WO2012117762A1 - プリント配線基板 - Google Patents

プリント配線基板 Download PDF

Info

Publication number
WO2012117762A1
WO2012117762A1 PCT/JP2012/051103 JP2012051103W WO2012117762A1 WO 2012117762 A1 WO2012117762 A1 WO 2012117762A1 JP 2012051103 W JP2012051103 W JP 2012051103W WO 2012117762 A1 WO2012117762 A1 WO 2012117762A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nitrogen
containing heterocyclic
wiring board
heterocyclic compound
Prior art date
Application number
PCT/JP2012/051103
Other languages
English (en)
French (fr)
Inventor
冨澤 秀樹
有岡 大輔
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012117762A1 publication Critical patent/WO2012117762A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a printed wiring board.
  • a method of manufacturing a wiring board which includes a step of forming a first insulating layer by electrodeposition and a step of forming a second insulating layer on the first insulating layer (Patent Document 1). reference). Further, after forming the circuit pattern, at least one selected from a triazole compound, a triazine compound, an imidazole compound, a tetrazole compound, an aromatic secondary amine compound, and an oxine compound is dissolved or suspended in water or an organic solvent.
  • Patent Document 2 A method of treating the surface of a wiring board with a liquid has been proposed (see Patent Document 2).
  • a printed wiring board has been proposed in which a migration suppression layer using 1,2,3-benzotriazole or the like is formed on the end face of the wiring pattern (see Patent Document 3).
  • an object of the present invention is to provide a printed wiring board having high insulation reliability and excellent plating resistance.
  • the printed wiring board of the present invention a wiring board having a substrate and a copper-containing wiring on the substrate, A nitrogen-containing heterocyclic compound layer containing a nitrogen-containing heterocyclic compound formed on at least the copper-containing wiring; A photosensitive resin composition formed on the nitrogen-containing heterocyclic compound layer, comprising an alkali-developable group and ethylenically unsaturated group-containing polyurethane resin, a polymerizable compound, and a photopolymerization initiator. And a layer formed by the method described above.
  • the present invention it is possible to provide a printed wiring board that can solve the above-mentioned problems and achieve the above-mentioned object, has high insulation reliability, and is excellent in plating resistance.
  • the printed wiring board of the present invention has at least a wiring board having copper-containing wiring on the board, a nitrogen-containing heterocyclic compound layer, and a layer formed of a photosensitive resin composition, and if necessary, Has other layers.
  • the wiring substrate includes at least a substrate and copper-containing wiring on the substrate, and further includes other members as necessary.
  • Examples of these resins include phenol resins, urea resins, melamine resins, alkyd resins, acrylic resins, unsaturated polyester resins, diallyl phthalate resins, epoxy resins, silicone resins, furan resins, ketone resins, xylene resins, benzocyclobutenes.
  • Examples thereof include resins, polyimide resins, polyphenylene oxide resins, polyphenylene sulfide resins, and aramid resins.
  • an aramid woven fabric, an aramid non-woven fabric, an aromatic polyamide woven fabric, a material obtained by impregnating the resin with the above resin, or the like can be used.
  • the width of the copper-containing wiring is not particularly limited and may be appropriately selected according to the purpose. However, from the viewpoint of high integration of the printed wiring board, 1 ⁇ m to 1,000 ⁇ m is preferable, and 3 ⁇ m to 25 ⁇ m is more preferable. preferable.
  • the distance between the copper-containing wirings is not particularly limited and can be appropriately selected according to the purpose. However, from the viewpoint of high integration of the printed wiring board, 1 ⁇ m to 1,000 ⁇ m is preferable, and 3 ⁇ m to 25 ⁇ m. More preferred.
  • the thickness of the copper-containing wiring is not particularly limited and may be appropriately selected according to the purpose. However, from the viewpoint of high integration of the printed wiring board, it is preferably 1 ⁇ m to 1,000 ⁇ m, more preferably 3 ⁇ m to 25 ⁇ m. preferable. There is no restriction
  • the method for forming the copper-containing wiring on the substrate is not particularly limited and may be appropriately selected depending on the purpose. For example, a subtractive method using an etching process or a semi-additive method using electrolytic plating. Etc.
  • the wiring board only needs to have the copper-containing wiring on the outermost surface, and another wiring (wiring pattern) and an interlayer insulating film (build-up layer) are alternately arranged between the substrate and the copper-containing wiring.
  • the wiring board may be a so-called multilayer wiring board or build-up board.
  • the wiring board may be a so-called rigid board, flexible board, or rigid flexible board.
  • a via hole may be formed in the substrate.
  • the wiring on both surfaces is conducted by filling the via hole with a metal (for example, copper or copper alloy).
  • the nitrogen-containing heterocyclic compound layer is a layer containing a nitrogen-containing heterocyclic compound formed on the copper-containing wiring.
  • the nitrogen-containing heterocyclic compound layer functions as a layer that suppresses copper ion migration.
  • the nitrogen-containing heterocyclic compound layer preferably contains the nitrogen-containing heterocyclic compound as a main component.
  • the content of the nitrogen-containing heterocyclic compound in the nitrogen-containing heterocyclic compound layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50% by mass or more, and preferably 50% by mass to 100% by mass. % Is more preferable, 80% by mass to 100% by mass is further preferable, and 95% by mass to 100% by mass, that is, a layer consisting essentially only of a nitrogen-containing heterocyclic compound is particularly preferable.
  • the nitrogen-containing heterocyclic compound is not particularly limited as long as it is a compound having a nitrogen-containing heterocyclic ring, and can be appropriately selected according to the purpose.
  • a compound containing two or more nitrogen atoms is preferred, and a compound containing three or more nitrogen atoms in the nitrogen-containing heterocyclic ring is more preferred.
  • the nitrogen-containing heterocyclic ring is preferably a 5-membered ring or a 6-membered ring.
  • the nitrogen-containing heterocyclic compound is preferably a nitrogen-containing heterocyclic compound containing a triazole ring from the viewpoint of insulation reliability.
  • nitrogen-containing heterocyclic compound examples include compounds having one nitrogen atom in a nitrogen-containing heterocyclic ring such as piperidine and pyridine; nitrogen in a nitrogen-containing heterocyclic ring such as imidazole, pyrazole, pyrazoline, pyrazolidine, pyrimidine and pyridazine.
  • compounds having four nitrogen atoms may be used individually by 1 type and may use 2 or more types together.
  • the amount of binding of the nitrogen-containing heterocyclic compound layer on the copper-containing wiring is not particularly limited and can be appropriately selected according to the purpose, but migration of copper ions can be further suppressed, and insulation reliability can be further improved. From the viewpoint of improvement, 0.5 p (pico) mol / mm 2 to 15.0 pmol / mm 2 is preferable, 1.0 pmol / mm 2 to 13.0 pmol / mm 2 is more preferable, and 5.5 pmol / mm 2 to 10 is preferable. 0.0 pmol / mm 2 is particularly preferred. When the amount of bonding is less than 0.5 pmol / mm 2 , the effect of improving insulation reliability may not be sufficiently exhibited.
  • the bond amount means the amount of the nitrogen-containing heterocyclic compound layer formed on the copper-containing wiring, in other words, the adhesion amount.
  • the absorbance method is mentioned.
  • the method for measuring the amount of binding by the absorbance method include the following methods. First, the nitrogen-containing heterocyclic compound layer existing between the wirings is washed with water. Thereafter, the nitrogen-containing heterocyclic compound layer on the copper-containing wiring is extracted with an organic acid (for example, sulfuric acid), the absorbance is measured, and the binding amount is calculated from the liquid amount and the coating area.
  • an organic acid for example, sulfuric acid
  • the nitrogen-containing heterocyclic compound layer is substantially free of copper ions and copper metal. If the nitrogen-containing heterocyclic compound layer contains a predetermined amount or more of copper ions and metallic copper, the insulation reliability may be lowered.
  • the nitrogen-containing heterocyclic compound layer is formed only on the surface of the copper-containing wiring and is not formed on the substrate surface between the copper-containing wirings. Note that the nitrogen-containing heterocyclic compound may remain on the substrate surface between the copper-containing wirings as long as the effect of the present invention, that is, the insulation reliability is not lowered.
  • the liquid (nitrogen-containing heterocyclic compound containing liquid) containing a nitrogen-containing heterocyclic compound is used.
  • the liquid (nitrogen-containing heterocyclic compound containing liquid) containing a nitrogen-containing heterocyclic compound is used.
  • Examples include a method including at least a step of bringing the wiring board into contact (contact step), and further including other steps such as a cleaning step as necessary.
  • the nitrogen-containing heterocyclic compound layer can be formed by bringing the wiring board into contact with a liquid containing the nitrogen-containing heterocyclic compound (nitrogen-containing heterocyclic compound-containing liquid). If there are, there will be no restriction
  • the liquid temperature of the nitrogen-containing heterocyclic compound-containing liquid in the contacting step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° C. to 60 ° C. from the viewpoint of bond amount control.
  • the temperature is 15 ° C to 30 ° C.
  • the immersion time when the contact step is performed by immersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is 10 seconds to 30 minutes in terms of productivity and control of the binding amount. It is preferably 15 seconds to 10 minutes, more preferably 30 seconds to 5 minutes.
  • Nitrogen-containing heterocyclic compound-containing liquid examples include a liquid containing at least the nitrogen-containing heterocyclic compound and a solvent, and further containing other components as necessary.
  • solvent for example, water, alcohol solvent (for example, methanol, ethanol, isopropanol), ketone solvent (for example, acetone, methyl ethyl ketone, cyclohexanone)
  • Amide solvents for example, formamide, dimethylacetamide, N-methylpyrrolidone
  • nitrile solvents for example, acetonitrile, propionitrile
  • ester solvents for example, methyl acetate, ethyl acetate
  • carbonate solvents for example, Dimethyl carbonate, diethyl carbonate
  • ether solvents for example, halogen solvents and the like.
  • water and alcohol solvents are preferable.
  • the nitrogen-containing heterocyclic compound is likely to be deposited on the copper-containing wiring when an immersion method is employed when the wiring substrate and the nitrogen-containing heterocyclic compound-containing liquid are brought into contact with each other. Therefore, it is preferable.
  • These may be used individually by 1 type and may use 2 or more types together.
  • Other components are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include pH adjusters, surfactants, preservatives, and precipitation inhibitors.
  • the nitrogen-containing heterocyclic compound-containing liquid does not substantially contain copper ions in terms of enhancing the insulation reliability between the wirings in the printed wiring board. If an excessive amount of copper ions is contained, copper ions will be contained in the copper ion diffusion suppression layer when forming a film, and the effect of suppressing migration of copper ions will be diminished and insulation reliability between wirings will be reduced. May be impaired.
  • copper ions are substantially not included means that the content of copper ions in the nitrogen-containing heterocyclic compound-containing liquid is 1 ⁇ mol / L or less, preferably 0.1 ⁇ mol / L or less, 0 mol / L is more preferable.
  • the said nitrogen-containing heterocyclic compound containing liquid does not contain the etching agent of copper or a copper alloy substantially from the point which improves the insulation reliability between wiring in a printed wiring board.
  • an etchant is contained in the nitrogen-containing heterocyclic compound-containing liquid
  • copper ions are contained in the nitrogen-containing heterocyclic compound-containing liquid. May elute. Therefore, as a result, copper ions are contained in the nitrogen-containing heterocyclic compound layer, the effect of suppressing the migration of copper ions is reduced, and the insulation reliability between the wirings may be impaired.
  • the etching agent examples include organic acids (eg, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, formic acid, hydrofluoric acid), oxidizing agents (eg, hydrogen peroxide, concentrated sulfuric acid), chelating agents (eg, iminodiacetic acid, nitrilotriacetic acid). , Ethylenediaminetetraacetic acid, ethylenediamine, ethanolamine, aminopropanol), and thiol compounds.
  • organic acids eg, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, formic acid, hydrofluoric acid
  • oxidizing agents eg, hydrogen peroxide, concentrated sulfuric acid
  • chelating agents eg, iminodiacetic acid, nitrilotriacetic acid.
  • Ethylenediaminetetraacetic acid ethylenediamine, ethanolamine, aminopropanol
  • thiol compounds e.g,
  • the pH of the nitrogen-containing heterocyclic compound-containing liquid is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 to 12, more preferably 5 to 9, and particularly preferably 6 to 8.
  • the pH of the nitrogen-containing heterocyclic compound-containing liquid is less than 5, elution of copper ions from the copper-containing wiring is promoted, and the nitrogen-containing heterocyclic compound layer contains a large amount of copper ions. As a result, the effect of suppressing copper migration may be reduced, and insulation reliability between wirings may be reduced.
  • the pH of the nitrogen-containing heterocyclic compound-containing liquid exceeds 12, copper hydroxide is precipitated and is easily oxidized and dissolved, and as a result, insulation reliability between wirings may be lowered.
  • the adjustment method of pH there is no restriction
  • the pH can be measured using a known measurement means (for example, a pH meter (in the case of an aqueous solvent)).
  • the cleaning step is not particularly limited as long as it is a step of cleaning the wiring board with a cleaning solvent, and can be appropriately selected according to the purpose.
  • the wiring on which the nitrogen-containing heterocyclic compound layer is formed The method of immersing a board
  • the cleaning solvent is not particularly limited as long as it can remove excess nitrogen-containing heterocyclic compound deposited on the wiring board, and can be appropriately selected according to the purpose.
  • the said solvent described in description of the ring compound containing liquid is mentioned. Among these, water, an alcohol solvent, and a ketone solvent (preferably methyl ethyl ketone) are preferable, water and an alcohol solvent are more preferable, and water is particularly preferable from the viewpoint of liquid permeability between fine wirings.
  • the liquid temperature of the cleaning solvent is not particularly limited and may be appropriately selected according to the purpose.
  • An immersion time when the washing step is performed by immersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is 10 seconds to 10 minutes in terms of productivity and control of the binding amount. Preferably, 15 seconds to 5 minutes is more preferable.
  • the heating step is not particularly limited as long as it can remove the solvent, and can be appropriately selected depending on the purpose.
  • the heating temperature in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 70 ° C to 120 ° C, more preferably 80 ° C to 110 ° C.
  • the heating time in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 15 seconds to 10 minutes, and more preferably 30 seconds to 5 minutes.
  • the layer formed from the photosensitive resin composition (photosensitive resin composition layer) is a layer formed on the nitrogen-containing heterocyclic compound layer, and contains an alkali-developable group and an ethylenically unsaturated group-containing polyurethane. It is a layer formed of a photosensitive resin composition containing a resin, a polymerizable compound, and a photopolymerization initiator.
  • the average thickness of the photosensitive resin composition layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m, and particularly preferably 4 ⁇ m to 30 ⁇ m.
  • the photosensitive resin composition contains at least an alkali-developable group and ethylenically unsaturated group-containing polyurethane resin, a polymerizable compound, and a photopolymerization initiator, and if necessary, a thermal crosslinking agent and an inorganic filler. Contains other ingredients such as agents and diluents.
  • the alkali-developable group and ethylenically unsaturated group-containing polyurethane resin is not particularly limited as long as it is a polyurethane resin containing an alkali-developable group and an ethylenically unsaturated group, and is appropriately selected according to the purpose. Can do.
  • Examples of the alkali-developable group include a carboxyl group.
  • Examples of the ethylenically unsaturated group include acryloyl group, methacryloyl group, vinylphenyl group, allyl group, and vinyl ether group.
  • the alkali-developable group and ethylenically unsaturated group-containing polyurethane resin is, for example, a resin linked by a urethane group, and is represented by at least one of the following general formula (I) and the following general formula (II).
  • X represents the principal chain skeleton of resin connected by the urethane group.
  • L 3 represents either a single bond or a linking group.
  • n represents an integer of 1 to 5.
  • X represents the principal chain skeleton of resin connected with the urethane group.
  • L 3 represents a linking group.
  • n represents an integer of 1 to 5.
  • the linking group in L 3 in the general formula (I) and the general formula (II) includes one or more atoms selected from a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the number of atoms constituting the main skeleton of the linking group represented by L 3 is preferably 1 to 30, more preferably 1 to 25, and further preferably 1 to 20. It is preferably 1-10.
  • the “main skeleton of the linking group” means an atom or an atomic group used only for linking Y in the general formula (III) described later and the terminal COOH. When there are a plurality of atoms, the atoms or atomic groups constituting the path with the smallest number of atoms are used.
  • R 1 to R 3 each independently represents a hydrogen atom or a monovalent organic group.
  • A represents a divalent organic residue.
  • X represents an oxygen atom, a sulfur atom, and —N (R 12 ) —.
  • R 12 represents either a hydrogen atom or a monovalent organic group.
  • the monovalent organic group for R 1 in the general formula (G-1) is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an alkyl group which may have a substituent, Etc. Among these, as R 1 in the general formula (G-1), a hydrogen atom or a methyl group is preferable.
  • the monovalent organic group of R 2 and R 3 in the general formula (G-1) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may have a substituent. And a good alkyl group. Among these, as R 2 and R 3 in the general formula (G-1), a hydrogen atom is preferable.
  • a in the general formula (G-1) is not particularly limited as long as it is a divalent organic residue, and can be appropriately selected according to the purpose.
  • A may have a substituent.
  • examples thereof include a good divalent alkylene group.
  • Specific examples of the divalent organic residue include a methylene group, an ethylene group, a propylene group, and a butylene group. Among these, a methylene group is preferable.
  • X in the general formula (G-1) is preferably an oxygen atom.
  • the monovalent organic group for R 12 in the general formula (G-1) is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an alkyl group which may have a substituent, Etc. Among these, a methyl group, an ethyl group, and an isopropyl group are preferable.
  • a method for introducing the structural unit represented by the general formula (G-1) into the alkali-developable group-containing and ethylenically unsaturated group-containing polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, there is a method of reacting a diisocyanate compound with a compound represented by the following general formula (G).
  • R 1 ⁇ R 3, A, and X is the formula (G-1) R 1 ⁇ R 3 in, A, and is the same as X.
  • the preferred embodiment is also the same.
  • Examples of the alkali-developable group and ethylenically unsaturated group-containing polyurethane resin include, for example, an alkali-developable group and ethylenically unsaturated group-containing polyurethane resin having a carboxylic acid group represented by the general formula (I) in the side chain. And an alkali-developable group and an ethylenically unsaturated group-containing polyurethane resin having a carboxylic acid group represented by the general formula (II) at its terminal. Specific examples thereof are shown below.
  • the alkali-developable group-containing and ethylenically unsaturated group-containing polyurethane resin are not limited to these specific examples.
  • a1 is preferably 5 mol% to 70 mol%
  • b1 is preferably 0 mol% to 65 mol%
  • c1 is preferably 3 mol% to 60 mol%
  • d1 is preferably 10 mol% to 67 mol%.
  • a2 is preferably 50 to 70 mol%
  • b2 is preferably 3 to 60 mol%
  • c2 is preferably 10 to 67 mol%.
  • a3 is 5 mol% to 70 mol%
  • b3 is 0 mol% to 65 mol%
  • c3 is 3 mol% to 60 mol%
  • d3 is 10 mol% to 67 mol%
  • e3 is 1 mol. % To 20 mol% is preferred.
  • a4 is 5 mol% to 70 mol%
  • b4 is 0 mol% to 65 mol%
  • c4 is 3 mol% to 60 mol%
  • d4 is 10 mol% to 67 mol%
  • e4 is 1 mol. % To 20 mol% is preferred.
  • Y represents a trivalent or more atom.
  • L 1 and L 2 each independently represent a single bond or an alkylene group which may have a substituent, and both L 1 and L 2 do not become a single bond.
  • L 3 represents either a single bond or a linking group.
  • n represents an integer of 1 to 5.
  • L 1 represents an alkylene group which may have a single bond or a substituent.
  • L 3 represents a linking group.
  • n represents an integer of 1 to 5.
  • Examples of the trivalent or higher valent atom in Y in the general formula (III) include a nitrogen atom, a carbon atom, and a silicon atom. Among these, a nitrogen atom and a carbon atom are particularly preferable.
  • the atom represented by Y being trivalent or more means that at least Y has three bonds in which the terminal —COOH is bonded via L 1 , L 2 , and L 3.
  • Y may further have a hydrogen atom or a substituent.
  • Examples of the substituent that can be introduced into Y include a substituent including an atom selected from a hydrogen atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a halogen atom. Among these, a hydrocarbon group having 1 to 50 carbon atoms is preferable, a hydrocarbon group having 1 to 40 carbon atoms is more preferable, and a hydrocarbon group having 1 to 30 carbon atoms is particularly preferable.
  • L 1 and L 2 in the general formula (III) each independently represent a single bond or an alkylene group which may have a substituent, and both L 1 and L 2 do not become a single bond.
  • the alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, and more preferably an alkylene group having 2 to 10 carbon atoms.
  • the substituent that can be introduced into the alkylene group include a halogen atom (—F, —Br, —Cl, —I), an alkyl group which may have a substituent, and the like.
  • L 1 in the general formula (IV) is the same as L 1 in formula (III).
  • L 3 represents a linking group.
  • the linking group represented by L 3 include a linking group including one or more atoms selected from a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the number of atoms constituting the main skeleton of the linking group represented by L 3 is preferably 1 to 30, more preferably 1 to 25, and further preferably 1 to 20. It is preferably 1-10.
  • the “main skeleton of the linking group” is only for linking Y in the general formula (III) and the terminal COOH, or linking L 1 and the terminal COOH in the general formula (IV). In the case where there are a plurality of connecting paths, the atoms or atomic groups constituting the path with the smallest number of atoms used are indicated.
  • the compound represented by the general formula (III) is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyether diol compounds, polyester diol compounds, and polycarbonate diol compounds.
  • diisocyanate compound --- The diisocyanate compound to be reacted with the compound represented by the general formula (III) and the compound represented by the general formula (IV) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a diisocyanate compound represented by the formula (V) is preferred.
  • L 4 represents a also may divalent substituted aliphatic or aromatic hydrocarbon group. If necessary, L 4 may have another functional group that does not react with an isocyanate group, for example, an ester group, a urethane group, an amide group, or a ureido group.
  • the diisocyanate compound represented by the general formula (V) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the diol compound which has a substituent which does not react with an isocyanate group other than the hydroxy compound mentioned above can also be used together.
  • the diol compound having a substituent that does not react with the isocyanate group is not particularly limited and may be appropriately selected depending on the intended purpose. For example, in paragraphs [0087] to [0088] of JP-A-2005-250438 And the described compounds.
  • a diol compound further having a carboxyl group can be used in combination with the synthesis of the alkali-developable group-containing and ethylenically unsaturated group-containing polyurethane resin.
  • Examples of the diol compound having a carboxyl group include those represented by the following formulas (a) to (c).
  • R 15 is a hydrogen atom, a substituent (for example, a halogen atom such as a cyano group, a nitro group, —F, —Cl, —Br, —I, etc., —CONH 2 , —COOR 16 , —OR 16 , —NHCONHR 16 , —NHCOOR 16 , —NHCOR 16 , —OCONHR 16 (wherein R 16 is an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 15 carbon atoms) As long as it represents an alkyl group, an aralkyl group, an aryl group, an alkoxy group, or an aryloxy group, which may have a group, depending on the purpose.
  • a substituent for example, a halogen atom such as a cyano group, a nitro group, —F, —Cl, —Br, —I, etc., —CONH 2
  • a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and an aryl group having 6 to 15 carbon atoms are preferable.
  • L 9 , L 10 , and L 11 may be the same or different from each other, and may be a single bond, a substituent (for example, alkyl, aralkyl, aryl, alkoxy). And each group of halogeno are preferred.), As long as they represent a divalent aliphatic or aromatic hydrocarbon group which may have, and may be appropriately selected according to the purpose.
  • an alkylene group having 1 to 20 carbon atoms and an arylene group having 6 to 15 carbon atoms are preferable, and an alkylene group having 1 to 8 carbon atoms is more preferable.
  • the L 9 to L 11 may have another functional group that does not react with an isocyanate group, for example, a carbonyl group, an ester group, a urethane group, an amide group, a ureido group, or an ether group.
  • Ar is not particularly limited as long as it represents a trivalent aromatic hydrocarbon group which may have a substituent, and can be appropriately selected according to the purpose. However, an aromatic group having 6 to 15 carbon atoms is preferred.
  • the diol compound having a carboxyl group represented by the formulas (a) to (c) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • 3,5-dihydroxybenzoic acid 2, 2-bis (hydroxymethyl) propionic acid, 2,2-bis (2-hydroxyethyl) propionic acid, 2,2-bis (3-hydroxypropyl) propionic acid, bis (hydroxymethyl) acetic acid, bis (4-hydroxy Phenyl) acetic acid, 2,2-bis (hydroxymethyl) butyric acid, 4,4-bis (4-hydroxyphenyl) pentanoic acid, tartaric acid, N, N-dihydroxyethylglycine, N, N-bis (2-hydroxyethyl) -3-carboxy-propionamide, and the like.
  • a polyurethane resin having an ethylenically unsaturated group in the side chain described below is used from the viewpoint of alkali developability and toughness of the cured film. Is preferred.
  • the polyurethane resin having an ethylenically unsaturated group in the side chain includes at least one diisocyanate compound represented by the following general formula (d) and at least one diol compound represented by the following general formula (e):
  • OCN-X 0 -NCO General formula (d) HO-Y 0 -OH ...
  • General formula (e) In the general formulas (d) and (e), X 0 and Y 0 each independently represent a divalent organic residue.
  • the divalent organic residue has the same meaning as L 4 in the general formula (V).
  • the diisocyanate compound represented by the general formula (d) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the triisocyanate compound is not particularly limited and may be appropriately selected depending on the purpose.
  • the polyurethane resin having an ethylenically unsaturated group in the side chain includes at least one of a group represented by the following general formula (1) to a group represented by the following general formula (3) in the side chain.
  • R 1 to R 3 each independently represents a hydrogen atom or a monovalent organic group.
  • X represents one of an oxygen atom, a sulfur atom, and —N (R 12 ) —.
  • R 12 represents either a hydrogen atom or a monovalent organic group.
  • R 4 to R 8 each independently represents a hydrogen atom or a monovalent organic group.
  • Y represents any of an oxygen atom, a sulfur atom, and —N (R 12 ) —.
  • R 12 has the same meaning as R 12 in the general formula (1).
  • R 9 to R 11 each independently represents a hydrogen atom or a monovalent organic group.
  • Z represents any of an oxygen atom, a sulfur atom, —N (R 13 ) —, and an optionally substituted phenylene group.
  • R 13 represents an alkyl group which may have a substituent.
  • R 1 to R 3 each independently represents a hydrogen atom or a monovalent organic group.
  • R 1 is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a hydrogen atom and an alkyl group which may have a substituent. Among these, a hydrogen atom and a methyl group are preferable in terms of high radical reactivity.
  • R 2 and R 3 are not particularly limited and may be appropriately selected depending on the intended purpose.
  • An alkylamino group which may have a substituent, an arylamino group which may have a substituent, an alkylsulfonyl group which may have a substituent, an arylsulfonyl group which may have a substituent, and the like Can be mentioned.
  • a hydrogen atom, a carboxyl group, an alkoxycarbonyl group, an alkyl group which may have a substituent, and an aryl group which may have a substituent are preferable because of high radical reactivity.
  • X represents an oxygen atom, a sulfur atom
  • -N (R 12) - represents one of the R 12 represents any one of hydrogen atom, and a monovalent organic group .
  • R 12 is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an alkyl group which may have a substituent.
  • a hydrogen atom, a methyl group, an ethyl group, and an isopropyl group are preferable because of high radical reactivity.
  • the substituent that can be introduced is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, and a halogen atom.
  • R 4 to R 8 each independently represents a hydrogen atom or a monovalent organic group.
  • R 4 to R 8 are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include groups exemplified in the description of R 2 and R 3 in the general formula (1). . The preferable example is also the same.
  • Y represents any of an oxygen atom, a sulfur atom, and —N (R 12 ) —. Wherein R 12 has the same meaning as the R 12 of the general formula (1), and preferred examples are also the same.
  • R 9 to R 11 each independently represents a hydrogen atom or a monovalent organic group.
  • R 9 is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a hydrogen atom and an alkyl group which may have a substituent. Among these, a hydrogen atom and a methyl group are preferable in terms of high radical reactivity.
  • R 10 and R 11 are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include groups exemplified in the description of R 2 and R 3 in the general formula (1). . The preferable example is also the same.
  • Z represents any of an oxygen atom, a sulfur atom, —N (R 13 ) —, and an optionally substituted phenylene group.
  • R 13 represents an alkyl group which may have a substituent. Among them, a methyl group, an ethyl group, and an isopropyl group are preferable because of high radical reactivity.
  • a method for introducing an ethylenically unsaturated group into a side chain of a polyurethane resin having an ethylenically unsaturated group in the side chain in addition to the above-described method, as a raw material for producing a polyurethane resin, ethylene in the side chain is used.
  • a method using a diol compound containing a polymerizable unsaturated group is also preferred.
  • the diol compound containing an ethylenically unsaturated group in the side chain may be a commercially available compound such as trimethylolpropane monoallyl ether, or a compound such as a halogenated diol compound, a triol compound, or an aminodiol compound.
  • a compound easily produced by a reaction with a compound containing an ethylenically unsaturated group such as a carboxylic acid, an acid chloride, an isocyanate, an alcohol, an amine, a thiol, or an alkyl halide compound.
  • the diol compound containing an ethylenically unsaturated group in the side chain is not particularly limited and may be appropriately selected depending on the intended purpose.
  • paragraphs [0057] to [0060] of JP-A-2005-250438 can be used.
  • the polyurethane resin having an ethylenically unsaturated group in the side chain is a reaction product of a diisocyanate compound and a diol compound, and the diol compound has (i) an ethylenically unsaturated group, and at least one is a secondary alcohol. It is preferable to contain at least one diol compound that is: and (ii) at least one diol compound having a carboxyl group.
  • the diol compound (i) having an ethylenically unsaturated group and at least one of which is a secondary alcohol it is a compound represented by the general formula (G), and the insulation reliability is further improved. And it is preferable from the point which is excellent in thermal shock resistance.
  • the polyurethane resin derived from the diol compound represented by the general formula (G) the effect of suppressing the excessive molecular movement of the polymer main chain caused by the secondary alcohol having a large steric hindrance can be reduced. It is thought that improvement can be achieved.
  • the polyurethane resin having an ethylenically unsaturated group in the side chain is, for example, ethylenic in the side chain from the viewpoint of improving compatibility with other components in the polymerizable composition and improving storage stability.
  • a diol compound other than a diol compound containing an unsaturated group can be copolymerized.
  • the compound which ring-opened tetracarboxylic dianhydride with the diol compound other than the diol compound mentioned above can also be used together.
  • the compound obtained by ring-opening the tetracarboxylic dianhydride with a diol compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, paragraph [0095] to JP 2005-250438 A And the compounds described in [0101].
  • the polyurethane resin having an ethylenically unsaturated group in the side chain is synthesized by adding the above-mentioned diisocyanate compound and diol compound to an aprotic solvent by adding a known catalyst having an activity depending on the reactivity and heating. Is done.
  • the molar ratio of diisocyanate and diol compound used in the synthesis (M a : M b ) is not particularly limited and can be appropriately selected according to the purpose.
  • a product having desired physical properties such as molecular weight or viscosity is finally synthesized in a form in which no isocyanate group remains.
  • the polyurethane resin having an ethylenically unsaturated group in the side chain those having an ethylenically unsaturated group in the polymer terminal and main chain are also preferably used.
  • an ethylenically unsaturated group at the polymer terminal and main chain further, an ethylenically unsaturated group is added between the photosensitive resin composition and the polyurethane resin having an ethylenically unsaturated group in the side chain, or in the side chain.
  • Crosslinking reactivity is improved between the polyurethane resins possessed, and the strength of the photocured product is increased.
  • the ethylenically unsaturated group particularly preferably has a carbon-carbon double bond from the viewpoint of easy occurrence of a crosslinking reaction.
  • a method of introducing an ethylenically unsaturated group into the main chain there is a method of using a diol compound having an ethylenically unsaturated group in the main chain direction for the synthesis of a polyurethane resin.
  • the diol compound having an ethylenically unsaturated group in the main chain direction is not particularly limited and may be appropriately selected depending on the intended purpose.
  • cis-2-butene-1,4-diol, trans-2- Examples include butene-1,4-diol and polybutadiene diol.
  • the polyurethane resin having an ethylenically unsaturated group in the side chain can be used in combination with an alkali-soluble polymer containing a polyurethane resin having a structure different from that of the specific polyurethane resin.
  • the polyurethane resin having an ethylenically unsaturated group in the side chain can be used in combination with a polyurethane resin containing an aromatic group in the main chain and / or side chain.
  • Examples of the polyurethane resin having an ethylenically unsaturated group in the side chain include polymers P-1 to P-31 shown in paragraphs [0293] to [0310] of JP-A-2005-250438. Can be mentioned. Among these, polymers of P-27 and P-28 shown in paragraphs [0308] and [0309] are preferable.
  • the weight average molecular weight of the alkali-developable group-containing and ethylenically unsaturated group-containing polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2,000-60,000, 000 to 50,000 is more preferable, and 2,000 to 30,000 is particularly preferable.
  • the weight average molecular weight is less than 2,000, a sufficiently low elastic modulus at a high temperature of the cured film may not be obtained, and when it exceeds 60,000, coating suitability and developability may be deteriorated. .
  • the weight average molecular weight is determined by using, for example, a high-speed GPC apparatus (manufactured by Toyo Soda Co., Ltd., HLC-802A), a 0.5% by mass tetrahydrofuran (THF) solution as a sample solution, and the column is TSKgel HZM.
  • a high-speed GPC apparatus manufactured by Toyo Soda Co., Ltd., HLC-802A
  • THF tetrahydrofuran
  • the column is TSKgel HZM.
  • 200 ⁇ L of sample can be injected, eluted with the THF solution, and measured at 25 ° C. with a refractive index detector or UV detector (detection wavelength 254 nm).
  • the weight average molecular weight is determined from a molecular weight distribution curve calibrated with standard polystyrene.
  • the amount of the ethylenically unsaturated group introduced into the alkali-developable group and the ethylenically unsaturated group-containing polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose. Is preferably 0.05 mmol / g to 3.00 mmol / g, more preferably 0.5 mmol / g to 3.00 mmol / g, and particularly preferably 1.50 mmol / g to 3.00 mmol / g.
  • the said ethylenically unsaturated group equivalent can be calculated
  • the acid value of the alkali-developable group-containing and ethylenically unsaturated group-containing polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose. ⁇ 110 mg KOH / g is more preferred, and 35 mg KOH / g to 100 mg KOH / g is particularly preferred. If the acid value is less than 20 mgKOH / g, the developability may be insufficient, and if it exceeds 120 mgKOH / g, the development rate may be too high, and development control may be difficult.
  • the acid value can be measured, for example, according to JIS K0070. However, if the sample does not dissolve, dioxane or tetrahydrofuran is used as the solvent.
  • the compound having one or more ethylenically unsaturated groups has a functional group having an ethylenically unsaturated group.
  • the functional group having an ethylenically unsaturated group include (meth) acryloyl group, (meth) acrylamide group, vinylphenyl group, vinyl ester, vinyl ether, allyl ether, and allyl ester.
  • the compound having one or more ethylenically unsaturated groups is not particularly limited and may be appropriately selected depending on the intended purpose. However, at least one selected from monomers having a (meth) acryloyl group is preferable.
  • the monomer having the (meth) acryloyl group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and phenoxyethyl (meth) ) Monofunctional acrylates and monofunctional methacrylates such as acrylates; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropanedi (Meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate Dipentaerythritol hexa (meth) acrylate, dipentaerythrito
  • the content of the polymerizable compound in the solid content of the photosensitive resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 50% by mass, and preferably 10% by mass. More preferred is 40% by mass. When the content is 5% by mass or more, developability and exposure sensitivity are good, and when the content is 50% by mass or less, the adhesiveness of the photosensitive layer can be prevented from becoming too strong.
  • the photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound, and can be appropriately selected according to the purpose.
  • a halogenated hydrocarbon derivative for example, a triazine skeleton
  • those having an oxadiazole skeleton phosphine oxide, hexaarylbiimidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, and the like.
  • the halogenated hydrocarbon compound having a triazine skeleton is not particularly limited and may be appropriately selected depending on the intended purpose.
  • compounds described in British Patent No. 1388492 compounds described in JP-A-53-133428
  • German Patent No. 3337024 Compounds, F.I. C. J. Schaefer et al. Org. Chem.
  • halogenated hydrocarbon compound having an oxadiazole skeleton examples include the compounds described in US Pat. No. 4,221,976.
  • the oxime derivative is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include compounds described in paragraph [0085] of JP-A-2007-2030.
  • the ketone compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include compounds described in paragraph [0087] of JP-A-2007-2030.
  • the photopolymerization initiator other than the above is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include compounds described in paragraph [0086] of JP-A-2007-2030. It is done.
  • a sensitizer can be added for the purpose of adjusting the exposure sensitivity and the photosensitive wavelength in exposure to the layer formed of the photosensitive resin composition.
  • the sensitizer can be appropriately selected by a visible light, an ultraviolet laser, a visible light laser or the like as a light irradiation means described later.
  • the sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby generating radicals, acids, etc. It is possible to generate a useful group of
  • the sensitizer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include compounds described in paragraph [0089] of JP-A-2007-2030.
  • the combination of the photopolymerization initiator and the sensitizer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • an electron transfer type initiation system described in JP-A-2001-305734 [ (1) Electron donating initiator and sensitizing dye, (2) Electron accepting initiator and sensitizing dye, (3) Electron donating initiator, sensitizing dye and electron accepting initiator (ternary initiation system) ] Etc. are mentioned.
  • the content of the sensitizer is not particularly limited and may be appropriately selected depending on the intended purpose. It is 0.05% by mass to 30% by mass with respect to all the components in the photosensitive resin composition. Preferably, 0.1% by mass to 20% by mass is more preferable, and 0.2% by mass to 10% by mass is particularly preferable. When the content is less than 0.05% by mass, the sensitivity to active energy rays is reduced, the exposure process takes time, and productivity may be reduced.
  • the sensitizer may be precipitated from the photosensitive layer.
  • the said photoinitiator may be used individually by 1 type, and may use 2 or more types together.
  • Particularly preferable examples of the photopolymerization initiator include phosphine oxides, ⁇ -aminoalkyl ketones, halogenated hydrocarbon compounds having a triazine skeleton, which are compatible with laser light having a wavelength of 405 nm in the later-described exposure.
  • Examples include a composite photoinitiator combined with an amine compound as a sensitizer described later, a hexaarylbiimidazole compound, or titanocene.
  • the content of the photopolymerization initiator in the solid content of the photosensitive resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5% by mass to 20% by mass, 0.5% by mass to 15% by mass is more preferable, and 1% by mass to 10% by mass is particularly preferable.
  • the content is less than 0.5% by mass, the exposed portion tends to be eluted during development, and when it exceeds 20% by mass, the heat resistance may be lowered.
  • the content is within the particularly preferable range, it is advantageous in that a good pattern can be formed and heat resistance is also improved.
  • Thermal crosslinking agent-- The thermal crosslinking agent is not particularly limited and may be appropriately selected depending on the purpose.
  • an epoxy compound for example, an epoxy compound having at least two oxirane groups in one molecule
  • an oxetane compound having at least two oxetanyl groups in one molecule can be used as long as no adverse effect is exerted.
  • an epoxy compound having an alkyl group at the ⁇ -position an oxetane compound having an oxetanyl group, a polyisocyanate compound, a block on an isocyanate group of a polyisocyanate or a derivative thereof
  • examples include compounds obtained by reacting agents.
  • a melamine derivative can be used as the thermal crosslinking agent.
  • the melamine derivative include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl or the like). These may be used individually by 1 type and may use 2 or more types together.
  • alkylated methylol melamine is preferable and hexamethylated methylol melamine is particularly preferable in that it has good storage stability and is effective in improving the surface hardness of the photosensitive layer or the film strength itself of the cured film.
  • the content of the thermal crosslinking agent in the solid content of the photosensitive resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1% by mass to 50% by mass, and preferably 3% by mass. More preferable is 30% by mass. When the content is 1% by mass or more, the film strength of the cured film is improved, and when the content is 50% by mass or less, developability and exposure sensitivity are improved.
  • Examples of the epoxy compound include epoxy compounds described in paragraphs [0071] to [0074] of JP2010-256399A.
  • polyisocyanate compound examples include polyisocyanate compounds described in paragraphs [0075] to [0076] of JP2010-256399A.
  • Examples of the melamine derivative include the melamine derivatives described in paragraph [0077] of JP 2010-256399 A.
  • the photosensitive resin composition preferably contains an inorganic filler.
  • the inorganic filler can improve the surface hardness of the permanent pattern, keep the coefficient of linear expansion low, or keep the dielectric constant and dielectric loss tangent of the cured film itself low.
  • Examples of the inorganic filler include kaolin, barium sulfate, barium titanate, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and mica.
  • Examples of commercially available barium sulfate include B-30 (manufactured by Sakai Chemical Industry Co., Ltd.). Among these, silica, barium sulfate, talc, and aluminum hydroxide are preferable, and silica is more preferable.
  • the average particle size of the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably less than 10 ⁇ m and more preferably 3 ⁇ m or less. When the average particle size is 10 ⁇ m or more, resolution may be deteriorated due to light confusion.
  • the content of the inorganic filler in the solid content of the photosensitive resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1% by mass to 60% by mass. When the content is less than 1% by mass, the linear expansion coefficient may not be sufficiently reduced. When the content exceeds 60% by mass, the cured film is formed when a cured film is formed on the surface of the photosensitive layer. When the wiring is formed using a permanent pattern, the function as a protective film for the wiring may be impaired.
  • the diluent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include alcohols such as methanol, ethanol, normal-propanol, isopropanol, normal-butanol, secondary butanol, and normal-hexanol; acetone , Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone; esters such as ethyl acetate, butyl acetate, acetic acid-normal amyl, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate
  • Aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform
  • the content of the diluent in the photosensitive resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5% by mass to 60% by mass, and more preferably 5% by mass to 50 mass% is more preferable.
  • the other component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include a thermosetting accelerator, a thermal polymerization inhibitor, a plasticizer, and a colorant (color pigment or dye).
  • adhesion promoters to the substrate surface and other auxiliaries for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling promoters, antioxidants, perfumes, surface tension modifiers. , Chain transfer agent, etc.
  • the thermal polymerization inhibitor is described in detail, for example, in paragraphs [0101] to [0102] of JP-A-2008-250074.
  • thermosetting accelerator is described in detail, for example, in paragraph [0093] of JP-A-2008-250074.
  • the plasticizer is described in detail, for example, in paragraphs [0103] to [0104] of JP-A-2008-250074.
  • the colorant is described in detail, for example, in paragraphs [0105] to [0106] of JP-A-2008-250074.
  • the adhesion promoter is described in detail, for example, in paragraphs [0107] to [0109] of JP-A-2008-250074.
  • a method for forming the photosensitive resin composition layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the photosensitive resin composition is dissolved, emulsified or dispersed in water or a solvent.
  • the method of forming by forming a conductive resin composition solution, applying this solution directly on the said copper containing wiring, and making it dry is mentioned.
  • a method of forming a support and a photosensitive film having a photosensitive layer made of the photosensitive resin composition on the support by pasting on the copper-containing wiring may be mentioned.
  • the coating method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the support is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the supports described in paragraphs [0080] to [0083] of JP2010-256399A.
  • the average thickness of the photosensitive layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m, and particularly preferably 4 ⁇ m to 30 ⁇ m.
  • the photosensitive resin composition layer may be further subjected to an exposure process for exposing to a desired pattern, a developing process for developing, and a curing process process for curing as necessary.
  • the exposure process is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the exposure processes described in paragraphs [0101] to [0103] of JP-A-2010-256399.
  • the development step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the development steps described in paragraphs [0105] to [0108] of JP-A No. 2010-256399.
  • the curing treatment step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the curing treatment steps described in paragraphs [0109] to [0111] of JP 2010-256399 A. .
  • the printed wiring board of a single layer wiring structure may be sufficient, and the printed wiring board (what is called a so-called multilayer wiring structure) , Build-up wiring board).
  • the use of the printed wiring board is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a mother board, a semiconductor package board, and a MID (Molded Interconnect Device) board. Further, it can be used for rigid substrates, flexible substrates, flex-rigid substrates, molded circuit substrates and the like.
  • a part of the insulating film in the printed wiring board may be removed, and a semiconductor chip may be mounted and used as a printed circuit board.
  • Part and % represent “part by mass” and “% by mass”, respectively.
  • the acid value, weight average molecular weight, and ethylenically unsaturated group equivalent were measured by the following methods.
  • the solution was diluted with 35.66 mL of cyclohexanone and stirred for 30 minutes to obtain 185.6 g of a polyurethane resin solution (solid content 40% by mass) containing an alkali-developable group represented by the following formula and an ethylenically unsaturated group. .
  • the obtained alkali-developable group-containing ethylenically unsaturated group-containing polyurethane resin solution has a solid content acid value of 68 mgKOH / g and a weight average molecular weight (polystyrene standard) measured by gel permeation chromatography (GPC).
  • the ethylenically unsaturated group equivalent was 1.83 mmol / g.
  • a4 is 49.7 mass%
  • b4 is 8.3 mass%
  • c4 is 8.6 mass%
  • d4 is 29.4 mass%
  • e4 is 4.0 mass%.
  • the obtained alkali-developable group-containing and ethylenically unsaturated group-containing polyurethane resin solution has a solid content acid value of 70 mgKOH / g and a weight average molecular weight (polystyrene standard) measured by gel permeation chromatography (GPC).
  • the ethylenically unsaturated group equivalent was 1.5 mmol / g.
  • reaction solution was cooled to 60 ° C., charged with 13.8 parts of triphenylphosphine, heated to 100 ° C., reacted for about 32 hours, and a product (hydroxyl group, 12 equivalents) having an acid value of 0.5 mg KOH / g was obtained. Obtained.
  • 364.7 parts (2.4 moles) of tetrahydrophthalic anhydride, 137.5 parts of carbitol acetate and 58.8 parts of solvent naphtha were charged into this, heated to 95 ° C., and reacted for about 6 hours.
  • the resin 4 was diluted with carbitol acetate to obtain Resin 4 having a solid content acid value of 40 mgKOH / g and a solid content concentration of 40%.
  • Example 1 Preparation of nitrogen-containing heterocyclic compound-containing liquid 1> The following components were mixed to prepare a nitrogen-containing heterocyclic compound-containing liquid 1. ⁇ Pyridine: 5 parts ⁇ Pure water: 100 parts
  • ⁇ Preparation of photosensitive resin composition coating solution 1> The following components were mixed to prepare a photosensitive resin composition coating solution 1.
  • Elastomer Esper 1612 (manufactured by Hitachi Chemical Co., Ltd.) ... 12.0 parts by massApplication aid: Megafac F-780F (manufactured by DIC, 30% by mass methyl ethyl ketone solution) ... 3. 3 parts by mass
  • PET polyethylene terephthalate film
  • the photosensitive resin composition coating solution 1 was applied onto the support with a bar coater so that the thickness of the photosensitive layer after drying was about 25 ⁇ m. Then, it was dried in a hot air circulation dryer at 80 ° C. for 30 minutes to produce a photosensitive film.
  • a wiring board was produced by subjecting the surface of a copper-clad laminate (no through-hole, copper thickness 12 ⁇ m) on which wiring had been formed to chemical polishing.
  • the copper clad laminate was immersed in a nitrogen-containing heterocyclic compound-containing liquid 1 having a liquid temperature of 25 ° C. for 180 seconds. Thereafter, it was washed with water to form a nitrogen-containing heterocyclic compound layer.
  • the photosensitive resin composition coating solution 1 was laminated on the nitrogen-containing heterocyclic compound layer using a vacuum laminator (manufactured by Nichigo Morton Co., Ltd., VP130) to form a photosensitive layer.
  • the photosensitive layer was exposed from the polyethylene terephthalate film (support) side to the photomask at 40 mJ / cm 2 using a circuit board exposure machine EXM-1172 (manufactured by Oak Manufacturing Co., Ltd.). A part of the photosensitive layer was cured.
  • the support is peeled off from the photosensitive layer, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is applied to a spray pressure of 0.15 MPa on the entire surface of the photosensitive layer on the copper clad laminate.
  • spray development was performed for 2 to 3 times the shortest development time (or 40 to 60 seconds) to dissolve and remove uncured areas.
  • the amount of binding in the nitrogen-containing heterocyclic compound layer was measured by an absorbance method. Specifically, the copper clad laminate on which the nitrogen-containing heterocyclic compound layer was formed before the formation of the photosensitive layer (the layer formed of the photosensitive resin composition) was washed with water. Thereafter, the nitrogen-containing heterocyclic compound layer on the copper-containing wiring was extracted with an organic acid (sulfuric acid), the absorbance was measured, and the binding amount was calculated from the liquid amount and the coating area.
  • an organic acid sulfuric acid
  • ⁇ Insulation reliability (HAST)> Etching is performed on a copper foil of a substrate obtained by laminating a copper foil having a thickness of 12 ⁇ m on a glass epoxy base material, the line width / space width is 50 ⁇ m / 50 ⁇ m, the lines are not in contact with each other, and the same surface facing each other A wiring board on which the upper comb-shaped electrode was formed was obtained.
  • This wiring board was immersed in a nitrogen-containing heterocyclic compound-containing liquid 1 having a liquid temperature of 25 ° C. for 180 seconds, and then washed with water to form a nitrogen-containing heterocyclic compound layer on the comb-shaped electrode.
  • the photosensitive resin composition coating solution 1 was applied onto the nitrogen-containing heterocyclic compound layer to form a photosensitive layer having a thickness of 25 ⁇ m. Subsequently, exposure was performed with an optimum exposure amount. Next, after standing at room temperature for 1 hour, spray development was performed for 60 seconds with a 1% by mass aqueous sodium carbonate solution at 30 ° C., heating at 120 ° C. for 30 minutes, and further heating at 160 ° C. for 60 minutes. Then, the ultraviolet rays irradiation with respect to the photosensitive layer was performed with the energy amount of 1 J / cm ⁇ 2 > using the Oak Manufacturing ultraviolet irradiation device, and the board
  • ⁇ Plating resistance> The permanent pattern of the obtained test plate was degreased to roughen the surface, and then palladium sulfate was added to perform catalyst addition. Next, after immersing the permanent pattern in a nickel sulfate / dilute sulfuric acid solution at 70 ° C. for 40 minutes to perform plating treatment, the cured film in the permanent pattern was visually turned over and peeled, and based on the following criteria: The plating resistance was evaluated.
  • ⁇ Thermal shock resistance (crack resistance)> Etching was performed on a copper foil of a substrate obtained by laminating a copper foil having a thickness of 12 ⁇ m on a glass epoxy base material to obtain a wiring substrate having a line width / space width of 100 ⁇ m / 100 ⁇ m.
  • This wiring board was immersed in the nitrogen-containing heterocyclic compound-containing liquid 1 having a liquid temperature of 25 ° C. for 180 seconds, and then washed with water to form a nitrogen-containing heterocyclic compound layer on the wiring board. Subsequently, the photosensitive resin composition coating solution 1 was applied onto the nitrogen-containing heterocyclic compound layer to form a photosensitive layer having a thickness of 25 ⁇ m.
  • openings (30 round holes with a diameter of 30 round holes with a diameter of 400 ⁇ m, 30 round holes with a diameter of 300 ⁇ m, and 30 round holes with a diameter of 100 ⁇ m). Exposure was performed with an exposure amount. Next, after standing at room temperature for 1 hour, spray development was performed for 60 seconds with a 1% by mass aqueous sodium carbonate solution at 30 ° C., heating at 120 ° C. for 30 minutes, and further heating at 160 ° C. for 60 minutes.
  • the ultraviolet ray irradiation with respect to the photosensitive layer was performed with the energy amount of 1 J / cm ⁇ 2 > using the ultraviolet irradiation device made from an Oak Seisakusho, and the board
  • appearance such as cracks and peeling and a rate of change in resistance value were evaluated by a temperature cycle test (TCT).
  • TCT uses a liquid-phase cooling / heating tester, and the evaluation substrate is allowed to stand in a liquid phase at ⁇ 65 ° C. and 150 ° C. for 15 minutes each, and this is regarded as one cycle for conditions of 1,000 cycles and 1,500 cycles.
  • the crack generation rate was determined. Specifically, the side surface of the round hole (that is, the inner circumferential side surface of the permanent pattern round hole portion) is observed, and among the 90 round holes that have been formed, The number was counted to determine the crack occurrence rate.
  • the printed wiring board on which the photosensitive layer before the exposure process in the production of the printed wiring board was formed was allowed to stand at room temperature (23 ° C.) at 55% RH for 10 minutes.
  • the printed wiring board was exposed with an optimum exposure amount so as to form an opening using a pattern forming apparatus.
  • the entire surface of the photosensitive layer was sprayed with a 1% by weight aqueous sodium carbonate solution at 30 ° C. as the developer at a spray pressure of 0.15 MPa for twice the minimum development time to dissolve and remove uncured regions. Thereafter, the entire surface was exposed with an ultrahigh pressure mercury lamp at 200 mJ / cm 2 and further subjected to heat treatment (post-baking) at 150 ° C.
  • Example 2 A printed wiring board was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 2 in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 3 A printed wiring board was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 3 in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 4 A printed wiring board was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 4 in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 5 A printed wiring board was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 5 in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 6 A printed wiring board was produced in the same manner as in Example 1, except that the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 6 in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 7 A printed wiring board was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 7 in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 8 In Example 1, the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 8, and the substrate immersion time was changed from 180 seconds to 120 seconds. A printed wiring board was produced. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 9 A printed wiring board was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic compound-containing liquid 1 was replaced with the following nitrogen-containing heterocyclic compound-containing liquid 9 in Example 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-1.
  • Example 10 A printed wiring board was produced in the same manner as in Example 6 except that the resin 1 in the photosensitive resin composition was replaced with the resin 2 in Example 6. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-2.
  • Example 11 A printed wiring board was produced in the same manner as in Example 7 except that the resin 1 in the photosensitive resin composition was replaced with the resin 2 in Example 7. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-2.
  • Example 12 resin 1 in the photosensitive resin composition was replaced with resin 3 (UXE-3024 manufactured by Nippon Kayaku Co., Ltd. (solid content adjusted to 40%)) in the same manner as in Example 6. A printed wiring board was produced. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-2.
  • UXE-3024 is a hard segment portion of a raw material epoxy acrylate that becomes one of the main skeletons of the polyurethane resin among the alkali-developable group-containing and ethylenically unsaturated group-containing polyurethane resins represented by the following general formula, that is, R 4 is a bisphenol A type structure.
  • R 4 represents an epoxy acrylate residue
  • R 5 represents a diisocyanate residue
  • R 6 represents an alkyl group having 1 to 5 carbon atoms
  • R 7 represents a hydrogen atom or a methyl group.
  • a residue means the structure of the part remove
  • Example 13 In Example 7, the same procedure as in Example 7 was performed except that the resin 1 in the photosensitive resin composition was replaced with the resin 3 (UXE-3024 manufactured by Nippon Kayaku Co., Ltd. (solid content adjusted to 40%)). Thus, a printed wiring board was produced. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-2.
  • Example 1 Comparative Example 1
  • the nitrogen-containing heterocyclic compound layer was not formed, and the resin 1 in the photosensitive resin composition was the resin 3 (UXE-3024 manufactured by Nippon Kayaku Co., Ltd. (solid content adjusted to 40%))
  • a printed wiring board was produced in the same manner as in Example 1 except that it was replaced with. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 2 A printed wiring board was produced in the same manner as in Example 6 except that the resin 1 in the photosensitive resin composition was replaced with the resin 4 in Example 6. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 3 A printed wiring board was produced in the same manner as in Example 7 except that the resin 1 in the photosensitive resin composition was replaced with the resin 4 in Example 7. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 4 A printed wiring board was produced in the same manner as in Example 6 except that the resin 1 in the photosensitive resin composition was replaced with the resin 5 in Example 6. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 5 A printed wiring board was produced in the same manner as in Example 7 except that the resin 1 in the photosensitive resin composition was replaced with the resin 5 in Example 7. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 6 A printed wiring board was produced in the same manner as in Example 6 except that the resin 1 in the photosensitive resin composition was replaced with the resin 6 in Example 6. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 7 a printed wiring board was produced in the same manner as in Example 7, except that the resin 1 in the photosensitive resin composition was replaced with the resin 6. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 8 A printed wiring board was produced in the same manner as in Example 6 except that the resin 1 in the photosensitive resin composition was replaced with the resin 7 in Example 6. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 9 A printed wiring board was produced in the same manner as in Example 7 except that the resin 1 in the photosensitive resin composition was replaced with the resin 7 in Example 7. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • Example 7 a printed wiring board was produced in the same manner as in Example 7, except that the resin 1 in the photosensitive resin composition was replaced with the resin 8. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1-3.
  • the unit of the binding amount in Table 1-1 to Table 1-3 is p (pico) mol / mm 2 .
  • Examples 1 to 13 were superior in insulation reliability and plating resistance compared to Comparative Examples 1 to 10. Moreover, the thermal shock resistance and the resolution were also excellent. Among them, Examples 6, 7, and 9 to 13 were very excellent in plating resistance. Furthermore, Examples 6, 7, and 9 were all excellent in insulation reliability, plating resistance, thermal shock resistance, and resolution.
  • ⁇ 1> a wiring board having a substrate and a copper-containing wiring on the substrate; A nitrogen-containing heterocyclic compound layer containing a nitrogen-containing heterocyclic compound formed on at least the copper-containing wiring; A photosensitive resin composition formed on the nitrogen-containing heterocyclic compound layer, comprising an alkali-developable group and ethylenically unsaturated group-containing polyurethane resin, a polymerizable compound, and a photopolymerization initiator.
  • ⁇ 2> The printed wiring board according to ⁇ 1>, wherein the nitrogen-containing heterocyclic compound layer contains 50% by mass or more of the nitrogen-containing heterocyclic compound.
  • ⁇ 3> The printed wiring board according to any one of ⁇ 1> to ⁇ 2>, wherein the nitrogen-containing heterocyclic compound contains two or more nitrogen atoms in the nitrogen-containing heterocyclic ring.
  • ⁇ 4> The printed wiring board according to any one of ⁇ 1> to ⁇ 2>, wherein the nitrogen-containing heterocyclic compound includes three or more nitrogen atoms in the nitrogen-containing heterocyclic ring.
  • ⁇ 5> The printed wiring board according to any one of ⁇ 1> to ⁇ 4>, wherein the nitrogen-containing heterocyclic ring of the nitrogen-containing heterocyclic compound is any one of a 5-membered ring and a 6-membered ring.
  • ⁇ 6> The printed wiring board according to any one of ⁇ 1> to ⁇ 5>, wherein the nitrogen-containing heterocyclic compound includes a triazole ring.
  • the photosensitive resin composition contains a thermal crosslinking agent.
  • the photosensitive resin composition contains an inorganic filler, and the inorganic filler is at least one of silica, barium sulfate, talc, and aluminum hydroxide.
  • the polyurethane resin containing an alkali-developable group and an ethylenically unsaturated group has a weight average molecular weight of 2,000 to 60,000, an acid value of 20 mgKOH / g to 120 mgKOH / g, and an ethylenically unsaturated group
  • the alkali-developable group and the ethylenically unsaturated group-containing polyurethane resin have groups represented by the following general formula (1), groups represented by the following general formula (2), and the following general formulas in the side chain
  • R 1 to R 3 each independently represents a hydrogen atom or a monovalent organic group.
  • X represents one of an oxygen atom, a sulfur atom, and —N (R 12 ) —.
  • R 12 represents either a hydrogen atom or a monovalent organic group.
  • R 4 to R 8 each independently represents a hydrogen atom or a monovalent organic group.
  • Y represents any of an oxygen atom, a sulfur atom, and —N (R 12 ) —.
  • R 12 has the same meaning as R 12 in the general formula (1).
  • R 9 to R 11 each independently represents a hydrogen atom or a monovalent organic group.
  • Z represents any of an oxygen atom, a sulfur atom, —N (R 13 ) —, and an optionally substituted phenylene group.
  • R 13 represents an alkyl group which may have a substituent.
  • the alkali-developable group and ethylenically unsaturated group-containing polyurethane resin is a reaction product of a diisocyanate compound and a diol compound, and the diol compound has (i) an ethylenically unsaturated group, and at least one of them is
  • the printed wiring board of the present invention is excellent in insulation reliability and plating resistance, it can be suitably used for a mother board, a semiconductor package board, a MID (Molded Interconnect Device) board, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

 基板と、該基板上に銅含有配線とを有する配線基板と、少なくとも前記銅含有配線上に形成された、窒素含有複素環化合物を含む窒素含有複素環化合物層と、前記窒素含有複素環化合物層上に形成された層であって、アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂と、重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物により形成された層とを有するプリント配線基板である。

Description

プリント配線基板
 本発明は、プリント配線基板に関する。
 近年、電子機器の高機能化などの要求に伴い、電気部品の高密度集積化、高密度実装化などが進んでおり、これらに使用されるプリント配線基板なども小型化及び高密度化が進んでいる。このような状況下、プリント配線板中の配線の間隔はより狭くなっており、配線間の短絡を防止するためにも、配線間の絶縁信頼性を向上させることが要求されている。
 銅又は銅合金の配線間の絶縁信頼性を低下させる要因の一つとしては、いわゆる銅イオンのマイグレーションが知られている。これは、配線間で電位差が生じると水分の存在により配線を構成する銅がイオン化し、溶出した銅イオンが隣接する配線に移動する現象である。このような現象によって、溶出した銅イオンが時間とともに還元されて銅化合物となってデンドライト(樹枝状晶)状に成長する。そのことにより、配線間の短絡が起こり、絶縁信頼性を低下させる。
 このような絶縁信頼性の低下を防止する方法として、例えば、基板上に導電性ペーストを印刷して所定の回路パターン層を形成する工程と、前記回路パターン層上に電着可能なレジスト材料を電着して第1の絶縁層を形成する工程と、前記第1の絶縁層上に第2の絶縁層を形成する工程とを具備する配線基板の製造方法が提案されている(特許文献1参照)。
 また、回路パターンを形成した後、トリアゾール化合物、トリアジン化合物、イミダゾール化合物、テトラゾール化合物、芳香族第二アミン化合物、及びオキシン化合物から選択される少なくともいずれかを水又は有機溶媒に溶解させ又は懸濁させた液で配線板表面を処理する方法が提案されている(特許文献2参照)。
 また、配線パターンの端面に1,2,3-ベンゾトリアゾールなどを用いたマイグレーション抑制層が形成されているプリント配線基板が提案されている(特許文献3参照)。
 しかし、これらの提案の技術では、近年要求される高い絶縁信頼性を満足するものではないという問題がある。また、プリント配線基板の製造では、金属メッキ処理が行われるため、プリント配線基板に形成される絶縁層は、メッキ処理に対して密着性がよいこと、即ち、絶縁層の耐メッキ性が要求されるが、マイグレーション抑制層を形成した場合には、耐メッキ性が低下し、耐メッキ性が不十分になるという問題がある。
 したがって、高い絶縁信頼性を有し、かつ耐メッキ性に優れたプリント配線基板の提供が求められているのが現状である。
特開平05-243713号公報 特開昭63-160296号公報 特開2001-257451号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高い絶縁信頼性を有し、かつ耐メッキ性に優れたプリント配線基板の提供を目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 本発明のプリント配線基板は、基板と、該基板上に銅含有配線とを有する配線基板と、
 少なくとも前記銅含有配線上に形成された、窒素含有複素環化合物を含む窒素含有複素環化合物層と、
 前記窒素含有複素環化合物層上に形成された層であって、アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂と、重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物により形成された層とを有することを特徴とする。
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、高い絶縁信頼性を有し、かつ耐メッキ性に優れたプリント配線基板を提供することができる。
(プリント配線基板)
 本発明のプリント配線基板は、基板上に銅含有配線を有する配線基板と、窒素含有複素環化合物層と、感光性樹脂組成物により形成された層とを少なくとも有し、更に必要に応じて、その他の層を有する。
<配線基板>
 前記配線基板は、少なくとも、基板と、該基板上に銅含有配線とを有し、更に必要に応じて、その他の部材を有する。
-基板-
 前記基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機基板、セラミック基板、シリコン基板、ガラス基板などが挙げられる。
 前記有機基板の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化性樹脂、熱可塑性樹脂、これらの混合樹脂などが挙げられる。これらの樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、ベンゾシクロブテン樹脂、ポリイミド樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、アラミド樹脂などが挙げられる。
 また、前記有機基板の材質としては、アラミド織布、アラミド不織布、芳香族ポリアミド織布、これらに上記樹脂を含浸させた材料なども使用できる。
-銅含有配線-
 前記銅含有配線の材質としては、銅を含有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、銅合金などが挙げられる。
 前記銅合金において銅以外に含有される金属としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銀、錫、パラジウム、金、ニッケル、クロムなどが挙げられる。
 前記銅含有配線の幅としては、特に制限はなく、目的に応じて適宜選択することができるが、プリント配線基板の高集積化の点から、1μm~1,000μmが好ましく、3μm~25μmがより好ましい。
 前記銅含有配線間の間隔としては、特に制限はなく、目的に応じて適宜選択することができるが、プリント配線基板の高集積化の点から、1μm~1,000μmが好ましく、3μm~25μmがより好ましい。
 前記銅含有配線のパターン形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、直線状、曲線状、矩形状、円状などが挙げられる。
 前記銅含有配線の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、プリント配線基板の高集積化の点から、1μm~1,000μmが好ましく、3μm~25μmがより好ましい。
 前記銅含有配線の表面粗さRzとしては、特に制限はなく、目的に応じて適宜選択することができるが、感光性樹脂組成物により形成された層との密着性の観点から、0.001μm~15μmが好ましく、0.3μm~3μmがより好ましい。
 前記表面粗さRzを調整する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学粗化処理、バフ研磨処理などが挙げられる。
 なお、前記Rzは、JIS B 0601(1994年)に従って測定することができる。
 前記基板上への前記銅含有配線の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エッチング処理を利用したサブトラクティブ法、電解メッキを利用したセミアディティブ法などが挙げられる。
 前記配線基板は、最表面に前記銅含有配線を有していればよく、前記基板と前記銅含有配線との間に、他の配線(配線パターン)及び層間絶縁膜(ビルドアップ層)を交互に備えていてもよい。即ち、前記配線基板は、いわゆる多層配線基板、ビルドアップ基板であってもよい。
 前記層間絶縁膜としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノール樹脂、ナフタレン樹脂、ユリア樹脂、アミノ樹脂、アルキッド樹脂、エポキシ樹脂、アクリレート樹脂などが挙げられる。
 また、前記配線基板は、いわゆるリジッド基板、フレキシブル基板、リジッドフレキシブル基板のいずれであってもよい。
 また、前記基板にはビアホールが形成されていてもよい。前記基板の両面に前記銅含有配線が設けられる場合は、該ビアホール内に金属(例えば、銅又は銅合金)が充填されることにより、両面の配線が導通される。
<窒素含有複素環化合物層>
 前記窒素含有複素環化合物層は、前記銅含有配線上に形成された、窒素含有複素環化合物を含む層である。
 前記窒素含有複素環化合物層は、銅イオンのマイグレーションを抑制する層として機能する。
 前記窒素含有複素環化合物層は、主成分として前記窒素含有複素環化合物を含有することが好ましい。
 前記窒素含有複素環化合物層における前記窒素含有複素環化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、50質量%以上が好ましく、50質量%~100質量%がより好ましく、80質量%~100質量%が更に好ましく、95質量%~100質量%、即ち実質的に窒素含有複素環化合物のみからなる層であることが特に好ましい。
-窒素含有複素環化合物-
 前記窒素含有複素環化合物としては、窒素含有複素環を有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができるが、絶縁信頼性の点から、窒素含有複素環中に窒素原子を2つ以上含む化合物が好ましく、窒素含有複素環中に窒素原子を3つ以上含む化合物がよりが好ましい。
 前記窒素含有複素環化合物としては、窒素含有複素環が、5員環、及び6員環のいずれかであることが好ましい。
 前記窒素含有複素環化合物としては、トリアゾール環を含む窒素含有複素環化合物であることが、絶縁信頼性の点から好ましい。
 前記窒素含有複素環化合物としては、例えば、ピペリジン、ピリジン等の窒素含有複素環中に窒素原子を1つ有する化合物;イミダゾール、ピラゾール、ピラゾリン、ピラゾリジン、ピリミジン、ピリダジン等の窒素含有複素環中に窒素原子を2つ有する化合物;1,2,3-トリアゾール、1,2,4-トリアゾール、トリアジン等の窒素含有複素環中に窒素原子を3つ有する化合物;1H-テトラゾール等の窒素含有複素環中に窒素原子を4つ有する化合物などが挙げられる。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記銅含有配線上における前記窒素含有複素環化合物層の結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、銅イオンのマイグレーションをより抑制でき、より絶縁信頼性を向上できる点から、0.5p(ピコ)mol/mm~15.0pmol/mmが好ましく、1.0pmol/mm~13.0pmol/mmがより好ましく、5.5pmol/mm~10.0pmol/mmが特に好ましい。前記結合量が、0.5pmol/mm未満であると、絶縁信頼性向上の効果が十分に発揮されないことがあり、15.0pmol/mmを超えると、ラミネート後の経時安定性が悪化することがある。前記結合量が、前記特に好ましい範囲内であると、耐メッキ性が非常に優れる点で有利である。
 なお、結合量とは、前記銅含有配線上に形成された前記窒素含有複素環化合物層の量、言い換えれば付着量を意味する。
 前記結合量の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、吸光度法が挙げられる。
 前記吸光度法により、前記結合量を測定する方法としては、以下の方法が挙げられる。まず水で配線間に存在する窒素含有複素環化合物層を洗浄する。その後、有機酸(例えば、硫酸)により銅含有配線上の窒素含有複素環化合物層を抽出し、吸光度を測定して、液量と塗布面積から結合量を算出する。
 前記窒素含有複素環化合物層中には、銅イオン及び金属銅が実質的に含まれていないことが好ましい。前記窒素含有複素環化合物層中に所定量以上の銅イオン及び金属銅が含まれていると、絶縁信頼性が低下することがある。
 前記窒素含有複素環化合物層は、前記銅含有配線の表面上にのみ形成されており、前記銅含有配線間の前記基板表面上には形成されていないことが好ましい。なお、本発明の効果、即ち絶縁信頼性を低下させない範囲であれば、前記銅含有配線間の前記基板表面上に前記窒素含有複素環化合物が残存していてもよい。
-窒素含有複素環化合物層の形成方法-
 前記窒素含有複素環化合物層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、窒素含有複素環化合物を含有する液(窒素含有複素環化合物含有液)に前記配線基板を接触させる工程(接触工程)を少なくとも含み、更に必要に応じて、洗浄工程などのその他の工程を含む方法が挙げられる。
--接触工程--
 前記接触工程としては、前記窒素含有複素環化合物を含有する液(窒素含有複素環化合物含有液)に前記配線基板を接触させることにより、前記窒素含有複素環化合物層を形成することができる工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、浸漬、スプレー塗布、スピンコートなどが挙げられる。処理の簡便さ、及び処理時間の調整の容易さから、浸漬、スプレー塗布が好ましい。
 前記接触工程における前記窒素含有複素環化合物含有液の液温としては、特に制限はなく、目的に応じて適宜選択することができるが、結合量制御の点から、5℃~60℃が好ましく、15℃~30℃がより好ましい。
 前記接触工程が浸漬により行われる際の浸漬時間としては、特に制限はなく、目的に応じて適宜選択することができるが、生産性、及び前記結合量制御の点から、10秒間~30分間が好ましく、15秒間~10分間がより好ましく、30秒間~5分間が特に好ましい。
---窒素含有複素環化合物含有液---
 前記窒素含有複素環化合物含有液としては、例えば、前記窒素含有複素環化合物と、溶剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する液が挙げられる。
 前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水、アルコール系溶剤(例えば、メタノール、エタノール、イソプロパノール)、ケトン系溶剤(例えば、アセトン、メチルエチルケトン、シクロヘキサノン)、アミド系溶剤(例えば、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドン)、ニトリル系溶剤(例えば、アセトニトリル、プロピオニトリル)、エステル系溶剤(例えば、酢酸メチル、酢酸エチル)、カーボネート系溶剤(例えば、ジメチルカーボネート、ジエチルカーボネート)、エーテル系溶剤、ハロゲン系溶剤などが挙げられる。これらの中でも、水、アルコール系溶剤が好ましい。特に、前記溶剤として水を使用すると、前記配線基板と前記窒素含有複素環化合物含有液を接触させる際に浸漬法を採用する場合に、前記窒素含有複素環化合物が前記銅含有配線に堆積しやすいことから、好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、pH調整剤、界面活性剤、防腐剤、析出防止剤などが挙げられる。
 前記窒素含有複素環化合物含有液における前記窒素含有複素環化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記窒素含有複素環化合物層の形成のしやすさ、及び前記窒素含有複素環化合物層の結合量制御の点から、前記窒素含有複素環化合物含有液に対して、0.01質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましく、0.25質量%~5質量%が特に好ましい。前記含有量が、0.01質量%未満であると、生産性が低下することがあり、10質量%を超えると、結合量の制御が困難となることがある。
 プリント配線基板中の配線間の絶縁信頼性を高める点で、前記窒素含有複素環化合物含有液には、銅イオンが実質的に含まれていないことが好ましい。過剰量の銅イオンが含まれていると、皮膜を形成する際に銅イオン拡散抑制層中に銅イオンが含まれることになり、銅イオンのマイグレーションを抑制する効果が薄れ、配線間の絶縁信頼性が損なわれることがある。
 なお、銅イオンが実質的に含まれないとは、前記窒素含有複素環化合物含有液中における銅イオンの含有量が、1μmol/L以下であることを指し、0.1μmol/L以下が好ましく、0mol/Lがより好ましい。
 また、プリント配線基板中の配線間の絶縁信頼性を高める点で、前記窒素含有複素環化合物含有液には銅又は銅合金のエッチング剤が実質的に含まれていないことが好ましい。前記窒素含有複素環化合物含有液中にエッチング剤が含まれていると、前記配線基板と前記窒素含有複素環化合物含有液とを接触させる際に、前記窒素含有複素環化合物含有液中に銅イオンが溶出することがある。そのため、結果として、前記窒素含有複素環化合物層中に銅イオンが含まれることになり、銅イオンのマイグレーションを抑制する効果が薄れ、配線間の絶縁信頼性が損なわれることがある。
 前記エッチング剤としては、例えば、有機酸(例えば、硫酸、硝酸、塩酸、酢酸、ギ酸、ふっ酸)、酸化剤(例えば、過酸化水素、濃硫酸)、キレート剤(例えば、イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミン4酢酸、エチレンジアミン、エタノールアミン、アミノプロパノール)、チオール化合物などが挙げられる。
 なお、前記エッチング剤が実質的に含まれないとは、前記窒素含有複素環化合物含有液における前記エッチング剤の含有量が、前記窒素含有複素環化合物含有液に対して、0.01質量%以下であることを指し、配線間の絶縁信頼性をより高める点で、0.001質量%以下が好ましく、0質量%がより好ましい。
 前記窒素含有複素環化合物含有液のpHとしては、特に制限はなく、目的に応じて適宜選択することができるが、5~12が好ましく、5~9がより好ましく、6~8が特に好ましい。前記窒素含有複素環化合物含有液のpHが、5未満であると、前記銅含有配線から銅イオンの溶出が促進され、前記窒素含有複素環化合物層に銅イオンが多量に含まれることになり、結果として銅のマイグレーションを抑制する効果が低下し、配線間の絶縁信頼性が低下することがある。前記窒素含有複素環化合物含有液のpHが、12を超えると、水酸化銅が析出し、酸化溶解しやすくなり、結果として配線間の絶縁信頼性が低下することがある。
 pHの調整方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知の酸(例えば、塩酸、硫酸)や、塩基(例えば、水酸化ナトリウム)を用いて行うことができる。また、pHの測定は、公知の測定手段(例えば、pHメーター(水溶媒の場合))を用いて実施できる。
--洗浄工程--
 前記洗浄工程は、洗浄溶剤で前記配線基板を洗浄する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記窒素含有複素環化合物層が形成された前記配線基板を前記洗浄溶剤に浸漬する方法が挙げられる。
 前記洗浄溶剤としては、前記配線基板上に堆積した余分な窒素含有複素環化合物を除去できる溶剤であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記窒素含有複素環化合物含有液の説明において記載した前記溶剤が挙げられる。これらの中でも、微細配線間への液浸透性の点から、水、アルコール系溶剤、ケトン系溶剤(好ましくはメチルエチルケトン)が好ましく、水、アルコール系溶剤がより好ましく、水が特に好ましい。
 前記洗浄溶剤の液温としては、特に制限はなく、目的に応じて適宜選択することができるが、結合量制御の点から、5℃~60℃が好ましく、15℃~30℃がより好ましい。
 前記洗浄工程が浸漬により行われる際の浸漬時間としては、特に制限はなく、目的に応じて適宜選択することができるが、生産性、及び前記結合量制御の点から、10秒間~10分間が好ましく、15秒間~5分間がより好ましい。
--その他の工程--
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱工程が挙げられる。
 前記加熱工程としては、溶剤の除去をすることができる工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記加熱工程における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、70℃~120℃が好ましく、80℃~110℃がより好ましい。
 前記加熱工程における加熱時間としては、特に制限はなく、目的に応じて適宜選択することができるが、15秒間~10分間が好ましく、30秒間~5分間がより好ましい。
<感光性樹脂組成物により形成された層(感光性樹脂組成物層)>
 前記感光性樹脂組成物により形成された層(感光性樹脂組成物層)は、前記窒素含有複素環化合物層上に形成された層であって、アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂と、重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物により形成された層である。
 前記感光性樹脂組成物層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~100μmが好ましく、2μm~50μmがより好ましく、4μm~30μmが特に好ましい。
-感光性樹脂組成物-
 前記感光性樹脂組成物は、アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂と、重合性化合物と、光重合開始剤とを少なくとも含有し、更に必要に応じて、熱架橋剤、無機充填剤、希釈剤などのその他の成分を含有する。
--アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂--
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂としては、アルカリ現像性基とエチレン性不飽和基とを含有するポリウレタン樹脂であれば、特に制限はなく、目的に応じて適宜選択することができる。アルカリ現像性基としては、例えば、カルボキシル基などが挙げられる。エチレン性不飽和基としては、例えば、アクリロイル基、メタクリロイル基、ビニルフェニル基、アリル基、ビニルエーテル基などが挙げられる。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂としては、例えば、ウレタン基により連結された樹脂であって、下記一般式(I)及び下記一般式(II)の少なくともいずれかで表される構造を有するものが挙げられる。これらの中でも、下記一般式(II)で表される末端構造を有することが、より絶縁信頼性が優れ、かつ解像性が向上する点で特に好ましい。
Figure JPOXMLDOC01-appb-C000005
 ただし、前記一般式(I)中、Xは、ウレタン基で連結された樹脂の主鎖骨格を表す。Lは、単結合、及び連結基のいずれかを表す。nは、1~5の整数を表す。
Figure JPOXMLDOC01-appb-C000006
 ただし、前記一般式(II)中、Xは、ウレタン基で連結された樹脂の主鎖骨格を表す。Lは、連結基を表す。nは、1~5の整数を表す。
 前記一般式(I)及び前記一般式(II)中のLにおける連結基としては、炭素原子、水素原子、酸素原子、窒素原子、及び硫黄原子から選択される1以上の原子を含んで構成される連結基が挙げられる。具体的には、Lで表される連結基の主骨格を構成する原子数が、1~30であることが好ましく、1~25であることがより好ましく、1~20であることが更に好ましく、1~10であることが特に好ましい。なお、本発明において、前記「連結基の主骨格」とは、後述する一般式(III)におけるYと末端COOHとを連結するためのみに使用される原子又は原子団を意味し、連結経路が複数ある場合には、使用される原子数が最も少ない経路を構成する原子又は原子団を指す。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂としては、下記一般式(G-1)で表される構造単位を有することが、より絶縁信頼性が向上し、かつ耐熱衝撃性に優れる点から好ましい。
Figure JPOXMLDOC01-appb-C000007
 ただし、前記一般式(G-1)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Aは、2価の有機残基を表す。Xは、酸素原子、硫黄原子、及び-N(R12)-を表す。前記R12は、水素原子、及び1価の有機基のいずれかを表す。
 前記一般式(G-1)中のRの1価の有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基を有してもよいアルキル基、などが挙げられる。これらの中でも、前記一般式(G-1)中のRとしては、水素原子、メチル基が好ましい。
 前記一般式(G-1)中のR、及びRの1価の有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基を有してもよいアルキル基、などが挙げられる。これらの中でも、前記一般式(G-1)中のR、及びRとしては、水素原子が好ましい。
 前記一般式(G-1)中のAとしては、2価の有機残基であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基を有していてもよい2価のアルキレン基などが挙げられる。前記2価の有機残基としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基などが挙げられる。これらの中でもメチレン基が好ましい。
 前記一般式(G-1)中のXとしては、酸素原子が好ましい。
 前記一般式(G-1)中のR12の1価の有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基を有してもよいアルキル基、などが挙げられる。これらの中でも、メチル基、エチル基、イソプロピル基が好ましい。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂に、前記一般式(G-1)で表される構造単位を導入する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、ジイソシアネート化合物と、下記一般式(G)で表される化合物とを反応させる方法が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 ただし、前記一般式(G)中、R~R、A、及びXは、前記一般式(G-1)中のR~R、A、及びXと同じである。好ましい態様も同じである。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂としては、例えば、前記一般式(I)で表されるカルボン酸基を側鎖に有するアルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂、及び前記一般式(II)で表されるカルボン酸基を末端に有するアルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂などが挙げられる。それらの具体例を以下に示す。なお、前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂は、これらの具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
 ただし、前記式中、a1は5モル%~70モル%、b1は0モル%~65モル%、c1は3モル%~60モル%、d1は10モル%~67モル%であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 ただし、前記式中、a2は50モル%~70モル%、b2は3モル%~60モル%、c2は10モル%~67モル%であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 ただし、前記式中、a3は5モル%~70モル%、b3は0モル%~65モル%、c3は3モル%~60モル%、d3は10モル%~67モル%、e3は1モル%~20モル%であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 ただし、前記式中、a4は5モル%~70モル%、b4は0モル%~65モル%、c4は3モル%~60モル%、d4は10モル%~67モル%、e4は1モル%~20モル%であることが好ましい。
---ヒドロキシ化合物---
 前記一般式(I)及び前記一般式(II)の少なくともいずれかで表される構造を形成するには、下記一般式(III)で表される化合物、及び下記一般式(IV)で表される化合物の少なくともいずれかを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 ただし、前記一般式(III)中、Yは、3価以上の原子を表す。L及びLは、それぞれ独立に、単結合又は置換基を有していてもよいアルキレン基を表し、L及びLの双方が単結合となることはない。Lは、単結合、及び連結基のいずれかを表す。nは、1~5の整数を表す。
Figure JPOXMLDOC01-appb-C000014
 ただし、前記一般式(IV)中、Lは、単結合又は置換基を有していてもよいアルキレン基を表す。Lは、連結基を表す。nは、1~5の整数を表す。
 前記一般式(III)中のYにおける3価以上の原子としては、例えば、窒素原子、炭素原子、ケイ素原子、などが挙げられる。これらの中でも、窒素原子、炭素原子が特に好ましい。ここで、Yで表される原子が3価以上であるとは、少なくともYが、L、L、及びLを介して末端-COOHが結合する3つの結合手を有することを意味するが、Yは、更に水素原子、又は置換基を有していてもよい。
 Yに導入可能な置換基としては、水素原子、酸素原子、硫黄原子、窒素原子及びハロゲン原子から選択される原子を含んで構成される置換基が挙げられる。これらの中でも、炭素原子数1~50の炭化水素基が好ましく、炭素原子数1~40の炭化水素基がより好ましく、炭素原子数1~30の炭化水素基が特に好ましい。
 前記一般式(III)におけるL及びLは、各々独立に、単結合又は置換基を有していてもよいアルキレン基を表し、L及びLの双方が単結合となることはない。前記アルキレン基としては、炭素原子数1~20のアルキレン基であることが好ましく、炭素原子数2~10のアルキレン基であることがより好ましい。前記アルキレン基に導入可能な置換基としては、例えばハロゲン原子(-F、-Br、-Cl、-I)、置換基を有していてもよいアルキル基、などが挙げられる。
 前記一般式(IV)におけるLは、前記一般式(III)におけるLと同じである。
 前記一般式(III)及び(IV)において、Lは、連結基を表す。Lで表される連結基は、炭素原子、水素原子、酸素原子、窒素原子、及び硫黄原子から選択される1以上の原子を含んで構成される連結基が挙げられる。具体的には、Lで表される連結基の主骨格を構成する原子数が、1~30であることが好ましく、1~25であることがより好ましく、1~20であることが更に好ましく、1~10であることが特に好ましい。なお、本発明において、前記「連結基の主骨格」とは、前記一般式(III)におけるYと末端COOHとを連結、又は一般式(IV)におけるLと末端COOHとを連結するためのみに使用される原子又は原子団を意味し、連結経路が複数ある場合には、使用される原子数が最も少ない経路を構成する原子又は原子団を指す。
 前記一般式(III)で表される化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエーテルジオール化合物、ポリエステルジオール化合物、ポリカーボネートジオール化合物、などが挙げられる。
---ジイソシアネート化合物---
 前記一般式(III)で表される化合物、及び前記一般式(IV)で表される化合物と反応させるジイソシアネート化合物としては、特に制限はなく、目的に応じて適宜選択することできるが、下記一般式(V)で表されるジイソシアネート化合物などが好ましい。
<一般式(V)>
  OCN-L-NCO
 ただし、前記一般式(V)中、Lは、置換基を有していてもよい2価の脂肪族又は芳香族炭化水素基を表す。必要に応じて、Lは、イソシアネート基と反応しない他の官能基、例えば、エステル基、ウレタン基、アミド基、ウレイド基を有していてもよい。
 前記一般式(V)で表されるジイソシアネート化合物としては、特に制限はなく、目的に応じて適宜選択することでき、例えば、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートの二量体、2,6-トリレンジジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート等のような芳香族ジイソシアネート化合物;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート化合物;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4(又は2,6)ジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネート化合物;1,3-ブチレングリコール1モルとトリレンジイソシアネート2モルとの付加体等のジオールとジイソシアネートとの反応物であるジイソシアネート化合物;などが挙げられる。
 また、前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂の合成には、上述したヒドロキシ化合物の他に、イソシアネート基と反応しない置換基を有するジオール化合物を併用することもできる。
 前記イソシアネート基と反応しない置換基を有するジオール化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2005-250438号公報の段落〔0087〕~〔0088〕に記載された化合物、などが挙げられる。
 また、前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂の合成には、更にカルボキシル基を有するジオール化合物を併用することもできる。前記カルボキシル基を有するジオール化合物としては、例えば、下記式(a)~(c)に示すものが含まれる。
Figure JPOXMLDOC01-appb-C000015
 前記式(a)~(c)中、R15としては、水素原子、置換基(例えば、シアノ基、ニトロ基、-F、-Cl、-Br、-I等のハロゲン原子、-CONH、-COOR16、-OR16、-NHCONHR16、-NHCOOR16、-NHCOR16、-OCONHR16(ここで、前記R16は、炭素数1~10のアルキル基、又は炭素数7~15のアラルキル基を表す。)などの各基が含まれる。)を有していてもよいアルキル基、アラルキル基、アリール基、アルコキシ基、アリーロキシ基を表すものである限り、特に制限はなく、目的に応じて適宜選択することができるが、水素原子、炭素数1~8個のアルキル基、炭素数6~15個のアリール基が好ましい。前記式(a)~(c)中、L、L10、及びL11は、それぞれ同一でもよいし、相違していてもよく、単結合、置換基(例えば、アルキル、アラルキル、アリール、アルコキシ、ハロゲノの各基が好ましい。)を有していてもよい2価の脂肪族又は芳香族炭化水素基を表すものである限り、特に制限はなく、目的に応じて適宜選択することができるが、炭素数1~20個のアルキレン基、炭素数6~15個のアリーレン基が好ましく、炭素数1~8個のアルキレン基がより好ましい。また必要に応じ、前記L~L11中にイソシアネート基と反応しない他の官能基、例えば、カルボニル基、エステル基、ウレタン基、アミド基、ウレイド基、エーテル基を有していてもよい。なお、前記R15、L、L10、及びL11のうちの2個又は3個で環を形成してもよい。
 前記式(b)中、Arとしては、置換基を有していてもよい三価の芳香族炭化水素基を表すものである限り、特に制限はなく、目的に応じて適宜選択することができるが、炭素数6~15個の芳香族基が好ましい。
 前記式(a)~(c)で表されるカルボキシル基を有するジオール化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3,5-ジヒドロキシ安息香酸、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(2-ヒドロキシエチル)プロピオン酸、2,2-ビス(3-ヒドロキシプロピル)プロピオン酸、ビス(ヒドロキシメチル)酢酸、ビス(4-ヒドロキシフェニル)酢酸、2,2-ビス(ヒドロキシメチル)酪酸、4,4-ビス(4-ヒドロキシフェニル)ペンタン酸、酒石酸、N,N-ジヒドロキシエチルグリシン、N,N―ビス(2-ヒドロキシエチル)-3-カルボキシ-プロピオンアミド、などが挙げられる。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂としては、アルカリ現像性と硬化膜の強靭性という点から、以下に説明する側鎖にエチレン性不飽和基を有するポリウレタン樹脂を使用することが好ましい。
---側鎖にエチレン性不飽和基を有するポリウレタン樹脂---
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂は、下記一般式(d)で表されるジイソシアネート化合物の少なくとも1種と、下記一般式(e)で表されるジオール化合物の少なくとも1種と、の反応生成物で表される構造単位を基本骨格とするポリウレタン樹脂である。
  OCN-X-NCO ・・・ 一般式(d)
  HO-Y-OH ・・・ 一般式(e)
 前記一般式(d)及び(e)中、X及びYは、それぞれ独立に2価の有機残基を表す。
 前記2価の有機残基としては、前記一般式(V)のLと同義である。
 前記一般式(d)で表されるジイソシアネート化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリイソシアネート化合物と、エチレン性不飽和基を有する単官能のアルコール又はエチレン性不飽和基を有する単官能のアミン化合物1当量とを付加反応させて得られる生成物、などが挙げられる。
 前記トリイソシアネート化合物としては、特に制限されるものではなく、目的に応じて適宜選択することができ、例えば、特開2005-250438号公報の段落〔0034〕~〔0035〕に記載された化合物、などが挙げられる。
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂としては、側鎖に、下記一般式(1)で表される基~下記一般式(3)で表される基の少なくともいずれかを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000016
 ただし、前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Xは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表す。前記R12は、水素原子、及び1価の有機基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000017
 ただし、前記一般式(2)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Yは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表す。前記R12は、前記一般式(1)中のR12と同義である。
Figure JPOXMLDOC01-appb-C000018
 ただし、前記一般式(3)中、R~R11は、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Zは、酸素原子、硫黄原子、-N(R13)-、及び置換基を有してもよいフェニレン基のいずれかを表す。前記R13は、置換基を有してもよいアルキル基を表す。
 前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、及1価の有機基のいずれかを表す。
 前記Rとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水素原子、置換基を有してもよいアルキル基などが挙げられる。これらの中でも、ラジカル反応性が高い点で、水素原子、メチル基が好ましい。
 前記R及びRとしては、特に制限はなく、目的に応じて適宜選択することができ、それぞれ独立に、例えば、水素原子、ハロゲン原子、アミノ基、カルボキシル基、アルコキシカルボニル基、スルホ基、ニトロ基、シアノ基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアルキルアミノ基、置換基を有してもよいアリールアミノ基、置換基を有してもよいアルキルスルホニル基、置換基を有してもよいアリールスルホニル基などが挙げられる。これらの中でも、ラジカル反応性が高い点で、水素原子、カルボキシル基、アルコキシカルボニル基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基が好ましい。
 前記一般式(1)中、Xは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表し、前記R12は、水素原子、及び1価の有機基のいずれかを表す。
 前記R12としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基を有してもよいアルキル基、などが挙げられる。これらの中でも、ラジカル反応性が高い点で、水素原子、メチル基、エチル基、イソプロピル基が好ましい。
 ここで、導入し得る前記置換基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリーロキシ基、ハロゲン原子、アミノ基、アルキルアミノ基、アリールアミノ基、カルボキシル基、アルコキシカルボニル基、スルホ基、ニトロ基、シアノ基、アミド基、アルキルスルホニル基、アリールスルホニル基などが挙げられる。
 前記一般式(2)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。
 前記R~Rとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記一般式(1)中のR及びRの説明で挙げた基などが挙げられる。好ましい例も同様である。
 前記Yは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表す。前記R12は、前記一般式(1)のR12と同義であり、好ましい例も同様である。
 前記一般式(3)中、R~R11は、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。
 前記Rとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水素原子、置換基を有してもよいアルキル基などが挙げられる。これらの中でも、ラジカル反応性が高い点で、水素原子、メチル基が好ましい。
 前記R10及びR11としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記一般式(1)中のR及びRの説明で挙げた基などが挙げられる。好ましい例も同様である。
 前記Zは、酸素原子、硫黄原子、-N(R13)-、及び置換基を有してもよいフェニレン基のいずれかを表す。
 前記R13は、置換基を有してもよいアルキル基を表す。中でも、ラジカル反応性が高い点で、メチル基、エチル基、イソプロピル基が好ましい。
 ここで、前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂の側鎖にエチレン性不飽和基を導入する方法としては、前述の方法の他に、ポリウレタン樹脂製造の原料として、側鎖にエチレン性不飽和基を含有するジオール化合物を用いる方法も好ましい。前記側鎖にエチレン性不飽和基を含有するジオール化合物は、例えば、トリメチロールプロパンモノアリルエーテルのように市販されているものでもよいし、ハロゲン化ジオール化合物、トリオール化合物、アミノジオール化合物等の化合物と、エチレン性不飽和基を含有する、カルボン酸、酸塩化物、イソシアネート、アルコール、アミン、チオール、ハロゲン化アルキル化合物等の化合物との反応により容易に製造される化合物であってもよい。前記側鎖にエチレン性不飽和基を含有するジオール化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2005-250438号公報の段落〔0057〕~〔0060〕に記載された化合物、前記一般式(G)で表される特開2005-250438号公報の段落〔0064〕~〔0066〕に記載された化合物、などが挙げられる。
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂は、ジイソシアネート化合物とジオール化合物の反応生成物であり、該ジオール化合物が、(i)エチレン性不飽和基を有し、少なくとも1つが2級アルコールであるジオール化合物の少なくとも1種と、(ii)カルボキシル基を有するジオール化合物の少なくとも1種と、を含有することが好ましい。
 前記(i)エチレン性不飽和基を有し、少なくとも1つが2級アルコールであるジオール化合物としては、前記一般式(G)で表される化合物であることが、より絶縁信頼性が向上し、かつ耐熱衝撃性に優れる点から好ましい。前記一般式(G)で表されるジオール化合物に由来するポリウレタン樹脂を用いることにより、立体障害の大きい2級アルコールに起因するポリマー主鎖の過剰な分子運動を抑制効果により、層の被膜強度の向上が達成できるものと考えられる。
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂は、例えば、重合性組成物中の他の成分との相溶性を向上させ、保存安定性を向上させるといった観点から、前記側鎖にエチレン性不飽和基を含有するジオール化合物以外のジオール化合物を共重合させることができる。
 また、前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂の合成には、上述したジオール化合物の他に、テトラカルボン酸二無水物をジオール化合物で開環させた化合物を併用することもできる。
 前記テトラカルボン酸二無水物をジオール化合物で開環させた化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2005-250438号公報の段落〔0095〕~〔0101〕に記載された化合物、などが挙げられる。
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂は、上記ジイソシアネート化合物及びジオール化合物を、非プロトン性溶媒中、それぞれの反応性に応じた活性の公知の触媒を添加し、加熱することにより合成される。合成に使用されるジイソシアネート及びジオール化合物のモル比(M:M)としては、特に制限はなく、目的に応じて適宜選択することができ、1:1.2~1.2:1が好ましく、アルコール類又はアミン類等で処理することにより、分子量あるいは粘度といった所望の物性の生成物が、最終的にイソシアネート基が残存しない形で合成される。
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂としては、ポリマー末端、主鎖にエチレン性不飽和基を有するものも好適に使用される。ポリマー末端、主鎖にエチレン性不飽和基を有することにより、更に、感光性樹脂組成物と側鎖にエチレン性不飽和基を有するポリウレタン樹脂との間、又は側鎖にエチレン性不飽和基を有するポリウレタン樹脂間で架橋反応性が向上し、光硬化物強度が増す。ここで、前記エチレン性不飽和基としては、架橋反応の起こり易さから、炭素-炭素二重結合を有することが特に好ましい。
 主鎖にエチレン性不飽和基を導入する方法としては、主鎖方向にエチレン性不飽和基を有するジオール化合物をポリウレタン樹脂の合成に用いる方法がある。前記主鎖方向にエチレン性不飽和基を有するジオール化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えばcis-2-ブテン-1,4-ジオール、trans-2-ブテン-1,4-ジオール、ポリブタジエンジオール、などが挙げられる。
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂は、該特定ポリウレタン樹脂とは異なる構造を有するポリウレタン樹脂を含むアルカリ可溶性高分子を併用することも可能である。例えば、前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂は、主鎖及び/又は側鎖に芳香族基を含有したポリウレタン樹脂を併用することが可能である。
 前記側鎖にエチレン性不飽和基を有するポリウレタン樹脂としては、例えば、特開2005-250438号公報の段落〔0293〕~〔0310〕に示されたP-1~P-31のポリマー、などが挙げられる。これらの中でも、段落〔0308〕及び〔0309〕に示されたP-27及びP-28のポリマーが好ましい。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂の重量平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、2,000~60,000が好ましく、2,000~50,000がより好ましく、2,000~30,000が特に好ましい。前記重量平均分子量が2,000未満であると、硬化膜の高温時の十分な低弾性率が得られないことがあり、60,000を超えると、塗布適性及び現像性が悪化することがある。
 ここで、前記重量平均分子量は、例えば、高速GPC装置(東洋曹達株式会社製、HLC-802A)を使用して、0.5質量%のテトラヒドロフラン(THF)溶液を試料溶液とし、カラムはTSKgel HZM-M 1本を使用し、200μLの試料を注入し、前記THF溶液で溶離して、25℃で屈折率検出器あるいはUV検出器(検出波長254nm)により測定することができる。この際、標準ポリスチレンで較正した分子量分布曲線より重量平均分子量を求める。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂における前記エチレン性不飽和基の導入量としては、特に制限はなく、目的に応じて適宜選択することができるが、エチレン性不飽和基当量として、0.05mmol/g~3.00mmol/gが好ましく、0.5mmol/g~3.00mmol/gがより好ましく、1.50mmol/g~3.00mmol/gが特に好ましい。
 前記エチレン性不飽和基当量は、臭素価をJIS K2605に準拠して測定することにより求めることができる。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂の酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、20mgKOH/g~120mgKOH/gが好ましく、30mgKOH/g~110mgKOH/gがより好ましく、35mgKOH/g~100mgKOH/gが特に好ましい。前記酸価が、20mgKOH/g未満であると現像性が不十分となることがあり、120mgKOH/gを超えると現像速度が高すぎるため現像のコントロールが難しくなることがある。
 前記酸価は、例えば、JIS K0070に準拠して測定することができる。ただし、サンプルが溶解しない場合は、溶媒としてジオキサン又はテトラヒドロフランなどを使用する。
 前記アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂の前記感光性樹脂組成物固形分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5質量%~80質量%が好ましく、30質量%~60質量%がより好ましい。前記含有量が、5質量%以上であれば、現像性、露光感度が良好となり、80質量%以下であれば、感光層の粘着性が強くなりすぎることを防止できる。
--重合性化合物--
 前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、エチレン性不飽和基を1つ以上有する化合物が好ましい。
 前記エチレン性不飽和基を1つ以上有する化合物は、エチレン性不飽和基を有する官能基を有する。前記エチレン性不飽和基を有する官能基としては、例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニルフェニル基、ビニルエステル、ビニルエーテル、アリルエーテル、アリルエステルなどが挙げられる。
 前記エチレン性不飽和基を1つ以上有する化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、(メタ)アクリロイル基を有するモノマーから選択される少なくとも1種が好ましい。
 前記(メタ)アクリロイル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48-41708号、特公昭50-6034号、特開昭51-37193号等の各公報に記載されているウレタンアクリレート類;特開昭48-64183号、特公昭49-43191号、特公昭52-30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。
 前記重合性化合物の前記感光性樹脂組成物固形分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましい。前記含有量が、5質量%以上であれば、現像性、露光感度が良好となり、50質量%以下であれば、感光層の粘着性が強くなりすぎることを防止できる。
--光重合開始剤--
 前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが挙げられる。
 前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)に記載された化合物、英国特許1388492号明細書に記載された化合物、特開昭53-133428号公報に記載された化合物、独国特許3337024号明細書に記載された化合物、F.C.SchaeferなどによるJ.Org.Chem.;29、1527(1964)に記載された化合物、特開昭62-58241号公報に記載された化合物、特開平5-281728号公報に記載された化合物、特開平5-34920号公報に記載された化合物、などが挙げられ、前記オキサジアゾール骨格を有するハロゲン化炭化水素化合物としては、例えば、米国特許第4212976号明細書に記載された化合物、などが挙げられる。
 前記オキシム誘導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2007-2030号公報の段落〔0085〕に記載された化合物などが挙げられる。
 前記ケトン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2007-2030号公報の段落〔0087〕に記載された化合物などが挙げられる。
 また、上記以外の光重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2007-2030号公報の段落〔0086〕に記載された化合物などが挙げられる。
 また、前記感光性樹脂組成物により形成された層への露光における露光感度や感光波長を調整する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
 前記増感剤は、後述する光照射手段としての可視光線や紫外光レーザ、可視光レーザなどにより適宜選択することができる。
 前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤など)と相互作用(例えば、エネルギー移動、電子移動など)することにより、ラジカルや酸などの有用基を発生することが可能である。
 前記増感剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2007-2030号公報の段落〔0089〕に記載された化合物などが挙げられる。
 前記光重合開始剤と前記増感剤との組合せとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2001-305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
 前記増感剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光性樹脂組成物中の全成分に対し、0.05質量%~30質量%が好ましく、0.1質量%~20質量%がより好ましく、0.2質量%~10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に感光層から前記増感剤が析出することがある。
 前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
 前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、ホスフィンオキサイド類、α-アミノアルキルケトン類、トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセン、などが挙げられる。
 前記光重合開始剤の前記感光性樹脂組成物固形分中における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%~20質量%が好ましく、0.5質量%~15質量%がより好ましく、1質量%~10質量%が特に好ましい。
 前記含有量が、0.5質量%未満であると、露光部が現像中に溶出する傾向があり、20質量%を超えると、耐熱性が低下することがある。一方、前記含有量が、前記特に好ましい範囲内であると、良好なパターン形成ができ、耐熱性も良好になる点で有利である。
--熱架橋剤--
 前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、感光性フィルムを用いて形成される感光層の硬化後の膜強度を改良するために、現像性等に悪影響を与えない範囲で、例えば、エポキシ化合物(例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ化合物)、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができ、特開2007-47729号公報に記載されているようなオキシラン基を有するエポキシ化合物、β位にアルキル基を有するエポキシ化合物、オキセタニル基を有するオキセタン化合物、ポリイソシアネート化合物、ポリイソシアネート又はその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物などが挙げられる。
 また、前記熱架橋剤として、メラミン誘導体を用いることができる。該メラミン誘導体としては、例えば、メチロールメラミン、アルキル化メチロールメラミン(メチロール基を、メチル、エチル、ブチル等でエーテル化した化合物)等が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、保存安定性が良好で、感光層の表面硬度あるいは硬化膜の膜強度自体の向上に有効である点で、アルキル化メチロールメラミンが好ましく、ヘキサメチル化メチロールメラミンが特に好ましい。
 前記熱架橋剤の前記感光性樹脂組成物固形分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%~50質量%が好ましく、3質量%~30質量%がより好ましい。前記含有量が、1質量%以上であれば、硬化膜の膜強度が向上され、50質量%以下であれば、現像性、露光感度が良好となる。
 前記エポキシ化合物としては、例えば、特開2010-256399号公報の段落〔0071〕~〔0074〕に記載されたエポキシ化合物などが挙げられる。
 前記ポリイソシアネート化合物としては、例えば、特開2010-256399号公報の段落〔0075〕~〔0076〕に記載されたポリイソシアネート化合物などが挙げられる。
 前記メラミン誘導体としては、例えば、特開2010-256399号公報の段落〔0077〕に記載されたメラミン誘導体などが挙げられる。
--無機充填剤--
 前記感光性樹脂組成物は、無機充填剤を含有することが好ましい。前記無機充填剤は、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることができる。
 前記無機充填剤としては、例えば、カオリン、硫酸バリウム、チタン酸バリウム、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカ、などが挙げられる。前記硫酸バリウムの市販品としては、例えば、B-30(堺化学工業社製)などが挙げられる。
 これらの中でも、シリカ、硫酸バリウム、タルク、水酸化アルミニウムが好ましく、シリカがより好ましい。
 前記無機充填剤の平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、10μm未満が好ましく、3μm以下がより好ましい。前記平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
 前記無機充填剤の前記感光性樹脂組成物固形分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%~60質量%が好ましい。前記含有量が、1質量%未満であると、十分に線膨張係数を低下させることができないことがあり、60質量%を超えると、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久パターンを用いて配線を形成する場合において、配線の保護膜としての機能が損なわれることがある。
--希釈剤(溶媒)--
 前記希釈剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、ノルマル-プロパノール、イソプロパノール、ノルマル-ブタノール、セカンダリーブタノール、ノルマル-ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル、酢酸-ノルマル-アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテート等のエステル類;トルエン、キシレン、ベンゼン、エチルベンゼン等の芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1-トリクロロエタン、塩化メチレン、モノクロロベンゼン等のハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール等のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
 前記希釈剤の前記感光性樹脂組成物中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%~60質量%が好ましく、5質量%~50質量%がより好ましい。
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化促進剤、熱重合禁止剤、可塑剤、着色剤(着色顔料あるいは染料)などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。
 前記熱重合禁止剤については、例えば特開2008-250074号公報の段落〔0101〕~〔0102〕に詳細に記載されている。
 前記熱硬化促進剤については、例えば特開2008-250074号公報の段落〔0093〕に詳細に記載されている。
 前記可塑剤については、例えば特開2008-250074号公報の段落〔0103〕~〔0104〕に詳細に記載されている。
 前記着色剤については、例えば特開2008-250074号公報の段落〔0105〕~〔0106〕に詳細に記載されている。
 前記密着促進剤については、例えば特開2008-250074号公報の段落〔0107〕~〔0109〕に詳細に記載されている。
-感光性樹脂組成物により形成された層(感光性樹脂組成物層)の形成方法-
 前記感光性樹脂組成物層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記感光性樹脂組成物を水又は溶剤に溶解、乳化又は分散させて感光性樹脂組成物溶液を調製し、該溶液を、前記銅含有配線上に、直接塗布し、乾燥させることにより形成する方法が挙げられる。また、例えば、支持体と、前記支持体上に前記感光性樹脂組成物からなる感光層を有する感光性フィルムを、前記銅含有配線上に貼り付けることにより形成する方法が挙げられる。
 前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2010-256399号公報の段落〔0087〕に記載の方法が挙げられる。
 前記支持体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2010-256399号公報の段落〔0080〕~〔0083〕に記載の支持体が挙げられる。
 前記感光層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~100μmが好ましく、2μm~50μmがより好ましく、4μm~30μmが特に好ましい。
 前記感光性樹脂組成物層は、更に必要に応じて、所望のパターンに露光する露光工程、現像する現像工程、硬化処理する硬化処理工程が施されてもよい。
 前記露光工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2010-256399号公報の段落〔0101〕~〔0103〕に記載の露光工程が挙げられる。
 前記現像工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2010-256399号公報の段落〔0105〕~〔0108〕に記載の現像工程が挙げられる。
 前記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2010-256399号公報の段落〔0109〕~〔0111〕に記載の硬化処理工程が挙げられる。
 前記プリント配線基板の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、一層配線構造のプリント配線基板であってもよく、多層層配線構造のプリント配線基板(いわゆる、ビルドアップ配線基板)であってもよい。
 前記プリント配線基板の用途としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、マザーボード用基板、半導体パッケージ用基板、MID(Molded Interconnect Device)基板などが挙げられる。また、リジット基板、フレキシブル基板、フレックスリジット基板、成型回路基板などに対して使用することができる。
 また、前記プリント配線基板中の絶縁膜を一部除去して、半導体チップを実装して、プリント回路板として使用してもよい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、これらの実施例に何ら制限されるものではない。なお、「部」、「%」は、それぞれ「質量部」、「質量%」を表す。
 以下の合成例において、酸価、重量平均分子量、エチレン性不飽和基当量は以下の方法で測定した。
<酸価>
 前記酸価は、JIS K0070に準拠して測定した。ただし、樹脂が溶解しない場合は、溶媒としてジオキサン又はテトラヒドロフランなどを使用した。
<重量平均分子量>
 前記重量平均分子量は、高速GPC装置(東洋曹達工業株式会社製、HLC-802A)を使用して、0.5質量%のTHF溶液を試料溶液とし、カラムはTSKgel HZM-M 1本を使用し、200μLの試料を注入し、前記THF溶液で溶離して、25℃で屈折率検出器あるいはUV検出器(検出波長254nm)により測定した。
<エチレン性不飽和基当量>
 前記エチレン性不飽和基当量は、臭素価をJIS K2605に準拠して測定することにより求めた。
(合成例1)
<樹脂1(アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂)の合成>
 コンデンサー、及び撹拌機を備えた500mLの3つ口丸底フラスコ内に、リンゴ酸2.41g(0.018モル)、2,2-ビス(ヒドロキシメチル)プロピオン酸(DMPA)5.23g(0.039モル)、及びグリセロールモノメタクリレート17.78g(0.111モル)を入れ、更にシクロヘキサノン74mLに溶解した。これに、4,4-ジフェニルメタンジイソシアネート(MDI)30.03g(0.12モル)、ヘキサメチレンジイソシアネート(HMDI)5.05g(0.03モル)、2,6-ジ-t-ブチルヒドロキシトルエン0.1g、及び触媒として、商品名:ネオスタンU-600(日東化成株式会社製、無機ビスマス)0.2gを添加し、75℃にて、5時間加熱撹拌した。その後、シクロヘキサノン35.66mLにて希釈して30分間撹拌し、185.6gの下記式で表されるアルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂溶液(固形分40質量%)を得た。
 得られたアルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂溶液は、固形分酸価が68mgKOH/gであり、ゲルパーミエーションクロマトグラフィー(GPC)にて測定した重量平均分子量(ポリスチレン標準)が6,500であり、エチレン性不飽和基当量が1.83mmol/gであった。
Figure JPOXMLDOC01-appb-C000019
 ただし、前記式中、a4は49.7質量%、b4は8.3質量%、c4は8.6質量%、d4は29.4質量%、e4は4.0質量%である。
(合成例2)
<樹脂2(アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂)の合成>
 コンデンサー、及び撹拌機を備えた500mLの3つ口丸底フラスコに、2,2-ビス(ヒドロキシメチル)プロピオン酸(DMPA)10.86g(0.081モル)とグリセロールモノメタクリレート(GLM)16.82g(0.105モル)を入れ、更にプロピレングリコールモノメチルエーテルモノアセテート79mLに溶解した。これに、4,4-ジフェニルメタンジイソシアネート(MDI)37.54g(0.15モル)、2,6-ジ-t-ブチルヒドロキシトルエン0.1g、及び触媒として、商品名:ネオスタンU-600(日東化成社製、無機ビスマス)0.2gを添加し、75℃にて、5時間加熱撹拌した。その後、メチルアルコールにて希釈し30分撹拌し、アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂溶液(固形分40質量%)を得た。
 得られたアルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂溶液は、固形分酸価が70mgKOH/gであり、ゲルパーミエーションクロマトグラフィー(GPC)にて測定した重量平均分子量(ポリスチレン標準)が8,000であり、エチレン性不飽和基当量が1.5mmol/gであった。
(合成例3)
<樹脂4の合成>
 クレゾール・ノボラック型エポキシ樹脂(日本化薬社製、EOCN-104S、軟化点92℃、エポキシ当量220)2,200部(10当量)、プロピレングリコールモノメチルエーテル134部、アクリル酸648.5部(9モル)、メチルハイドロキノン4.6部、カルビトールアセテート1,131部、及びソルベントナフサ484.9部を反応容器に仕込み、90℃に加熱し撹拌し、反応混合物を溶解した。次いで反応液を60℃まで冷却し、トリフェニルホスフィン13.8部を仕込み、100℃に加熱し、約32時間反応し、酸価が0.5mgKOH/gの生成物(水酸基、12当量)を得た。次に、これにテトラヒドロ無水フタル酸364.7部(2.4モル)、カルビトールアセテート137.5、部及びソルベントナフサ58.8部を仕込み、95℃に加熱し、約6時間反応し、冷却後、カルビトールアセテートにて希釈して、固形分の酸価が40mgKOH/g、固形分濃度40%の樹脂4を得た。
(合成例4)
<樹脂5の合成>
 YDF2001(新日鐵化学社製、ビスフェノールF型エポキシ樹脂)475部、アクリル酸72部、ハイドロキノン0.5部、及びカルビトールアセテート120部を反応容器に仕込み、90℃に加熱、撹拌して反応混合物を溶解した。次に60℃に冷却し、塩化ベンジルトリメチルアンモニウム2部を仕込み、100℃に加熱して、酸価が1mgKOH/gになるまで反応させた。次に無水マレイン酸98部とカルビトールアセテート85部を仕込み、80℃に加熱し、約6時間反応し冷却し、固形分濃度が40%になるようにカルビトールアセテートで希釈し樹脂5を得た。
(合成例5)
<樹脂6の合成>
 EXA-7376(DIC社製、ビスフェノールホルムアルデヒド樹脂のグリシジルエーテル)350部、アクリル酸70部、メチルハイドロキノン0.5部、及びカルビトールアセテート120部を反応容器に入れ、90℃に加熱し攪拌することにより反応させ、混合物を完全に溶解した。次に、得られた溶液を60℃に冷却し、トリフェニルホスフィン2部を加え100℃に加熱して、溶液の酸価が1mgKOH/gになるまで反応させた。反応後の溶液に無水マレイン酸98部とカルビトールアセテート85部を加え、80℃に加熱して約6時間反応させた後に冷却し、更にカルビトールアセテートで希釈して、固形分濃度が40%である樹脂6を得た。
(合成例6)
<樹脂7の合成>
 YDPF-1000(新日鐵化学社製)400部、アクリル酸72部、メチルハイドロキノン0.5部、及びカルビトールアセテート120部を反応容器に入れ、90℃に加熱し攪拌することにより混合物を溶解しながら反応させた。次に、得られた溶液を60℃に冷却し、トリフェニルホスフィン2部を加えて100℃に加熱して、溶液の酸価が1mgKOH/g以下になるまで反応させた。反応後の溶液にテトラヒドロ無水フタル酸100部とカルビトールアセテート85部を加え、80℃に加熱して約6時間反応させた後に冷却し、更にカルビトールアセテートで希釈して、固形分の濃度が40%である樹脂7を得た。
(合成例7)
<樹脂8の合成>
 撹拌機、及び還流冷却機を備えたフラスコに、アミド結合を有するテトラカルボン酸二無水物を10g(固形分60%、0.01モル)、4,4’-[イソプロピリデンビス(p-フェニレンオキシ)]ジアニリン(BAPP)を2.87g(0.007モル)、ジェファーミンD400(三井化学ファイン社製)1.36g(0.003モル)、及びジメチルアセトアミド2.82gを仕込み、室温で8時間撹拌を行い、更に固形分量を調整し、アミド結合を有するポリイミド前駆体(固形分40%)を得た。得られたポリイミド前駆体(樹脂8)は、下記に示す繰り返し構造を有し、その重量平均分子量は30,000であった。
Figure JPOXMLDOC01-appb-C000020
(実施例1)
<窒素含有複素環化合物含有液1の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液1を調製した。
 ・ピリジン(pyridine)        ・・・5部
 ・純水                    ・・・100部
<感光性樹脂組成物塗布液1の調製>
 下記の各成分を混合し、感光性樹脂組成物塗布液1を調製した。
 ・合成例1のアルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂の溶液(固形分40質量%)・・・47.4質量部
 ・着色顔料:HELIOGEN BLUE D7086(BASF社製)・・・0.030質量部
 ・着色顔料:Pariotol Yellow D0960(BASF社製)・・・0.009質量部
 ・硬化剤:メラミン(和光純薬工業社製)・・・0.23質量部
 ・イオントラップ剤:IXE-6107(東亞合成社製)・・・1.21質量部
 ・フィラー:SO-C2(アドマテックス社製)・・・6.8質量部
 ・重合性化合物:DCP-A(共栄社化学社製)・・・7.8質量部
 ・熱架橋剤:YDF-170(新日鉄化学社製)・・・4.2質量部
 ・開始剤:IRG907(チバスペシャリティケミカル社製)・・・0.8質量部
 ・増感剤:DETX-S(日本化薬社製)・・・0.008質量部
 ・反応助剤:EAB-F(保土ヶ谷化学化社製)・・・0.028質量部
 ・エラストマー:エスペル1612(日立化成工業社製)・・・12.0質量部
 ・塗布助剤:メガファックF-780F(DIC社製、30質量%メチルエチルケトン溶液)・・・3.3質量部
-感光性フィルムの作製-
 支持体として、厚み25μmのポリエチレンテレフタレートフィム(PET)を用い、該支持体上に前記感光性樹脂組成物塗布液1をバーコーターにより、乾燥後の感光層の厚みが約25μmになるように塗布し、80℃、30分間熱風循環式乾燥機中で乾燥させ、感光性フィルムを作製した。
<プリント配線基板の作製>
 配線形成済みの銅張積層板(スルーホールなし、銅厚み12μm)の表面に化学研磨処理を施して配線基板を作製した。
 前記銅張積層板を、液温25℃の窒素含有複素環化合物含有液1に180秒間浸漬した。その後、水で洗浄し、窒素含有複素環化合物層を形成した。
 続いて、前記感光性樹脂組成物塗布液1を前記窒素含有複素環化合物層上に真空ラミネータ(ニチゴーモートン株式会社製、VP130)を用いて積層して、感光層を形成した。
-露光工程-
 続いて、前記感光層に対し、ポリエチレンテレフタレートフィルム(支持体)側から、回路基板用露光機EXM-1172(オーク製作所社製)を用いて、フォトマスクごしに40mJ/cmで露光して、前記感光層の一部の領域を硬化させた。
-現像工程-
 室温にて10分間静置した後、前記感光層の全面に、アルカリ現像液として、1質量%炭酸ナトリウム水溶液を用い、30℃にて60秒間、0.18MPa(1.8kgf/cm)の圧力でスプレー現像し、未露光の領域を溶解除去した。その後、水洗し、乾燥させ、永久パターンを形成した。
-硬化処理工程-
 前記永久パターンの全面に対して、120℃で、30分間加熱した後、160℃で、60分間加熱し、永久パターンの表面を硬化し、膜強度を高め、試験板を作製した。
 下記測定、及び評価に供した。結果を表1-1に示す。
 なお、以下の評価において、最適露光量は以下の方法により求めた。
-最適露光量-
 前記プリント配線基板の作製における露光工程前の感光層を有する回路基板を、室温(23℃、55%RH)にて10分間静置した。その感光層表面に、INPREX IP-3000(富士フイルム社製、ピクセルピッチ=1.0μm)を用いて、L/S(ライン/スペース)=40μm/200μmのパターンデータを0.5mJ/cmから21/2倍間隔で200mJ/cmまでの光エネルギー量の異なる光を照射して露光し、L/S(ライン/スペース)=40μm/200μmのラインパターンを硬化させた。室温にて10分間静置した後、前記感光層から前記支持体を剥がし取り、銅張積層板上の前記感光層の全面に、30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて最短現像時間の2倍~3倍の時間(または40秒間~60秒間)スプレー現像し、未硬化の領域を溶解除去した。この様にして得られたL=40μmのパターンを光学顕微鏡を用いて観察し、ラインの剥がれ、欠けが見られない最小の露光量を最適露光量とした。
<結合量の測定>
 窒素含有複素環化合物層における結合量を吸光度法により測定した。具体的には、感光層(感光性樹脂組成物により形成された層)を形成する前の、窒素含有複素環化合物層を形成した前記銅張積層板を、水で洗浄した。その後、有機酸(硫酸)により銅含有配線上の窒素含有複素環化合物層を抽出し、吸光度を測定して、液量と塗布面積から結合量を算出した。
<絶縁信頼性(HAST)>
 厚み12μmの銅箔をガラスエポキシ基材に積層した基板の銅箔にエッチングを施して、ライン幅/スペース幅が50μm/50μmであり、互いのラインが接触しておらず、互いに対向した同一面上の櫛形電極が形成された配線基板を得た。
 この配線基板を、液温25℃の窒素含有複素環化合物含有液1に180秒間浸漬した後に、水で洗浄し、櫛形電極上に、窒素含有複素環化合物層を形成した。
 続いて、前記感光性樹脂組成物塗布液1を前記窒素含有複素環化合物層上に塗布して、厚み25μmの感光層を形成した。
 続いて、最適露光量で露光を行った。次いで、常温で1時間静置した後、30℃の1質量%炭酸ナトリウム水溶液にて60秒間スプレー現像を行い、120℃で、30分間加熱し、更に160℃で、60分間加熱した。続いて、オーク製作所製紫外線照射装置を使用して1J/cmのエネルギー量で感光層に対する紫外線照射を行い、ソルダーレジストを形成した評価用基板を得た。
 加熱後の評価用基板の櫛形電極間に電圧が印加されるように、ポリテトラフルオロエチレン製のシールド線をSn/Pbはんだによりそれらの櫛形電極に接続した後、評価用基板に50Vの電圧を印可した状態で、該評価用基板を130℃で85%RHの超加速高温高湿寿命試験(HAST)槽内に400時間静置した(評価数〔n〕=24)。
 静置後に短絡しているかどうかを確認した。抵抗値が10Ω以下になっているものを短絡と判断した。結果を表1-1に示す。なお、表1-1~表1-3中の「X/24」におけるXは、短絡していない評価用基板の数を示す。
<耐メッキ性>
 得られた試験板の前記永久パターンを脱脂し表面の粗化を行った後、硫酸パラジウムを添加して触媒付加を行った。次に、前記永久パターンを、70℃の硫酸ニッケル/希硫酸溶液中に40分間浸漬してメッキ処理を行った後、目視により永久パターンにおける硬化膜のめくれ、剥がれを観察し、下記基準に基づいて、耐メッキ性の評価を行った。
〔評価基準〕
  ◎:硬化膜にめくれ、剥がれがなく、耐メッキ性に極めて優れる
  ○:硬化膜の一部に変色があるが、実用上問題とならず、耐メッキ性に優れる
  △:硬化膜にめくれがあり、耐メッキ性に劣る
  ×:硬化膜に浮き(剥がれ)が観られ、耐メッキ性に極めて劣る
<耐熱衝撃性(耐クラック性)>
 厚み12μmの銅箔をガラスエポキシ基材に積層した基板の銅箔にエッチングを施して、ライン幅/スペース幅が100μm/100μmの配線基板を得た。
 この配線基板を、液温25℃の窒素含有複素環化合物含有液1に180秒間浸漬した後に、水で洗浄し、配線基板上に、窒素含有複素環化合物層を形成した。
 続いて、前記感光性樹脂組成物塗布液1を前記窒素含有複素環化合物層上に塗布して、厚み25μmの感光層を形成した。
 続いて、パターン形成装置を用いて、開口(直径400μmの丸穴30個、直径300μmの丸穴30個、及び直径100μmの丸穴30個の計90個の丸穴)を形成するように最適露光量で露光を行った。次いで、常温で1時間静置した後、30℃の1質量%炭酸ナトリウム水溶液にて60秒間スプレー現像を行い、120℃で、30分間加熱し、更に160℃で、60分間加熱した。続いて、オーク製作所製紫外線照射装置を使用して1J/cmのエネルギー量で感光層に対する紫外線照射を行い、評価用基板を得た。
 作製した評価用基板を用いて、信頼性試験項目として、温度サイクル試験(TCT)によりクラックや剥れ等の外観と抵抗値変化率を評価した。TCTは液相冷熱試験機を用い、温度が-65℃及び150℃の液相中に前記評価用基板を各15分間放置し、これを1サイクルとして1,000サイクル及び1,500サイクルの条件で行い、クラックの発生率を求めた。
 具体的には、丸穴の側面(即ち、永久パターン丸穴部の内周側面)を観察し、形成した90個の丸穴のうち、丸穴の側面にクラックが発生している丸穴の数を数え、クラック発生率を求めた。
<解像性>
 前記プリント配線基板の作製における露光工程前の感光層が形成されたプリント配線基板を室温(23℃)で55%RHにて10分間静置した。このプリント配線基板に、パターン形成装置を用いて、開口を形成するよう最適露光量で露光を行った。
 前記感光層の全面に、前記現像液として30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去した。その後、超高圧水銀灯により200mJ/cmで全面露光を行い、更に150℃で1時間加熱処理(ポストベーク)をしてソルダーレジストパターン(永久パターン)を形成した。
 走査型電子顕微鏡(S-4100 日立製作所製)を用いて永久パターンの観察を行った。開口部における永久パターンのスソの有無を観察し、スソが形成されない最小の開口の大きさを、下記評価基準で評価した。
〔評価基準〕
  ◎:直径70μmの開口ができるもの
  ○:直径80μmの開口ができるもの
  △:直径100μmの開口ができるもの
  ×:直径100μmの開口ができないもの
(実施例2)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液2に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液2の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液2を調製した。
 ・ピリミジン(pyrimidine)     ・・・5部
 ・純水                    ・・・100部
(実施例3)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液3に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液3の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液3を調製した。
 ・ピラゾール(pyrazole)       ・・・5部
 ・純水                    ・・・100部
(実施例4)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液4に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液4の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液4を調製した。
 ・1H-テトラゾール(1H-tetrazole)・・・5部
 ・純水                     ・・・100部
(実施例5)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液5に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液5の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液5を調製した。
 ・イミダゾール(imidazole)      ・・・5部
 ・純水                     ・・・100部
(実施例6)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液6に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液6の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液6を調製した。
 ・1,2,3-トリアゾール(1,2,3-triazole)・・・5部
 ・純水                          ・・・100部
(実施例7)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液7に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液7の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液7を調製した。
 ・1,2,4-トリアゾール(1,2,4-triazole)・・・5部
 ・純水                          ・・・100部
(実施例8)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液8に代え、かつ基板の浸漬時間を180秒間から120秒間に変えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液8の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液8を調製した。
 ・1,2,4-トリアゾール(1,2,4-triazole)・・・3部
 ・純水                          ・・・100部
(実施例9)
 実施例1において、窒素含有複素環化合物含有液1を下記窒素含有複素環化合物含有液9に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-1に示す。
<窒素含有複素環化合物含有液9の調製>
 下記の各成分を混合し、窒素含有複素環化合物含有液9を調製した。
 ・3-アミノ-1,2,4-トリアゾール(3-amino-1,2,4-triazole)                           ・・・5部
 ・純水                          ・・・100部
(実施例10)
 実施例6において、感光性樹脂組成物中の樹脂1を樹脂2に代えた以外は、実施例6と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-2に示す。
(実施例11)
 実施例7において、感光性樹脂組成物中の樹脂1を樹脂2に代えた以外は、実施例7と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-2に示す。
(実施例12)
 実施例6において、感光性樹脂組成物中の樹脂1を樹脂3(日本化薬社製のUXE-3024(固形分を40%に調整))に代えた以外は、実施例6と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-2に示す。
 なお、UXE-3024は、下記一般式で表されるアルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂のうち、ポリウレタン樹脂の主骨格の一つとなる原料エポキシアクリレートのハードセグメント部、即ち、RがビスフェノールA型構造のものである。
Figure JPOXMLDOC01-appb-C000021
 ただし、前記一般式中、Rは、エポキシアクリレートの残基、Rは、ジイソシアネートの残基、Rは、炭素数1~5のアルキル基、Rは、水素原子又はメチル基を示す。なお、残基とは、原料成分から結合に供された官能基を除いた部分の構造をいう。
(実施例13)
 実施例7において、感光性樹脂組成物中の樹脂1を前記樹脂3(日本化薬社製のUXE-3024(固形分を40%に調整))に代えた以外は、実施例7と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-2に示す。
(比較例1)
 実施例1において、窒素含有複素環化合物層を形成せず、かつ感光性樹脂組成物中の樹脂1を前記樹脂3(日本化薬社製のUXE-3024(固形分を40%に調整))に代えた以外は、実施例1と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例2)
 実施例6において、感光性樹脂組成物中の樹脂1を樹脂4に代えた以外は、実施例6と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例3)
 実施例7において、感光性樹脂組成物中の樹脂1を樹脂4に代えた以外は、実施例7と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例4)
 実施例6において、感光性樹脂組成物中の樹脂1を樹脂5に代えた以外は、実施例6と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例5)
 実施例7において、感光性樹脂組成物中の樹脂1を樹脂5に代えた以外は、実施例7と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例6)
 実施例6において、感光性樹脂組成物中の樹脂1を樹脂6に代えた以外は、実施例6と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例7)
 実施例7において、感光性樹脂組成物中の樹脂1を樹脂6に代えた以外は、実施例7と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例8)
 実施例6において、感光性樹脂組成物中の樹脂1を樹脂7に代えた以外は、実施例6と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例9)
 実施例7において、感光性樹脂組成物中の樹脂1を樹脂7に代えた以外は、実施例7と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
(比較例10)
 実施例7において、感光性樹脂組成物中の樹脂1を樹脂8に代えた以外は、実施例7と同様にして、プリント配線基板を作製した。
 実施例1と同様にして評価を行った。結果を表1-3に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表1-1~表1-3中の結合量の単位は、p(ピコ)mol/mmである。
 表1-1~表1-3の結果から、実施例1~13は、比較例1~10に比べて、絶縁信頼性、及び耐メッキ性が優れていることがわかった。また、耐熱衝撃性、及び解像性も優れていた。中でも、実施例6、7、9~13は、耐メッキ性が非常に優れていた。更に、実施例6、7、及び9は、絶縁信頼性、耐メッキ性、耐熱衝撃性、及び解像性のいずれもが非常に優れていた。
 本発明の態様としては、例えば、以下の態様が挙げられる。
 <1> 基板と、該基板上に銅含有配線とを有する配線基板と、
 少なくとも前記銅含有配線上に形成された、窒素含有複素環化合物を含む窒素含有複素環化合物層と、
 前記窒素含有複素環化合物層上に形成された層であって、アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂と、重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物により形成された層とを有することを特徴とするプリント配線基板である。
 <2> 窒素含有複素環化合物層が、窒素含有複素環化合物を50質量%以上含む前記<1>に記載のプリント配線基板である。
 <3> 窒素含有複素環化合物が、窒素含有複素環中に窒素原子を2つ以上含む前記<1>から<2>のいずれかに記載のプリント配線基板である。
 <4> 窒素含有複素環化合物が、窒素含有複素環中に窒素原子を3つ以上含む前記<1>から<2>のいずれかに記載のプリント配線基板である。
 <5> 窒素含有複素環化合物の窒素含有複素環が、5員環、及び6員環のいずれかである前記<1>から<4>のいずれかに記載のプリント配線基板である。
 <6> 窒素含有複素環化合物が、トリアゾール環を含む前記<1>から<5>のいずれかに記載のプリント配線基板である。
 <7> 感光性樹脂組成物が、熱架橋剤を含有する前記<1>から<6>のいずれかに記載のプリント配線基板である。
 <8> 感光性樹脂組成物が、無機充填剤を含有し、該無機充填剤が、シリカ、硫酸バリウム、タルク、及び水酸化アルミニウムの少なくともいずれかである前記<1>から<7>のいずれかに記載のプリント配線基板である。
 <9> アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、重量平均分子量が2,000~60,000であり、酸価が20mgKOH/g~120mgKOH/gであり、エチレン性不飽和基当量が0.05mmol/g~3.0mmol/gである前記<1>から<8>のいずれかに記載のプリント配線基板である。
 <10> アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、側鎖に、下記一般式(1)で表される基、下記一般式(2)で表される基、及び下記一般式(3)で表される基の少なくともいずれかを含む前記<1>から<9>のいずれかに記載のプリント配線基板である。
Figure JPOXMLDOC01-appb-C000025
 ただし、前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Xは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表す。前記R12は、水素原子、及び1価の有機基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000026
 ただし、前記一般式(2)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Yは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表す。前記R12は、前記一般式(1)中のR12と同義である。
Figure JPOXMLDOC01-appb-C000027
 ただし、前記一般式(3)中、R~R11は、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Zは、酸素原子、硫黄原子、-N(R13)-、及び置換基を有してもよいフェニレン基のいずれかを表す。前記R13は、置換基を有してもよいアルキル基を表す。
 <11> アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、ジイソシアネート化合物とジオール化合物の反応生成物であり、該ジオール化合物が、(i)エチレン性不飽和基を有し、少なくとも1つが2級アルコールであるジオール化合物の少なくとも1種と、(ii)カルボキシル基を有するジオール化合物の少なくとも1種と、を含有する前記<1>から<10>のいずれかに記載のプリント配線基板である。
 <12> アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、下記一般式(G-1)で表される構造単位を有する前記<1>から<11>のいずれかに記載のプリント配線基板である。
Figure JPOXMLDOC01-appb-C000028
 ただし、前記一般式(G-1)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Aは、2価の有機残基を表す。Xは、酸素原子、硫黄原子、及び-N(R12)-を表す。前記R12は、水素原子、及び1価の有機基のいずれかを表す。
 本発明のプリント配線基板は、絶縁信頼性、耐メッキ性に優れることから、マザーボード用基板、半導体パッケージ用基板、MID(Molded Interconnect Device)基板などに好適に用いることができる。
 

Claims (12)

  1.  基板と、該基板上に銅含有配線とを有する配線基板と、
     少なくとも前記銅含有配線上に形成された、窒素含有複素環化合物を含む窒素含有複素環化合物層と、
     前記窒素含有複素環化合物層上に形成された層であって、アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂と、重合性化合物と、光重合開始剤とを含有する感光性樹脂組成物により形成された層とを有することを特徴とするプリント配線基板。
  2.  窒素含有複素環化合物層が、窒素含有複素環化合物を50質量%以上含む請求項1に記載のプリント配線基板。
  3.  窒素含有複素環化合物が、窒素含有複素環中に窒素原子を2つ以上含む請求項1から2のいずれかに記載のプリント配線基板。
  4.  窒素含有複素環化合物が、窒素含有複素環中に窒素原子を3つ以上含む請求項1から2のいずれかに記載のプリント配線基板。
  5.  窒素含有複素環化合物の窒素含有複素環が、5員環、及び6員環のいずれかである請求項1から4のいずれかに記載のプリント配線基板。
  6.  窒素含有複素環化合物が、トリアゾール環を含む請求項1から5のいずれかに記載のプリント配線基板。
  7.  感光性樹脂組成物が、熱架橋剤を含有する請求項1から6のいずれかに記載のプリント配線基板。
  8.  感光性樹脂組成物が、無機充填剤を含有し、該無機充填剤が、シリカ、硫酸バリウム、タルク、及び水酸化アルミニウムの少なくともいずれかである請求項1から7のいずれかに記載のプリント配線基板。
  9.  アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、重量平均分子量が2,000~60,000であり、酸価が20mgKOH/g~120mgKOH/gであり、エチレン性不飽和基当量が0.05mmol/g~3.0mmol/gである請求項1から8のいずれかに記載のプリント配線基板。
  10.  アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、側鎖に、下記一般式(1)で表される基、下記一般式(2)で表される基、及び下記一般式(3)で表される基の少なくともいずれかを含む請求項1から9のいずれかに記載のプリント配線基板。
    Figure JPOXMLDOC01-appb-C000001
     ただし、前記一般式(1)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Xは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表す。前記R12は、水素原子、及び1価の有機基のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000002
     ただし、前記一般式(2)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Yは、酸素原子、硫黄原子、及び-N(R12)-のいずれかを表す。前記R12は、前記一般式(1)中のR12と同義である。
    Figure JPOXMLDOC01-appb-C000003
     ただし、前記一般式(3)中、R~R11は、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Zは、酸素原子、硫黄原子、-N(R13)-、及び置換基を有してもよいフェニレン基のいずれかを表す。前記R13は、置換基を有してもよいアルキル基を表す。
  11.  アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、ジイソシアネート化合物とジオール化合物の反応生成物であり、該ジオール化合物が、(i)エチレン性不飽和基を有し、少なくとも1つが2級アルコールであるジオール化合物の少なくとも1種と、(ii)カルボキシル基を有するジオール化合物の少なくとも1種と、を含有する請求項1から10のいずれかに記載のプリント配線基板。
  12.  アルカリ現像性基及びエチレン性不飽和基含有ポリウレタン樹脂が、下記一般式(G-1)で表される構造単位を有する請求項1から11のいずれかに記載のプリント配線基板。
    Figure JPOXMLDOC01-appb-C000004
     ただし、前記一般式(G-1)中、R~Rは、それぞれ独立に、水素原子、及び1価の有機基のいずれかを表す。Aは、2価の有機残基を表す。Xは、酸素原子、硫黄原子、及び-N(R12)-を表す。前記R12は、水素原子、及び1価の有機基のいずれかを表す。
PCT/JP2012/051103 2011-02-28 2012-01-19 プリント配線基板 WO2012117762A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-043319 2011-02-28
JP2011043319A JP2012181281A (ja) 2011-02-28 2011-02-28 プリント配線基板

Publications (1)

Publication Number Publication Date
WO2012117762A1 true WO2012117762A1 (ja) 2012-09-07

Family

ID=46757704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051103 WO2012117762A1 (ja) 2011-02-28 2012-01-19 プリント配線基板

Country Status (2)

Country Link
JP (1) JP2012181281A (ja)
WO (1) WO2012117762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150159288A1 (en) * 2013-12-06 2015-06-11 Rohm And Haas Electronic Materials Llc Additives for electroplating baths
JP2016161666A (ja) * 2015-02-27 2016-09-05 日立化成株式会社 感光性樹脂組成物、感光性エレメント及びガラス基板の加工方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454974C2 (ru) * 2006-10-22 2012-07-10 Айдев Текнолоджиз, Инк. Устройства и способы для продвижения стентов
JP2011215392A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 感光性組成物、並びに、感光性積層体、永久パターン形成方法、及びプリント基板
JP2021173785A (ja) * 2020-04-20 2021-11-01 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265188A (ja) * 1996-03-28 1997-10-07 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JPH10209604A (ja) * 1997-01-17 1998-08-07 Hitachi Ltd プリント配線基板の製造方法並びにそれに用いる粗化液及び粗化液の調製方法
WO2004079452A1 (ja) * 2003-03-06 2004-09-16 Nippon Kayaku Kabushiki Kaisha 感光性樹脂組成物及びその硬化物
JP2005173049A (ja) * 2003-12-09 2005-06-30 Fuji Photo Film Co Ltd ドライフィルムフォトレジスト
JP2007009140A (ja) * 2005-07-04 2007-01-18 Nippon Kayaku Co Ltd 感光性共重合物、その組成物、硬化物、製造法、基材、物品及び用途。
JP2009185181A (ja) * 2008-02-06 2009-08-20 Taiyo Ink Mfg Ltd 光硬化性・熱硬化性樹脂組成物及びその硬化物
JP2010276859A (ja) * 2009-05-28 2010-12-09 Hitachi Chem Co Ltd 感光性樹脂組成物、並びにこれを用いた感光性フィルム及び感光性永久レジスト。
JP2011013622A (ja) * 2009-07-06 2011-01-20 Hitachi Chem Co Ltd アルカリ現像可能な感光性樹脂組成物及びそれを用いた感光性フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265188A (ja) * 1996-03-28 1997-10-07 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JPH10209604A (ja) * 1997-01-17 1998-08-07 Hitachi Ltd プリント配線基板の製造方法並びにそれに用いる粗化液及び粗化液の調製方法
WO2004079452A1 (ja) * 2003-03-06 2004-09-16 Nippon Kayaku Kabushiki Kaisha 感光性樹脂組成物及びその硬化物
JP2005173049A (ja) * 2003-12-09 2005-06-30 Fuji Photo Film Co Ltd ドライフィルムフォトレジスト
JP2007009140A (ja) * 2005-07-04 2007-01-18 Nippon Kayaku Co Ltd 感光性共重合物、その組成物、硬化物、製造法、基材、物品及び用途。
JP2009185181A (ja) * 2008-02-06 2009-08-20 Taiyo Ink Mfg Ltd 光硬化性・熱硬化性樹脂組成物及びその硬化物
JP2010276859A (ja) * 2009-05-28 2010-12-09 Hitachi Chem Co Ltd 感光性樹脂組成物、並びにこれを用いた感光性フィルム及び感光性永久レジスト。
JP2011013622A (ja) * 2009-07-06 2011-01-20 Hitachi Chem Co Ltd アルカリ現像可能な感光性樹脂組成物及びそれを用いた感光性フィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150159288A1 (en) * 2013-12-06 2015-06-11 Rohm And Haas Electronic Materials Llc Additives for electroplating baths
US9783903B2 (en) * 2013-12-06 2017-10-10 Rohm And Haas Electronic Materials Llc Additives for electroplating baths
JP2016161666A (ja) * 2015-02-27 2016-09-05 日立化成株式会社 感光性樹脂組成物、感光性エレメント及びガラス基板の加工方法

Also Published As

Publication number Publication date
JP2012181281A (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
JP2012194534A (ja) 感光性組成物、感光性ソルダーレジスト組成物及び感光性ソルダーレジストフィルム、並びに、永久パターン、その形成方法及びプリント基板
WO2012029786A1 (ja) 感光性組成物、並びに、感光性フィルム、永久パターン、永久パターン形成方法、及びプリント基板
WO2012029785A1 (ja) 感光性組成物、並びに、感光性フィルム、永久パターン、永久パターン形成方法、及びプリント基板
WO2007032326A1 (ja) 感光性樹脂組成物並びにその硬化物
WO2012117762A1 (ja) プリント配線基板
KR20210100574A (ko) 프린트 배선판
JP5050693B2 (ja) 感光性樹脂組成物及び感光性フィルム、並びに、永久マスクレジスト及びその製造方法
JP2012073589A (ja) 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP5196063B2 (ja) 感光性樹脂組成物及び感光性フィルム、並びに、永久マスクレジスト及びその製造方法
JP2012073598A (ja) 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP5471386B2 (ja) 変性ポリエステル樹脂、変性ポリエステル樹脂の製造方法、光硬化性・熱硬化性樹脂組成物、光硬化性・熱硬化性層、インキ、接着剤、及び、プリント回路基板
JP2009298991A (ja) 光硬化性・熱硬化性樹脂組成物、光硬化性・熱硬化性層、インキ、接着剤、及び、プリント回路基板
JP2002351073A (ja) 感光性イミド系樹脂組成物、絶縁膜およびその形成法
JP4254028B2 (ja) 高密度フレキシブル基板の製法
JP5224119B2 (ja) 感光性樹脂組成物、並びにこれを用いた感光性フィルム及び永久マスクレジスト
JP2013145284A (ja) 感光性樹脂組成物、絶縁性材料、感光性積層体、フレキシブル回路基板および永久パターン形成方法
JP2012108235A (ja) 感光性樹脂組成物及びそれを用いた感光性エレメント
JP2013041225A (ja) 感光性樹脂組成物、並びにこれを用いた感光性フイルム、感光性積層体、永久パターン形成方法およびプリント基板
KR20120107373A (ko) 내열성이 우수한 감광성 수지 조성물 및 이에 의해 형성된 드라이 필름 솔더 레지스트
JP2010282002A (ja) 感光性樹脂組成物及びこれを用いた感光性フィルム
JP2013020094A (ja) 感光性組成物、感光性ドライフィルム、感光性積層体、フレキシブル配線板、及び永久パターン形成方法
JP2002006490A (ja) イミド系感光性樹脂組成物、絶縁膜およびその形成法
JP5835416B2 (ja) 感光性樹脂組成物、感光性フィルム及びレジストパターンの形成方法
JP2018082184A (ja) 樹脂シート
JP2013145283A (ja) 感光性樹脂組成物、絶縁性材料、ソルダーレジストインク、感光性積層体、フレキシブル回路基板および永久パターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752322

Country of ref document: EP

Kind code of ref document: A1