽電池110および交流電源からの電力によりバッテリ710を充電させる(ステップS958)。
 このように本技術の第2の実施の形態によれば、給電制御部631は、残り時間Trが設定時間未満である場合に、太陽電池110および交流電源からの電力によりバッテリ710を充電させる。これにより、完了時刻Tsまでに充電が間に合わなくなることが防止される。
 また、給電制御部631は、バッテリ残量Crが設定容量未満である場合に、太陽電池110および交流電源からの電力によりバッテリ710を充電させる。これにより、設定容量までに充電される時間が短くなり、ユーザの利便性が向上する。
 <3.第3の実施の形態>
 [充電回路の構成例]
 次に、図11~図14を参照して、本技術の第3の実施の形態について説明する。第3の実施の形態の充電器300は、天候予報データに基づいて予測時刻Tgを算出する点において第1の実施の形態と異なる。第3の実施形態の充電器300は、完了時刻設定部400および充電回路500の代わりに完了時刻設定部402および充電回路502を備える点において、第1の実施の形態の充電器300と異なる。
 図11は、第3の実施の形態における充電回路502の一構成例を示す全体図である。充電回路502は、予測時刻算出部530の代わりに予測時刻算出部531を備え、関数取得部511および関数テーブル512をさらに備える点において第1の実施の形態の充電回路500と異なる。
 完了時刻設定部402は、完了時刻Tsに加えて、天候予報データをさらに設定する。天候予報データは、予報期間と、その予報期間において予報された天候とを示す情報である。例えば、1月1日に天気が晴れることが予報された場合、予報期間として「1月1日」、天候として「晴れ」を示す天候予報データが設定される。完了時刻設定部402は、設定した天候予報データを関数取得部511に信号線805を介して出力する。
 関数テーブル512は、天候ごとに、予測される出力電流Igの特性を示す関数を記憶するものである。太陽電池110の発電量は太陽光の光量に応じて増減するため、出力電流Igの値は、一般に、早朝から日中にかけて時間の経過に伴って上昇し、日中から夕方にかけて時間の経過に伴って減少する。この出力電流Igの特性に基づいて、予測される出力電流Igの値の時系列の変化を時間tの関数(例えば、2次関数)に近似することができる。また、太陽光の光量は天候に応じて変動する。このため、天候ごとに異なる関数が定義され、関数テーブル512に格納される。
 関数取得部511は、天候に対応する関数Ig(t)を取得するものである。具体的には、関数取得部511は、天候予報データを受け取ると、その天候予報データの示す天候に対応する関数Ig(t)を関数テーブル512から信号線915を介して読み出す。関数取得部511は、読み出した関数Ig(t)と天候予報データの示す予報期間とを予測時刻算出部531に信号線916を介して出力する。
 予測時刻算出部531は、関数Ig(t)および予報期間を受けとった場合に、その関数Ig(t)から、予測時刻Tgを算出する。具体的には、予測時刻算出部531は、現在時刻Tcから予報期間が経過するまでの期間におけるIg(t)の積分値を電力量に換算した値が電力量Qと等しくなる時間tを算出する。予報期間内の積分値に対応する電力量が、電力量Qに満たなければ、予測時刻算出部531は、予報期間が経過するまでの関数Ig(t)の積分値と予報期間経過後の出力電流Igの積分値との加算値に対応する電力量が電力量Qと等しくなる時間tを算出する。予測時刻算出部531は、算出した時間tを現在時刻Tcに加算した値を予測時刻Tgとする。一方、関数Ig(t)を受け取らなかった場合、予測時刻算出部531は、測定された出力電流Igから予測時刻Tgを算出する。
 なお、関数取得部511は、特許請求の範囲に記載の予測値取得部の一例である。関数テーブル512は、特許請求の範囲に記載の予測値記憶部の一例である。
 図12A~図12Cは、第3の実施の形態における出力電流の特性を示す関数の一例を示すグラフである。図12A~図12Cにおいて、点線で示す関数は、理想的な環境における、出力電流Igの予測値の変化を示す関数である。実線で示す関数は、実際に測定された出力電流Igの変化を近似した関数である。太陽電池110の発電量は、地域や設置環境により異なるため、実測値は、理想値と異なることが多い。実測値が得られていない場合は理想値に基づく関数が関数テーブル512に格納され、実測値が得られた場合は、点線で示す関数を実測値に基づいて補正した関数が関数テーブル512に格納される。図12Aは、晴れの日における出力電流Igの特性を示す関数の一例であり、図12Bは、曇りの日における出力電流Igの特性を示す関数の一例である。図12Cは、雨の日における出力電流Igの特性を示す関数の一例である。
 [充電器の動作例]
 図13および図14を参照して、第3の実施の形態における充電器300の動作例について説明する。図13は、第3の実施の形態における充電器300の動作の一例を示す表である。第3の実施の形態の充電器300の動作は、ステップS940をさらに実施する点において第1の実施の形態の充電器300の動作と異なる。充電器300は、電力量Qを取得し(ステップS930)、天候予報データの入力を受け付ける。天候予報データが入力されると、完了時刻設定部402は、その天候予報データを充電回路502に設定する(ステップS940)。そして、充電器300は、給電制御処理を実行する(ステップS950)。
 図14は、第3の実施の形態における給電制御処理の一例を示すフローチャートである。第3の実施の形態の給電制御処理は、ステップS951およびS952をさらに実行する点において第1の実施の形態の給電制御処理と異なる。
 充電回路502は、天候予報データを取得したか否かを判断する(ステップS951)。天候予報データを取得しているのであれば(ステップS951:Yes)、予測時刻算出部531は、その天候予報データの示す天候に対応する関数Ig(t)に基づいて予測時刻Tgを演算する(ステップS952)。天候予報データを取得していなければ(ステップS951:No)、予測時刻算出部531は、測定した出力電流Igに基づいて予測時刻Tgを演算する(ステップS953)。ステップS952またはS953の後、制御部600は、予測時刻Tgが完了時刻Tsより早いか否かを判断する(ステップS956)。
 このように、本技術の第3の実施の形態によれば、充電回路502は、天候予報データが設定されると、その天候予報データの示す天候に対応する予測値を関数テーブル512から読み出して、その予測値および電力量Qに基づいて予測時刻Tgを算出する。これにより、充電回路502は、天候に伴う自然エネルギー電力の変動に基づいて、予測時刻Tgを、より正確に算出することができる。
 なお、天候予報データは、ユーザが入力する構成としているが、充電器300が、無線または有線の通信を行うことにより、天候予報データを取得する構成とすることもできる。
 また、充電回路502は、天候ごとに出力電流Igの関数を記憶しておく構成としているが、関数でない予測値を天候ごとに記憶しておく構成とすることもできる。例えば、充電回路502は、出力電流Igの平均値や中央値を天候ごとに記憶しておくこともできる。
 また、充電回路502は、関数取得部511および関数テーブル512と出力電流測定部510とを両方備える構成としている。しかし、充電回路502は、関数取得部511および関数テーブル512と出力電流測定部510とのうちのいずれか一方のみを備える構成とすることもできる。
 <4.第4の実施の形態>
 [充電システムの構成例]
 次に、図15~図21を参照して、本技術の第4の実施の形態について説明する。第4の実施の形態の充電システムは、自然エネルギー電力による充電容量と、自然エネルギー電力以外の電力による充電容量とを記憶する点において第1の実施形態の充電システムと異なる。
 図15は、第4の実施の形態における充電システムの一構成例を示す全体図である。第4の実施の形態の充電システムは、充電器300および電池パック700の代わりに充電器303および電池パック703を備える点において第1の実施の形態の充電システムと異なる。充電器303は、充電回路500の代わりに充電回路503を備える点において第1の実施形態の充電回路500と異なる。電池パック703は、メモリ720をさらに備える点において第1の実施の形態の電池パック700と異なる。
 充電回路503は、自然エネルギー電力による充電容量と、自然エネルギー電力以外の電力による充電容量とを示す情報をメタデータとして生成する。充電回路503は、信号線806を介してメタデータをメモリ720に出力する。メモリ720は、メタデータを記憶するものである。
 メモリ720に記憶されたメタデータは、電池パック703を電源とする電子機器750により読み出される。電子機器750は、電池パック703が装着されると、メモリ720からメタデータを読み出し、そのメタデータに基づいて自然エネルギー電力による充電容量と、自然エネルギー電力以外の電力による充電容量とを表示する。
 なお、メタデータは、特許請求の範囲に記載の充電データの一例である。メモリ720は、特許請求の範囲に記載の充電データ記憶部の一例である。電子機器750は、特許請求の範囲に記載の表示部の一例である。
 [充電回路の構成例]
 図16は、第4の実施の形態における充電回路503の一構成例を示すブロック図である。充電回路503は、メタデータ生成部540をさらに備える点において第1の実施の形態の充電回路500と異なる。
 メタデータ生成部540は、メタデータを生成して出力するものである。詳細には、メタデータ生成部540は、給電制御部630から信号線831を介してスイッチ650を制御するための切替信号を取得する。この切替信号には、例えば、スイッチ650に信号線を閉路させる場合に「1」の値が設定され、開路させる場合に「0」の値が設定される。また、メタデータ生成部540は、充電完了判断部640から信号線832を介してスイッチ660を制御するための制御信号を取得する。この制御信号には、例えば、スイッチ660に信号線を閉路させる場合に「1」の値が設定され、開路させる場合に「0」の値が設定される。さらに、メタデータ生成部540は、出力電流測定部510から出力電流Igの測定値を取得し、信号線833を介して、タイマ値Tcを取得する。そして、メタデータ生成部540は、太陽電池110からの電力により充電中の場合に出力電流Igの測定値にタイマ値Tcを積算した値を自然エネルギー電力による充電容量に加算する。また、交流電源からの電力により充電中の場合に、メタデータ生成部540は、交流アダプタ330の出力電流にタイマ値Tcを積算した値を、自然エネルギー電力以外の電力による充電容量に加算する。メタデータ生成部540は、各充電容量を示すメタデータを生成してメモリ720に出力する。
 なお、メタデータ生成部540は、特許請求の範囲に記載の充電データ生成部の一例である。
 図17は、第4の実施の形態におけるメタデータ生成部540の一構成例を示すブロック図である。メタデータ生成部540は、積算部541およびメタデータ生成更新部542を備える。
 積算部541は、制御周期内の出力電流Igの積算値を電力量に換算した値である充電量Cgを演算するものである。充電量Cgの単位は、例えば、ミリワットアワー(mWh)である。積算部541は、充電量Cgをメタデータ生成更新部542に出力する。
 メタデータ生成更新部542は、メタデータを生成するとともに更新するものである。スイッチ660が信号線を閉路しており、かつ、スイッチ650が信号線を開路している場合(すなわち、太陽電池110からの電力のみにより充電中の場合)について説明する。この場合、メタデータ生成更新部542は、充電量Cgを自然エネルギー電力による充電容量に加算する。一方、スイッチ660および650が、いずれも信号線を閉路している場合(すなわち、太陽電池110および交流電源からの電力により充電中の場合)について説明する。この場合、メタデータ生成更新部542は、充電量Cgを自然エネルギー電力による充電容量に加算し、交流アダプタ330の出力電流を制御周期内で積算した値を、自然エネルギー電力以外の電力による充電容量に加算する。メタデータ生成更新部542は、これらの充電容量を示す情報をメタデータとして生成して出力する。メタデータ生成更新部542は、メタデータを生成した後、タイマ値Tcの増加に伴い、メモリ720内のメタデータにおいて各充電容量を更新する。スイッチ660が信号線を開路した場合(すなわち、充電が完了した場合)、メタデータ生成更新部542は、メタデータの更新を終了する。
 [充電器の動作例]
 図18および図19を参照して、第4の実施の形態における充電器303の動作例について説明する。図18は、第4の実施の形態におけるメタデータ生成更新部542の動作の一例を示す表である。充電完了判断部640の制御信号の値が「1」であり、給電制御部630の切替信号の値が「0」である場合について説明する。この場合においては、予測時間Tgが完了時間Tsより早いため、太陽電池110からの電力のみによりバッテリ710が充電されている。このため、メタデータ生成更新部542は、太陽電池110による充電容量(すなわち、充電量Cg)を自然エネルギー電力による充電容量に加算する。一方、切替信号および制御信号の値がいずれも「1」である場合について説明する。この場合においては、予測時間Tgが完了時間Ts以降であるため、太陽電池110および交流電源からの電力によりバッテリ710が充電されている。このため、メタデータ生成更新部542は、太陽電池110による充電容量を自然エネルギー電力による充電容量に加算し、交流電源による充電容量を、自然エネルギー電力以外の電力による充電容量に加算する。充電完了判断部640の制御信号の値が「0」である場合(すなわち、充電が完了した場合)、メタデータ生成更新部542は、メタデータの更新を終了する。
 図19は、第4の実施の形態における充電器303の動作の一例を示すフローチャートである。充電器303の動作は、ステップS960をさらに実行する点において第1の実施の形態の充電器300の動作と異なる。
 充電器303は、給電制御処理を実行し(ステップS950)、メタデータを生成するとともに更新する(ステップS960)。そして、充電器303は、一定時間が経過したか否かを判断する(ステップS970)。
 図20は、第4の実施の形態におけるメタデータの一構成例を示す図である。メタデータは、自然エネルギー電力による充電容量を格納するための領域551と、自然エネルギー電力以外の電力による充電容量を格納するための領域552とを備える。例えば、自然エネルギー電力により4800[mWh]の容量が充電され、自然エネルギー電力以外の電力により2800[mWh]の容量が充電された場合、領域551に「4800」を示すデータが格納され、領域552に「2800」を示すデータが格納される。
 図21は、第4の実施の形態におけるメタデータの示す内容の表示例である。電子機器750は、自然エネルギー電力による充電容量と自然エネルギー電力以外の電力による充電容量とをユーザが識別しやすいように表示する。例えば、電子機器750は、バッテリの全容量を一本のバーで表示し、そのバーにおいて自然エネルギー電力による充電率にバー全体の長さを乗算した長さの部分を黒で表示する。また、電子機器750は、そのバーにおいて自然エネルギー電力でない電力による充電率にバー全体の長さを乗算した長さの部分を灰色で表示し、残りの部分を白で表示する。
 このように、本技術の第4の実施の形態によれば、充電回路503は、自然エネルギー電力による充電容量と自然エネルギー電力以外の電力による充電容量とを示すメタデータを出力する。これにより、電子機器750は、各充電容量を表示することができる。電源ごとの充電容量の表示により、ユーザは、充電において、自然エネルギー電力がどの程度利用されたかを容易に把握することができる。
 また、電池パック703内のメモリ720にメタデータが記憶される。このため、充電器303の外部の機器であっても、電池パック703を装着可能であれば、各充電容量を取得することができる。
 なお、電子機器750がメタデータの示す内容を表示する構成としているが、メタデータの示す内容を表示する表示部を充電器303がさらに備える構成とすることもできる。
 <5.第5の実施の形態>
 [充電システムの構成例]
 次に、図22~図26を参照して、本技術の第5の実施の形態について説明する。第5の実施の形態の充電システムは、交流電力の供給源を取得してメタデータを生成する点において第4の実施形態の充電システムと異なる。
 図22は、第5の実施の形態における充電システムの一構成例を示す全体図である。第5の実施の形態における充電システムは、変換切替部220をさらに備え、充電器303の代わりに充電器304を備える点において第4の実施の形態の充電システムと異なる。
 変換切替部220は、商用電源および自然エネルギー電源から商用電力および自然エネルギー電力を受電し、いずれかを電源コンセント210に供給するものである。この自然エネルギー電源は、例えば、太陽電池110と設置場所が異なる外部の太陽光発電装置である。また、変換切替部220は、PLC(Power Line Communications)モジュールなどを使用して、供給する交流電力の交流波形に電源識別子IDを重畳する。電源識別子IDは、交流電力の供給源を識別するための識別子である。電源識別子IDには、例えば、交流電力が商用電源から供給されている場合に「0」の値が設定され、自然エネルギー電源から供給されている場合に「1」の値が設定される。
 充電器304は、交流アダプタ330および充電回路503の代わりに交流アダプタ340および充電回路504を備える点において第4の実施の形態の充電器303と異なる。
 交流アダプタ340は、受電した交流電力の交流波形から電源識別子IDを分離する。交流アダプタ340は、その交流電力を直流電力に変換して信号線803を介して充電回路504に供給するとともに、電源識別子IDを充電回路504に信号線807を介して出力する。
 充電回路504は、交流電力により充電する場合、メタデータにおいて、電源識別子IDの示す供給源に対応する充電容量の値を更新する。
 なお、交流アダプタ340は、特許請求の範囲に記載の分離部の一例である。電源識別子IDは、特許請求の範囲に記載の電源識別信号の一例である。
 図23は、第5の実施の形態における変換切替部220の一構成例を示すブロック図である。変換切替部220は、インバータ221と、切替制御部222と、電源識別子重畳部223および224と、電源識別子記憶部225とスイッチ226とを備える。
 インバータ221は、自然エネルギー電源から供給された直流電力を交流電力に変換するものである。インバータ221は、変換後の交流電力を電源識別子重畳部223へ出力する。
 切替制御部222は、交流電力の供給源を切り替える制御を行うものである。具体的には、切替制御部222は、自然エネルギー電力の発電量を監視し、その発電量に基づいてスイッチ226を制御する。例えば、切替制御部222は、自然エネルギー電力の発電量が閾値以上である場合に、交流電力の供給源を自然エネルギー電源に切り替え、閾値未満である場合に供給源を商用電源に切り替える。
 電源識別子重畳部223は、電源識別子記憶部225から自然エネルギー電源に対応する電源識別子IDを取得し、インバータ221から供給された交流電力の交流波形において、その電源識別子IDを重畳するものである。電源識別子IDが交流波形に重畳された交流電力は、スイッチ226の入力端子に出力される。
 電源識別子重畳部224は、電源識別子記憶部225から商用電源に対応する電源識別子IDを取得し、商用電源から供給された交流電力の交流波形において、その電源識別子IDを重畳するものである。電源識別子IDが交流波形に重畳された交流電力は、スイッチ226の入力端子に出力される。
 電源識別子記憶部225は、電源ごとに電源識別子IDを記憶するものである。スイッチ226は、切替制御部222の制御に従って交流電力の供給源を切り替えるものである。スイッチ226は、2つの入力端子と1つの出力端子を備える。一方の入力端子は電源識別子重畳部223に接続され、他方の入力端子は電源識別子重畳部224に接続されている。出力端子は、変圧器などを経由して電源コンセント210に接続されている。
 図24は、第5の実施の形態におけるメタデータ生成部545の一構成例を示すブロック図である。第5の実施の形態のメタデータ生成部545は、メタデータ生成更新部542の代わりにメタデータ生成更新部543を備える点において第4の実施の形態のメタデータ生成部540と異なる。
 メタデータ生成更新部543は、給電制御部630および充電完了判断部640からの切替信号および制御信号に加えて、交流アダプタ340から電源識別子IDを受け取る。メタデータ生成更新部543は、太陽電池110および交流電源からの電力によりバッテリ710が充電されている場合において、電源識別子IDを参照して交流電力の供給源を識別する。外部の太陽電池が交流電力の供給源である場合、メタデータ生成更新部543は、交流電源および家庭内の太陽電池110からの電力による充電容量を自然エネルギー電力による充電容量に加算する。商用電源が交流電力の供給源である場合、メタデータ生成更新部543は、太陽電池110による充電容量を自然エネルギー電力による充電容量に加算し、交流電源による充電容量を自然エネルギー電力以外の電力による充電容量に加算する。
 [充電器の動作例]
 図25を参照して、第5の実施の形態における充電器304の動作例について説明する。図25は、第5の実施の形態におけるメタデータ生成更新部543の動作の一例を示す表である。充電完了判断部640の制御信号の値と、給電制御部630の切替信号の値とがいずれも「1」であり、かつ、電源識別子IDが「0」である場合について説明する。この場合、太陽電池110および商用電源からの電力がバッテリ710に供給されている。このため、メタデータ生成更新部543は、太陽電池110による充電容量を自然エネルギー電力による充電容量に加算し、交流電源による充電容量を自然エネルギー電力以外の電力による充電容量に加算する。
 一方、切替信号および制御信号の各値がいずれも「1」であり、かつ、電源識別子IDが「1」である場合について説明する。この場合、家庭内の太陽電池110からの電力と、外部の太陽電池からの電力とがバッテリ710に供給されている。このため、メタデータ生成更新部543は、家庭内の太陽電池110および交流電源による充電容量を、自然エネルギー電力による充電容量に加算する。
 このように、本技術の第5の実施の形態によれば、充電回路504は、電源識別子IDを取得し、その電源識別子IDに基づいてメタデータを生成する。これにより、交流電力の供給源が複数であっても、供給源ごとに充電容量を算出することができる。
 
 なお、変換切替部220は、供給源が自然エネルギー電源であるか否かを識別するための電源識別子IDを重畳しているが、自然エネルギー電源の種類を識別するための識別子を重畳してもよい。例えば、変換切替部220は、水力発電装置、太陽光発電装置、または、地熱発電装置などの各電源を識別するための電源識別子を重畳してもよい。
 また、充電器304は、自然エネルギー電力による充電容量と、自然エネルギー電力でない電力による充電容量とを算出しているが、自然エネルギー電力の供給源ごとに充電容量を算出してもよい。例えば、充電器304は、家庭内の太陽電池110による充電容量と、外部の太陽電池による充電容量と、商用電源による充電容量とをそれぞれ算出する。そして、充電器304は、図26に示すように各充電容量を示すメタデータを生成する。このメタデータには、電源を示す情報を格納するための複数の領域と、充電容量を示す情報を格納するための領域とが対応付けて設けられる。
 また、変換切替部220は、電源識別子IDを商用電源からの交流電力と、自然エネルギー電源からの交流電力との両方に重畳しているが、いずれか一方のみに重畳してもよい。
 <6.第6の実施の形態>
 [充電システムの構成例]
 次に、図27および図28を参照して、本技術の第6の実施の形態について説明する。第6の実施の形態における充電システムは、電子機器を経由して充電を行う点において第5の実施の形態の充電システムと異なる。
 図27は、第6の実施の形態における充電システムの一構成例を示す全体図である。第6の実施の形態における充電システムは、電子機器751をさらに備える点において第5の実施の形態における充電システムと異なる。
 電子機器751は、電池パック703を電源とする機器であり、電子機器制御部760および表示部770を備える。電子機器制御部760は、電子機器751全体を制御するものである。電子機器制御部760は、充電器304から信号線804を介して直流電力を受電し、信号線806を介してメタデータを受け取る。電子機器制御部760は、受電した直流電力をバッテリ710に信号線808を介して出力し、メタデータをメモリ720に信号線809を介して出力する。また、電子機器制御部760は、メモリ720からメタデータを読み出して、そのメタデータの示す内容を表示部770に表示させる。表示部770は、メタデータの示す内容を表示するものである。
 図28は、第6の実施の形態における電子機器制御部760の一構成例を示すブロック図である。電子機器制御部760は、プロセッサ761、メモリ762、および、バス763を備える。
 プロセッサ761は、電子機器751全体を制御するものである。プロセッサ761は、充電器304から受け取ったメタデータを電池パック703へ出力する。また、プロセッサ761は、電池パック703に記憶されたメタデータを読み出して、そのメタデータの示す内容を表示するためのデータを生成し、表示部770へ信号線881を介して出力する。
 メモリ762は、プロセッサ761が直接アクセス可能な主記憶装置である。バス763は、プロセッサ761やメモリ762がデータを送受信するための共通の経路である。
 このように、本技術の第6の実施の形態によれば、充電器304は、電子機器751を経由して電池パック703を充電する。これにより、充電器304は、電子機器751に電池パック703を装着したままの状態で電池パック703を充電することができ、ユーザの利便性が向上する。
 なお、メモリ720を電池パック703内に設ける構成としているが、メモリ720を電池パック703内でなく、電子機器751内に設ける構成とすることもできる。これにより、電池パック703にメモリ720を設ける必要がなくなる。
 <7.変形例>
 [充電回路の構成例]
 次に、図29を参照して、本技術の変形例について説明する。図29は、変形例の充電回路506の一構成例を示すブロック図である。充電回路506は、制御部600の代わりに制御部606を備える点において、第1の実施の形態の充電回路500と異なる。制御部606は、スイッチ650の代わりにスイッチ651を備える点において第1の実施の形態の制御部600と異なる。
 スイッチ651は、2つの入力端子と1つの出力端子とを備える。スイッチ651の一方の入力端子は、ダイオード320に接続され、他方の入力端子は、交流アダプタ330に接続される。スイッチ651の出力端子は、スイッチ660に接続される。給電制御部630は、予測時刻Tgが完了時刻Tsより早い場合にはスイッチ651の入力先をダイオード320に切り替え、予測時刻Tgが完了時刻Ts以降の場合にはスイッチ651の入力先を交流アダプタ330に切り替える。これにより、予測時刻Tgが完了時刻Ts以降である場合に交流電力のみによりバッテリ710が充電される。この構成によれば、自然エネルギー電力と交流電源からの電力とのうちのいずれか一方しか供給されないため、両方を供給する第1の実施形態の充電器システムと比較して過充電が生じる可能性が低くなる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラムまたはそのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disk)、メモリカード、ブルーレイディスク(Blu-ray Disc(登録商標))等を用いることができる。
 なお、本技術は以下のような構成もとることができる。
(1)2次電池の充電を完了すべき時刻である完了時刻を設定する設定部と、
 自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得部と、
 前記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得部と、前記出力値と前記電力量とに基づいて前記自然エネルギー電力のみにより前記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出部と、
 前記予測時刻が前記完了時刻より早い場合には前記自然エネルギー電力のみにより前記2次電池を充電させる制御部と、
を具備する、充電器。
(2)前記制御部は、前記予測時刻が前記完了時刻以降である場合には前記自然エネルギー電源装置以外の電源装置が生成した電力により前記2次電池を充電させる、
前記(1)に記載の充電器。
(3)前記制御部は、前記予測時刻が前記完了時刻以降である場合には前記自然エネルギー電力をさらに供給して前記2次電池を充電させる、
前記(2)に記載の充電器。
(4)前記設定部は、天候を示す天候予報データをさらに設定し、
 前記出力値取得部は、前記設定された天候予報データに基づいて前記出力値を天候ごとに予測し、
 前記予測時刻算出部は、前記予測された天候ごとの前記出力値および前記電力量に基づいて前記予測時刻を算出する、
前記(3)記載の充電器。
(5)前記自然エネルギー電力による前記2次電池の充電容量と前記自然エネルギー電力以外の電力による前記2次電池の充電容量とを示す情報を充電データとして生成して出力する充電データ生成部をさらに具備する、
前記(2)~(4)のいずれかに記載の充電器。
(6)前記自然エネルギー電源装置以外の電源装置は、電力の供給源を識別するための電源識別信号が交流波形に重畳された交流電力を受電し、前記交流波形から前記電源識別信号を分離する分離部をさらに具備し、
 前記充電データ生成部は、前記分離された電源識別信号に基づいて前記充電データを生成する、
前記(5)に記載の充電器。
(7)前記制御部は、現在時刻から前記完了時刻までの時間である残り時間が所定の時間以上である場合には前記自然エネルギー電力のみにより前記2次電池を充電させる、
前記(1)~(6)のいずれかに記載の充電器。
(8)前記制御部は、前記2次電池の残存容量が所定の容量以上である場合には前記自然エネルギー電力のみにより前記2次電池を充電させる、
前記(1)~(7)のいずれかに記載の充電器。
(9)前記設定部は、天候を示す天候予報データをさらに設定し、
 前記出力値取得部は、前記設定された天候予報データに基づいて前記出力値を天候ごとに予測し、
 前記予測時刻算出部は、前記予測された天候ごとの前記出力値および前記電力量に基づいて前記予測時刻を算出する、
前記(1)~(8)のいずれかに記載の充電器。
(10)2次電池の充電を完了すべき時刻である完了時刻を設定する設定部と、自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得部と、前記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得部と、前記出力値と前記電力量とに基づいて前記自然エネルギー電力のみにより前記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出部と、前記予測時刻が前記完了時刻より早い場合には前記自然エネルギー電力のみにより前記2次電池を充電させ、前記予測時刻が前記完了時刻以降である場合には前記自然エネルギー電源装置以外の電源装置が生成した電力により前記2次電池を充電させる制御部と、前記自然エネルギー電力による前記2次電池の充電容量と前記自然エネルギー電力以外の電力による前記2次電池の充電容量とを示す情報を充電データとして生成して出力する充電データ生成部とを備える充電器と、
 前記出力された充電データを記憶する充電データ記憶部と、前記2次電池とを備える電池パックと、
を具備する、充電システム。
(11)前記自然エネルギー電源装置以外の電源装置は、電力の供給源を識別するための電源識別信号が交流波形に重畳された交流電力を受電し、
 前記充電器は、前記交流波形から前記電源識別信号を分離する分離部をさらに備え、前記充電データ生成部は、前記分離された電源識別信号に基づいて前記充電データを生成する、
前記(10)に記載の充電システム。
(12)前記充電データに基づいて前記自然エネルギー電力による前記2次電池の充電容量と前記自然エネルギー電力以外の電力による前記2次電池の充電容量とを表示する表示部をさらに具備する、
前記(10)または(11)に記載の充電システム。
(13)2次電池の充電を完了すべき時刻である完了時刻を設定する設定手順と、
 自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得手順と、
 前記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得手順と、前記出力値と前記電力量とに基づいて前記自然エネルギー電力のみにより前記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出手順と、
 前記予測時刻が前記完了時刻より早い場合には前記自然エネルギー電力のみにより前記2次電池を充電させる制御手順と、
を具備する、充電方法。
 110 太陽電池
 210 電源コンセント
 220 変換切替部
 221 インバータ
 222 切替制御部
 223、224 電源識別子重畳部
 225 電源識別子記憶部
 226、650、651、660 スイッチ
 300、303、304 充電器
 310 昇圧コンバータ
 320 ダイオード
 330、340 交流アダプタ
 400、402 完了時刻設定部
 500、501、502、503、504、506 充電回路
 510 出力電流測定部
 511 関数取得部
 512 関数テーブル
 520 電力量取得部
 521 バッテリ電圧測定部
 522 電力量演算部
 523 充電率変換テーブル
 530 予測時刻算出部
 540、545 メタデータ生成部
 541 積算部
 542、543 メタデータ生成更新部
 600、601、606 制御部
 610 比較部
 620 制御周期タイマ
 630、631 給電制御部
 640 充電完了判断部
 
 670 残り時間判断部
 680 バッテリ残量判断部
 700、703 電池パック
 710 バッテリ
 720、762 メモリ
 750、751 電子機器
 760 電子機器制御部
 761 プロセッサ
 763 バス
 770 表示部
 

Claims (13)

  1.  2次電池の充電を完了すべき時刻である完了時刻を設定する設定部と、
     自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得部と、
     前記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得部と、
     前記出力値と前記電力量とに基づいて前記自然エネルギー電力のみにより前記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出部と、
     前記予測時刻が前記完了時刻より早い場合には前記自然エネルギー電力のみにより前記2次電池を充電させる制御部と、
    を具備する、充電器。
  2.  前記制御部は、前記予測時刻が前記完了時刻以降である場合には前記自然エネルギー電源装置以外の電源装置が生成した電力により前記2次電池を充電させる、
    請求項1に記載の充電器。
  3.  前記制御部は、前記予測時刻が前記完了時刻以降である場合には前記自然エネルギー電力をさらに供給して前記2次電池を充電させる、
    請求項2に記載の充電器。
  4.  前記設定部は、天候を示す天候予報データをさらに設定し、
     前記出力値取得部は、前記設定された天候予報データに基づいて前記出力値を天候ごとに予測し、
     前記予測時刻算出部は、前記予測された天候ごとの前記出力値および前記電力量に基づいて前記予測時刻を算出する、
    請求項3に記載の充電器。
  5.  前記自然エネルギー電力による前記2次電池の充電容量と前記自然エネルギー電力以外の電力による前記2次電池の充電容量とを示す情報を充電データとして生成して出力する充電データ生成部をさらに具備する、
    請求項2に記載の充電器。
  6.  前記自然エネルギー電源装置以外の電源装置は、電力の供給源を識別するための電源識別信号が交流波形に重畳された交流電力を受電し、
     前記交流波形から前記電源識別信号を分離する分離部をさらに具備し、
     前記充電データ生成部は、前記分離された電源識別信号に基づいて前記充電データを生成する、
    請求項5に記載の充電器。
  7.  前記制御部は、現在時刻から前記完了時刻までの時間である残り時間が所定の時間以上である場合には前記自然エネルギー電力のみにより前記2次電池を充電させる、
    請求項1に記載の充電器。
  8.  前記制御部は、前記2次電池の残存容量が所定の容量以上である場合には前記自然エネルギー電力のみにより前記2次電池を充電させる、
    請求項1に記載の充電器。
  9.  前記設定部は、天候を示す天候予報データをさらに設定し、
     前記出力値取得部は、前記設定された天候予報データに基づいて前記出力値を天候ごとに予測し、
     前記予測時刻算出部は、前記予測された天候ごとの前記出力値および前記電力量に基づいて前記予測時刻を算出する、
    請求項1に記載の充電器。
  10.  2次電池の充電を完了すべき時刻である完了時刻を設定する設定部と、自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得部と、前記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得部と、前記出力値と前記電力量とに基づいて前記自然エネルギー電力のみにより前記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出部と、前記予測時刻が前記完了時刻より早い場合には前記自然エネルギー電力のみにより前記2次電池を充電させ、前記予測時刻が前記完了時刻以降である場合には前記自然エネルギー電源装置以外の電源装置が生成した電力により前記2次電池を充電させる制御部と、前記自然エネルギー電力による前記2次電池の充電容量と前記自然エネルギー電力以外の電力による前記2次電池の充電容量とを示す情報を充電データとして生成して出力する充電データ生成部とを備える充電器と、
     前記出力された充電データを記憶する充電データ記憶部と、前記2次電池とを備える電池パックと、
    を具備する、充電システム。
  11.  前記自然エネルギー電源装置以外の電源装置は、電力の供給源を識別するための電源識別信号が交流波形に重畳された交流電力を受電し、
     前記充電器は、前記交流波形から前記電源識別信号を分離する分離部をさらに備え、
     前記充電データ生成部は、前記分離された電源識別信号に基づいて前記充電データを生成する、
    請求項10に記載の充電システム。
  12.  前記充電データに基づいて前記自然エネルギー電力による前記2次電池の充電容量と前記自然エネルギー電力以外の電力による前記2次電池の充電容量とを表示する表示部をさらに具備する、
    請求項10に記載の充電システム。
  13.  2次電池の充電を完了すべき時刻である完了時刻を設定する設定手順と、
     自然エネルギーから自然エネルギー電力を生成する電源装置である自然エネルギー電源装置からの電圧または電流の出力値を取得する出力値取得手順と、
     前記2次電池の充電が完了するまでに供給すべき電力量を取得する電力量取得手順と、
     前記出力値と前記電力量とに基づいて前記自然エネルギー電力のみにより前記2次電池の充電が完了する時刻を予測時刻として算出する予測時刻算出手順と、
     前記予測時刻が前記完了時刻より早い場合には前記自然エネルギー電力のみにより前記2次電池を充電させる制御手順と、
    を具備する、充電方法。
     
PCT/JP2012/053278 2011-03-02 2012-02-13 充電器、充電システム、および、充電方法 WO2012117838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12751800.9A EP2683056A4 (en) 2011-03-02 2012-02-13 LOADER, CHARGING SYSTEM AND LOADING PROCEDURE
US13/634,667 US20130002190A1 (en) 2011-03-02 2012-02-13 Charger, charging system, and charging method
CN201280000951.8A CN102812615A (zh) 2011-03-02 2012-02-13 充电器、充电系统和充电方法
BR112012023558A BR112012023558A2 (pt) 2011-03-02 2012-02-13 Carregador, e, sistema e método de carregamento

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-044731 2011-03-02
JP2011044731A JP2012182922A (ja) 2011-03-02 2011-03-02 充電器、充電システム、および、充電方法

Publications (1)

Publication Number Publication Date
WO2012117838A1 true WO2012117838A1 (ja) 2012-09-07

Family

ID=46757777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053278 WO2012117838A1 (ja) 2011-03-02 2012-02-13 充電器、充電システム、および、充電方法

Country Status (6)

Country Link
US (1) US20130002190A1 (ja)
EP (1) EP2683056A4 (ja)
JP (1) JP2012182922A (ja)
CN (1) CN102812615A (ja)
BR (1) BR112012023558A2 (ja)
WO (1) WO2012117838A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104509214A (zh) * 2012-10-30 2015-04-08 株式会社Lg化学 控制太阳能电池照明装置的系统和方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708668B2 (ja) * 2013-01-18 2015-04-30 トヨタ自動車株式会社 蓄電システム
JP5709910B2 (ja) * 2013-01-21 2015-04-30 三菱重工業株式会社 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置
US9270140B2 (en) * 2013-05-14 2016-02-23 Stored Energy Systems Dynamic boost battery chargers
US9457682B2 (en) * 2013-08-30 2016-10-04 GM Global Technology Operations LLC Method for predicting charging process duration
EP3064394A1 (en) * 2015-03-03 2016-09-07 ABB Technology AG Method for charging a load and charger configured for performing the method
US10283964B2 (en) * 2015-07-01 2019-05-07 General Electric Company Predictive control for energy storage on a renewable energy system
KR101727390B1 (ko) * 2015-07-28 2017-04-26 엘에스산전 주식회사 전력 측정 시스템 및 이를 이용한 부하 전력 모니터링 시스템 및 그 동작 방법
KR102468385B1 (ko) * 2018-01-05 2022-11-18 현대자동차주식회사 친환경 차량 배터리의 충전시간 예측 방법
JP6729616B2 (ja) * 2018-03-08 2020-07-22 カシオ計算機株式会社 電子機器、給電制御方法、及びプログラム
WO2021015797A1 (en) * 2019-07-25 2021-01-28 Hewlett-Packard Development Company, L.P. Shared redundant power
JP7367708B2 (ja) * 2021-01-06 2023-10-24 トヨタ自動車株式会社 給電装置、給電プログラム及び給電制御システム
WO2024006941A1 (en) 2022-06-30 2024-01-04 Stored Energy Systems, LLC Systems and methods for extending battery life

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336916A (ja) * 1997-05-29 1998-12-18 Kyocera Corp 非常用電源システム
JPH11113189A (ja) 1997-09-29 1999-04-23 Suzuki Motor Corp 充電装置
JP2010268640A (ja) * 2009-05-15 2010-11-25 Toyota Motor Corp 電力供給システムおよびその制御方法
JP2010268576A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 電力供給配分制御装置
JP2011036043A (ja) * 2009-08-03 2011-02-17 Asuko:Kk 二次電池の充電制御システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295544B2 (ja) * 1994-08-31 2002-06-24 キヤノン株式会社 電子機器
JPH08304899A (ja) * 1995-05-12 1996-11-22 Fuji Photo Film Co Ltd カメラの充電装置
JPH09261980A (ja) * 1996-03-21 1997-10-03 Omron Corp 太陽電池、およびこれを使用した太陽光発電システム
JPH11332125A (ja) * 1998-05-13 1999-11-30 Keystone International Kk 住宅用電力供給システム
JP2001145272A (ja) * 1999-11-15 2001-05-25 Olympus Optical Co Ltd カメラ
JP2001197751A (ja) * 2000-01-12 2001-07-19 Hokoku Kogyo Co Ltd 自然エネルギーを利用した電源装置
EP1263108A1 (en) * 2001-06-01 2002-12-04 Roke Manor Research Limited Community energy comsumption management
JP4829574B2 (ja) * 2005-09-15 2011-12-07 俊次 川端 照明システム
US7679336B2 (en) * 2007-02-27 2010-03-16 Ford Global Technologies, Llc Interactive battery charger for electric vehicle
GB2457506A (en) * 2008-02-18 2009-08-19 Zeta Controls Ltd Solar power system with storage element and mains electricity supply
DE202008015537U1 (de) * 2008-11-21 2010-04-08 EnBW Energie Baden-Württemberg AG Dezentrale Energieeffizienz durch autonome, selbstorganisierende Systeme unter der Berücksichtigung von heterogenen Energiequellen
DE102009027799A1 (de) * 2009-07-17 2011-01-20 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betreiben eines Haushaltsgeräts und Haushaltsgerät
US7789524B2 (en) * 2009-08-05 2010-09-07 Lawrence E Anderson Solar or wind powered light
US20110047102A1 (en) * 2009-08-18 2011-02-24 Ford Global Technologies, Llc Vehicle battery charging system and method
JP5884020B2 (ja) * 2011-03-31 2016-03-15 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法、プログラム、集積回路、および、蓄電池ユニット
JP5422016B2 (ja) * 2011-05-12 2014-02-19 シャープ株式会社 充電制御装置
EP2778699A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery BATTERY CONDITION MONITORING SYSTEM
JP5675727B2 (ja) * 2012-08-10 2015-02-25 株式会社東芝 充放電指示装置、プログラム
JP2014103717A (ja) * 2012-11-16 2014-06-05 Toshiba Corp 充放電指示装置、充放電システム、充放電管理方法ならびにプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336916A (ja) * 1997-05-29 1998-12-18 Kyocera Corp 非常用電源システム
JPH11113189A (ja) 1997-09-29 1999-04-23 Suzuki Motor Corp 充電装置
JP2010268576A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 電力供給配分制御装置
JP2010268640A (ja) * 2009-05-15 2010-11-25 Toyota Motor Corp 電力供給システムおよびその制御方法
JP2011036043A (ja) * 2009-08-03 2011-02-17 Asuko:Kk 二次電池の充電制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2683056A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104509214A (zh) * 2012-10-30 2015-04-08 株式会社Lg化学 控制太阳能电池照明装置的系统和方法
CN104509214B (zh) * 2012-10-30 2016-05-11 株式会社Lg化学 控制太阳能电池照明装置的系统和方法

Also Published As

Publication number Publication date
EP2683056A4 (en) 2014-12-17
EP2683056A1 (en) 2014-01-08
US20130002190A1 (en) 2013-01-03
CN102812615A (zh) 2012-12-05
JP2012182922A (ja) 2012-09-20
BR112012023558A2 (pt) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2012117838A1 (ja) 充電器、充電システム、および、充電方法
US10355517B2 (en) Storage-battery control device, storage-battery charge/discharge system, photovoltaic power generation system, and storage-battery control method
US8571720B2 (en) Supply-demand balance controller
US8773076B2 (en) Battery management system, method of removing polarization voltage of battery, and estimating state of charge of battery
CN110870130B (zh) 蓄电池系统充电控制装置、蓄电池系统以及蓄电池充电控制方法
US9331512B2 (en) Power control device and power control method for measuring open-circuit voltage of battery
JP5925554B2 (ja) 制御装置、制御システム、及び制御方法
WO2013031394A1 (ja) 電池制御システム、電池制御装置、電池制御方法、および記録媒体
JP2011083082A (ja) 蓄電システム
JP2003244854A (ja) 蓄電装置の充放電制御装置及び充放電制御方法並びに電力貯蔵システム
JP6582737B2 (ja) 充放電制御装置及び制御プログラム
CN106786831A (zh) 一种ups电源电量采集与控制系统
JP2016119728A (ja) 蓄電池の充放電制御装置および蓄電池の充放電制御方法
KR20160100675A (ko) 배터리 팩 및 그의 구동방법
KR101646730B1 (ko) 나트륨계 배터리의 충전상태 추정 시스템 및 그 방법
US20140358314A1 (en) Power control unit and program
JP6456153B2 (ja) 電力制御装置、充放電制御方法およびプログラム
JP2018014795A (ja) 配電制御システム、配電制御方法
JP6688981B2 (ja) 蓄電池制御装置
JP2005192282A (ja) 太陽光発電装置制御システム
JP6178179B2 (ja) 電力貯蔵装置
JP2014103819A (ja) 充電装置、充電方法及び電力供給システムとその蓄電残量計測方法
KR101324516B1 (ko) 전기 제품과 접속되는 전원 공급 제어장치 및 이의 배터리 충전 방법
CN109417303B (zh) 用于均衡电池组的多个电池组模块的充电状态的方法和相应设备
JP4870127B2 (ja) 満充電判定装置および満充電判定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000951.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13634667

Country of ref document: US

Ref document number: 2012751800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8135/DELNP/2012

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751800

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023558

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112012023558

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120918