WO2012117505A1 - 走行支援装置及び方法 - Google Patents

走行支援装置及び方法 Download PDF

Info

Publication number
WO2012117505A1
WO2012117505A1 PCT/JP2011/054536 JP2011054536W WO2012117505A1 WO 2012117505 A1 WO2012117505 A1 WO 2012117505A1 JP 2011054536 W JP2011054536 W JP 2011054536W WO 2012117505 A1 WO2012117505 A1 WO 2012117505A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
road
support
angle
respect
Prior art date
Application number
PCT/JP2011/054536
Other languages
English (en)
French (fr)
Inventor
信之 五十嵐
知範 秋山
勇樹 吉浜
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013502079A priority Critical patent/JP5556953B2/ja
Priority to US13/982,568 priority patent/US9852633B2/en
Priority to PCT/JP2011/054536 priority patent/WO2012117505A1/ja
Priority to CN201180068650.4A priority patent/CN103403778B/zh
Publication of WO2012117505A1 publication Critical patent/WO2012117505A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping

Definitions

  • the present invention relates to a driving support device and a driving support method.
  • the case where the other vehicle obstructs the traveling of the own vehicle is not limited to the case where the other vehicle enters from the intersection road as in Patent Document 1 described above.
  • the oncoming vehicle may be obstructed by the oncoming vehicle due to an unexpected oncoming vehicle entering the traveling direction of the host vehicle.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for providing warning or assistance support in response to the behavior of the oncoming vehicle during normal driving of the host vehicle.
  • the present invention A travel support device that performs warning or assistance support so as to avoid a vehicle departure from a road set based on a road marking indicating a lane boundary or a travel impossible area, It is a travel support device that changes the support execution timing according to the approach angle of the oncoming vehicle with respect to the travel path.
  • Road markings indicating lane boundaries are white lines, yellow lines, dotted lines etc. on the road surface, median strips such as road fences, luminous bodies, etc., partitions between lanes, asphalt and gravel boundaries, etc. Boundary (partition line) and the like.
  • the non-travelable area includes obstacles such as guardrails, fences, side walls, curbs, pedestrians, bicycles, and other vehicles, and areas having a height difference from the vehicle travel plane such as side grooves, recesses, and steps.
  • the non-travelable area includes an area where the vehicle is not desired to travel and an area where the vehicle is not desired to travel, in addition to an area where the vehicle cannot travel.
  • An oncoming vehicle is a vehicle that is traveling in the opposite direction to the host vehicle on the opposite lane of the same road as the host vehicle.
  • the approaching angle of the oncoming vehicle with respect to the runway refers to an acute angle formed by the running road extending direction and the oncoming vehicle traveling direction.
  • the departure angle of the host vehicle with respect to the runway refers to an acute angle formed by the runway extending direction and the traveling direction of the host vehicle.
  • the support execution timing is a timing at which the vehicle actually performs warning or assistance support.
  • the support execution timing is changed according to the approach angle of the oncoming vehicle with respect to the running road, the support execution timing is advanced as the behavior of the oncoming vehicle is more likely to hinder the traveling of the own vehicle. be able to. In this way, warning or assistance can be provided in accordance with the behavior of the oncoming vehicle during normal traveling of the host vehicle.
  • the support execution timing may be changed according to the departure angle of the host vehicle with respect to the runway in addition to the approach angle of the oncoming vehicle with respect to the runway.
  • the support execution timing is changed according to the departure angle of the own vehicle with respect to the running road, so the behavior of the oncoming vehicle and the own vehicle hinders the running of the own vehicle. The more likely the behavior, the earlier the support implementation timing. In this way, warning or assistance can be provided in accordance with the behavior of the oncoming vehicle and the host vehicle during normal driving of the host vehicle.
  • Assistance change timing may be changed by changing the boundary position of the runway.
  • the support execution timing can be changed by changing the boundary position of the runway.
  • the support execution timing may be advanced by bringing the boundary position of the road closer to the own vehicle side as the approach angle of the oncoming vehicle with respect to the road and the deviation angle of the own vehicle with respect to the road increase.
  • the change of the support execution timing may be performed by changing the time or distance that is the support execution timing of the vehicle with respect to the boundary of the runway.
  • the present invention it is possible to change the support execution timing by changing the distance or time that is the support execution timing of the vehicle with respect to the boundary of the road. For example, as the approach angle of the oncoming vehicle with respect to the runway and the departure angle of the own vehicle with respect to the runway increase, the time or distance that becomes the support execution timing of the own vehicle with respect to the boundary of the runway is increased, and the support execution timing is advanced. Good.
  • the present invention A driving support method for carrying out warning or assistance support so as to avoid a vehicle departure from a road set based on a road marking indicating a lane boundary or a non-driving area,
  • the support execution timing is changed in accordance with the approach angle of the oncoming vehicle with respect to the road.
  • FIG. 1 It is a block diagram which shows the structure of the driving assistance device which concerns on Example 1 of this invention according to a function. It is a figure which shows the case where the own vehicle which concerns on Example 1, and an oncoming vehicle exist on a road. It is a figure which shows the relationship between (theta) 1+ (theta) 2 which concerns on Example 1, and the boundary of a runway. It is a figure which shows the weighting coefficient of (theta) 1 and (theta) 2 based on Example 1. FIG. It is a figure which shows the boundary position of the runway set by the difference in the magnitude
  • FIG. 5 is a flowchart illustrating a travel path setting control routine when there is an oncoming vehicle according to the first embodiment. It is a figure which shows the relationship between (theta) 1+ (theta) 2 which concerns on Example 2, and time and distance used as assistance implementation timing. It is a figure which shows the line H of the time and distance used as the assistance implementation timing set by the difference of the magnitude
  • FIG. 7 is a flowchart showing a support execution time determination control routine when there is an oncoming vehicle according to the second embodiment.
  • a driving support device (driving support device) that recognizes a lane and a non-driving area, sets a road based on the recognized lane and the non-driving area, and performs driving support processing to avoid deviation from the driving road of the vehicle For example, LDW, LDP, etc.)
  • the driving support process here is executed earlier than the collision damage mitigation process that is executed when the vehicle stops urgently or when a collision between the vehicle and an obstacle is unavoidable. Is to do.
  • the driving assistance device of the present invention is different from the driving assistance device (for example, PCS or the like) that performs the collision damage reduction processing.
  • the structure demonstrated in the following example shows one embodiment of this invention, and does not limit the structure of this invention.
  • FIG. 1 is a block diagram illustrating the configuration of the driving support device (driving support device) according to the first embodiment of the present invention according to function. As shown in FIG. 1, the vehicle is equipped with an electronic control unit (ECU) 1 for driving assistance that constitutes a driving assistance device.
  • ECU electronice control unit
  • the ECU 1 is an electronic control unit including a CPU, a ROM, a RAM, a backup RAM, an I / O interface, and the like.
  • the ECU 1 includes a radar device 2, an external camera 3, a driver camera 4, a yaw rate sensor 5, a wheel speed sensor 6, a brake sensor 7, an accelerator sensor 8, a winker switch 9, a steering angle sensor 10, a steering torque sensor 11, and the like.
  • Various sensors are electrically connected, and output signals from these sensors are input to the ECU 1.
  • the radar device 2 is attached to the front portion of the vehicle, transmits millimeter waves to the front of the vehicle, and receives reflected waves reflected by obstacles outside the vehicle, so that information on the relative position of the obstacles to the vehicle (for example, (Coordinate information) is output.
  • the vehicle exterior camera 3 is disposed at a position where the front of the vehicle can be viewed in the vehicle interior and outputs an image of the front of the vehicle.
  • the driver camera 4 is disposed at a position where the driver can be seen in the field of view in the passenger compartment, and outputs an image of the driver.
  • the yaw rate sensor 5 is attached to the vehicle body and outputs an electrical signal correlated with the yaw rate of the vehicle.
  • the wheel speed sensor 6 is attached to a vehicle wheel and outputs an electrical signal correlated with the traveling speed of the vehicle.
  • the brake sensor 7 is attached to a brake pedal in the passenger compartment, and outputs an electrical signal correlated with the operation torque (depression force) of the brake pedal.
  • the accelerator sensor 8 is attached to an accelerator pedal in the passenger compartment, and outputs an electrical signal correlated with the operating torque (depression force) of the accelerator pedal.
  • the winker switch 9 is attached to a winker lever in the passenger compartment, and outputs an electrical signal correlated with the direction indicated by the winker (direction indicator) when the winker lever is operated.
  • the steering angle sensor 10 is attached to a steering rod connected to the steering wheel in the vehicle interior, and outputs an electrical signal that correlates with the rotation angle from the neutral position of the steering wheel.
  • the steering torque sensor 11 is attached to the steering rod and outputs an electrical signal correlated with torque (steering torque) input to the steering wheel.
  • Various devices such as a buzzer 12, a display device 13, an electric power steering (EPS) 14 and an electronically controlled brake (ECB) 15 are connected to the ECU 1, and these various devices are electrically controlled by the ECU 1. It has become.
  • the buzzer 12 is installed in the passenger compartment and outputs a warning sound.
  • the display device 13 is attached to the vehicle interior and displays various messages and warning lights.
  • the electric power steering (EPS) 14 assists the operation of the steering wheel using the torque generated by the electric motor.
  • the electronically controlled brake (ECB) 15 electrically adjusts the hydraulic pressure (brake hydraulic pressure) of the friction brake provided on each wheel.
  • the ECU 1 has the following functions in order to control various devices using the output signals of the various sensors described above. That is, the ECU 1 includes an obstacle information processing unit 100, a lane information processing unit 101, a consciousness decrease determination unit 102, a driver intention determination unit 103, an integrated recognition processing unit 104, a common support determination unit 105, an alarm determination unit 106, and a control determination. A unit 107 and a control amount calculation unit 108.
  • the obstacle information processing unit 100 approximately obtains a regression line capable of avoiding a plurality of travel impossible areas based on the coordinate information of the travel impossible areas such as a plurality of obstacles output from the radar device 2, Information including the coordinate information of the regression line and the yaw angle of the vehicle with respect to the regression line is generated. Further, when the radar apparatus 2 detects a non-travelable area such as a single obstacle, it also generates coordinate information of the non-travelable area and information on the yaw angle of the vehicle with respect to the non-travelable area. The obstacle information processing unit 100 may generate information related to the untravelable area based on the image captured by the vehicle camera 3.
  • the non-travelable area includes obstacles such as guardrails, fences, side walls, curbs, pedestrians, bicycles, and other vehicles, and areas having a height difference from the vehicle travel plane such as side grooves, recesses, and steps.
  • the non-travelable area includes an area where the vehicle is not desired to travel and an area where the vehicle is not desired to travel, in addition to an area where the vehicle cannot travel.
  • the lane information processing unit 101 generates information related to the lane and information related to the attitude of the vehicle with respect to the lane based on the image captured by the external camera 3.
  • the information regarding the lane is information regarding the road marking indicating the lane boundary and information regarding the width of the lane defined by the road marking.
  • Road markings that indicate lane boundaries are white lines, yellow lines, dotted lines, etc. (division lines), roadsides, light separators and other median dividers, lane dividers, asphalt and gravel boundaries, etc. For example, the boundary between the roadway and the other roadway.
  • Information on the attitude of the vehicle with respect to the lane includes information on the distance between the road marking indicating the lane boundary and the vehicle, information on the offset amount of the vehicle position with respect to the center of the lane, information on the yaw angle in the vehicle traveling direction with respect to the road marking indicating the lane boundary It is.
  • the lane information processing unit 101 may generate lane information from map information and GPS information that the navigation system has.
  • the consciousness decrease determination unit 102 determines a driver's degree of consciousness reduction (wakefulness) based on an image captured by the driver camera 4.
  • the decrease in consciousness determination unit 102 calculates the driver's eye closing time and eye closing frequency from the image captured by the driver camera 4, and the driver's consciousness decreases when the eye closing time or eye closing frequency exceeds the upper limit. It is determined that it is present (determined that the arousal level is low). Further, the consciousness lowering determination unit 102 calculates the time when the driver's face direction and line-of-sight direction deviate from the vehicle traveling direction from the image captured by the driver camera 4, and the calculated time is an upper limit value. It may be determined that the driver is looking aside when exceeding.
  • the driver intention determination unit 103 changes the operation amount of the brake pedal based on the output signals of the wheel speed sensor 6, the brake sensor 7, the accelerator sensor 8, the winker switch 9, the steering angle sensor 10, and the steering torque sensor 11. It is determined whether or not the change in the operation amount of the accelerator pedal or the change in the operation (steering) amount of the steering wheel is due to the driver's intention.
  • the integrated recognition processing unit 104 sets a travel path on which the vehicle can travel, and Find the yaw angle and the amount of vehicle offset relative to the center of the track.
  • the runway is set to the lane width itself. Note that on a road with a narrow lane, the driver may be forced to deviate from the lane.
  • the integrated recognition processing unit 104 deviates from the lane based on the information on the road marking indicating the lane boundary and the information on the non-driving area existing around the lane for a road having a narrow lane width. And you may make it set a runway.
  • the integrated recognition processing unit 104 sets a temporary runway that deviates from the road marking from the road marking indicating the lane boundary, and sets a normal runway that deviates from the road sign from the temporary runway and the non-travelable area. You may make it do.
  • the integrated recognition processing unit 104 receives information related to a single travel impossible area from the obstacle information processing unit 100, the integrated recognition processing unit 104 sets the travel path by extending the length of the travel impossible area in parallel with the road. You may do it.
  • the integrated recognition processing unit 104 may set the traveling path by regarding the untravelable area detected as a point on the coordinate as a line on the coordinate.
  • the amount of extension (line length) at that time is when the output signal (vehicle speed) of the wheel speed sensor 6 is high or when the yaw angle of the vehicle with respect to the line is large, when the vehicle speed is low, or when the yaw angle with respect to the line is small. It may be made longer.
  • a recognition degree LR is given to the runway set by the integrated recognition processing unit 104.
  • the road recognition degree LR is the road indicating the lane boundary based on the information generated by the obstacle information processing unit 100 and the accuracy (presence of existence) of the non-traveling area based on the information generated by the obstacle information processing unit 100.
  • the accuracy (certainty) of the lane that is set by combining the accuracy (the certainty of existence) of the markings is expressed numerically. The higher the value, the better.
  • the recognition degree LR of the runway is a degree for determining whether or not to perform warning or assistance. If the recognition degree LR is equal to or higher than the first threshold (predetermined threshold), the warning or assistance is given.
  • a specific method of calculating the road recognition level LR by the integrated recognition processing unit 104 uses a map representing the relationship between the road recognition level LR and the number of detected edges.
  • the accuracy (presence of existence) of the untravelable area based on the information generated by the obstacle information processing unit 100 and the accuracy (certainty of existence) of the road marking indicating the lane boundary based on the information generated by the lane information processing unit 101 are proportional to the number of detected edges at the time of each detection. That is, the accuracy of the untravelable area and the accuracy of the road marking indicating the lane boundary are higher as the number of detected edge points is larger.
  • the road recognition degree LR can be calculated by taking the detected edge number of the road marking indicating the non-running area and the lane boundary used when setting the road into the map. Further, when the number of detected edge points is not equal to or greater than the predetermined number of points, the runway itself may not be set.
  • the common support determination unit 105 executes driving support processing based on the information generated by the integrated recognition processing unit 104, the determination result of the consciousness decrease determination unit 102, and the determination result of the driver intention determination unit 103. It is determined whether or not.
  • the common support determination unit 105 may permit the driving support process to be executed when it is determined by the consciousness decrease determination unit 102 that the driver's consciousness is decreased or the driver is looking aside. . Further, the common support determination unit 105 may restrict the execution of the driving support process when the driver intention determination unit 103 determines that the driver is performing an intentional operation.
  • the common support determination unit 105 executes the driving support process unconditionally when the road recognition degree LR calculated by the integrated recognition processing unit 104 is equal to or greater than a predetermined first threshold value Rth.
  • the driving support process is not executed.
  • the recognition degree LR of a runway is lower than the predetermined 1st threshold value Rth, you may enable it to perform a driving assistance process, when a certain special condition is satisfied.
  • the first threshold Rth is a threshold provided for determining whether or not the driving support process is executed unconditionally based only on the road recognition degree LR, and the road recognition degree LR is higher than that. And driving support processing can be executed unconditionally. Therefore, when the recognition degree LR of the road is lower than the first threshold value Rth, normally, the execution of the driving support process is limited. However, when the road recognition level LR is lower than the first threshold value Rth and at least one of the driver's arousal level and the driving operation level is low even if the driving support process is restricted, etc. May execute a driving support process.
  • the warning determination unit 106 determines the ringing timing of the buzzer 12 and the warning message or warning lamp display timing by the display device 13 when the common support determination unit 105 permits the execution of the driving support process.
  • the alarm determination unit 106 sounds the buzzer 12 when the distance between the vehicle and the road boundary in the vehicle width direction is equal to or less than a predetermined distance or when the vehicle crosses the road boundary, You may make it display on the warning message by the display apparatus 13, or a warning lamp.
  • the warning determination unit 106 not only sounds the buzzer 12 based on the road boundary and displays a warning message or warning light by the display device 13, but also grasps the road boundary in a wide range of potentials and moves away from the road.
  • the ringing of the buzzer 12 may be increased, or the display on the warning message or warning lamp by the display device 13 may be increased. Further, the alarm determination unit 106 generates a buzzer 12 sound and a display device when the time (TLC (Time to lane crossing)) until the vehicle reaches the road boundary in the vehicle width direction is equal to or less than a predetermined time. 13 may be displayed on a warning message or warning light. When the vehicle enters the curve or the vehicle is traveling on the curve, the warning determination unit 106 determines whether the distance between the vehicle and the road boundary in the vehicle traveling direction is equal to or less than a predetermined distance.
  • TLC Time to lane crossing
  • the buzzer 12 When it becomes 0 or when the vehicle crosses the road boundary, the buzzer 12 may be sounded or a warning message or warning light by the display device 13 may be displayed.
  • the alarm determination unit 106 determines that the time until the vehicle reaches the road boundary in the vehicle traveling direction is equal to or less than a predetermined time. In such a case, the buzzer 12 may be sounded or a warning message or warning lamp may be displayed on the display device 13.
  • the timing at which the alarm determination unit 106 displays the buzzer 12 and the warning message or warning lamp by the display device 13 corresponds to the support execution timing.
  • a predetermined distance and a predetermined time for causing the alarm determination unit 106 to sound the buzzer 12 and display a warning message or warning lamp by the display device 13 are the output signals of the wheel speed sensor 6 ( This value is changed according to the vehicle speed) and the output signal (yaw rate) of the yaw rate sensor 5.
  • the predetermined distance is set longer than when the vehicle speed is low, or the predetermined time is set longer.
  • the yaw rate is large, a predetermined distance is set longer or a predetermined time is set longer than when the yaw rate is small.
  • the warning method for the driver is not limited to the sounding of the buzzer 12 or the display of the warning message or warning light on the display device 13, and a method of intermittently changing the tightening torque of the seat belt may be employed.
  • the control determination unit 107 is configured to avoid the deviation from the runway by using an electric power steering (EPS) 14 or an electronically controlled brake (ECB) 15. Determine whether to activate.
  • the control determination unit 107 is configured to perform electric power steering (EPS) when the distance between the vehicle and the road boundary in the vehicle width direction is equal to or less than a predetermined distance or when the vehicle exceeds the road boundary. 14 or an electronically controlled brake (ECB) 15 may be operated.
  • the control determination unit 107 sets the electric power steering (EPS) 14 and the electronically controlled brake (ECB) 15 when the time until the vehicle reaches the road boundary in the vehicle width direction is equal to or less than a predetermined time. You may make it operate.
  • the control determination unit 107 determines whether the distance between the vehicle and the road boundary in the vehicle traveling direction is equal to or less than a predetermined distance.
  • the electric power steering (EPS) 14 and the electronically controlled brake (ECB) 15 may be operated when the vehicle reaches zero or when the vehicle crosses the road boundary.
  • the control determination unit 107 determines that the time until the vehicle reaches the road boundary in the vehicle traveling direction is equal to or less than a predetermined time. At this time, the electric power steering (EPS) 14 or the electronically controlled brake (ECB) 15 may be operated.
  • the timing at which the control determination unit 107 operates the electric power steering (EPS) 14 and the electronically controlled brake (ECB) 15 corresponds to the support execution timing.
  • the predetermined distance and the predetermined time used by the control determination unit 107 are changed according to the vehicle speed and the yaw rate in the same manner as the predetermined distance and the predetermined time used by the alarm determination unit 106. It is good to set shorter than the predetermined distance and predetermined time which the part 106 uses.
  • the control amount calculating unit 108 When the control determination unit 107 generates an operation request for the electric power steering (EPS) 14 or the electronically controlled brake (ECB) 15, the control amount calculating unit 108 performs the electric power steering (EPS) 14 or the electronically controlled brake (ECB). ) The control amount of 15 is calculated, and the electric power steering (EPS) 14 and the electronically controlled brake (ECB) 15 are operated according to the calculated control amount.
  • the control amount calculation unit 108 avoids deviation from the road by using the information generated by the integrated recognition processing unit 104, the output signal (vehicle speed) of the wheel speed sensor 6 and the output signal (yaw rate) of the yaw rate sensor 5 as parameters.
  • the control amount calculation unit 108 obtains the control amount (steering torque) of the electric power steering (EPS) 14 and the control amount (brake hydraulic pressure) of the electronically controlled brake (ECB) 15 using the target yaw rate Ytrg as an argument. At that time, the relationship between the target yaw rate Ytrg and the steering torque, and the relationship between the target yaw rate Ytrg and the brake hydraulic pressure may be mapped in advance. Note that when the target yaw rate Ytrg is smaller than a predetermined value (the maximum value of the yaw rate at which avoidance of the runway departure can be achieved only by steering), the brake hydraulic pressure of the electronically controlled brake (ECB) 15 may be set to zero. .
  • a predetermined value the maximum value of the yaw rate at which avoidance of the runway departure can be achieved only by steering
  • the control amount calculation unit 108 not only operates the electric power steering (EPS) 14 and the electronically controlled brake (ECB) 15 on the basis of the road boundary, but also grasps the road boundary in a wide range of potential and moves away from the road. The control amount may be increased as much as possible.
  • the method of decelerating the vehicle is not limited to the method of operating the friction brake by the electronically controlled brake (ECB) 15, but the method of converting (regenerating) the kinetic energy of the vehicle into the electric energy or the transmission gear ratio.
  • a method of increasing the engine brake by changing may be used.
  • the driver is warned of a departure from the road set based on the non-travelable area such as an obstacle or the lane, or the operation for avoiding the road departure is assisted. be able to.
  • the integrated recognition processing unit 104 sets a travel path on which the host vehicle can travel.
  • the host vehicle of the oncoming vehicle unexpectedly moves in the direction of travel of the oncoming vehicle.
  • the traveling of the own vehicle may be hindered by the oncoming vehicle due to the approach. It is desired to support the traveling of the host vehicle even when such an unexpected oncoming vehicle enters the traveling direction of the host vehicle.
  • the oncoming vehicle may attempt to support driving even if the oncoming vehicle is simply driving straight on the oncoming lane. Was thought to be low.
  • the boundary position of the runway is changed according to the approach angle of the oncoming vehicle with respect to the runway set for the own vehicle and the departure angle of the own vehicle with respect to the runway.
  • the execution timing was changed.
  • the change of the boundary position of the runway is to change the boundary position of the runway in the perspective direction with respect to the host vehicle without changing the extending direction of the runway.
  • FIG. 2 is a diagram showing a case where the host vehicle and the oncoming vehicle exist on the road.
  • a road marking indicating the lane boundary is set as the lane boundary where the lane of the vehicle is equal to the lane width.
  • the departure angle of the host vehicle with respect to the road can be expressed as an acute angle ⁇ ⁇ b> 1 formed by the road extending direction and the traveling direction of the host vehicle.
  • the approaching angle of the oncoming vehicle with respect to the running road can be expressed as an acute angle ⁇ 2 formed by the running road extending direction and the oncoming vehicle traveling direction.
  • FIG. 3 is a diagram showing the relationship between ⁇ 1 + ⁇ 2 and the boundary of the runway.
  • ⁇ 1 + ⁇ 2 increases, the boundary position of the runway is brought closer to the vehicle side, and the support execution timing is advanced.
  • ⁇ 1 + ⁇ 2 is taken into the map of FIG. 3 and a setting is made to change the boundary position of the runway.
  • ⁇ 1 and ⁇ 2 used at this time are values after weighting described later.
  • ⁇ 1 + ⁇ 2 is equal to or greater than a predetermined threshold value, the boundary position of the running road is kept at a predetermined position so that it does not approach the vehicle side any more. The reason why the boundary position of the runway is held at the predetermined position in this way is that there is a concern that unnecessary operation for driving support frequently occurs when the boundary of the runway is excessively on the own vehicle side.
  • FIG. 4 is a diagram showing the weighting coefficients of ⁇ 1 and ⁇ 2. Since ⁇ 1 is calculated based on the relationship between the vehicle and the road, the accuracy is high. Therefore, the weighting of ⁇ 1 can be maintained at 100% even when the distance to the oncoming vehicle is long. Since ⁇ 2 is calculated based on the relationship between the oncoming vehicle and the road detected by the radar device 2 or the external camera 3, the accuracy decreases as the distance to the oncoming vehicle increases. This is because the accuracy of the oncoming vehicle recognized by the radar apparatus 2 and the vehicle external camera 3 varies due to performance variations, and the calculated ⁇ 2 may lack accuracy. Therefore, the weighting coefficient of ⁇ 2 decreases as the distance to the oncoming vehicle increases.
  • weighting coefficients of ⁇ 1 and ⁇ 2 are added to ⁇ 1 and ⁇ 2 calculated according to the distance L to the oncoming vehicle, respectively, and a normal value obtained by weighting ⁇ 1 and ⁇ 2 is calculated. Thereby, by using the regular ⁇ 1 and ⁇ 2 with weighting added, it is possible to set the boundary position of the runway more suitable for the driver's feeling, taking into account the detection error of the radar device 2 and the vehicle camera 3. .
  • FIG. 5 is a diagram showing the boundary position of the runway set by the difference in the magnitude of ⁇ 1 + ⁇ 2.
  • the departure angle ⁇ 1 of the own vehicle is not taken into account, and the lane boundary set for the own vehicle is maintained in the normal state. Maintain track boundaries on the road markings shown.
  • the oncoming vehicle has an approach angle ⁇ 2.
  • the host vehicle has a departure angle ⁇ 1.
  • ⁇ 1 + ⁇ 2 is taken into the map of FIG. 3, and the boundary position of the runway is brought closer to the own vehicle side by the amount of ⁇ 1 + ⁇ 2.
  • the boundary position of a runway approaches the own vehicle side most.
  • the support execution timing is changed by changing the boundary position of the runway according to the departure angle ⁇ 1 of the own vehicle and the approaching angle ⁇ 2 of the oncoming vehicle.
  • the support execution timing can be advanced as the behavior of the oncoming vehicle and the host vehicle is higher in the possibility of hindering the traveling of the host vehicle. In this way, warning or assistance can be provided in accordance with the behavior of the oncoming vehicle and the host vehicle during normal driving on the road having the opposite lane of the host vehicle.
  • FIG. 6 is a flowchart showing a runway setting control routine when there is an oncoming vehicle. This routine is repeatedly executed by the integrated recognition processing unit 104 of the ECU 1 every predetermined time.
  • the integrated recognition processing unit 104 calculates the departure angle ⁇ 1 of the own vehicle with respect to the road set in advance.
  • the departure angle ⁇ 1 can be calculated from the traveling road extending direction and the traveling direction of the host vehicle obtained from information from the external camera 3 and the like.
  • S102 it is determined whether there is an oncoming vehicle on the road on which the vehicle is traveling.
  • the oncoming vehicle is detected by the radar device 2 and the external camera 3. If a positive determination is made in S102, the process proceeds to S103. If a negative determination is made in S102, this routine is once terminated.
  • the distance L to the oncoming vehicle and the approaching angle ⁇ 2 of the oncoming vehicle with respect to the running path are calculated.
  • the distance L to the oncoming vehicle is detected by the radar device 2 and the external camera 3.
  • the approach angle ⁇ 2 can be calculated from the traveling road extending direction and the traveling direction (behavior) of the oncoming vehicle detected by the radar device 2 or the vehicle exterior camera 3.
  • ⁇ 1 and ⁇ 2 are weighted.
  • the distance L to the oncoming vehicle calculated in S103 is taken into the map shown in FIG. 4, and the weighting coefficients of ⁇ 1 and ⁇ 2 are calculated.
  • the weighting coefficient ⁇ 1 is multiplied by the deviation angle calculated in S101 to calculate the weighted ⁇ 1.
  • the weighting coefficient ⁇ 2 is multiplied by the approach angle calculated in S103 to calculate weighted ⁇ 2.
  • the boundary position of the runway is changed according to the weighted ⁇ 1 + ⁇ 2. Specifically, the weighted ⁇ 1 and ⁇ 2 calculated in S104 are added, and the weighted ⁇ 1 + ⁇ 2 is taken into the map shown in FIG. 3 to calculate how far the boundary position of the runway is closer to the vehicle side. . Then, the traveling distance is set by approaching the own vehicle side from the previously set traveling road by the calculated distance approaching the own vehicle. After the processing of this step, this routine is once ended.
  • the boundary position of the runway can be changed according to the departure angle ⁇ 1 and the approach angle ⁇ 2.
  • the alarm determination unit 106 determines the alarm operation timing, and the control determination unit 107 operates the electric power steering (EPS) 14 and the electronically controlled brake (ECB) 15. Since the timing is determined, the support implementation timing can be changed.
  • EPS electric power steering
  • EAB electronically controlled brake
  • Example 2 In the said Example 1, the boundary implementation position was changed and the assistance implementation timing was changed.
  • the method for changing the support implementation timing is not limited to this.
  • the support execution timing is changed by changing the time or distance that is the support execution timing of the own vehicle with respect to the boundary of the road.
  • the characteristic part will be described. Description of other configurations is omitted.
  • the warning determination unit 106 and the control determination unit 107 set the support execution timing when the predicted deviation time until the vehicle deviates from the boundary of the running road becomes a predetermined time.
  • the support execution timing may be set when the predicted deviation distance between the vehicle and the boundary of the runway is a predetermined distance.
  • the time and distance for such support implementation timing are constant during normal operation.
  • the time and distance for the support execution timing are set according to the approach angle of the oncoming vehicle with respect to the road set for the own vehicle and the departure angle of the own vehicle with respect to the road. Changed support implementation timing.
  • FIG. 7 is a diagram showing the relationship between ⁇ 1 + ⁇ 2 and the time and distance at which support is performed. As shown in FIG. 7, as ⁇ 1 + ⁇ 2 increases, the time and distance for the support execution timing are increased, and the support execution timing is advanced so that the support is started even when the vehicle is separated from the boundary position of the runway.
  • ⁇ 1 + ⁇ 2 is taken into the map of FIG. 7, and the setting is made to change the time and distance as the support execution timing.
  • ⁇ 1 and ⁇ 2 used at this time are values after the weighting described in the above embodiment is performed. In FIG.
  • the time and distance at which the support is performed is limited to a predetermined value and is not increased further.
  • the reason why the time and distance at which the support is performed is kept at a predetermined value is that there is a concern that unnecessary operation of the driving support frequently occurs when the time and distance at which the support is performed becomes excessively large.
  • FIG. 8 is a diagram showing a time and distance line H that is a support execution timing set by the difference in the magnitude of ⁇ 1 + ⁇ 2.
  • the departure angle ⁇ 1 of the own vehicle is not taken into account, and the lane boundary set for the own vehicle is maintained in the normal state.
  • the line H is maintained at a constant value from the boundary of the runway, which is the road marking shown.
  • the oncoming vehicle has an approach angle ⁇ 2.
  • the host vehicle has a departure angle ⁇ 1.
  • ⁇ 1 + ⁇ 2 is taken into the map of FIG. 7, and the line H of the time and distance at which the support is performed is set closer to the own vehicle side by ⁇ 1 + ⁇ 2 from the boundary of the runway.
  • the time H and distance line H used as assistance implementation timing are closest to the own vehicle side. In other words, the time and distance for the support execution timing become the largest.
  • the support execution timing is changed by changing the time and distance of the support execution timing according to the departure angle ⁇ 1 of the own vehicle and the approach angle ⁇ 2 of the oncoming vehicle.
  • the support execution timing can be advanced as the behavior of the oncoming vehicle and the host vehicle is higher in the possibility of hindering the traveling of the host vehicle. In this way, warning or assistance can be provided in accordance with the behavior of the oncoming vehicle and the host vehicle during normal driving on the road having the opposite lane of the host vehicle.
  • FIG. 9 is a flowchart showing a support execution time determination control routine when there is an oncoming vehicle. This routine is repeatedly executed by the alarm determination unit 106 or the control determination unit 107 of the ECU 1 every predetermined time.
  • the integrated recognition processing unit 104 calculates the departure angle ⁇ 1 of the own vehicle with respect to the road set in advance.
  • the departure angle ⁇ 1 can be calculated from the traveling road extending direction and the traveling direction of the host vehicle obtained from information from the external camera 3 and the like.
  • S202 it is determined whether there is an oncoming vehicle on the road on which the vehicle is traveling.
  • the oncoming vehicle is detected by the radar device 2 and the external camera 3. If a positive determination is made in S202, the process proceeds to S203. If a negative determination is made in S202, this routine is once terminated.
  • the distance L to the oncoming vehicle and the approaching angle ⁇ 2 of the oncoming vehicle with respect to the running path are calculated.
  • the distance L to the oncoming vehicle is detected by the radar device 2 and the external camera 3.
  • the approach angle ⁇ 2 can be calculated from the traveling road extending direction and the traveling direction (behavior) of the oncoming vehicle detected by the radar device 2 or the vehicle exterior camera 3.
  • ⁇ 1 and ⁇ 2 are weighted.
  • the distance L to the oncoming vehicle calculated in S203 is taken into the map shown in FIG. 4, and the weighting coefficients of ⁇ 1 and ⁇ 2 are calculated.
  • the weighting coefficient ⁇ 1 is multiplied by the deviation angle calculated in S101 to calculate the weighted ⁇ 1.
  • the weighting coefficient ⁇ 2 is multiplied by the approach angle calculated in S103 to calculate weighted ⁇ 2.
  • the time and distance for the support execution timing are changed according to the weighted ⁇ 1 + ⁇ 2. Specifically, the weighted ⁇ 1 and ⁇ 2 calculated in S204 are added, and the weighted ⁇ 1 + ⁇ 2 is taken into the map shown in FIG. 7 to calculate how much the time and distance for the support execution timing are increased. To do. Then, the calculated value closer to the vehicle side is added to the time or distance that is the support execution timing that is normally set. After the processing of this step, this routine is once ended.
  • the time and distance as the support execution timing can be changed according to the departure angle ⁇ 1 and the approach angle ⁇ 2.
  • the alarm determination unit 106 determines the alarm activation timing
  • the control determination unit 107 determines the electric power steering (EPS) 14 and the electronically controlled brake (ECB). ) Since the operation timing of 15 is determined, the support execution timing can be changed.
  • EPS electric power steering
  • EAB electronically controlled brake
  • the driving support device is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.
  • the support execution timing is changed according to the departure angle ⁇ 1 of the own vehicle and the approach angle ⁇ 2 of the oncoming vehicle.
  • the driving support device of the present invention may change the support execution timing according to only the approach angle ⁇ 2 of the oncoming vehicle.
  • the support execution timing can be advanced as the behavior of the oncoming vehicle is higher in the possibility of hindering the traveling of the host vehicle. In this way, warning or assistance can be provided in accordance with the behavior of the oncoming vehicle during normal traveling on the road having the opposite lane of the own vehicle.
  • the said Example is also an Example of the driving assistance method which concerns on this invention.
  • ECU 2 Radar device 3: External camera 4: Driver camera 5: Yaw rate sensor 6: Wheel speed sensor 7: Brake sensor 8: Accelerator sensor 9: Winker switch 10: Steering angle sensor 11: Steering torque sensor 12: Buzzer 13: Display device 14: EPS 15: ECB 100: Obstacle information processing unit 101: Lane information processing unit 102: Decrease in consciousness determination unit 103: Driver intention determination unit 104: Integrated recognition processing unit 105: Common support determination unit 106: Alarm determination unit 107: Control determination unit 108: Control amount calculator

Abstract

 本発明は、自車輌の通常走行時における対向車輌の挙動に対応して警告又は補助の支援を実施する技術を提供することを目的とする。本発明では、車線境界を示す道路標示又は走行不可域に基づいて設定された走路からの車輌逸脱を回避するように警告又は補助の支援を実施する走行支援装置であって、走路に対する対向車輌の進入角度及び自車輌の逸脱角度に応じて、支援実施タイミングを変更する。これによると、走路に対する対向車輌の進入角度及び自車輌の逸脱角度に応じて、支援実施タイミングを変更するので、対向車輌及び自車輌の挙動が自車輌の走行を阻害する可能性が高い挙動である程、支援実施タイミングを早めることができる。このように自車輌の通常走行時における対向車輌及び自車輌の挙動に対応して警告又は補助の支援を実施することができる。

Description

走行支援装置及び方法
 本発明は、走行支援装置及び走行支援方法に関する。
 交差道路から他車輌が自車輌の道路に旋回しようとしている場合に、他車輌が自車輌の走行車線にはみ出して衝突の可能性があると判断したときには、警報出力、強制制動、回避操舵等の運転支援制御を実行する技術が開示されている(例えば特許文献1参照)。
特開2010-083314号公報 特開2006-143052号公報 特開2000-062555号公報 特開2009-096361号公報
 しかしながら、他車輌が自車輌の走行を阻害する場合は、上記特許文献1のように他車輌が交差道路から進入する場合に限られない。自車輌が通常走行しているときに、不意な対向車輌の自車輌の進行方向への進入により自車輌の走行が対向車輌により阻害される可能性もある。
 本発明は、上記事情に鑑みてなされたものであって、自車輌の通常走行時における対向車輌の挙動に対応して警告又は補助の支援を実施する技術を提供することを目的とする。
 本発明にあっては、以下の構成を採用する。すなわち、本発明は、
 車線境界を示す道路標示又は走行不可域に基づいて設定された走路からの車輌逸脱を回避するように警告又は補助の支援を実施する走行支援装置であって、
 前記走路に対する対向車輌の進入角度に応じて、支援実施タイミングを変更する走行支援装置である。
 車線境界を示す道路標示とは、道路表面における、白線、黄線、点線等の線、道路鋲、発光体等といった中央分離帯や車線間の仕切り、アスファルトと砂利との境界といった車道と車道以外との境界(区画線)等が挙げられる。走行不可域とは、ガードレール、柵、側壁、縁石、歩行者、自転車、他車輌等の障害物や、側溝、凹部、段差等の車輌走行平面と高低差のある領域が挙げられる。走行不可域には、車輌が走行できない領域の他に、車輌を走行させたくない領域や車輌の走行が好ましくない領域が含まれる。
 対向車輌とは、自車輌と同じ道路の対向車線において自車輌とは逆方向に走行している車輌である。走路に対する対向車輌の進入角度とは、走路延伸方向と対向車輌の進行方向とのなす鋭角をいう。走路に対する自車輌の逸脱角度とは、走路延伸方向と自車輌の進行方向とのなす鋭角をいう。支援実施タイミングとは、実際に車輌が警告又は補助の支援を実施するタイミングである。
 本発明によると、走路に対する対向車輌の進入角度に応じて、支援実施タイミングを変更するので、対向車輌の挙動が自車輌の走行を阻害する可能性が高い挙動である程、支援実施タイミングを早めることができる。このように自車輌の通常走行時における対向車輌の挙動に対応して警告又は補助の支援を実施することができる。
 前記走路に対する対向車輌の進入角度に加えて、前記走路に対する自車輌の逸脱角度に応じて、支援実施タイミングを変更するとよい。
 本発明によると、走路に対する対向車輌の進入角度に加えて、走路に対する自車輌の逸脱角度に応じて、支援実施タイミングを変更するので、対向車輌及び自車輌の挙動が自車輌の走行を阻害する可能性が高い挙動である程、支援実施タイミングを早めることができる。このように自車輌の通常走行時における対向車輌及び自車輌の挙動に対応して警告又は補助の支援を実施することができる。
 支援実施タイミングの変更は、前記走路の境界位置を変更することで行うとよい。
 本発明によると、走路の境界位置を変更して支援実施タイミングを変更することができる。例えば、前記走路に対する対向車輌の進入角度及び前記走路に対する自車輌の逸脱角度が大きくなる程、前記走路の境界位置を自車輌側に近付けて、支援実施タイミングを早めるとよい。
 支援実施タイミングの変更は、前記走路の境界に対する自車輌の支援実施タイミングとなる時間又は距離を変更することで行うとよい。
 本発明によると、走路の境界に対する自車輌の支援実施タイミングとなる距離又は時間を変更して支援実施タイミングを変更することができる。例えば、前記走路に対する対向車輌の進入角度及び前記走路に対する自車輌の逸脱角度が大きくなる程、前記走路の境界に対する自車輌の支援実施タイミングとなる時間又は距離を大きくし、支援実施タイミングを早めるとよい。
 本発明にあっては、以下の構成を採用する。すなわち、本発明は、
 車線境界を示す道路標示又は走行不可域に基づいて設定された走路からの車輌逸脱を回避するように警告又は補助の支援を実施する走行支援方法であって、
 前記走路に対する対向車輌の進入角度に応じて、支援実施タイミングを変更する走行支援方法である。
 本発明によっても、自車輌の通常走行時における対向車輌の挙動に対応して警告又は補助の支援を実施することができる。
 本発明によれば、自車輌の通常走行時における対向車輌の挙動に対応して警告又は補助の支援を実施することができる。
本発明の実施例1に係る運転支援装置の構成を機能別に示すブロック図である。 実施例1に係る自車輌及び対向車輌が道路上に存在する場合を示す図である。 実施例1に係るθ1+θ2と走路の境界との関係を示す図である。 実施例1に係るθ1及びθ2の重み係数を示す図である。 実施例1に係るθ1+θ2の大きさの違いにより設定される走路の境界位置を示す図である。 実施例1に係る対向車輌が存在する場合の走路設定制御ルーチンを示すフローチャートである。 実施例2に係るθ1+θ2と支援実施タイミングとなる時間や距離との関係を示す図である。 実施例2に係るθ1+θ2の大きさの違いにより設定される支援実施タイミングとなる時間や距離のラインHを示す図である。 実施例2に係る対向車輌が存在する場合の支援実施時期決定制御ルーチンを示すフローチャートである。
 以下に本発明の具体的な実施例を説明する。ここでは、車線や走行不可域を認識し、認識した車線や走行不可域に基づき走路を設定し、自車輌の走路からの逸脱を回避するための運転支援処理を行う運転支援装置(走行支援装置、例えば、LDW、LDP等)について説明する。なおここでいう運転支援処理は、車輌が緊急停止してしまう場合や車輌と障害物との衝突が不可避な場合に実行される衝突被害軽減処理より早く実行され、走行自体は継続できるように支援を行うものである。このため、本発明の運転支援装置は、衝突被害軽減処理を行う運転支援装置(例えば、PCS等)とは異なるものである。また、以下の実施例において説明する構成は、本発明の一実施態様を示すものであり、本発明の構成を限定するものではない。
 <実施例1>
 (運転支援装置)
 図1は、本発明の実施例1に係る運転支援装置(走行支援装置)の構成を機能別に示すブロック図である。図1に示すように、車輌には、運転支援装置を構成する運転支援用の電子制御ユニット(ECU)1が搭載されている。
 ECU1は、CPU、ROM、RAM、バックアップRAM、I/Oインターフェイス等を備えた電子制御ユニットである。ECU1には、レーダ装置2、車外用カメラ3、ドライバー用カメラ4、ヨーレートセンサ5、車輪速センサ6、ブレーキセンサ7、アクセルセンサ8、ウィンカースイッチ9、舵角センサ10、操舵トルクセンサ11等の各種センサが電気的に接続され、それらセンサの出力信号がECU1へ入力される。
 レーダ装置2は、車輌の前部に取り付けられ、車輌の前方へミリ波を送信すると共に車外の障害物により反射された反射波を受信することにより、車輌に対する障害物の相対位置に関する情報(例えば座標情報)を出力する。車外用カメラ3は、車室内において車輌前方を視野に捉えることができる位置に配置され、車輌前方の画像を出力する。ドライバー用カメラ4は、車室内において運転者を視野に捉えることができる位置に配置され、運転者の画像を出力する。ヨーレートセンサ5は、車体に取り付けられ、車輌のヨーレートに相関する電気信号を出力する。車輪速センサ6は、車輌の車輪に取り付けられ、車輌の走行速度に相関する電気信号を出力する。
 ブレーキセンサ7は、車室内のブレーキペダルに取り付けられ、ブレーキペダルの操作トルク(踏力)に相関する電気信号を出力する。アクセルセンサ8は、車室内のアクセルペダルに取り付けられ、アクセルペダルの操作トルク(踏力)に相関する電気信号を出力する。ウィンカースイッチ9は、車室内のウィンカーレバーに取り付けられ、ウィンカーレバーが操作されたときにウィンカー(方向指示器)が示す方向に相関する電気信号を出力する。舵角センサ10は、車室内のステアリングホイールに接続されたステアリングロッドに取り付けられ、ステアリングホイールの中立位置からの回転角度に相関する電気信号を出力する。操舵トルクセンサ11は、ステアリングロッドに取り付けられ、ステアリングホイールに入力されるトルク(操舵トルク)に相関する電気信号を出力する。
 また、ECU1には、ブザー12、表示装置13、電動パワーステアリング(EPS)14、電子制御式ブレーキ(ECB)15等の各種機器が接続され、それら各種機器がECU1によって電気的に制御されるようになっている。
 ブザー12は、車室内に取り付けられ、警告音等を出力する。表示装置13は、車室内に取り付けられ、各種メッセージや警告灯を表示する。電動パワーステアリング(EPS)14は、電動モータが発生するトルクを利用して、ステアリングホイールの操作を補助する。電子制御式ブレーキ(ECB)15は、各車輪に設けられた摩擦ブレーキの作動油圧(ブレーキ油圧)を電気的に調整する。
 ECU1は、上記した各種センサの出力信号を利用して各種機器を制御するために、以下のような機能を有している。すなわち、ECU1は、障害物情報処理部100、車線情報処理部101、意識低下判定部102、運転者意図判定部103、統合認識処理部104、共通支援判定部105、警報判定部106、制御判定部107、及び、制御量演算部108を備えている。
 障害物情報処理部100は、レーダ装置2から出力される複数の障害物等の走行不可域の座標情報に基づいて、複数の走行不可域を回避することができる回帰直線を近似的に求め、その回帰直線の座標情報や回帰直線に対する車輌のヨー角等を含む情報を生成する。また、レーダ装置2により単体の障害物等の走行不可域が検出された場合は、その走行不可域の座標情報や走行不可域に対する車輌のヨー角に関する情報も生成する。なお、障害物情報処理部100は、車外用カメラ3により撮像された画像に基づいて、走行不可域に関する情報を生成してもよい。走行不可域とは、ガードレール、柵、側壁、縁石、歩行者、自転車、他車輌等の障害物や、側溝、凹部、段差等の車輌走行平面と高低差のある領域が挙げられる。走行不可域には、車輌が走行できない領域の他に、車輌を走行させたくない領域や車輌の走行が好ましくない領域が含まれる。
 車線情報処理部101は、車外用カメラ3により撮像された画像に基づいて、車線に関する情報や車線に対する車輌の姿勢に関する情報を生成する。車線に関する情報は、車線境界を示す道路標示に関する情報や、当該道路標示で規定される車線の幅に関する情報である。車線境界を示す道路標示とは、道路表面における、白線、黄線、点線等の線(区画線)、道路鋲、発光体等といった中央分離帯や車線間の仕切り、アスファルトと砂利との境界といった車道と車道以外との境界等が挙げられる。車線に対する車輌の姿勢に関する情報は、車線境界を示す道路標示と車輌との距離に関する情報、車線中央部に対する車輌位置のオフセット量に関する情報、車線境界を示す道路標示に対する車輌進行方向のヨー角に関する情報である。なお、車輌がナビゲーションシステムを搭載している場合には、車線情報処理部101は、ナビゲーションシステムが有する地図情報とGPS情報とから車線に関する情報を生成してもよい。
 意識低下判定部102は、ドライバー用カメラ4により撮像された画像に基づいて、運転者の意識低下度(覚醒度)を判定する。意識低下判定部102は、ドライバー用カメラ4により撮像された画像から運転者の閉眼時間や閉眼頻度を演算し、閉眼時間又は閉眼頻度が上限値を超えたときに運転者の意識が低下していると判定(覚醒度が低いと判定)する。また、意識低下判定部102は、ドライバー用カメラ4により撮像された画像から運転者の顔の向きや視線の方向が車輌進行方向から逸脱している時間を演算し、算出された時間が上限値を超えたときに運転者が脇見をしていると判定してもよい。
 運転者意図判定部103は、車輪速センサ6、ブレーキセンサ7、アクセルセンサ8、ウィンカースイッチ9、舵角センサ10、及び操舵トルクセンサ11の出力信号に基づいて、ブレーキペダルの操作量の変化、アクセルペダルの操作量の変化、或いはステアリングホイールの操作(操舵)量の変化が、運転者の意図に因るものであるか否かを判別する。
 統合認識処理部104は、障害物情報処理部100により生成された情報と、車線情報処理部101により生成された情報とに基づいて、車輌が走行可能な走路を設定し、走路境界に対する車輌のヨー角や、走路中央部に対する車輌のオフセット量を求める。基本的には、走路としては、車線幅そのものに設定される。なお、車線の幅が狭い道路においては、運転者は、車輌を車線から逸脱させざるを得ない場合がある。これに対し、統合認識処理部104は、車線の幅が狭い道路については、車線境界を示す道路標示に関する情報と、車線の周囲に存在する走行不可域に関する情報と、に基づいて、車線を逸脱して走路を設定するようにしてもよい。つまり、統合認識処理部104は、車線境界を示す道路標示から当該道路標示を逸脱する仮の走路を設定し、その仮の走路と走行不可域とから当該道路標示を逸脱する正規の走路を設定するようにしてもよい。また、統合認識処理部104は、障害物情報処理部100から単体の走行不可域に関する情報を受け取った場合は、その走行不可域の長さを道路と平行に延長することにより、走路を設定するようにしてもよい。すなわち、統合認識処理部104は、座標上の点として検出された走行不可域について、座標上の線とみなして走路の設定を行うようにしてもよい。その際の延長量(線の長さ)は、車輪速センサ6の出力信号(車速)が高い時や線に対する車輌のヨー角が大きい時は、車速が低い時や線に対するヨー角が小さい時より長くされてもよい。
 また、統合認識処理部104によって設定される走路には、認識度LRが付与される。この走路の認識度LRとは、障害物情報処理部100により生成された情報による走行不可域の精度(存在の確かさ)と、車線情報処理部101により生成された情報による車線境界を示す道路標示の精度(存在の確かさ)と、を組み合わせて設定される走路の精度(確かさ)を数値化して表したものであり、高い程、良いとされる。つまり、走路の認識度LRは、警告又は補助を行うか否かを判別するための度合であり、認識度LRが第1閾値(所定の閾値)以上であると警告又は補助を行い、認識度LRが第1閾値(所定の閾値)よりも低いと警告又は補助を行わないものである。統合認識処理部104による走路の認識度LRの具体的な算出方法は、走路の認識度LRと検出エッジ点数との関係を表したマップを用いる。障害物情報処理部100により生成された情報による走行不可域の精度(存在の確かさ)と、車線情報処理部101により生成された情報による車線境界を示す道路標示の精度(存在の確かさ)と、は、夫々の検出時の検出エッジ点数に比例する。つまり、走行不可域の精度及び車線境界を示す道路標示の精度は、検出エッジ点数が多い程、高いとされる。このため、走路を設定する際に用いられた走行不可域及び車線境界を示す道路標示の検出エッジ点数をマップに取り込むことで、走路の認識度LRを算出することができる。また、検出エッジ点数が所定点数以上とならない場合には、走路自体が設定されないようにしてもよい。
 共通支援判定部105は、統合認識処理部104により生成された情報と、意識低下判定部102の判定結果と、運転者意図判定部103の判定結果と、に基づいて、運転支援処理を実行するか否かを判別する。共通支援判定部105は、意識低下判定部102により運転者の意識が低下している、或いは運転者が脇見をしていると判定された場合に、運転支援処理の実行を許可してもよい。また、共通支援判定部105は、運転者意図判定部103により運転者が意図的な操作を行っていると判定された場合には、運転支援処理の実行を制限してもよい。また、共通支援判定部105は、統合認識処理部104により算出された走路の認識度LRが予め定めた第1閾値Rth以上の場合に、無条件で運転支援処理を実行する。一方、走路の認識度LRが予め定めた第1閾値Rthよりも低い場合には、運転支援処理を実行しない。或いは、走路の認識度LRが予め定めた第1閾値Rthよりも低い場合には、ある特別な条件が成立する場合に運転支援処理を実行できるようにしてもよい。ここで、第1閾値Rthは、走路の認識度LRだけで無条件で運転支援処理を実行するか否かを判別するために設けられた閾値であり、それよりも走路の認識度LRが高いと無条件で運転支援処理を実行することができる。よって、走路の認識度LRが第1閾値Rthよりも低いと、通常では、運転支援処理の実行を制限する。しかしながら、走路の認識度LRが第1閾値Rthよりも低く、運転支援処理の実行を制限する条件であっても、運転者の覚醒度と運転操作の度合との少なくともいずれかが低い場合等には、運転支援処理を実行させるようにしてもよい。
 警報判定部106は、共通支援判定部105により運転支援処理の実行が許可された場合に、ブザー12の鳴動タイミングや、表示装置13による警告メッセージ又は警告灯の表示タイミングを決定する。警報判定部106は、車輌幅方向における車輌と走路境界との距離が予め定めた距離以下になった時や0になった時や、車輌が走路境界を越えた時に、ブザー12の鳴動や、表示装置13による警告メッセージ又は警告灯に表示を行うようにしてもよい。なお、警報判定部106は、走路境界を基準にブザー12の鳴動や、表示装置13による警告メッセージ又は警告灯に表示を行うだけでなく、走路境界をポテンシャル的に幅広く捉え、走路から外れる方向程ブザー12の鳴動を大きくしたり表示装置13による警告メッセージ又は警告灯に表示を大きくしたりしてもよい。また、警報判定部106は、車輌幅方向における車輌が走路境界に到達するまでの時間(TLC(Time to lane crossing))が予め定めた時間以下となった時に、ブザー12の鳴動や、表示装置13による警告メッセージ又は警告灯に表示を行うようにしてもよい。また、車輌がカーブに進入する場合や車輌がカーブを走行している場合には、警報判定部106は、車輌進行方向における車輌と走路境界との距離が予め定めた距離以下になった時や0になった時や、車輌が走路境界を越えた時に、ブザー12の鳴動や、表示装置13による警告メッセージ又は警告灯に表示を行うようにしてもよい。また、車輌がカーブに進入する場合や車輌がカーブを走行している場合には、警報判定部106は、車輌進行方向における車輌が走路境界に到達するまでの時間が予め定めた時間以下となった時に、ブザー12の鳴動や、表示装置13による警告メッセージ又は警告灯に表示を行うようにしてもよい。これら警報判定部106がブザー12の鳴動や、表示装置13による警告メッセージ又は警告灯に表示を行うタイミングが支援実施タイミングに対応する。
 ここで、警報判定部106がブザー12の鳴動や、表示装置13による警告メッセージ又は警告灯に表示を行うようにさせる、予め定めた距離や予め定めた時間は、車輪速センサ6の出力信号(車速)やヨーレートセンサ5の出力信号(ヨーレート)に応じて変更される値である。車速が高い時は低い時に比べ、予め定めた距離が長く設定され、又は予め定めた時間が長く設定される。また、ヨーレートが大きい時は小さい時に比べ、予め定めた距離が長く設定され、又は予め定めた時間が長く設定される。
 なお、運転者に対する警告の方法は、ブザー12の鳴動や表示装置13における警告メッセージ又は警告灯の表示に限られず、シートベルトの締め付けトルクを断続的に変化させる方法等を採用してもよい。
 制御判定部107は、共通支援判定部105により運転支援処理の実行が許可された場合に、走路からの逸脱を回避するために、電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させるか否かを決定する。制御判定部107は、車輌幅方向における車輌と走路境界との距離が予め定めた距離以下になった時や0になった時や、車輌が走路境界を越えた時に、電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させるようにしてもよい。また、制御判定部107は、車輌幅方向における車輌が走路境界に到達するまでの時間が予め定めた時間以下となった時に、電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させるようにしてもよい。また、車輌がカーブに進入する場合や車輌がカーブを走行している場合には、制御判定部107は、車輌進行方向における車輌と走路境界との距離が予め定めた距離以下になった時や0になった時や、車輌が走路境界を越えた時に、電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させるようにしてもよい。また、車輌がカーブに進入する場合や車輌がカーブを走行している場合には、制御判定部107は、車輌進行方向における車輌が走路境界に到達するまでの時間が予め定めた時間以下となった時に、電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させるようにしてもよい。これら制御判定部107が電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させるタイミングが支援実施タイミングに対応する。
 制御判定部107が使用する予め定めた距離や予め定めた時間は、警報判定部106が使用する予め定めた距離や予め定めた時間と同様に車速やヨーレートに応じて変更されるが、警報判定部106が使用する予め定めた距離や予め定めた時間よりも短く設定されるとよい。
 制御量演算部108は、制御判定部107により電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15の作動要求が発生した時に、電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15の制御量を演算すると共に、算出された制御量に従って電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させる。制御量演算部108は、統合認識処理部104により生成された情報と、車輪速センサ6の出力信号(車速)と、ヨーレートセンサ5の出力信号(ヨーレート)と、をパラメータとして、走路逸脱を回避するために必要な目標ヨーレートを演算する。詳細には、制御量演算部108は、走路境界との相対距離をD、車輌の速度(車速)をV、走路境界に対する車輌のヨー角をθとした場合に、以下の式により目標ヨーレートYtrgを演算する。
 Ytrg=(θ・Vsinθ)/D
 制御量演算部108は、目標ヨーレートYtrgを引数として、電動パワーステアリング(EPS)14の制御量(操舵トルク)と電子制御式ブレーキ(ECB)15の制御量(ブレーキ油圧)とを求める。その際、目標ヨーレートYtrgと操舵トルクとの関係、及び目標ヨーレートYtrgとブレーキ油圧との関係は、予めマップ化されていてもよい。なお、目標ヨーレートYtrgが予め定めた値(走路逸脱の回避を操舵のみで達成し得るヨーレートの最大値)より小さい時には、電子制御式ブレーキ(ECB)15のブレーキ油圧は0に設定されてもよい。また、電子制御式ブレーキ(ECB)15が作動する際に、車輌の左右輪の摩擦ブレーキに対して異なるブレーキ油圧が印加されると、電動パワーステアリング(EPS)14により発生させられるヨーレートと干渉するヨーレートが発生してしまう。そのため、左右輪の摩擦ブレーキに対して同等のブレーキ油圧が印加されることが望ましい。なお、制御量演算部108は、走路境界を基準に電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15を作動させるだけでなく、走路境界をポテンシャル的に幅広く捉え、走路から外れる方向程その制御量を大きくするものでもよい。
 なお、車輌を減速させる方法は、電子制御式ブレーキ(ECB)15により摩擦ブレーキを作動させる方法に限られず、車輌の運動エネルギを電気エネルギに変換(回生)させる方法や、変速機の変速比を変更させてエンジンブレーキを増大させる方法を用いてもよい。
 以上述べた運転支援装置によれば、障害物等の走行不可域や車線に基づいて設定された走路からの逸脱を運転者に警告したり、走路逸脱を回避するための操作を補助したりすることができる。
 (対向車輌が存在する場合の走路設定制御)
 統合認識処理部104は、障害物情報処理部100により生成された情報と、車線情報処理部101により生成された情報とに基づいて、自車輌が走行可能な走路を設定する。
 ここで、対向車輌が自車輌と同じ道路の対向車線を自車輌とは逆方向に走行する場合には、自車輌が通常走行しているときに、不意な対向車輌の自車輌の進行方向への進入により自車輌の走行が対向車輌により阻害される可能性がある。このような不意な対向車輌の自車輌の進行方向への進入に対しても自車輌の走行を支援することが望まれる。しかし、自車輌と対向車輌との相対速度によってのみ走行を支援しようとすると、対向車輌が対向車線を単に真っ直ぐ走行している場合であっても走行を支援しようとしてしまうことがあり、支援の精度が低くなってしまうことが考えられた。
 そこで、本実施例では、対向車輌が存在する場合には、自車輌について設定された走路に対する対向車輌の進入角度及び走路に対する自車輌の逸脱角度に応じて、走路の境界位置を変更して支援実施タイミングを変更するようにした。なお、走路の境界位置の変更は、走路延伸方向は変えずに、自車輌に対して走路の境界位置を遠近方向に変化させるものである。
 図2は、自車輌及び対向車輌が道路上に存在する場合を示す図である。図2では、自車輌の走路が車線幅と等しく車線境界を示す道路標示が走路境界に設定されている。この場合には、図2に示すように、走路に対する自車輌の逸脱角度は、走路延伸方向と自車輌の進行方向とのなす鋭角θ1のように表わせる。また、走路に対する対向車輌の進入角度は、走路延伸方向と対向車輌の進行方向とのなす鋭角θ2のように表わせる。
 図3は、θ1+θ2と走路の境界との関係を示す図である。図3に示すように、θ1+θ2が大きくなる程、走路の境界位置を自車輌側に近付け、支援実施タイミングを早める。本実施例の場合には、対向車輌が存在する場合に、θ1+θ2を図3のマップに取り込み、走路の境界位置を変更する設定を行う。このとき用いるθ1及びθ2は、後述する重み付けを行った後の値である。なお、図3では、θ1+θ2が所定の閾値以上になる場合には、走路の境界位置は所定位置で留め、それ以上自車輌側に近付けないようにする。このように走路の境界位置を所定位置で留めるのは、走路の境界が過剰に自車輌側であると、走行支援の不要作動が頻発してしまう懸念があるためである。
 図4は、θ1及びθ2の重み係数を示す図である。θ1は自車輌と走路との関係で算出されるため精度が高い。よって、θ1の重み付けは対向車輌までの距離が離れても100%に維持できる。θ2はレーダ装置2や車外用カメラ3によって検出された対向車輌と走路との関係で算出されるため、対向車輌までの距離が離れる程、精度が悪化する。これは、レーダ装置2や車外用カメラ3が性能のばらつきにより、認識する対向車輌の精度に差が生じ、算出されるθ2が正確さに欠けることがあるためである。よって、θ2の重み係数は対向車輌までの距離が離れる程、低下する。これらθ1,θ2の重み係数を、対向車輌までの距離Lに応じて夫々算出したθ1,θ2に積算してθ1及びθ2の重み付けした正規な値を算出する。これにより、重み付けを加えた正規のθ1及びθ2を用いることで、レーダ装置2や車外用カメラ3の検出誤差を加味し、より運転者の感覚に合った走路の境界位置を設定することができる。
 図5は、θ1+θ2の大きさの違いにより設定される走路の境界位置を示す図である。図5(a)では、対向車輌が存在しないので、自車輌が逸脱角度θ1を有していても自車輌の逸脱角度θ1を加味せず、通常状態のまま自車輌に設定された車線境界を示す道路標示上の走路の境界を維持する。
 図5(b)では、対向車輌が対向車線を真っ直ぐ走行している。このため、進入角度θ2=0°である。一方、自車輌は逸脱角度θ1を有している。この場合には、対向車輌が存在するので、θ1+θ2を図3のマップに取り込み、θ2=0であるので、θ1の分だけ走路の境界位置を自車輌側に近付ける。
 図5(c)では、対向車輌は進入角度θ2を有している。一方、自車輌は逸脱角度θ1を有している。この場合には、対向車輌が存在するので、θ1+θ2を図3のマップに取り込み、θ1+θ2の分だけ走路の境界位置を自車輌側に近付ける。図5(c)では、走路の境界位置が最も自車輌側に近付く。
 以上により、対向車輌が存在する場合には、自車輌の逸脱角度θ1及び対向車輌の進入角度θ2に応じて、走路の境界位置を変更して支援実施タイミングを変更する。これにより、対向車輌及び自車輌の挙動が自車輌の走行を阻害する可能性が高い挙動である程、支援実施タイミングを早めることができる。このように自車輌の対向車線を有する道路での通常走行時における対向車輌及び自車輌の挙動に対応して警告又は補助の支援を実施することができる。
 (対向車が存在する場合の走路設定制御ルーチン)
 統合認識処理部104における対向車輌が存在する場合の走路設定制御ルーチンについて、図6に示すフローチャートに基づいて説明する。図6は、対向車輌が存在する場合の走路設定制御ルーチンを示すフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU1の統合認識処理部104によって実行される。
 図6に示すルーチンが開始されると、S101では、統合認識処理部104によって先に設定された走路に対する自車輌の逸脱角度θ1を算出する。逸脱角度θ1は、走路延伸方向と、車外用カメラ3の情報等から求まる自車輌の進行方向と、から算出することができる。
 S102では、自車輌が走行する道路に対向車輌が存在するか否かを判別する。対向車輌は、レーダ装置2や車外用カメラ3によって検出される。S102において肯定判定された場合には、S103へ移行する。S102において否定判定された場合には、本ルーチンを一旦終了する。
 S103では、対向車輌までの距離L及び走路に対する対向車輌の進入角度θ2を算出する。対向車輌までの距離Lは、レーダ装置2や車外用カメラ3によって検出される。進入角度θ2は、走路延伸方向と、レーダ装置2や車外用カメラ3によって検出された対向車輌の進行方向(挙動)と、から算出することができる。
 S104では、θ1及びθ2に重み付けを行う。S103で算出した対向車輌までの距離Lを図4に示すマップに取り込み、θ1,θ2の重み係数を算出する。そして、θ1の重み係数をS101で算出した逸脱角度に乗算し、重み付けしたθ1を算出する。θ2の重み係数をS103で算出した進入角度に乗算し、重み付けしたθ2を算出する。
 S105では、重み付けしたθ1+θ2に応じて走路の境界位置を変更する。具体的には、S104で算出された重み付けしたθ1及びθ2を加算し、この重み付けしたθ1+θ2を図3に示すマップに取り込み、どれだけ走路の境界位置を自車輌側に近付けるかの距離を算出する。そして、算出した自車輌側に近付ける距離の分、先の設定済みの走路から自車輌側へ近付けて走路を設定する。本ステップの処理の後、本ルーチンを一旦終了する。
 以上の本ルーチンにより、対向車輌が存在する場合には、逸脱角度θ1及び進入角度θ2に応じて、走路の境界位置を変更することができる。このように変更された走路の境界位置に基づいて、警報判定部106では警報の作動タイミングを決定し、制御判定部107では電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15の作動タイミングを決定するので、支援実施タイミングを変更することができる。
 <実施例2>
 上記実施例1では、走路の境界位置を変更して支援実施タイミングを変更した。しかし、支援実施タイミングの変更方法はこれに限られない。本実施例では、走路の境界に対する自車輌の支援実施タイミングとなる時間又は距離を変更して支援実施タイミングを変更する。本実施例では、その特徴部分について説明する。その他の構成については説明を省略する。
 (対向車輌が存在する場合の支援実施時期決定制御)
 本実施例では、警報判定部106及び制御判定部107は、支援実施タイミングを、自車輌が走路の境界を逸脱するまでの逸脱予測時間が予め定めた時間になった時としている。なお、支援実施タイミングを、自車輌と走路の境界との逸脱予測距離が予め定めた距離になった時としてもよい。このような支援実施タイミングとなる時間や距離は、通常稼働時には、一定である。しかし、本実施例では、対向車輌が存在する場合には、自車輌について設定された走路に対する対向車輌の進入角度及び走路に対する自車輌の逸脱角度に応じて、支援実施タイミングとなる時間や距離を変更して支援実施タイミングを変更するようにした。
 図7は、θ1+θ2と支援実施タイミングとなる時間や距離との関係を示す図である。図7に示すように、θ1+θ2が大きくなる程、支援実施タイミングとなる時間や距離を大きくし、走路の境界位置から自車輌が離れていても支援が開始されるよう、支援実施タイミングを早める。本実施例の場合には、対向車輌が存在する場合に、θ1+θ2を図7のマップに取り込み、支援実施タイミングとなる時間や距離を変更する設定を行う。このとき用いるθ1及びθ2は、上記実施例で説明した重み付けを行った後の値である。なお、図7では、θ1+θ2が所定の閾値以上になる場合には、支援実施タイミングとなる時間や距離は所定値で留め、それ以上大きくしないようにする。このように支援実施タイミングとなる時間や距離を所定値で留めるのは、支援実施タイミングとなる時間や距離が過剰に大きくなると、走行支援の不要作動が頻発してしまう懸念があるためである。
 図8は、θ1+θ2の大きさの違いにより設定される支援実施タイミングとなる時間や距離のラインHを示す図である。図8(a)では、対向車輌が存在しないので、自車輌が逸脱角度θ1を有していても自車輌の逸脱角度θ1を加味せず、通常状態のまま自車輌に設定された車線境界を示す道路標示である走路の境界から一定値にラインHを維持する。
 図8(b)では、対向車輌が対向車線を真っ直ぐ走行している。このため、進入角度θ2=0°である。一方、自車輌は逸脱角度θ1を有している。この場合には、対向車輌が存在するので、θ1+θ2を図7のマップに取り込み、θ2=0であるので、走路の境界からθ1の分だけ支援実施タイミングとなる時間や距離のラインHを自車輌側に近付ける。
 図8(c)では、対向車輌は進入角度θ2を有している。一方、自車輌は逸脱角度θ1を有している。この場合には、対向車輌が存在するので、θ1+θ2を図7のマップに取り込み、走路の境界からθ1+θ2の分だけ支援実施タイミングとなる時間や距離のラインHを自車輌側に近付ける。図8(c)では、支援実施タイミングとなる時間や距離のラインHが最も自車輌側に近付く。すなわち、支援実施タイミングとなる時間や距離が最も大きくなる。
 以上により、対向車輌が存在する場合には、自車輌の逸脱角度θ1及び対向車輌の進入角度θ2に応じて、支援実施タイミングとなる時間や距離を変更して支援実施タイミングを変更する。これにより、対向車輌及び自車輌の挙動が自車輌の走行を阻害する可能性が高い挙動である程、支援実施タイミングを早めることができる。このように自車輌の対向車線を有する道路での通常走行時における対向車輌及び自車輌の挙動に対応して警告又は補助の支援を実施することができる。
 (対向車が存在する場合の支援実施時期決定制御ルーチン)
 警報判定部106及び制御判定部107における対向車輌が存在する場合の支援実施時期決定制御ルーチンについて、図9に示すフローチャートに基づいて説明する。図9は、対向車輌が存在する場合の支援実施時期決定制御ルーチンを示すフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU1の警報判定部106又は制御判定部107によって実行される。
 図9に示すルーチンが開始されると、S201では、統合認識処理部104によって先に設定された走路に対する自車輌の逸脱角度θ1を算出する。逸脱角度θ1は、走路延伸方向と、車外用カメラ3の情報等から求まる自車輌の進行方向と、から算出することができる。
 S202では、自車輌が走行する道路に対向車輌が存在するか否かを判別する。対向車輌は、レーダ装置2や車外用カメラ3によって検出される。S202において肯定判定された場合には、S203へ移行する。S202において否定判定された場合には、本ルーチンを一旦終了する。
 S203では、対向車輌までの距離L及び走路に対する対向車輌の進入角度θ2を算出する。対向車輌までの距離Lは、レーダ装置2や車外用カメラ3によって検出される。進入角度θ2は、走路延伸方向と、レーダ装置2や車外用カメラ3によって検出された対向車輌の進行方向(挙動)と、から算出することができる。
 S204では、θ1及びθ2に重み付けを行う。S203で算出した対向車輌までの距離Lを図4に示すマップに取り込み、θ1,θ2の重み係数を算出する。そして、θ1の重み係数をS101で算出した逸脱角度に乗算し、重み付けしたθ1を算出する。θ2の重み係数をS103で算出した進入角度に乗算し、重み付けしたθ2を算出する。
 S205では、重み付けしたθ1+θ2に応じて支援実施タイミングとなる時間や距離を変更する。具体的には、S204で算出された重み付けしたθ1及びθ2を加算し、この重み付けしたθ1+θ2を図7に示すマップに取り込み、どれだけ支援実施タイミングとなる時間や距離を大きくするかの値を算出する。そして、算出した自車輌側に近付ける値の分、通常設定されている支援実施タイミングとなる時間や距離に加算する。本ステップの処理の後、本ルーチンを一旦終了する。
 以上の本ルーチンにより、対向車輌が存在する場合には、逸脱角度θ1及び進入角度θ2に応じて、支援実施タイミングとなる時間や距離を変更することができる。このように変更された支援実施タイミングとなる時間や距離に基づいて、警報判定部106では警報の作動タイミングを決定し、制御判定部107では電動パワーステアリング(EPS)14や電子制御式ブレーキ(ECB)15の作動タイミングを決定するので、支援実施タイミングを変更することができる。
 <その他>
 本発明に係る走行支援装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。上記実施例では、自車輌の逸脱角度θ1及び対向車輌の進入角度θ2に応じて、支援実施タイミングを変更していた。しかし、本発明の走行支援装置は、対向車輌の進入角度θ2のみに応じて、支援実施タイミングを変更してもよい。これにより、対向車輌の挙動が自車輌の走行を阻害する可能性が高い挙動である程、支援実施タイミングを早めることができる。このように自車輌の対向車線を有する道路での通常走行時における対向車輌の挙動に対応して警告又は補助の支援を実施することができる。また上記実施例は、本発明に係る走行支援方法の実施例でもある。
1:ECU
2:レーダ装置
3:車外用カメラ
4:ドライバー用カメラ
5:ヨーレートセンサ
6:車輪速センサ
7:ブレーキセンサ
8:アクセルセンサ
9:ウィンカースイッチ
10:舵角センサ
11:操舵トルクセンサ
12:ブザー
13:表示装置
14:EPS
15:ECB
100:障害物情報処理部
101:車線情報処理部
102:意識低下判定部
103:運転者意図判定部
104:統合認識処理部
105:共通支援判定部
106:警報判定部
107:制御判定部
108:制御量演算部

Claims (7)

  1.  車線境界を示す道路標示又は走行不可域に基づいて設定された走路からの車輌逸脱を回避するように警告又は補助の支援を実施する走行支援装置であって、
     前記走路に対する対向車輌の進入角度に応じて、支援実施タイミングを変更する走行支援装置。
  2.  前記走路に対する対向車輌の進入角度に加えて、前記走路に対する自車輌の逸脱角度に応じて、支援実施タイミングを変更する請求項1に記載の走行支援装置。
  3.  支援実施タイミングの変更は、前記走路の境界位置を変更することで行う請求項1又は2に記載の走行支援装置。
  4.  前記走路に対する対向車輌の進入角度及び前記走路に対する自車輌の逸脱角度が大きくなる程、前記走路の境界位置を自車輌側に近付けて、支援実施タイミングを早める請求項3に記載の走行支援装置。
  5.  支援実施タイミングの変更は、前記走路の境界に対する自車輌の支援実施タイミングとなる時間又は距離を変更することで行う請求項1又は2に記載の走行支援装置。
  6.  前記走路に対する対向車輌の進入角度及び前記走路に対する自車輌の逸脱角度が大きくなる程、前記走路の境界に対する自車輌の支援実施タイミングとなる時間又は距離を大きくし、支援実施タイミングを早める請求項5に記載の走行支援装置。
  7.  車線境界を示す道路標示又は走行不可域に基づいて設定された走路からの車輌逸脱を回避するように警告又は補助の支援を実施する走行支援方法であって、
     前記走路に対する対向車輌の進入角度に応じて、支援実施タイミングを変更する走行支援方法。
PCT/JP2011/054536 2011-02-28 2011-02-28 走行支援装置及び方法 WO2012117505A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013502079A JP5556953B2 (ja) 2011-02-28 2011-02-28 走行支援装置及び方法
US13/982,568 US9852633B2 (en) 2011-02-28 2011-02-28 Travel assist apparatus and travel assist method
PCT/JP2011/054536 WO2012117505A1 (ja) 2011-02-28 2011-02-28 走行支援装置及び方法
CN201180068650.4A CN103403778B (zh) 2011-02-28 2011-02-28 行驶支援装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054536 WO2012117505A1 (ja) 2011-02-28 2011-02-28 走行支援装置及び方法

Publications (1)

Publication Number Publication Date
WO2012117505A1 true WO2012117505A1 (ja) 2012-09-07

Family

ID=46757470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054536 WO2012117505A1 (ja) 2011-02-28 2011-02-28 走行支援装置及び方法

Country Status (4)

Country Link
US (1) US9852633B2 (ja)
JP (1) JP5556953B2 (ja)
CN (1) CN103403778B (ja)
WO (1) WO2012117505A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369777A (zh) * 2015-12-22 2018-08-03 爱信艾达株式会社 自动驾驶支援系统、自动驾驶支援方法以及计算机程序
JP2020155007A (ja) * 2019-03-22 2020-09-24 トヨタ自動車株式会社 衝突前制御装置
CN112991790A (zh) * 2019-12-02 2021-06-18 宇龙计算机通信科技(深圳)有限公司 提示用户的方法、装置、电子设备及介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098996A1 (ja) * 2011-12-28 2013-07-04 トヨタ自動車株式会社 車両の運転支援装置
DE102012208712A1 (de) * 2012-05-24 2013-11-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Vermeiden oder Abmildern einer Kollision eines Fahrzeugs mit einem Hindernis
US8781721B2 (en) * 2012-06-06 2014-07-15 Google Inc. Obstacle evaluation technique
JP6128584B2 (ja) * 2013-01-16 2017-05-17 株式会社Soken 走行経路生成装置
JP5988308B2 (ja) * 2013-12-27 2016-09-07 富士重工業株式会社 車両のレーンキープ制御装置
DE102014217694A1 (de) * 2014-09-04 2016-03-10 Volkswagen Aktiengesellschaft Spurhalteassistent
WO2016048369A1 (en) * 2014-09-26 2016-03-31 Nissan North America, Inc. Method and system of assisting a driver of a vehicle
JP6115576B2 (ja) * 2015-01-07 2017-04-19 トヨタ自動車株式会社 車両走行制御装置
DE102015203270A1 (de) * 2015-02-24 2016-08-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anpassen einer Fahrzeuggeschwindigkeit für ein Fahrzeug
US10691958B1 (en) * 2015-07-30 2020-06-23 Ambarella International Lp Per-lane traffic data collection and/or navigation
US10217363B2 (en) * 2015-10-29 2019-02-26 Faraday&Future Inc. Methods and systems for electronically assisted lane entrance
JP6922297B2 (ja) * 2017-03-21 2021-08-18 三菱自動車工業株式会社 運転支援システム
JP7003630B2 (ja) * 2017-12-20 2022-01-20 いすゞ自動車株式会社 操舵制御装置及び操舵制御方法
CN111683851B (zh) * 2018-12-26 2023-09-12 百度时代网络技术(北京)有限公司 用于自动驾驶的自反向车道的相互避开算法
FR3118825B1 (fr) * 2021-01-13 2024-04-26 Psa Automobiles Sa Dispositif anticollision pour véhicule automobile
US11772648B2 (en) 2021-02-26 2023-10-03 R.H. Sheppard Co. Inc. Lane keep assistance based on rate of departure
US11908200B2 (en) 2021-07-13 2024-02-20 Canoo Technologies Inc. System and method in the prediction of target vehicle behavior based on image frame and normalization
US11891059B2 (en) 2021-07-13 2024-02-06 Canoo Technologies Inc. System and methods of integrating vehicle kinematics and dynamics for lateral control feature at autonomous driving
US11891060B2 (en) * 2021-07-13 2024-02-06 Canoo Technologies Inc. System and method in lane departure warning with full nonlinear kinematics and curvature
US11845428B2 (en) 2021-07-13 2023-12-19 Canoo Technologies Inc. System and method for lane departure warning with ego motion and vision
US11840147B2 (en) 2021-07-13 2023-12-12 Canoo Technologies Inc. System and method in data-driven vehicle dynamic modeling for path-planning and control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298294A (ja) * 2005-04-25 2006-11-02 Honda Motor Co Ltd 車両の走行安全装置
JP2009078733A (ja) * 2007-09-27 2009-04-16 Hitachi Ltd 走行支援装置
JP2009096361A (ja) * 2007-10-17 2009-05-07 Toyota Motor Corp 車両走行支援装置
JP2010023721A (ja) * 2008-07-22 2010-02-04 Hitachi Ltd 走行支援装置
JP2011003075A (ja) * 2009-06-19 2011-01-06 Fuji Heavy Ind Ltd 車両用運転支援装置
JP2011018283A (ja) * 2009-07-10 2011-01-27 Toyota Motor Corp 物体検出装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198349A (ja) * 1993-12-29 1995-08-01 Nissan Motor Co Ltd 道路形状及び自車両姿勢の計測装置
US6272418B1 (en) * 1997-12-12 2001-08-07 Honda Giken Kogyo Kabushiki Kaisha Integrated control system of vehicle
JP2000062555A (ja) 1998-08-20 2000-02-29 Honda Motor Co Ltd 車両の走行安全装置
US6269308B1 (en) * 1998-08-20 2001-07-31 Honda Giken Kogyo Kabushiki Kaisha Safety running system for vehicle
AUPS123702A0 (en) * 2002-03-22 2002-04-18 Nahla, Ibrahim S. Mr The train navigtion and control system (TNCS) for multiple tracks
JPWO2004064007A1 (ja) * 2003-01-14 2006-05-18 松下電器産業株式会社 ナビゲーション装置および接近情報表示方法
JP4291741B2 (ja) * 2004-06-02 2009-07-08 トヨタ自動車株式会社 車線逸脱警報装置
JP2006131055A (ja) * 2004-11-04 2006-05-25 Denso Corp 車両走行制御装置
JP4421450B2 (ja) 2004-11-22 2010-02-24 本田技研工業株式会社 車両の逸脱判定装置
DE102004057296A1 (de) * 2004-11-26 2006-06-08 Daimlerchrysler Ag Lane-Departure-Warning mit Unterscheidung zwischen Fahrbahnrandmarkierung und baulicher Begrenzung des Fahrbahnrandes
JP4437071B2 (ja) * 2004-12-24 2010-03-24 パナソニック株式会社 運転支援装置
JP4457891B2 (ja) * 2004-12-28 2010-04-28 日産自動車株式会社 車線逸脱防止装置
US20070225914A1 (en) * 2006-03-21 2007-09-27 Hiroshi Kawazoe Lane departure avoidance control
JP4835309B2 (ja) * 2006-07-31 2011-12-14 日産自動車株式会社 車線逸脱防止装置
DE102007009745A1 (de) * 2007-02-28 2008-09-04 Continental Automotive Gmbh Einparkhalbautomat
KR100941271B1 (ko) * 2007-03-30 2010-02-11 현대자동차주식회사 자동차용 차선이탈 방지 방법
JP4532569B2 (ja) * 2008-01-21 2010-08-25 本田技研工業株式会社 車両の運転支援装置
JP5359085B2 (ja) * 2008-03-04 2013-12-04 日産自動車株式会社 車線維持支援装置及び車線維持支援方法
JP2010083314A (ja) 2008-09-30 2010-04-15 Fuji Heavy Ind Ltd 車両の運転支援装置
JP5174609B2 (ja) * 2008-10-10 2013-04-03 日立オートモティブシステムズ株式会社 走行支援装置
JP4988786B2 (ja) * 2009-04-09 2012-08-01 株式会社日本自動車部品総合研究所 境界線認識装置
JP5012849B2 (ja) * 2009-05-13 2012-08-29 トヨタ自動車株式会社 車両走行制御装置
KR100956858B1 (ko) * 2009-05-19 2010-05-11 주식회사 이미지넥스트 차량 주변 영상을 이용하는 차선 이탈 감지 방법 및 장치
US8378850B2 (en) * 2009-09-11 2013-02-19 Ford Global Technologies, Llc Vehicle park assist system and method for parking a vehicle using such system
US20110068953A1 (en) * 2009-09-24 2011-03-24 Salvador Toledo Vehicle Park Assist System and Method for Parking a Vehicle Using Such System
JP5286214B2 (ja) * 2009-09-30 2013-09-11 日立オートモティブシステムズ株式会社 車両制御装置
JP5429126B2 (ja) * 2010-10-01 2014-02-26 トヨタ自動車株式会社 走行支援装置及び方法
DE102013100578B4 (de) * 2012-01-25 2024-02-01 Denso Corporation Spurhalte-Steuersystem
DE102013100577B4 (de) * 2012-01-25 2024-02-29 Denso Corporation Spurhalte-Steuersystem
DE102013100447A1 (de) * 2012-01-25 2013-08-22 Denso Corporation Spurhalte-Steuersystem
DE102013100446B4 (de) * 2012-01-25 2020-01-09 Denso Corporation Spurhalte-Steuersystem
JP6035064B2 (ja) * 2012-07-03 2016-11-30 クラリオン株式会社 車線逸脱判定装置,車線逸脱警報装置及びそれらを使った車両制御システム
KR101398223B1 (ko) * 2012-11-06 2014-05-23 현대모비스 주식회사 차량의 차선 변경 제어 장치 및 그 제어 방법
US20160091325A1 (en) * 2014-09-25 2016-03-31 Nissan North America, Inc. Method and system of assisting a driver of a vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298294A (ja) * 2005-04-25 2006-11-02 Honda Motor Co Ltd 車両の走行安全装置
JP2009078733A (ja) * 2007-09-27 2009-04-16 Hitachi Ltd 走行支援装置
JP2009096361A (ja) * 2007-10-17 2009-05-07 Toyota Motor Corp 車両走行支援装置
JP2010023721A (ja) * 2008-07-22 2010-02-04 Hitachi Ltd 走行支援装置
JP2011003075A (ja) * 2009-06-19 2011-01-06 Fuji Heavy Ind Ltd 車両用運転支援装置
JP2011018283A (ja) * 2009-07-10 2011-01-27 Toyota Motor Corp 物体検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369777A (zh) * 2015-12-22 2018-08-03 爱信艾达株式会社 自动驾驶支援系统、自动驾驶支援方法以及计算机程序
CN108369777B (zh) * 2015-12-22 2021-01-12 爱信艾达株式会社 自动驾驶支援系统、自动驾驶支援方法以及计算机程序
JP2020155007A (ja) * 2019-03-22 2020-09-24 トヨタ自動車株式会社 衝突前制御装置
JP7115381B2 (ja) 2019-03-22 2022-08-09 トヨタ自動車株式会社 衝突前制御装置
CN112991790A (zh) * 2019-12-02 2021-06-18 宇龙计算机通信科技(深圳)有限公司 提示用户的方法、装置、电子设备及介质
CN112991790B (zh) * 2019-12-02 2022-06-07 宇龙计算机通信科技(深圳)有限公司 提示用户的方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN103403778B (zh) 2016-01-20
US9852633B2 (en) 2017-12-26
CN103403778A (zh) 2013-11-20
JP5556953B2 (ja) 2014-07-23
US20130321172A1 (en) 2013-12-05
JPWO2012117505A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5556953B2 (ja) 走行支援装置及び方法
JP5700111B2 (ja) 走行支援装置及び方法
JP5510254B2 (ja) 走行支援装置及び方法
JP5429126B2 (ja) 走行支援装置及び方法
JP5672310B2 (ja) 走行支援装置、走行支援方法、及び車輌
JP5716343B2 (ja) 車両の物体認識システム
JP5510255B2 (ja) 車両の操作状態判定システム
JP5516301B2 (ja) 車両の走路判定システム
US20130184976A1 (en) Driving support apparatus and driving support method
EP2763119B1 (en) Vehicle driving assistance system
WO2013098996A1 (ja) 車両の運転支援装置
JP2012084038A (ja) 車両の運転支援システム
WO2012124111A1 (ja) 走行支援装置及び方法
JP2012088756A (ja) 走行支援装置及び方法
JP2012232639A (ja) 走行支援装置及び方法
JPWO2013098996A1 (ja) 車両の運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502079

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982568

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859941

Country of ref document: EP

Kind code of ref document: A1