WO2012117725A1 - 気液分離器及び燃料電池システム - Google Patents

気液分離器及び燃料電池システム Download PDF

Info

Publication number
WO2012117725A1
WO2012117725A1 PCT/JP2012/001376 JP2012001376W WO2012117725A1 WO 2012117725 A1 WO2012117725 A1 WO 2012117725A1 JP 2012001376 W JP2012001376 W JP 2012001376W WO 2012117725 A1 WO2012117725 A1 WO 2012117725A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid separator
water
fuel cell
main body
Prior art date
Application number
PCT/JP2012/001376
Other languages
English (en)
French (fr)
Inventor
佐野 秀治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/981,066 priority Critical patent/US20130295476A1/en
Priority to EP12752902.2A priority patent/EP2682663A4/en
Priority to JP2013502194A priority patent/JP5604584B2/ja
Publication of WO2012117725A1 publication Critical patent/WO2012117725A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/34Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers without moving parts other than hand valves, e.g. labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/36Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers specially adapted for steam lines of low pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas-liquid separator used in a fuel cell system that generates power by an electrochemical reaction between a fuel gas supplied to a fuel cell and an oxidant gas.
  • fuel cell systems have been actively developed as a method suitable for household fuel cell cogeneration systems (hereinafter referred to as “fuel cell systems”).
  • fuel cell systems because the infrastructure for supplying hydrogen as fuel is not yet fully prepared, raw materials such as city gas (gas supplied using piping in cities), LP gas, and kerosene are reformed with a hydrogen generator. This produces hydrogen-rich fuel gas. Then, the generated hydrogen and oxygen in the air are used to react with a polymer electrolyte fuel cell (hereinafter referred to as “fuel cell”) to generate electric power, and the heat generated by the reaction is recovered and stored in hot water as hot water.
  • fuel cell systems have been developed that effectively use the hot water stored in the hot water storage tank for heat supply to the outside.
  • a fuel cell power generation system in which a hydrogen generator and a fuel cell are housed in a package and power is generated using city gas or the like (see, for example, Patent Document 1).
  • Fuel cells use hydrogen-rich fuel gas as the anode gas and air as the cathode gas, but the anode off-gas and cathode off-gas after power generation contain a large amount of moisture. Therefore, gas-liquid separators are arranged in the anode off-gas path and the cathode off-gas path, the off-gas and moisture contained in the anode off-gas and cathode off-gas are separated, and the separated moisture is stored in a tank and supplied to the hydrogen generator to generate hydrogen. Used in the production process.
  • this gas-liquid separator As a configuration of this gas-liquid separator, a configuration in which an off-gas inlet and an off-gas outlet are provided above a sealed tank, a condensed water outlet and a discharge water valve are provided at the bottom of the tank, and a water level sensor for monitoring the water level in the tank is known. (For example, refer to Patent Document 2).
  • FIG. 6 is a configuration diagram showing a configuration of a conventional fuel cell system described in Patent Document 1.
  • FIG. 6 is a configuration diagram showing a configuration of a conventional fuel cell system described in Patent Document 1.
  • the inside of the housing 1 includes a hydrogen generator 2 that generates a hydrogen-rich fuel gas from raw materials and water, a fuel gas obtained by the hydrogen generator 2, and air supplied by an air pump 3. , A fuel cell 4 that generates electricity, a cathode gas-liquid separator 5 that separates moisture in the cathode off-gas discharged from the fuel cell 4, and an anode gas-liquid that separates moisture in the anode off-gas discharged from the fuel cell 4.
  • Separator 6 condensed water tank 7 for storing condensed water collected from cathode gas-liquid separator 5 and anode gas-liquid separator 6, and reformed water for supplying condensed water in condensed water tank 7 to hydrogen generator 2.
  • the pump 9 is configured.
  • FIG. 7 is a configuration diagram showing the configuration of the gas-liquid separator described in Patent Document 2.
  • the cathode gas-liquid separator 5 includes a main body portion 13 having a bottom surface portion 10, a lid portion 16 having an introduction port 14 and an exhaust port 15, a drain port 20 provided on the bottom surface portion 10, A drain valve 25 provided on the drainage path drained from the drain port 20, a water level sensor 23 provided inside the main body 13, and a control unit 24 that controls the drain valve 25 based on a signal from the water level sensor 23.
  • a lid 16 having an inlet 14 and an exhaust port 15 disposed so as to cover the first opening 11, and the control unit 24 uses a water level sensor 23 to keep the water level inside the main body 13 constant.
  • the drain valve 25 is operated to control so that the condensed water accumulated in the main body is drained.
  • the cathode offgas is guided to the inlet of the lid, moisture in the cathode offgas is separated and stored in the main body, and the cathode offgas after separation of moisture is discharged from the exhaust port.
  • the structure to secure was adopted.
  • the lid and the main body cannot be easily separated. For this reason, in this structure, it is difficult to remove dirt accumulated inside the main body due to long-term use during maintenance, and dirt attached to the inner wall of the main body, or repair of sensors in the main body. And has a problem that it is difficult to exchange.
  • a sealing material such as a packing or an O-ring is sandwiched between the main body portion and the lid portion, and screws are secured to secure the sealing performance, so that the lid portion and the main body portion can be separated.
  • the attaching / detaching operation of the lid tends to be complicated.
  • the attaching / detaching operation of the lid portion is rough, the sealing property between the main body portion and the lid portion may be inappropriate.
  • one gas may flow out or inflow from the joint between the lid and the main body.
  • the gas of the gas is mixed (that is, the airtightness cannot be maintained).
  • the present invention solves the above-mentioned conventional problems, and provides a gas-liquid separator that realizes the efficiency of the attaching / detaching operation of the lid and the simplification of the apparatus configuration while ensuring airtightness and maintainability. Objective.
  • a gas-liquid separator includes a bottom surface portion, and a cylindrical side wall portion having one end connected to the bottom surface portion and the other end having a first opening.
  • the main body A lid that is arranged to cover the first opening and has a gas inlet and an exhaust;
  • the structure of the lid portion and the main body portion can be a sealless structure that does not use packing, an O-ring, or the like. Therefore, it is possible to obtain a gas-liquid separator that realizes the efficiency of the attaching / detaching operation of the lid and the simplification of the device configuration.
  • the structure of the lid portion and the main body portion can be made into a seal-less configuration that does not use packing, O-rings, and the like, so that the efficiency of the attaching / detaching operation of the lid portion and the simplification of the apparatus configuration can be realized.
  • a liquid separator can be obtained.
  • FIG. 1 is a configuration diagram showing an example of a fuel cell system in the first embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a gas-liquid separator in the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the main body of the gas-liquid separator in the first embodiment.
  • FIG. 4 is a cross-sectional view showing an example of a lid portion used for the gas-liquid separator according to Embodiment 1 and having a partition wall portion.
  • FIG. 5 is a diagram showing an example of a gas-liquid separator in a modification of the first embodiment.
  • FIG. 6 is a configuration diagram of a conventional fuel cell system.
  • FIG. 7 is a sectional view of a conventional gas-liquid separator.
  • a gas-liquid separator includes a main body having a bottom surface, and a cylindrical side wall having one end connected to the bottom surface and the first opening at the other end. And a lid portion that covers the first opening, has a gas inlet and an exhaust port, and is disposed inside the side wall, one end connected to the lid, and the second at the other end.
  • a sealed space is formed by the water stored in the lid portion, the partition wall portion, and the main body portion, and the gas tightness of the off gas passing through the gas-liquid separator can be ensured.
  • the gas-liquid separator can be reduced in cost by simplifying the device configuration.
  • cylindrical side wall portion and the cylindrical partition wall portion may have, for example, a circular shape such as a perfect circle or an ellipse, or a polygon such as a quadrangle as a cross-sectional shape perpendicular to the axial direction.
  • the gas-liquid separator according to the first aspect of the present invention, wherein the joint portion between the main body portion and the lid portion is disposed outside the partition wall portion when viewed from the vertical direction. Has been.
  • a gap is provided between the side wall portion and the partition wall portion.
  • the gas-liquid separator according to the first to third aspects of the present invention, wherein the first opening is directed upward in the direction of gravity so that the water level in the main body is horizontal. Open.
  • the distance between the water surface of the main body and the upper end of the side wall is kept constant in the entire circumferential direction of the side wall. Therefore, even if the water level of the condensed water in the main body rises, the water in the main body can be prevented from leaking out of the gas-liquid separator from a part of the upper end of the side wall.
  • the gas-liquid separator according to the first to fourth aspects of the present invention, wherein the second opening portion is provided below the gravity direction so that the water surface in the main body portion is horizontal. It is provided so as to open.
  • the distance between the lower end of the partition wall provided in the lid and the water surface of the water accumulated in the main body is equal in the entire circumferential direction of the partition wall. Therefore, even if the water level of the main body is lowered, off gas does not leak from a part of the partition, and the airtightness of the space formed by the water accumulated in the lid, the partition, and the main body is ensured. be able to.
  • the gas-liquid separator according to the first to fifth aspects of the present invention, wherein the introduction port and the exhaust port are provided inside a connection portion between the lid portion and the partition wall portion. Yes.
  • the side wall portion and the partition wall portion become heat insulating walls, and the heat release amount of the off gas can be suppressed and the off gas temperature can be kept high.
  • a fuel cell system includes a fuel cell that generates power using fuel gas and air, a gas-liquid separator that separates moisture in an unreacted gas discharged from the fuel cell,
  • the gas-liquid separator is the gas-liquid separator according to one aspect of the first to sixth inventions.
  • unreacted gas discharged from the fuel cell refers to at least one of the cathode off-gas discharged from the fuel cell and the anode off-gas discharged from the fuel cell.
  • a fuel cell system that generates a hydrogen-rich fuel gas from a raw material and water, supplies the fuel gas to the fuel cell, and an anode off-gas discharged from the fuel cell.
  • a hydrogen generator comprising: a combustor that heats the hydrogen generator by burning at least, and discharges combustion exhaust gas; And a reforming water pump for supplying water to the hydrogen generator after the water in the gas-liquid separator is purified with a pure water device, and the gas-liquid separator is not discharged from the fuel cell.
  • the gas-liquid separator according to a seventh aspect of the present invention, which separates moisture in at least one of a reaction gas and a combustion exhaust gas discharged from the combustor.
  • the fuel cell system comprising: a shaft portion attached to the lid portion; and a water level detecting portion housed in the side wall portion.
  • a float sensor is incorporated to detect the water level in the body.
  • the float sensor to be attached to the lid, so that the float sensor can be easily removed even when water remains in the main body, and the work efficiency of the float sensor is improved.
  • the fuel cell system according to the present embodiment exhibits an advantageous effect on the maintainability of the float sensor in combination with the efficiency of the above-described lid attaching / detaching operation.
  • FIG. 1 is a schematic diagram showing an example of a fuel cell system in the first embodiment.
  • a hydrogen generator 2 that generates a hydrogen-rich fuel gas from a raw material and water is disposed inside the housing 1 of the fuel cell system 100.
  • the hydrogen generator 2 generates hydrogen-rich fuel gas from the raw material and water, burns at least the hydrogen generator 2A that supplies the fuel gas to the fuel cell 4, and the anode off-gas discharged from the fuel cell 4. And a combustor 2B that heats the hydrogen generator 2A and discharges the combustion exhaust gas.
  • the inside of the casing 1 includes a fuel cell 4 that generates power using the fuel gas obtained by the hydrogen generator 2 (hydrogen generator 2A) and the air supplied by the air pump 3, and the fuel cell 4 discharges.
  • the condensed water tank 7 for storing the condensed water recovered from the vessel 6 and the reformed water in the condensed water tank 7 is purified by the pure water device 8 and then supplied to the hydrogen generator 2 (hydrogen generator 2A).
  • a water pump 9 is arranged. As will be described later, the combustion exhaust gas from the combustor 2 ⁇ / b> B may be exhausted to the outside after being guided to the cathode gas-liquid separator 5.
  • FIG. 2 is a cross-sectional view showing an example of a gas-liquid separator in the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the main body of the gas-liquid separator in the first embodiment.
  • FIG. 4 is a cross-sectional view showing an example of a lid portion used for the gas-liquid separator according to Embodiment 1 and having a partition wall portion.
  • the cathode gas-liquid separator 5 has a main body having a bottom surface portion 10 and a cylindrical side wall portion 12 having one end connected to the bottom surface portion 10 and a first opening 11 at the other end.
  • a lid 16 having a gas inlet 14, an air outlet 15, and a water inlet 19, and a side wall 12.
  • a cylindrical partition wall 18 having one end connected to the lid 16 and the second opening 17 at the other end.
  • the lid portion 16 and the partition wall portion 18 may be integrally formed by resin molding or the like. Alternatively, the lid portion 16 and the partition wall portion 18 are prepared as separate bodies, and the entire seam between the two is hidden by welding or bonding. You may form integrally.
  • a gap is provided between the end portion of the partition wall portion 18 on the second opening side 17 and the bottom surface portion 10, and a clearance is provided between the side wall portion 12 and the partition wall portion 18.
  • the lid portion 16 and the main body portion 13 are fixed at the outer peripheral portion by appropriate fixing means (for example, screws 22). That is, the joint portion between the main body portion 13 and the lid portion 16 is disposed outside the partition wall portion 18 when viewed from the vertical direction.
  • the first opening 11 is provided so as to open toward the upper side in the gravity direction
  • the second opening 17 is configured to open toward the lower side in the gravity direction.
  • the introduction port 14 and the exhaust port 15 are provided on the inner side of the connection portion between the lid portion 16 and the partition wall portion 18, and the drainage port 20 is arranged in the direction of gravity from the end portion of the partition wall portion 18 on the second opening 17 side. It is provided on the upper side (that is, a position higher in the vertical direction than the end on the second opening 17 side).
  • the combustion exhaust gas discharged from the combustor 2B of the hydrogen generator 2 may also be led to the cathode gas-liquid separator 5 to separate and reuse moisture from the combustion exhaust gas.
  • the fuel cell 4 uses the hydrogen-rich fuel gas as the anode gas, and uses the air supplied by the air pump 3 as the cathode gas to generate power.
  • the cathode off-gas after power generation is introduced into the cathode gas-liquid separator 5 from the inlet 14 of the lid portion 16 of the cathode gas-liquid separator 5.
  • the interior of the main body 13 of the cathode gas-liquid separator 5 is previously supplied with water from the water supply port 19 by opening the water supply valve 21 and filled with water to at least a position exceeding the lower end of the partition wall 18 of the lid 16. ing.
  • D The cathode offgas that has entered from the inlet 14 enters a space formed by the water accumulated in the lid portion 16, the partition portion 18, and the main body portion 13, and moisture in the cathode offgas is separated at this portion.
  • Stored in part 13 Stored in part 13.
  • E The cathode off-gas from which moisture has been removed is discharged from the exhaust port 15 of the lid 16 to the outside of the housing 1.
  • the lid portion 16 and the partition wall portion 18 are integrally formed (or integrally formed by welding, bonding, etc.), so that the boundary line between the lid portion 16 and the partition wall portion 18 leaks. Absent. Moreover, the airtightness of the cathode off-gas is ensured in the space formed by the water accumulated in the lid portion 16, the partition portion 18 and the main body portion 13 (that is, the main body portion 13 has a water seal structure). . For this reason, since the junction part of the main-body part 13 and the cover part 16 is arrange
  • the structure of the lid portion 16 and the main body portion 13 can be made into a seal-less configuration that does not use packing, O-rings, etc., so that in the cathode gas-liquid separator 5 that can separate the lid portion 16 and the main body portion 13.
  • the cost of the cathode gas-liquid separator 5 can be reduced by simplifying the device configuration.
  • a gap is provided between the side wall portion 12 of the main body portion 13 and the partition wall portion 18 of the lid portion 16.
  • the water level of the condensed water in the main body part 13 gradually rises, but the condensed water passes through the gap between the partition wall part 18 of the lid part 16 and the bottom surface part 10 of the main body part 13 and the side wall of the main body part 13.
  • Condensed water is discharged from the drain port 20 provided in the part 12 to the condensed water tank 7, and the water level in the main body part 13 can be made constant.
  • the water level of the condensed water stored in the main body portion 13 can be changed, and a water level sensor, a discharge valve, Without using a special device such as a control unit, the upper limit of the water level of the condensed water in the main body 13 can be kept constant at the target water level.
  • control of the lower limit of the water level of the condensed water in the main body 13 will be described in a later-described modification.
  • the drain port 20 is provided on the upper side in the gravitational direction from the end portion on the second opening side 17 of the partition wall 18 (that is, the position higher in the vertical direction than the end portion on the second opening portion 17 side). . Therefore, even if condensed water is drained from the drain port 20, the water level of the condensed water in the main body 13 is higher than the end of the second opening 17 side of the partition wall 18 in the direction of gravity. The airtightness of the space formed by the water accumulated in the partition wall 18 and the main body 13 can be ensured.
  • the first opening 11 of the main body 13 is provided so as to open toward the upper side in the direction of gravity so that the surface of the condensed water in the main body 13 is horizontal (that is, the first opening 11).
  • the opening surface of the part 11 is orthogonal to the direction of gravity).
  • the second opening 17 is provided so as to open downward in the direction of gravity so that the surface of the condensed water in the main body 13 is horizontal (that is, the opening of the second opening 17).
  • the plane is perpendicular to the direction of gravity).
  • the cathode offgas does not leak from a part of the lower end of the partition wall 18, and the water accumulated in the lid 16, the partition wall 18, and the main body 13. The airtightness of the formed space can be ensured.
  • the introduction port 14 and the exhaust port 15 are provided inside the connecting portion between the lid portion 16 and the partition wall portion 18, so that the cathode off gas passes through the inside of the partition wall portion 18. Therefore, the side wall portion 12 and the partition wall portion 18 serve as heat insulating walls to suppress the heat radiation amount of the cathode off gas, and the cathode off gas temperature can be kept high when the cathode off gas is released from the housing 1. Therefore, condensation in the exhaust part of the housing 1 can be prevented.
  • FIG. 5 is a diagram showing an example of a gas-liquid separator in a modification of the first embodiment.
  • the float sensor 30 is housed inside the side wall portion 12, and the condensed water in the main body portion 13 of the gas-liquid separator. It is incorporated so that the lower limit L of the water level can be detected.
  • the float sensor 30 includes a shaft portion 31 that is attached to the lid portion 16 and extends in the vertical direction, and a water level detector 32 that includes a float 32A and a contact portion 32B attached to the shaft portion 31.
  • the float 32 ⁇ / b> A floats on the surface of the condensed water and moves up and down on the shaft portion 31 according to the level of the condensed water.
  • the contact portion 32 ⁇ / b> B is fixed to the shaft portion 31 at a position corresponding to the lower limit L between the drain port 20 and the lower end of the partition wall portion 18.
  • the controller 40 can detect that the water level of the condensed water has reached the lower limit L based on the detection signal of the float sensor 30.
  • the controller 40 may notify, for example, an abnormality in the water level of the condensed water using an appropriate alarm (not shown), and open the water supply valve 21 (see FIG. 1).
  • the opening / closing operation of the water supply valve 21 may be controlled.
  • the controller 40 includes, for example, a microprocessor, a memory, and the like, and the operation of each part of the fuel cell system 100 (see FIG. 1) in addition to the water supply valve 21 may be controlled by a single controller. You may control operation
  • the float sensor 30 is attached to the lid portion 16, so that the float sensor 30 can be easily removed even when water is accumulated in the main body portion 13, and maintenance work for the float sensor 30 is performed.
  • Efficiency is improved. For example, when lukewarm water is accumulated in the main body 13, mold fungi are likely to be generated, and mold fungus is clogged between the shaft portion 31 and the water level detection unit 32, so that the operation of the water level detection unit 32 is limited.
  • the accuracy of the float sensor 30 may decrease.
  • an advantageous effect is exhibited in the maintainability of the float sensor 30.
  • the float sensor 30 which can detect the lower limit L of the water level of condensed water was illustrated here, it is not restricted to this, You may use the float sensor which can detect the upper limit and lower limit of the water level of condensed water.
  • the gas-liquid separator according to the present invention can be applied to a polymer electrolyte fuel cell and a solid oxide fuel cell because it can realize the efficiency of the attaching / detaching operation of the lid and the simplification of the device configuration. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

 気液分離器は、底面部(10)と、一端が底面部(10)に接続され、他端に第1開口部(11)を有する筒状の側壁部(12)と、を有する本体部(13)と、第1開口部11を覆うように配置され、気体の導入口(14)及び排気口(15)を有する蓋部(16)と、側壁部(12)の内部に配置され、一端が蓋部(16)に接続され、他端に第2開口部(17)を有する筒状の隔壁部(18)を有し、隔壁部(18)の第2開口部(17)側の端部と底面部(10)との間には、隙間が設けられており、側壁部(12)は、第2開口部(17)側の端部よりも鉛直方向に高い位置に排水口(20)が設けられている。

Description

気液分離器及び燃料電池システム
 本発明は、燃料電池に供給された燃料ガスと酸化剤ガスとの電気化学反応により発電を行う燃料電池システムに使用する気液分離器に関する。
 家庭用の燃料電池コージェネレーションシステム(以下、「燃料電池システム」という。)に適した方式として、固体高分子形燃料電池システムの開発が盛んである。しかし、燃料となる水素の供給には、未だインフラが充分に整っていないため、都市ガス(都市で配管を用いて供給されるガス)、LPガス、灯油等の原料を水素生成装置で改質して水素リッチな燃料ガスを生成している。そして、発生した水素と空気中の酸素を利用して固体高分子形燃料電池(以下、「燃料電池」という。)で反応させて発電し、反応により生じた熱を回収して湯水として貯湯槽に貯え、貯湯槽に貯えた湯水を外部への熱供給に有効利用する燃料電池システムが開発されている。
 このように水素生成装置、燃料電池をパッケージに収め、都市ガスなどを利用して発電させる燃料電池発電システムが知られている(例えば、特許文献1参照。)。
 燃料電池では、水素リッチな燃料ガスをアノードガスとして使用し、空気をカソードガスとして使用するが、発電後のアノードオフガス、カソードオフガスには多量の水分が含まれる。そのため、アノードオフガス経路、カソードオフガス経路に気液分離器を配置し、アノードオフガス、カソードオフガスに含まれるオフガスと水分を分離して、分離した水分をタンクに貯めて水素生成装置に供給して水素生成工程で使用している。
 この気液分離器の構成としては、密閉したタンク上方にオフガス入口とオフガス出口と、タンク下部に凝縮水出口と排出水弁、タンク内に水位を監視する水位センサを設けた構成が知られている(例えば、特許文献2参照。)。
 図6は、特許文献1に記載された従来の燃料電池システムの構成を示す構成図である。
 図6に示すように、筐体1の内部は、原料と水から水素リッチな燃料ガスを生成する水素生成装置2と、水素生成装置2で得られた燃料ガスと空気ポンプ3で供給する空気を用いて発電を行なう燃料電池4と、燃料電池4から放出するカソードオフガス中の水分を分離するカソード気液分離器5と、燃料電池4から放出するアノードオフガス中の水分を分離するアノード気液分離器6と、カソード気液分離器5とアノード気液分離器6から回収した凝縮水を貯める凝縮水タンク7と、凝縮水タンク7内の凝縮水を水素生成装置2に供給する改質水ポンプ9から構成されている。
 図7は、特許文献2に記載された気液分離器の構成を示す構成図である。図7に示すように、カソード気液分離器5は、底面部10を有する本体部13と、導入口14及び排気口15を有する蓋部16と、底面部10に設けた排水口20と、排水口20から排水される排水経路上に設けられた排水弁25と、本体部13の内部に設けられた水位センサ23と、水位センサ23からの信号に基づき排水弁25を制御する制御部24と、第1開口部11を覆うように配置され、導入口14及び排気口15を有する蓋部16とを有しており、制御部24は、水位センサ23で本体部13内部の水位が一定レベルに達したとき排水弁25を操作して本体内に溜まった凝縮水を排水するように制御する。
特開2009-104832号公報 特開2007-115485号公報
 しかしながら、前記従来の構成では、カソードオフガスを蓋部の導入口に導き、カソードオフガス中の水分を分離して本体に溜め、水分を分離後のカソードオフガスを排気口より排出するが、気液分離器内に導かれたカソードオフガスが気液分離器の外部へ漏れないようにするために、本体部と蓋部との接合部の気密性を確保する必要がある。このため、本体部と蓋部の締結を溶接、溶着などの工法によって密着固定する構造や、本体部と蓋部の間にパッキン、Oリングなどのシール材を挟み込み、ビス締結してシール性を確保する構造を採用していた。
 本体部と蓋部の締結を溶接、溶着などの工法によって密着固定した前者の構造では、蓋部と本体部を容易に分離することができない。このため、本構造では、メンテナンスの際に長期間の使用により本体部の内部に堆積した汚れや、本体部の内壁に付着した汚れを除去しにくいという課題、或いは、本体部内のセンサ等の修理や交換を行いにくいという課題を有する。
 後者の構造では、本体部と蓋部の間にパッキン、Oリングなどのシール材を挟み込み、ビス締結してシール性を確保するので、蓋部と本体部と分離することができる。このため、本構造では、メンテナンスの際に本体部の内部に堆積した汚れや、本体部の内壁に付着した汚れを除去し易くメンテナンス性がよい。
 しかし、この場合、本体部と蓋部とのシール性を確保するには、蓋部の着脱作業が煩雑化する傾向があった。例えば、蓋部の着脱作業が粗雑なことにより、本体部と蓋部とのシール性が不適切な場合がある。すると、本体部内の気体の圧力と本体部外の気体の圧力との差圧に基づいて、蓋部と本体部との接合部から一方の気体が流出または流入することがあり、その結果、両者の気体が混合する(つまり、気密性が保てない)という問題があった。
 また、上記シール性を確保する構成要素となるパッキン、Oリング、ビスの構成が複雑になり、コストアップの要因となっていた。
 本発明は、前記従来の課題を解決するもので、気密性、メンテナンス性を確保しつつ、蓋部の着脱作業の効率化や装置構成の簡素化を実現する気液分離器を提供することを目的とする。
 前記従来の課題を解決するために、本発明の気液分離器は、底面部と、一端が前記底面部に接続され、他端に第1開口部を有する筒状の側壁部と、を有する本体部と、
 前記第1開口部を覆うように配置され、気体の導入口及び排気口を有する蓋部と、
 前記側壁部の内部に配置され、一端が前記蓋部に接続され、他端に第2開口部を有する筒状の隔壁部と、
 を有し、
 前記隔壁部の前記第2開口部側の端部と前記底面部との間には、隙間が設けられており、前記側壁部は、前記第2開口部の端部よりも鉛直方向に高い位置に排水口が設けられている。
 これによって、蓋部と隔壁部と本体部に溜められた水で密閉空間を形成し、気液分離器内を通過するオフガスの気密性を確保するので、蓋部と本体部の接合部での気密性は不要となり、蓋部と本体部とを分離可能な気液分離器において、蓋部と本体部の構造をパッキン、Oリングなどを使用しないシールレス構成にすることができる。よって、蓋部の着脱作業の効率化や装置構成の簡素化を実現する気液分離器を得ることができる。
 本発明によれば、蓋部と本体部の構造をパッキン、Oリングなどを使用しないシールレス構成にすることができるため、蓋部の着脱作業の効率化や装置構成の簡素化を実現する気液分離器を得ることができる。
図1は、実施の形態1における燃料電池システムの一例を示した構成図である。 図2は、実施の形態1における気液分離器の一例を示した断面図である。 図3は、実施の形態1における気液分離器の本体部の一例を示した断面図である。 図4は、実施の形態1における気液分離器に用い、隔壁部を備える蓋部の一例を示した断面図である。 図5は、実施の形態1の変形例における気液分離器の一例を示した図である。 図6は、従来の燃料電池システムの構成図である。 図7は、従来の気液分離器の断面図である。
 第1の発明のある形態(aspect)の気液分離器は、底面部と、一端が前記底面部に接続され、他端に第1開口部を有する筒状の側壁部と、を有する本体部と、前記第1開口部を覆うように配置され、気体の導入口及び排気口を有する蓋部と、前記側壁部の内部に配置され、一端が前記蓋部に接続され、他端に第2開口部を有する筒状の隔壁部とを有し、前記隔壁部の前記第2開口部側の端部と前記底面部との間には、隙間が設けられており、前記側壁部は、前記第2開口部の端部よりも鉛直方向に高い位置に排水口が設けられている。
 これにより、蓋部と隔壁部と本体部に溜められた水で密閉空間を形成し、気液分離器内を通過するオフガスの気密性を確保することができる。そのため、蓋部と本体部の接合部での気密性は不要となり、蓋部と本体部とを分離可能な気液分離器において、蓋部と本体部の構造をパッキン、Oリングなど使用しないシールレス構成にすることができる。よって、蓋部の着脱作業の効率化や装置構成の簡素化を実現する気液分離器を得ることができる。また、装置構成の簡素化により、気液分離器を低コスト化することもできる。
 なお、ここで、筒状の側壁部および筒状の隔壁部は、例えば、これらの軸方向に垂直な断面形状が、真円形や楕円形等の円形でも四角形等の多角形でもよい。
 第2の発明のある形態は、第1の発明のある形態の気液分離器において、前記本体部と前記蓋部との接合部は、前記鉛直方向から見て、前記隔壁部より外側に配置されている。
  これにより、本体部と蓋部との接合部には導入口から供給される気体の内圧がかからないため、本体部内の気体と本体部外の気体とが混ざり合うことを防止することができる。
  第3の発明のある形態は、第1の発明又は第2の発明のある形態の気液分離器において、前記側壁部と前記隔壁部との間には、隙間が設けられている。
 これにより、前記側壁部と前記隔壁部との間に設けた隙間が断熱層となるため、本体部内に貯まった水の熱が気液分離器外部へ出て行く放熱ロスを抑制することができる。そのため、気液分離器内の水の温度低下を防ぎ、水を水素生成装置で使用する際の加熱量を抑制することができるため、燃料電池システムの運転効率を向上することができる。
 第4の発明のある形態は、第1~3発明のある形態の気液分離器において、前記第1開口部は、前記本体部内の水の水面が水平になるよう、重力方向の上側に向かって開口するように設けられている。
 これにより、本体部の水の水面と側壁部の上端との距離は側壁部の全周方向で一定に保たれている。そのため、本体部の凝縮水の水位が上昇しても、本体部の水が、側壁部の上端の一部分から気液分離器の外部へ漏れ出すのを防止することができる。
 なお、重力は、上記鉛直方向の上から下に向かって作用するものとする。
 第5の発明のある形態は、第1~4発明のある形態の気液分離器において、前記第2開口部は、前記本体部内の水の水面が水平になるよう、重力方向の下側に向かって開口するように設けられている。
 これにより、蓋部に設けた隔壁部の下端と本体部に溜まった水の水面との距離が、隔壁部の全周囲方向で等しくなる。そのため、本体部の水の水位が低下しても、隔壁部の一部分からオフガスが漏れ出ることなく、蓋部と隔壁部と本体部に溜まった水によって形成された空間の気密性を確実にすることができる。
 第6の発明のある形態は、第1~5発明のある形態の気液分離器において、前記導入口及び前記排気口は、前記蓋部と前記隔壁部との接続部より内側に設けられている。
 これにより、オフガスは隔壁部の内側を通過するので、側壁部と隔壁部が断熱壁となりオフガスの放熱量を抑制し、オフガスの温度を高く保つことができる。
 第7の発明のある形態の燃料電池システムは、燃料ガスと空気を用いて発電を行なう燃料電池と、前記燃料電池から排出される未反応のガス中の水分を分離する気液分離器と、を備え、前記気液分離器は、第1~6発明のある形態の前記気液分離器である。
 これにより、パッキン、Oリングなどを使用しないシールレス構成の蓋部及び本体部を有する簡素化された気液分離器を用いることによって燃料電池システム全体の構成を簡素化できる。
 なお、ここで、「燃料電池から排出される未反応のガス」とは、燃料電池から排出されるカソードオフガス、及び、燃料電池から排出されるアノードオフガスのうちの少なくとも一つのガスをいう。
 第8の発明のある形態の燃料電池システムは、原料と水から水素リッチな燃料ガスを生成し、前記燃料ガスを前記燃料電池に供給する水素生成器と、前記燃料電池から排出されるアノードオフガスを少なくとも燃焼して前記水素生成器を加熱し、燃焼排ガスを排出する燃焼器と、を備える水素生成装置と、
 前記気液分離器内の水を純水器で純水にした後、前記水素生成器に供給する改質水ポンプと、を備え、前記気液分離器は、前記燃料電池から排出される未反応のガス、及び、前記燃焼器から排出される燃焼排ガスのうちの少なくとも1つのガス中の水分を分離する、第7の発明のある形態の前記気液分離器である。
 第9の発明のある形態は、第7又は第8の発明のある形態の燃料電池システムにおいて、前記蓋部に取り付けられる軸部と、前記側壁部の内部に収納される水位検知部とを備えるフロートセンサが、前記本体部内の水の水位を検出するように組み込まれている。
 これにより、蓋部にフロートセンサを取り付けているので、本体部内に水が溜まっている状態でもフロートセンサを容易に取り外すことができ、フロートセンサのメンテナンスの作業効率が向上する。例えば、ぬるま湯が本体部内に溜まっている場合、カビ菌が発生しやすく、カビ菌が軸部と水位検知部との間に詰まることで、水位検知部の動作が制限され、フロートセンサの精度が低下する場合がある。このような場合、本形態の燃料電池システムでは、上記の蓋部の着脱作業の効率化と相俟って、フロートセンサのメンテナンス性において有利な効果を発揮する。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
 図1は、実施の形態1における燃料電池システムの一例を示す概略図である。
 図1に示すように、燃料電池システム100の筐体1の内部は、原料と水から水素リッチな燃料ガスを生成する水素生成装置2が配されている。
 そして、水素生成装置2は、原料と水から水素リッチな燃料ガスを生成し、燃料ガスを燃料電池4に供給する水素生成器2Aと、燃料電池4から排出されるアノードオフガスを少なくとも燃焼して水素生成器2Aを加熱し、燃焼排ガスを排出する燃焼器2Bと、を備える。
 また、上記筐体1の内部は、水素生成装置2(水素生成器2A)で得られた燃料ガスと空気ポンプ3で供給する空気を用いて発電を行なう燃料電池4と、燃料電池4から放出するカソードオフガス中の水分を分離するカソード気液分離器5と、燃料電池4から放出するアノードオフガス中の水分を分離するアノード気液分離器6と、カソード気液分離器5とアノード気液分離器6から回収した凝縮水を貯める凝縮水タンク7と、凝縮水タンク7内の凝縮水を純水器8で純水にした後、水素生成装置2(水素生成器2A)に供給する改質水ポンプ9と、が配されている。なお、後述のとおり、燃焼器2Bからの燃焼排ガスは、カソード気液分離器5に導いた後、外部に排気してもよい。
 図2は、実施の形態1における気液分離器の一例を示した断面図である。図3は、実施の形態1における気液分離器の本体部の一例を示した断面図である。図4は、実施の形態1における気液分離器に用い、隔壁部を備える蓋部の一例を示した断面図である。
 図2~図4に示すように、カソード気液分離器5は、底面部10と、一端が底面部10に接続され他端に第1開口部11を有する筒状の側壁部12を有する本体部13と、側壁部12に設けた排水口20と、第1開口部11を覆うように配置され、気体の導入口14及び排気口15及び給水口19を有する蓋部16と、側壁部12の内部に配置され、一端が蓋部16に接続され、他端に第2開口部17を有する筒状の隔壁部18とを有している。この蓋部16と隔壁部18は樹脂成形加工などで一体成形してもいいし、蓋部16と隔壁部18とを別体として準備しておき、溶接や接着等により両者の継ぎ目全体を隠すように一体的に形成してもいい。
 また、隔壁部18の第2開口部側17の端部と底面部10との間には隙間が設けられ、側壁部12と隔壁部18との間に隙間を設けるように構成されている。
 さらに、蓋部16と本体部13は外周部で、適宜の固定手段(例えば、ビス22)によって固定されている。つまり、本体部13と蓋部16との接合部は、鉛直方向から見て隔壁部18よりも外側に配置されている。また、第1開口部11は重力方向の上側に向かって開口するように設けられており、第2開口部17は、重力方向の下側に向かって開口するように構成されている。
 更に、導入口14及び排気口15は、蓋部16と隔壁部18との接続部より内側に設けられ、排水口20は、隔壁部18の第2開口部17側の端部より重力方向の上側(つまり、第2開口部17側の端部よりも鉛直方向に高い位置)に設けられている。
 以上のように構成された気液分離器について、以下にその動作、作用を説明する。
(a)水素生成装置2(水素生成器2A)に都市ガスと凝縮水タンク7から純水器8を介して改質水ポンプ9で純水を供給すると水素リッチな燃料ガスが生成される。なお、水素生成装置2では、燃料電池4に供給する燃料ガスの余剰分の燃料ガスを燃焼器2Bにおいて燃焼させて、水を加熱して水蒸気を得ると共に、燃焼器2Bからの燃焼排ガスを外部に排出する。この燃焼排ガスにも水分が含まれている。そこで、水素生成装置2の燃焼器2Bから排出される燃焼排ガスもカソード気液分離器5に導いて、燃焼排ガスから水分を分離して再利用してもよい。
(b)燃料電池4は、水素リッチな燃料ガスをアノードガスとして使用し、空気ポンプ3によって供給した空気をカソードガスとして使用し、発電を行う。
(c)発電後のカソードオフガスは、カソード気液分離器5の蓋部16の導入口14からカソード気液分離器5内に導かれる。なお、カソード気液分離器5の本体部13の内部には、予め給水弁21を開き給水口19から水が供給され、少なくとも蓋部16の隔壁部18の下端を超える位置まで水が満たされている。
(d)導入口14から入ったカソードオフガスは、蓋部16と隔壁部18と本体部13内に溜まった水によって形成された空間に入り、この部分でカソードオフガス中の水分が分離され、本体部13に溜められる。
(e)水分が除去されたカソードオフガスは蓋部16の排気口15から筐体1の外部に放出される。
 カソード気液分離器5において、蓋部16と隔壁部18は一体成形(あるいは溶接や接着等を用いて一体的に形成)しているので、蓋部16と隔壁部18の境界線の漏れはない。また、蓋部16と隔壁部18及び本体部13内に溜まった水によって形成された空間でカソードオフガスの気密性を確保している(つまり、本体部13内は水封構造となっている)。このため、本体部13と蓋部16との接合部が、鉛直方向から見て隔壁部18よりも外側に配置されているので、蓋部16と本体部13の接合部での気密性は不要となる。換言すると、本体部13と蓋部16との接合部には導入口14から供給される気体の内圧がかからないため、本体部13内の気体と本体部13外の気体とが混ざり合うことを防止することができる。
 その結果、蓋部16と本体部13の構造をパッキン、Oリングなどを使用しないシールレス構成にすることができるため、蓋部16と本体部13とを分離可能なカソード気液分離器5において、蓋部16の着脱作業の効率化や装置構成の簡素化を実現できる。また、装置構成の簡素化により、カソード気液分離器5を低コスト化することができる。
 また、本体部13の側壁部12と蓋部16の隔壁部18との間には、隙間が設けられている。これにより、側壁部12と隔壁部18との間に設けた隙間が断熱層となるので、本体部13内に貯まった凝縮水の熱がカソード気液分離器5から外部へ出て行く放熱ロスを抑制することができる。そのため、カソード気液分離器5内の凝縮水の温度低下を防ぎ、凝縮水を水素生成装置2で使用する際の加熱量を抑制することができるため、燃料電池システムの運転効率を向上させることができる。
 継続して運転すると、本体部13の凝縮水の水面は徐々に上昇するが、凝縮水は蓋部16の隔壁部18と本体部13の底面部10の隙間を通って、本体部13の側壁部12に設けた排水口20から凝縮水タンク7へ凝縮水が排出されて、本体部13内の水位を一定にすることができる。このようにして、排水口20から凝縮水を排出することにより、本体部13の内部が凝縮水で満水になることを防ぎ、カソードオフガス経路が閉塞することを防止する。
 また、側壁部12に設ける排水口20の鉛直方向の位置を上下方向の適所に選択することによって、本体部13に貯まる凝縮水の水位を変更することが可能であり、水位センサや排出弁や制御部などの特別な装置を使用せずに、本体部13の凝縮水の水位の上限を目標とする水位に一定に保つことができる。なお、本体部13内の凝縮水の水位の下限の制御については、後述の変形例で説明する。
 また、排水口20は、隔壁部18の第2開口部側17の端部より重力方向の上側(つまり、第2開口部17側の端部よりも鉛直方向に高い位置)に設けられている。そのため、排水口20から凝縮水が排水されても、本体部13内の凝縮水の水位は隔壁部18の第2開口部側17の端部より重力方向で上側になるため、蓋部16と隔壁部18と本体部13内に溜まった水によって形成された空間の気密性を確保することができる。
 この時、本体部13の第1開口部11は、本体部13内の凝縮水の水面が水平になるよう、重力方向の上側に向かって開口するように設けられている(つまり、第1開口部11の開口面が重力方向と直交している)。これにより、本体部13内の凝縮水の水面と側壁部12の上端との距離は側壁部12の全周方向で一定に保たれている。その結果、本体部13内の凝縮水の水位が上昇しても、本体部13内の凝縮水が、側壁部12の上端の一部分からカソード気液分離器5の外部へ漏れ出すことを防止することができる。
 また、第2開口部17は、本体部13内の凝縮水の水面が水平になるよう、重力方向の下側に向かって開口するように設けられている(つまり、第2開口部17の開口面が重力方向と直交している)。これにより、蓋部16に設けた隔壁部18の下端と本体部13内に溜まった凝縮水の水面の距離(つまり、隔壁部18の下端を基準とした凝縮水の水位)が、隔壁部18の全周囲方向で等しくなる。そのため、本体部13内の凝縮水の水位が低下しても、隔壁部18の下端の一部分からカソードオフガスが漏れ出ることなく、蓋部16と隔壁部18と本体部13内に溜まった水によって形成された空間の気密性を確実にすることができる。
 更に、導入口14及び排気口15は、蓋部16と隔壁部18との接続部より内側に設けられていることにより、カソードオフガスは隔壁部18の内側を通過する。そこで、側壁部12と隔壁部18が断熱壁となりカソードオフガスの放熱量を抑制し、カソードオフガスが筐体1から外へ放出される際にカソードオフガスの温度を高く保つことができる。そのため、筐体1の排気部での結露を防止することができる。
 なお、実施の形態1ではカソード気液分離器5について説明しているが、アノード気液分離器6に本実施の形態の構成を応用してもよい。また、実施の形態1ではカソード気液分離器5と凝縮水タンク7を別々に構成しているが、凝縮水タンク7をカソード気液分離器5で兼ねる構成でもよい。さらに、上述のように、水素生成装置2から排出される燃焼排ガス中に含まれる水分をカソード気液分離器5によって分離して再利用してもよい。
(変形例)
 図5は、実施の形態1の変形例における気液分離器の一例を示した図である。
 図5に示すように、燃料電池システムにおける本変形例の気液分離器には、フロートセンサ30が、側壁部12の内部に収納されて、気液分離器の本体部13内の凝縮水の水位の下限Lを検出できるように組み込まれている。
 フロートセンサ30は、蓋部16に取り付けられて鉛直方向に延びる軸部31と、軸部31に取り付けられたフロート32Aと接点部32Bとからなる水位検知部32とを備える。フロート32Aは凝縮水の水面に浮かび、凝縮水の水位の上下に応じて、軸部31上を上下する。接点部32Bは、排水口20と隔壁部18の下端との間の、上記下限Lに対応する位置の軸部31に固定されている。
 これにより、制御器40が、フロートセンサ30の検知信号に基づいて、凝縮水の水位が、その下限Lに到達したことを検出できる。
 このとき、制御器40は、例えば、適宜の報知器(図示せず)を用いて、凝縮水の水位の異常を報知してもいいし、給水弁21(図1参照)を開くように、給水弁21の開閉動作を制御してもいい。これにより、凝縮水の水位の異常を知ることができるので、気液分離器の水不足によるガス漏れを防止できる。また、給水口19から適量の水を本体部13内に供給できるので、気液分離器の水不足によるガス漏れを防止できる。
 なお、制御器40は、例えば、マイクロプロセッサおよびメモリ等を備え、単独の制御器により上記給水弁21の他、燃料電池システム100(図1参照)の各部の動作を制御してもいいし、複数の制御器の協働により燃料電池システム100の各部の動作を制御してもいい。
 特に、本変形例では、蓋部16にフロートセンサ30を取り付けているので、本体部13内に水が溜まっている状態でもフロートセンサ30を容易に取り外すことができ、フロートセンサ30のメンテナンスの作業効率が向上する。例えば、ぬるま湯が本体部13内に溜まっている場合、カビ菌が発生しやすく、カビ菌が軸部31と水位検知部32との間に詰まることで、水位検知部32の動作が制限され、フロートセンサ30の精度が低下する場合がある。このような場合、本変形例では、実施の形態1で述べた蓋部の着脱作業の効率化と相俟って、フロートセンサ30のメンテナンス性において有利な効果を発揮する。
 なお、ここでは、凝縮水の水位の下限Lを検知できるフロートセンサ30を例示したが、これに限らず、凝縮水の水位の上限および下限を検知できるフロートセンサを用いてもよい。
 以上のように、本発明に係る気液分離器は、蓋部の着脱作業の効率化や装置構成の簡素化を実現できるため、固体高分子形燃料電池や固体酸化物形燃料電池に適用できる。
   10 底面部
   11 第1開口部
   12 側壁部
   13 本体部
   14 導入口
   15 排気口
   16 蓋部
   17 第2開口部
   18 隔壁部
   19 給水口
   20 排水口

Claims (9)

  1.  底面部と、一端が前記底面部に接続され、他端に第1開口部を有する筒状の側壁部と、を有する本体部と、
     前記第1開口部を覆うように配置され、気体の導入口及び排気口を有する蓋部と、
     前記側壁部の内部に配置され、一端が前記蓋部に接続され、他端に第2開口部を有する筒状の隔壁部と、
     を有し、
     前記隔壁部の前記第2開口部側の端部と前記底面部との間には、隙間が設けられており、
     前記側壁部は、前記第2開口部側の端部よりも鉛直方向に高い位置に排水口が設けられている気液分離器。
  2.  前記本体部と前記蓋部との接合部は、前記鉛直方向から見て、前記隔壁部より外側に配置される請求項1に記載の気液分離器。
  3.  前記側壁部と前記隔壁部との間には、隙間が設けられている、請求項1又は2に記載の気液分離器。
  4.  前記第1開口部は、前記本体部内の水の水面が水平になるよう、重力方向の上側に向かって開口するように設けられている、請求項1から3のいずれか一項に記載の気液分離器。
  5.  前記第2開口部は、前記本体部内の水の水面が水平になるよう、重力方向の下側に向かって開口するように設けられている、請求項1から4のいずれか一項に記載の気液分離器。
  6.  前記導入口及び前記排気口は、前記蓋部と前記隔壁部との接続部より内側に設けられている、請求項1から5のいずれか一項に記載の気液分離器。
  7.  燃料ガスと空気を用いて発電を行なう燃料電池と、
     前記燃料電池から排出される未反応のガス中の水分を分離する気液分離器と、
     を備え、
     前記気液分離器は、請求項1から6のいずれか一項に記載の前記気液分離器である、燃料電池システム。
  8.  原料と水から水素リッチな燃料ガスを生成し、前記燃料ガスを前記燃料電池に供給する水素生成器と、前記燃料電池から排出されるアノードオフガスを少なくとも燃焼して前記水素生成器を加熱し、燃焼排ガスを排出する燃焼器と、を備える水素生成装置と、
     前記気液分離器内の水を純水器で純水にした後、前記水素生成器に供給する改質水ポンプと、
     を備え、
     前記気液分離器は、前記燃料電池から排出される未反応のガス、及び、前記燃焼器から排出される燃焼排ガスのうちの少なくとも1つのガス中の水分を分離する、請求項7に記載の前記気液分離器である、燃料電池システム。
  9.  前記蓋部に取り付けられる軸部と、前記側壁部の内部に収納される水位検知部とを備えるフロートセンサが、前記本体部内の水の水位を検出するように組み込まれている請求項7又は8に記載の燃料電池システム。
PCT/JP2012/001376 2011-03-03 2012-02-29 気液分離器及び燃料電池システム WO2012117725A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/981,066 US20130295476A1 (en) 2011-03-03 2012-02-29 Gas-liquid separator and fuel cell system
EP12752902.2A EP2682663A4 (en) 2011-03-03 2012-02-29 GAS LIQUID DISTRIBUTOR AND FUEL CELL SYSTEM
JP2013502194A JP5604584B2 (ja) 2011-03-03 2012-02-29 気液分離器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-046176 2011-03-03
JP2011046176 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012117725A1 true WO2012117725A1 (ja) 2012-09-07

Family

ID=46757668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001376 WO2012117725A1 (ja) 2011-03-03 2012-02-29 気液分離器及び燃料電池システム

Country Status (4)

Country Link
US (1) US20130295476A1 (ja)
EP (1) EP2682663A4 (ja)
JP (1) JP5604584B2 (ja)
WO (1) WO2012117725A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050097A (ja) * 2013-09-03 2015-03-16 東京瓦斯株式会社 ドレイナ、ドレン排水装置、ドレン排水方法、ドレン排水プログラム、燃料電池ユニットおよび燃料電池コジェネレーションシステム
JP2016096110A (ja) * 2014-11-17 2016-05-26 東京瓦斯株式会社 燃料電池システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9937465B2 (en) 2015-05-13 2018-04-10 Panasonic Intellectual Property Management Co., Ltd. Gas-producing apparatus and gas-producing method
CN108172869B (zh) * 2016-12-07 2020-03-10 中国科学院大连化学物理研究所 一种气液分离器
US20220376282A1 (en) * 2021-05-20 2022-11-24 Hyundai Mobis Co., Ltd. Fuel cell system and condensate water storage device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810506U (ja) * 1981-07-10 1983-01-24 三菱重工業株式会社 冷却器付きドレンマフラ
JP2001152507A (ja) * 1999-11-26 2001-06-05 Toto Ltd 排水トラップ
JP2002246059A (ja) * 2001-02-14 2002-08-30 Nissan Motor Co Ltd 燃料電池システム
JP2007115485A (ja) 2005-10-19 2007-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2007205098A (ja) * 2006-02-03 2007-08-16 Shinko:Kk 排水トラップ
JP2009104832A (ja) 2007-10-22 2009-05-14 Ebara Ballard Corp 気液分離器及び燃料電池システム
WO2009093456A1 (ja) * 2008-01-23 2009-07-30 Panasonic Corporation 燃料電池システム
JP2010155192A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 気液分離器及びそれを備えた気体溶解器
JP2011018534A (ja) * 2009-07-08 2011-01-27 Panasonic Corp 燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE122830C (ja) *
US772037A (en) * 1903-09-18 1904-10-11 W P Ellsworth Gas-purifier.
US2807276A (en) * 1951-01-24 1957-09-24 Gerdts Gustav F Kg Steam trap with hat-shaped float
JPS57128664U (ja) * 1981-02-03 1982-08-11
JP2700732B2 (ja) * 1991-07-01 1998-01-21 コスモケミカル株式会社 排水トラップ
JP5446080B2 (ja) * 2007-10-02 2014-03-19 日産自動車株式会社 燃料電池の排水システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810506U (ja) * 1981-07-10 1983-01-24 三菱重工業株式会社 冷却器付きドレンマフラ
JP2001152507A (ja) * 1999-11-26 2001-06-05 Toto Ltd 排水トラップ
JP2002246059A (ja) * 2001-02-14 2002-08-30 Nissan Motor Co Ltd 燃料電池システム
JP2007115485A (ja) 2005-10-19 2007-05-10 Nissan Motor Co Ltd 燃料電池システム
JP2007205098A (ja) * 2006-02-03 2007-08-16 Shinko:Kk 排水トラップ
JP2009104832A (ja) 2007-10-22 2009-05-14 Ebara Ballard Corp 気液分離器及び燃料電池システム
WO2009093456A1 (ja) * 2008-01-23 2009-07-30 Panasonic Corporation 燃料電池システム
JP2010155192A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 気液分離器及びそれを備えた気体溶解器
JP2011018534A (ja) * 2009-07-08 2011-01-27 Panasonic Corp 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050097A (ja) * 2013-09-03 2015-03-16 東京瓦斯株式会社 ドレイナ、ドレン排水装置、ドレン排水方法、ドレン排水プログラム、燃料電池ユニットおよび燃料電池コジェネレーションシステム
JP2016096110A (ja) * 2014-11-17 2016-05-26 東京瓦斯株式会社 燃料電池システム

Also Published As

Publication number Publication date
EP2682663A4 (en) 2015-03-25
US20130295476A1 (en) 2013-11-07
JPWO2012117725A1 (ja) 2014-07-07
EP2682663A1 (en) 2014-01-08
JP5604584B2 (ja) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5604584B2 (ja) 気液分離器
JP4942386B2 (ja) 発電・給湯コジェネレーションシステム
KR100897117B1 (ko) 자동차용 연료전지 스택의 응축수 배출장치
US9515339B2 (en) Fuel cell system ion exchanger
KR101263562B1 (ko) 연료전지 모듈 케이스
JP5381237B2 (ja) 燃料電池システム
JP5381238B2 (ja) 燃料電池システム
JP2010254174A (ja) 燃料電池搭載車両
JP2011018534A (ja) 燃料電池システム
JP2013206774A (ja) 燃料電池システム
JP5900045B2 (ja) 酸化剤ガス供給用管部材およびそれを備えた燃料電池システム
JP2006278117A (ja) 固体高分子型燃料電池発電装置
JP2017062973A (ja) 燃料電池システム
JP5907372B2 (ja) 燃料電池システム
JP6051402B2 (ja) 燃料電池システム
WO2013150799A1 (ja) 燃料電池システム
JP2008251447A (ja) 燃料電池発電装置のドレン処理装置
WO2017022313A1 (ja) 高圧水素を製造可能なタンク式発電装置および燃料電池車両
KR100664086B1 (ko) 기액분리기 및 이를 적용한 연료전지
WO2011030651A1 (ja) 燃料電池装置
US20110143231A1 (en) Integrated piping module in fuel cell system
JP2008204860A (ja) 燃料電池システム
JP5850769B2 (ja) 燃料電池システム
JP2020098677A (ja) 燃料電池システム
JP2015115303A (ja) 発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502194

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981066

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE