WO2012116659A1 - 独立封装的桥式磁场角度传感器 - Google Patents

独立封装的桥式磁场角度传感器 Download PDF

Info

Publication number
WO2012116659A1
WO2012116659A1 PCT/CN2012/071879 CN2012071879W WO2012116659A1 WO 2012116659 A1 WO2012116659 A1 WO 2012116659A1 CN 2012071879 W CN2012071879 W CN 2012071879W WO 2012116659 A1 WO2012116659 A1 WO 2012116659A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
magnetic field
bridge
mtj
sensor chip
Prior art date
Application number
PCT/CN2012/071879
Other languages
English (en)
French (fr)
Inventor
迪克⋅詹姆斯·G
沈卫锋
王建国
张小军
雷啸锋
金英西
薛松生
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US14/002,738 priority Critical patent/US9123876B2/en
Priority to JP2013555740A priority patent/JP6018093B2/ja
Priority to EP12752760.4A priority patent/EP2682773B1/en
Publication of WO2012116659A1 publication Critical patent/WO2012116659A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the invention relates to the use of MTJ or GMR
  • the angular sensor of the component in particular an angle sensor that can be integrated into a single chip using standard semiconductor packaging technology.
  • Magnetic sensors are widely used in modern measurement systems to detect a variety of physical quantities, including but not limited to magnetic field strength, current, position, displacement, direction and other physical quantities.
  • a variety of sensors have been used to measure magnetic fields and other physical quantities.
  • these technologies have their own limitations, for example, due to various factors such as oversize, low sensitivity, small dynamic range, high cost, and stability. Therefore, the development of a magnetic sensor, especially a magnetic sensor that can be easily integrated with a semiconductor device and an integrated circuit, and which is easy to manufacture, is still an urgent need.
  • Magnetic tunnel junction (MTJ) sensors are characterized by high sensitivity, small size, low cost, and low power consumption.
  • MTJ Magnetic tunnel junction
  • the device is well compatible with standard semiconductor fabrication processes, but there is no efficient way to manufacture high sensitivity, low cost MTJ magnetic sensors at low cost.
  • MTJ Magnetic tunnel junction
  • the present invention provides an independently packaged bridge magnetic field angle sensor that can be used to measure the angular value of a magnetic field.
  • the technical solution adopted by one aspect of the present invention is: an independently packaged bridge magnetic field angle sensor, the sensor includes two half bridge sensors, and each half bridge sensor includes one sensor chip, one of which is a sensor chip. Rotating relative to another sensor chip 90 Aligning, the sensor chip is fixed on a lead frame of a standard semiconductor package, each sensor chip includes a fixed resistance reference resistor and a sense resistor responsive to an external magnetic field change; each reference resistor and sense resistor includes a plurality of MTJ or GMR sensor components, these MTJ or GMR
  • the sensor elements are connected to each other as an array of individual magnetoresistive elements, each reference resistor and the sense resistor further comprise a strip-shaped permanent magnet, and a bias field is provided between the magneto-resistive elements of each column; the resistance of the sense resistor The value is linear with the external magnetic field in a range of the magnetoresistance transmission curve; the lead pad of the sensor chip is arranged such that each pin of the magnetoresistive element is used to connect
  • a separately packaged bridge magnetic field angle sensor the sensor includes two full bridge sensors, namely a first full bridge sensor and a second full bridge sensor, and each full bridge sensor includes two Half bridge sensor, each half bridge sensor includes one MTJ or GMR a magnetoresistive sensor chip, the sensor chip is fixed on a lead frame of a standard semiconductor package; each sensor chip includes a reference resistor with a fixed resistance and a sense resistor that changes resistance in response to an external magnetic field; each reference resistor and sense resistor Including multiple MTJ or GMR sensor components, these MTJ or GMR
  • the sensor elements are connected to each other as an array of individual magnetoresistive elements, each reference resistor and the sense resistor further comprise a strip-shaped permanent magnet, and a bias field is provided between the magneto-resistive elements of each column; the resistance of the sense resistor The value is linear with the external magnetic field in a range of the magnetoresistance transmission curve; the lead pad of the sensor chip is arranged such that each pin
  • one of the first full bridge sensor and the second full bridge sensor is arranged opposite to the other one of the full bridge sensors, and the two of the second full bridge sensors are relatively identical to the first one.
  • Two sensor chips in the bridge sensor rotate 90 degree arrangement.
  • the magnetoresistive element has an elliptical shape.
  • the magnetoresistive element of the reference resistor has a different shape ratio than the magnetoresistive element of the sense resistor.
  • the reference resistor is isolated from the external magnetic field by one or more magnetic shield layers.
  • the sensor chip is provided with a bias voltage or a bias current for driving its operation.
  • the sensor chips are tested and graded prior to assembly to better match the transmission characteristics.
  • the bridge magnetic field angle sensor is arranged in a side-by-side manner for detecting the angle of the low magnetic field gradient.
  • the bridge magnetic field angle sensor is arranged in a common center for detecting the angle of the high magnetic field gradient.
  • Figure 1 is a spin valve with reference magnetization direction pointing in the negative H direction (GMR and MTJ) A schematic diagram of the magnetoresistance response of the sensing element.
  • FIG. 2 is a schematic diagram of a TMR half-bridge with a fixed reference resistor and sense resistor.
  • Figure 3 is an embodiment of a half bridge of a magnetoresistive chip in which the reference resistor and the sense resistor are made up of multiple MTJs
  • the component consists of strip-shaped permanent magnets that are used to provide a bias field to the MTJ component.
  • FIG. 4 is a schematic diagram of an angle sensor employing two half-bridge magnetoresistors disclosed herein.
  • Figure 5 is the output characteristic curve of the output voltage of two independent half bridges of the angle sensor with the magnetic field angle.
  • Figure 6 is an embodiment of an angle sensor consisting of two half-bridge magnetoresistive sensor chips, wherein the two half-bridges rotate each other 90 The two chips are placed in a standard semiconductor package.
  • Figure 7 is a schematic diagram of an angle sensor consisting of two full bridges with reference resistors for each half bridge.
  • Figure 8 An embodiment of an angle sensor consisting of two full bridges, each full bridge consisting of two magnetoresistive chips in the same direction, the magnetoresistive chip being placed in a standard semiconductor package.
  • Figure 9 is a schematic diagram of an angle sensor consisting of two full bridges with two identical reference resistors on the same branch.
  • Figure 10 is another embodiment of an angle sensor consisting of two full bridges, each full bridge being rotated relative to the two magnetoresistive sensing chips. After the degree of placement, the magnetoresistive chip is placed in a standard semiconductor package.
  • the sensing element is comprised of a spin valve that includes a magnetic pinned layer and a magnetic free layer.
  • the magnetic pinned layer can be a single magnetic layer or a synthetic ferromagnetic structure that is pinned by a magnetic pinned layer.
  • the magnetic free layer is rotatable in the spin valve in response to the direction of the applied magnetic field.
  • the resistance of the spin valve varies with the direction of the magnetic free layer relative to the magnetic pinned layer (pinned), and secondly with the magnetic field on the magnetic free layer.
  • the magnetic free layer and the magnetic fixed layer are separated by a barrier, and a current flows through the barrier.
  • the magnetic free layer and the magnetic pinned layer are separated by a non-magnetic metal layer. Current can flow in or perpendicular to the face of the multilayer film.
  • FIG. 1 it is the usual GMR and MTJ suitable for linear magnetic field measurement.
  • Negative saturation field 4 and positive saturation field 5 Due to the interlayer coupling between the magnetic free layer and the magnetic pinned layer, there is usually a certain output bias.
  • a major source of interlayer coupling is called Neel coupling or 'orange-pee 'Coupling, which is related to the roughness of ferromagnetic films in GMR and MTJ structures, primarily determined by materials and manufacturing processes.
  • the ideal response of MTJ and GMR is linear in the working region between the negative saturation field 4 and the forward saturation field 5.
  • MTJ The sensitivity of the component, ie the slope of the oblique line 3 in the transmission curve in Figure 1, is primarily determined by the stiffness of the free layer in response to the external magnetic field. The slope can be adjusted by changing the shape of the MTJ component.
  • the elements are shaped into elongated shapes including, but not limited to, elliptical, rectangular, diamond shaped, which are positioned orthogonally relative to the pinned layer.
  • the magnetic free layer can be biased or stabilized by a permanent magnet to a direction perpendicular to the pinned layer.
  • flux concentrators or flux induction can be integrated into the magnetic field sensor so that The magnetic field on the free layer of the MTJ element is amplified to achieve higher sensitivity.
  • FIG. 2 is a schematic diagram of a half-bridge configuration 10 in which a bias voltage 15 is applied to a reference resistor having a fixed resistance 13 And one end of the series connected to the sense resistor 14 of the external magnetic field, the other end 11 is grounded (GND), and the output voltage 12 is the potential difference across the sense resistor.
  • Figure 3 shows the design of a magnetoresistive chip half-bridge 20.
  • the reference resistor 23 and the sense resistor 24 are respectively composed of multiple
  • the MTJ elements 231 and 241 are formed and arranged in several columns.
  • the MTJ elements are connected in series to form a reference resistor and a sense resistor.
  • Striped permanent magnets (PM) between each column of MTJ components 26, the MTJ free layer is biased to a direction perpendicular to the pinning layer, in which case the strip PM should refer to the magnetization direction of the magnetic pinned layer.
  • strip PM It must be magnetized to a direction perpendicular to the magnetic pinned layer to provide a stable bias field for the magnetic free layer.
  • the strip PM does not need to be made in the same plane as the MTJ. However, strip PM needs to be close to MTJ To provide an effective bias field of sufficient strength. Since the reference resistor is insensitive to the external magnetic field, the reference MTJ element 231 can have a different shape relative to the sensed MTJ element 241 and / Or different scale factors to obtain greater shape anisotropy and remain unchanged under the action of an external magnetic field. Alternatively, a magnetic shielding layer for shielding the external magnetic field/external magnetic flux may be integrated in the chip for the reference MTJ element. . Typically, the shield is a piece of soft magnetic layer on top of the reference MTJ element and covers all components to shield the component from the external magnetic field so that the magnetic field outside the boundary does not affect the MTJ component.
  • Figure 4 shows a schematic diagram of an angle sensor disclosed herein.
  • the sensor responds by two and X and Y respectively
  • the independent half-bridge composition of the magnetic field component is determined by the direction of the sensor.
  • the output voltages 37 and 38 are proportional to HCos ⁇ , respectively.
  • HSin ⁇ so that the magnitude and direction of the external magnetic field H can be determined.
  • Two independent half bridges can have the same supply voltage Bias and ground Gnd Pin. Voltage biasing or current biasing can be used in the present invention.
  • Figure 5 shows the output voltage curves of the output pins 37, 38 with respect to the magnetic field angle.
  • the magnetic field gradient produced by the magnet block at the angular sensor position may be small or large. Can be divided into three different situations:
  • the low magnetic field gradient can be placed side by side, which is small in error and low in cost;
  • the center distance is relatively large, so that the magnetic field generated by the rotating magnet has a large gradient and may bring more obvious errors; compared with the side-by-side placement, the common center arrangement, the more the center point distance Approaching, the magnetic field gradient produced by the rotating magnet of the sensor is more tolerant and produces a smaller calculated angle error.
  • Figure 6 shows a two magnetoresistive chips 41 and 42 as shown in Figure 3.
  • the angle sensor is composed. One of the half bridges is rotated 90 degrees from the other half of the bridge.
  • the parts pointed to by labels 43 and 44 are the reference resistors and sensitive resistors in the same chip 41, respectively. References 44 and 45
  • the parts pointed to separately are the reference resistors and sensitive resistors in the middle 42.
  • the cosine and sinusoidal components of the magnetic field are output by 47 and 48, respectively.
  • Full bridge sensors can be used to make magnetic field angle sensors.
  • Full-bridge sensors provide a larger output voltage than half-bridge sensors and, therefore, have greater magnetic field sensitivity.
  • Figure 7 Shown is a schematic diagram of an angle sensor consisting of two separate full bridges. Each full bridge has two branches, one for each reference resistor arm and one for a sensitive resistance bridge arm. The reference resistors are located on opposite bridge arms.
  • the output voltage is the difference between the output of two two sensitive resistors, such as , Vout1(cos)+ and Vout1(cos)- are the outputs of a full bridge, Vout2(sin)+ and Vout2(sin)- Is the output of another full bridge.
  • the two full bridges are used to detect the magnetic fields of the X component (cosine component) and the Y component (sinusoidal component), respectively.
  • Figure 8 is an embodiment of an angle sensor 60 comprised of two full bridges. Each full bridge consists of two as shown in Figure 3.
  • the magnetoresistive chip is shown. Referring to Fig. 7, magnetoresistive chips 61 and 64 form a full bridge in the same direction.
  • the two sensitive resistors sense the same direction in the external magnetic field. For example, two sensitive resistors follow the magnetic field. The direction component is increased or decreased.
  • the magnetoresistive chips 62, 63 also form another full bridge in the same direction. And rotate 90 degrees relative to another full bridge to sense Y The magnetic field component of the direction.
  • the common supply voltage Bias is then connected to the common ground Gnd by wire bonding, after which the sensitive voltage passes Vout1(cos)+ and Vout1(cos)- , Vout2(sin)+ and Vout2(sin)- are output.
  • the full bridge angle sensor can be made as shown in Figure 9. Another way shown.
  • the reference resistor is in the same branch of the full bridge. Therefore, the sensitive resistor must sense the magnetic field in the opposite direction, meaning that one sensitive resistor increases with increasing magnetic field, and the other sensitive resistor decreases with increasing magnetic field. This can be achieved by flipping the original piece.
  • the magnetoresistive chips 82, 84 and the chip 83 are rotated 90 degrees, 180 degrees, and 270 degrees in-plane with respect to the chip 81.
  • Magnetoresistive Chips 81, 84 A full bridge is formed to sense the magnetic field component in the X direction, and the magnetoresistive chips 82, 83 form a full bridge to sense the magnetic field component in the Y direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

独立封装的桥式磁场角度传感器
技术领域
本发明涉及一种采用 MTJ 或 GMR 元件的角度传感器,特别是一种能够采用标准的半导体封装技术集成到单一芯片的角度传感器。
背景技术
磁性传感器广泛的用于现代测量系统,用来检测多种物理量,包括但不限于磁场强度、电流、位置、位移、方向等各种物理量。之前已有多种传感器可以用来测量磁场及其它物理量。但是,这些技术都具有各自的局限性,比如,受到尺寸过大,灵敏度低,动态范围小,成本高,稳定性等各种因素的限制。因此,发展一种磁性传感器,尤其是能方便的与半导体器件和集成电路集成在一起,并易于制造的磁传感器仍然是一种非常迫切的需要。
磁隧道结( MTJ )传感器具有灵敏度高,尺寸小,低成本,功耗低的特点。虽然 MTJ 器件可以很好的与标准的半导体制造工艺兼容,但没有一种低成本量产制造高灵敏度,低成本的 MTJ 磁传感器的有效方法。尤其是,量产时 MTJ 工艺和后端的封装工艺之间所存在的困难,同时,在将 MTJ 元件组成全桥传感器时,匹配 MTJ 传感器的磁电阻响应被证明存在很大困难。
发明内容
针对上述问题,本发明提供一种独立封装的桥式磁场角度传感器,可用于测量磁场的角度值。
为解决上述技术问题,本发明一方面采用的技术方案为:一种独立封装的桥式磁场角度传感器,该传感器包括两个半桥传感器,每个半桥传感器包括一个传感器芯片,其中一个传感器芯片相对另一个传感器芯片旋转 90 度排列,传感器芯片被固定在标准的半导体封装的引线框上,每个传感器芯片包括一阻值固定的参考电阻和一响应于外磁场改变的感应电阻;每个参考电阻和感应电阻包括多个 MTJ 或 GMR 传感器元件,这些 MTJ 或 GMR 传感器元件作为单独的磁电阻元件以阵列的形式相互连接,每个参考电阻和感应电阻还包括条形永磁铁,在各列磁电阻元件之间为磁电阻元件提供偏置场;感应电阻的电阻值与外磁场在磁电阻传输曲线的一段范围内呈线性的关系;传感器芯片的引线焊盘设置为使磁电阻元件的每个引脚用于连接多条接合线;磁电阻传感器芯片相互之间以及与引线框之间都通过引线接合连接,以构成一桥式传感器;引线框和传感器芯片密封在塑料之中,以形成一标准的半导体封装。
本发明另一方面采用技术方案:一种独立封装的桥式磁场角度传感器,该传感器包括两个全桥传感器,即第一全桥传感器和第二全桥传感器,每个全桥传感器包括两个半桥传感器,每个半桥传感器包括一个 MTJ 或 GMR 磁电阻传感器芯片,传感器芯片被固定在标准半导体封装的引线框上;每个传感器芯片包括一阻值固定的参考电阻和一响应于外磁场改变阻值的感应电阻;每个参考电阻和感应电阻包括多个 MTJ 或 GMR 传感器元件,这些 MTJ 或 GMR 传感器元件作为单独的磁电阻元件以阵列的形式相互连接,每个参考电阻和感应电阻还包括条形永磁铁,在各列磁电阻元件之间为磁电阻元件提供偏置场;感应电阻的电阻值与外磁场在磁电阻传输曲线的一段范围内呈线性的关系;传感器芯片的引线焊盘设置为使磁电阻元件的每个引脚可以连接多条接合线;磁电阻传感器芯片相互之间以及与引线框之间都通过引线接合连接,以构成一桥式传感器;引线框和传感器芯片密封在塑料之中,以形成一标准的半导体封装。
优选地,第一全桥传感器、第二全桥传感器中的一个传感器芯片与该全桥传感器中的另外一个传感器芯片反向排布,第二全桥传感器中的两个传感器芯片相对第一全桥传感器中的两个传感器芯片旋转 90 度排布。
优选地,磁电阻元件呈椭圆形。
优选地,参考电阻的磁电阻元件与感应电阻的磁电阻元件具有不同的形状比例。
优选地,参考电阻被一个或几个磁屏蔽层从外磁场隔离开来。
优选地,传感器芯片上设置有用于驱动其工作的偏置电压或偏置电流。
优选地,传感器芯片在装配之前进行测试和分级,以使传输特性曲线更好地匹配。
优选地,采用并排的方式设置桥式磁场角度传感器以用于检测低磁场梯度的角度。
优选地,采用共同中心的方式设置桥式磁场角度传感器以用于检测高磁场梯度的角度。
附图说明
图 1 是参考层磁化方向指向负 H 方向的自旋阀( GMR 和 MTJ )传感元件的磁电阻响应示意图。
图 2 是具有固定的参考电阻和感应电阻的 TMR 半桥示意图。
图 3 是磁电阻芯片的半桥的一种实施方式,其中参考电阻和感应电阻由多个 MTJ 元件组成,条形的片状永磁铁用来给 MTJ 元件提供一个偏置场。
图 4 是本发明公开的采用两个半桥磁电阻的角度传感器的原理图。
图 5 是角度传感器两个独立半桥的输出电压随磁场角度的输出特性曲线。
图 6 是一由两个半桥磁电阻传感器芯片组成的角度传感器的实施例,其中两个半桥相互旋转 90 度,两个芯片放置成标准的半导体封装形式。
图 7 是一由每一半桥具有参考电阻的两个全桥组成的角度传感器示意图。
图 8 是一由两个全桥组成的角度传感器实施例,每个全桥由同一方向的两个磁电阻芯片组成,磁电阻芯片安置在标准的半导体封装内。
图 9 是由在同一分支上具有两个相同的参考电阻的两个全桥组成的角度传感器示意图。
图 10 是另一由两个全桥组成的角度传感器的实施例,每一全桥由两个磁电阻传感芯片相对旋转 180 度后安置组成,磁电阻芯片安置在标准的半导体封装内。
具体实施方式
传感元件由自旋阀构成,自旋阀包括磁性固定层和磁性自由层。磁性固定层可以是一单一的磁性层或是合成的铁磁性结构,被一磁性固定层钉住。磁性自由层在自旋阀中能够响应外加磁场的方向而转动。自旋阀的电阻随着磁性自由层相对于磁性固定层(被钉扎住)的方向变化,其次随着磁性自由层上的磁场变化。在 MTJ 元件中,磁性自由层和磁性固定层由势垒分隔开来,电流流过势垒。在 GMR 元件中,磁性自由层和磁性固定层由非磁金属层分隔开来。电流可以在多层薄膜的面内流过或垂直于该面流向。
如图 1 所示,是通常的适合于线性磁场测量的 GMR 和 MTJ 磁性传感元件的磁电阻传输特性曲线的示意图,图中的传输曲线显示饱和的低电阻 1 和高电阻 2 ,电阻值分别为 RL 和 RH 。在两饱和点之间,传输曲线随外磁场 H 而线性变化。非理想情况下,传输曲线并不关于 H=0 的点对称。负向饱和场 4 和正向饱和场 5 由于磁性自由层和磁性固定层之间的层间耦合作用而不同,通常会存在一定的输出偏置。层间耦合的一个主要来源是称为柰尔( Neel )耦合或是' orange-pee '耦合,这与 GMR 和 MTJ 结构中的铁磁薄膜的粗糙度有关,主要由材料和制造工艺决定。
在位于负向饱和场 4 和正向饱和场 5 之间的工作区域, MTJ 和 GMR 的理想响应是线性的。 MTJ 元件的灵敏度,即图 1 中传输曲线中的斜线 3 的斜率,则主要由自由层响应于外磁场的刚度决定。斜率可以通过改变 MTJ 元件的形状来调整。通常 MTJ 元件被成型为长条形状,包括但不限于椭圆、矩形、菱形,其相对于钉扎层正交定位。有时候,磁性自由层可以通过永磁体偏置或稳定到与钉扎层垂直的方向。有时候,在高灵敏度场合,磁通聚集器或磁通诱导能够集成到磁场传感器中,以使得在 MTJ 元件的自由层上的磁场被放大,从而实现更高的灵敏度。
图 2 是半桥组态 10 的示意图,其中,偏置电压 15 施加于由具有固定电阻的一参考电阻 13 和一阻值响应于外磁场的感应电阻 14 构成的串联的一端,另一端 11 接地( GND ),输出电压 12 即是感应电阻两端的电势差。
图 3 显示了一种磁电阻芯片半桥 20 的设计。在这一设计中,参考电阻 23 和感应电阻 24 分别由多个 MTJ 元件 231 和 241 构成,分别被排成几列。 MTJ 元件串联在一起以构成参考电阻和感应电阻。在各列 MTJ 元件之间,有条状的永磁铁( PM ) 26 ,使 MTJ 自由层偏置到垂直于钉扎层的方向,在这种情况下,条状 PM 应参照磁性固定层的磁化方向。在芯片制备中,条状 PM 必须磁化到垂直于磁性固定层的方向,以为磁性自由层提供稳定的偏置场。条状 PM 并不需要制作在和 MTJ 相同的平面内。然而,条状 PM 需要靠近 MTJ ,以提供足够强度的有效偏置场。由于参考电阻对外磁场不敏感,所以参考 MTJ 元件 231 可以相对感应 MTJ 元件 241 具有不同的形状和 / 或不同比例系数以获得更大形状各向异性和在外磁场的作用下保持不变。可选地,可以在芯片中为参考 MTJ 元件集成一屏蔽外磁场 / 外磁通的磁屏蔽层 27 。通常,屏蔽层是位于参考 MTJ 元件顶上的一片状软磁层,并覆盖遮住所有元件,以将元件从外磁场屏蔽开来,使得边界外部的磁场不对 MTJ 元件产生影响。
图 4 示出了本发明公开的角度传感器的原理图。传感器由两个分别响应 X 和 Y 磁场分量的独立的半桥组成,由传感器的方向决定。在一个与传感器夹角为 90 度的外磁场 H 作用下,输出电压 37 、 38 分别正比于 HCos θ ,HSin θ , 从而可以确定外磁场 H 的大小和方向。两个独立的半桥可以具有相同的供电电压 Bias 和地 Gnd 引脚。在本发明中可以采用电压偏置或是电流偏置工作方式。图 5 示出了输出引脚 37 、 38 相对于磁场角度的输出电压曲线。
根据在角度传感器应用中磁块的大小和形状,磁块在角度传感器位置产生的磁场梯度可能会很小或很大。可以区分为三种不同的情况:
低磁场梯度,可以采用并排放置的方式,这一情况误差小,成本低;
中等磁场梯度,如果误差允许可以采用并排放置的方式,或是直接采用共同中心的放置方式;
高磁场梯度,在这种情况下,通常采用共同中心的布置方式以使误差能够足够小;
角度传感器并排放置时,中心距离比较大,使得旋转磁体产生的磁场具有很大的梯度,并可能带来较明显的误差;相对于并排放置的方式,采用共同中心的布置方式,中心点距离越接近,传感器旋转磁体产生的磁场梯度具有更大的耐受性,并产生更小的计算角度的误差。
图 6 所示是一由如图 3 所示的两个磁电阻芯片 41 和 42 组成的角度传感器。其中一个半桥相对另一半桥旋转 90 度。标号 43 和 44 分别指向的部件是同一芯片 41 中的参考电阻和敏感电阻。标号 44 和 45 分别指向的部件是中 42 中的参考电阻和敏感电阻。磁场的余弦分量和正弦分量分别由 47 和 48 输出。
全桥传感器可以被用来制造磁场角度传感器。全桥传感器能提供比半桥传感器更大的输出电压,因此,具有更大的磁场灵敏度。图 7 所示是一由两个独立的全桥组成的角度传感器示意图。每一全桥分别具有两支,每支分别一个参考电阻桥臂和一个敏感电阻桥臂。参考电阻分别位于相反的桥臂。输出电压是两个两个敏感电阻输出的差分,比如 , Vout1(cos)+ 与 Vout1(cos)- 是一个全桥的输出, Vout2(sin)+ 与 Vout2(sin)- 是另一个全桥的输出。两个全桥分别用于检测 X 分量(余弦分量)和 Y 分量(正弦分量)的磁场。
图 8 是一由两个全桥组成的角度传感器 60 的一实施例。每个全桥由两个如图 3 所示的磁电阻芯片组成。参照图 7 ,磁电阻芯片 61 和 64 在同一个方向上形成一全桥。两个敏感电阻对外磁场的感应方向相同,比如,两个敏感电阻都随磁场 X 方向分量增加或减小。磁电阻芯片 62 、 63 也以同一个方向形成另一全桥。并且与另一全桥相对旋转 90 度以感应 Y 方向的磁场分量。之后通过引线联接将共同的供电电压 Bias 和公共地 Gnd 连接起来,之后的敏感电压通过 Vout1(cos)+ 与 Vout1(cos)- , Vout2(sin)+ 与 Vout2(sin)- 进行输出。
全桥角度传感器可以被制成如图 9 所示的另一种方式。其中参考电阻处于全桥的同一分支。因此,敏感电阻必须感应相反方向的磁场,意味着一个敏感电阻随着磁场的增大增加,另一个敏感电阻随着磁场的增大减小。这可以通过原片的翻转来实现。如图 10 所示,磁电阻芯片 82 、 84 和芯片 83 在面内相对芯片 81 旋转 90 度, 180 度, 270 度。磁电阻芯片 81 、 84 组成一个全桥以感应 X 方向的磁场分量,磁电阻芯片 82 、 83 组成一个全桥以感应 Y 方向的磁场分量。之后通过引线联接将共同的供电电压 Bias 和公共地 Gnd 连接起来,之后的敏感电压通过 Vout1(cos)+ 与 Vout1(cos)- , Vout2(sin)+ 与 Vout2(sin)- 进行输出,如图 10 所示。
以上对本发明的特定实施例结合图示进行了说明,很明显,在不离开本发明的范围和精神的基础上,可以对现有技术和工艺进行很多修改。在本发明的所属技术领域中,只要掌握通常知识,就可以在本发明的技术要旨范围内,进行多种多样的变更。

Claims (10)

1. 一种独立封装的桥式磁场角度传感器,其特征是:该传感器包括两个半桥传感器,每个半桥传感器包括一个传感器芯片,其中一个传感器芯片相对另一个传感器芯片旋转 90 度排列,传感器芯片被固定在标准的半导体封装的引线框上,每个传感器芯片包括一阻值固定的参考电阻和一响应于外磁场改变的感应电阻;每个参考电阻和感应电阻包括多个 MTJ 或 GMR 传感器元件,这些 MTJ 或 GMR 传感器元件作为单独的磁电阻元件以阵列的形式相互连接,每个参考电阻和感应电阻还包括条形永磁铁,在各列磁电阻元件之间为磁电阻元件提供偏置场;所述感应电阻的电阻值与外磁场在磁电阻传输曲线的一段范围内呈线性的关系;传感器芯片的引线焊盘设置为使磁电阻元件的每个引脚用于连接多条接合线;磁电阻传感器芯片相互之间以及与引线框之间都通过引线接合连接,以构成一桥式传感器;引线框和传感器芯片密封在塑料之中,以形成一标准的半导体封装。
2. 一种独立封装的桥式磁场角度传感器,其特征是:该传感器包括第一全桥传感器和第二全桥传感器,每个全桥传感器包括两个半桥传感器,每个半桥传感器包括一个 MTJ 或 GMR 磁电阻传感器芯片,传感器芯片被固定在标准半导体封装的引线框上;每个传感器芯片包括一阻值固定的参考电阻和一响应于外磁场改变阻值的感应电阻;每个参考电阻和感应电阻包括多个 MTJ 或 GMR 传感器元件,这些 MTJ 或 GMR 传感器元件作为单独的磁电阻元件以阵列的形式相互连接,每个参考电阻和感应电阻还包括条形永磁铁,在各列磁电阻元件之间为磁电阻元件提供偏置场;感应电阻的电阻值与外磁场在磁电阻传输曲线的一段范围内呈线性的关系;传感器芯片的引线焊盘设置为使磁电阻元件的每个引脚可以连接多条接合线;磁电阻传感器芯片相互之间以及与引线框之间都通过引线接合连接,以构成一桥式传感器;引线框和传感器芯片密封在塑料之中,以形成一标准的半导体封装。
3. 如权利要求 2 所述的桥式磁场角度传感器,其特征是:第一全桥传感器、第二全桥传感器中的一个传感器芯片与另外一个传感器芯片反向排布,第二全桥传感器中的两个传感器芯片相对第一全桥传感器中的两个传感器芯片旋转 90 度排布。
4. 如权利要求 1 或 2 所述的桥式磁场角度传感器,其特征是:磁电阻元件呈椭圆形。
5. 如权利要求 1 或 2 所述的桥式磁场角度传感器,其特征是:参考电阻的磁电阻元件与感应电阻的磁电阻元件具有不同的形状比例。
6 如权利要求 1 所述的桥式磁场角度传感器,其特征是:所述参考电阻被一个或几个磁屏蔽层与外磁场隔离开来。
7. 如权利要求 1 或 2 所述的桥式磁场角度传感器,其特征是:所述传感器芯片上设置有用于驱动其工作的偏置电压或偏置电流。
8. 如权利要求 1 或 2 所述的桥式磁场角度传感器,其特征是:传感器芯片在装配之前进行测试和分级,以使传输特性曲线更好地匹配。
9. 如权利要求 1 或 2 所述的桥式磁场角度传感器,其特征是:采用并排的方式设置桥式磁场角度传感器以用于检测低磁场梯度的角度。
10. 如权利要求 1 或 2 所述的桥式磁场角度传感器,其特征是:采用共同中心的方式设置桥式磁场角度传感器以用于检测高磁场梯度的角度。
PCT/CN2012/071879 2011-03-03 2012-03-02 独立封装的桥式磁场角度传感器 WO2012116659A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/002,738 US9123876B2 (en) 2011-03-03 2012-03-02 Single-package bridge-type magnetic-field angle sensor
JP2013555740A JP6018093B2 (ja) 2011-03-03 2012-03-02 単一パッケージブリッジ型磁界角度センサ
EP12752760.4A EP2682773B1 (en) 2011-03-03 2012-03-02 Separately packaged bridge magnetic-field angle sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110050747 2011-03-03
CN201110050747.4 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012116659A1 true WO2012116659A1 (zh) 2012-09-07

Family

ID=45358679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071879 WO2012116659A1 (zh) 2011-03-03 2012-03-02 独立封装的桥式磁场角度传感器

Country Status (5)

Country Link
US (1) US9123876B2 (zh)
EP (1) EP2682773B1 (zh)
JP (1) JP6018093B2 (zh)
CN (2) CN102298124B (zh)
WO (1) WO2012116659A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696210A4 (en) * 2011-04-06 2015-06-10 Jiangsu Multidimension Tech Co BIAXIAL BRIDGE TYPE MAGNETIC FIELD SENSOR
EP2700968A4 (en) * 2011-04-21 2015-06-10 Jiangsu Multidimension Tech Co COMPLETE BRIDGE MAGNETIC FIELD SENSOR WITH MONOPUCE REFERENCE

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202433514U (zh) * 2011-01-17 2012-09-12 江苏多维科技有限公司 独立封装的桥式磁场传感器
CN102298124B (zh) * 2011-03-03 2013-10-02 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器
CN102590768B (zh) 2012-03-14 2014-04-16 江苏多维科技有限公司 一种磁电阻磁场梯度传感器
CN102809665B (zh) * 2012-06-04 2016-08-03 江苏多维科技有限公司 一种磁电阻齿轮传感器
JP2014006126A (ja) * 2012-06-22 2014-01-16 Asahi Kasei Electronics Co Ltd 磁気センサ
CN103632431B (zh) * 2012-08-21 2018-03-09 北京嘉岳同乐极电子有限公司 磁图像传感器及鉴伪方法
CN102841324A (zh) * 2012-09-05 2012-12-26 复旦大学 一种各向异性磁阻器件的电路结构
US9791523B2 (en) * 2013-03-15 2017-10-17 Fairchild Semiconductor Corporation Magnetic sensor utilizing magnetization reset for sense axis selection
CN203133257U (zh) * 2013-03-18 2013-08-14 江苏多维科技有限公司 用于验钞机磁头的tmr半桥磁场梯度传感器芯片
CN103592608B (zh) * 2013-10-21 2015-12-23 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
CN103630855B (zh) * 2013-12-24 2016-04-13 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
EP3100311A4 (en) 2014-01-28 2018-03-21 Crocus Technology Inc. Analog circuits incorporating magnetic logic units
US9350359B2 (en) 2014-01-28 2016-05-24 Crocus Technology Inc. Magnetic logic units configured as analog circuit building blocks
CN103954920B (zh) * 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN104197828B (zh) * 2014-08-20 2017-07-07 江苏多维科技有限公司 一种单芯片偏轴磁电阻z‑x角度传感器和测量仪
JP6354570B2 (ja) * 2014-12-22 2018-07-11 株式会社デンソー センサユニット、および、これを用いた集磁モジュール
JP6352195B2 (ja) * 2015-01-14 2018-07-04 Tdk株式会社 磁気センサ
CN104596605B (zh) 2015-02-04 2019-04-26 江苏多维科技有限公司 一种磁自动化流量记录器
CN104776794B (zh) 2015-04-16 2017-11-10 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
CN105044631B (zh) * 2015-08-28 2018-08-07 江苏多维科技有限公司 一种半翻转两轴线性磁电阻传感器
US10794968B2 (en) * 2017-08-24 2020-10-06 Everspin Technologies, Inc. Magnetic field sensor and method of manufacture
DE102017124542B4 (de) 2017-10-20 2023-12-21 Infineon Technologies Ag Magnetfeldsensoranordnung und verfahren zum messen eines externen magnetfelds
US10677620B2 (en) * 2018-05-01 2020-06-09 Nxp B.V. System and method for sensor diagnostics during functional operation
EP3667346B1 (en) * 2018-12-11 2022-06-08 Crocus Technology S.A. Magnetic angular sensor device for sensing high magnetic fields with low angular error
EP3712632A1 (en) * 2019-03-21 2020-09-23 Crocus Technology S.A. Electronic circuit for measuring an angle and an intensity of an external magnetic field
EP3882646A1 (en) * 2020-03-18 2021-09-22 TE Connectivity Germany GmbH Integrated magnetometer and method of detecting a magnetic field

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329818B1 (en) * 1998-07-17 2001-12-11 Alps Electric Co., Ltd. Magnetic field sensor having giant magnetoresistive effect elements, manufacturing method and apparatus therefor
CN1694277A (zh) * 2004-03-12 2005-11-09 雅马哈株式会社 磁传感器制造方法、磁体阵列及其制造方法
JP2006010579A (ja) * 2004-06-28 2006-01-12 Yamaha Corp 磁気センサ
CN101088019A (zh) * 2004-12-28 2007-12-12 皇家飞利浦电子股份有限公司 具有可调特性的桥式传感器
CN101290343A (zh) * 2007-04-19 2008-10-22 雅马哈株式会社 磁性传感器及其制造方法
CN101308199A (zh) * 2002-11-29 2008-11-19 雅马哈株式会社 磁传感器及补偿磁传感器的温度相关特性的方法
US20110025319A1 (en) * 2009-07-31 2011-02-03 Tdk Corporation Magnetic sensor including a bridge circuit
CN102298124A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438715C1 (de) * 1994-10-29 1996-05-30 Inst Mikrostrukturtechnologie Magnetfeldsensorchip
JP3498737B2 (ja) * 2001-01-24 2004-02-16 ヤマハ株式会社 磁気センサの製造方法
FR2830621B1 (fr) * 2001-10-09 2004-05-28 Commissariat Energie Atomique Structure pour capteur et capteur de champ magnetique
JP4016857B2 (ja) * 2002-10-18 2007-12-05 ヤマハ株式会社 磁気センサ及びその製造方法
JP3835447B2 (ja) * 2002-10-23 2006-10-18 ヤマハ株式会社 磁気センサ、同磁気センサの製造方法及び同製造方法に適したマグネットアレイ
US7394086B2 (en) * 2003-07-18 2008-07-01 Yamaha Corporation Magnetic sensor and manufacturing method therefor
JP2006029900A (ja) * 2004-07-14 2006-02-02 Tdk Corp エンコーダ用磁気センサ
JP4614061B2 (ja) * 2004-09-28 2011-01-19 ヤマハ株式会社 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
JP4977378B2 (ja) * 2006-02-23 2012-07-18 山梨日本電気株式会社 磁気センサ、回転検出装置及び位置検出装置
DE102006032277B4 (de) * 2006-07-12 2017-06-01 Infineon Technologies Ag Magnetfeldsensorbauelement
EP2153165B1 (en) * 2007-05-29 2012-06-20 Nxp B.V. External magnetic field angle determination
US8134361B2 (en) * 2007-06-13 2012-03-13 Ricoh Company, Ltd. Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
JP2008014954A (ja) * 2007-08-07 2008-01-24 Alps Electric Co Ltd 磁気センサ
JP5066579B2 (ja) * 2007-12-28 2012-11-07 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
JP5156671B2 (ja) * 2009-02-27 2013-03-06 株式会社日立製作所 磁界検出装置および計測装置
CN101788596A (zh) * 2010-01-29 2010-07-28 王建国 Tmr电流传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329818B1 (en) * 1998-07-17 2001-12-11 Alps Electric Co., Ltd. Magnetic field sensor having giant magnetoresistive effect elements, manufacturing method and apparatus therefor
CN101308199A (zh) * 2002-11-29 2008-11-19 雅马哈株式会社 磁传感器及补偿磁传感器的温度相关特性的方法
CN1694277A (zh) * 2004-03-12 2005-11-09 雅马哈株式会社 磁传感器制造方法、磁体阵列及其制造方法
JP2006010579A (ja) * 2004-06-28 2006-01-12 Yamaha Corp 磁気センサ
CN101088019A (zh) * 2004-12-28 2007-12-12 皇家飞利浦电子股份有限公司 具有可调特性的桥式传感器
CN101290343A (zh) * 2007-04-19 2008-10-22 雅马哈株式会社 磁性传感器及其制造方法
US20110025319A1 (en) * 2009-07-31 2011-02-03 Tdk Corporation Magnetic sensor including a bridge circuit
CN102298124A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682773A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696210A4 (en) * 2011-04-06 2015-06-10 Jiangsu Multidimension Tech Co BIAXIAL BRIDGE TYPE MAGNETIC FIELD SENSOR
EP2700968A4 (en) * 2011-04-21 2015-06-10 Jiangsu Multidimension Tech Co COMPLETE BRIDGE MAGNETIC FIELD SENSOR WITH MONOPUCE REFERENCE

Also Published As

Publication number Publication date
EP2682773B1 (en) 2018-10-31
CN102298124B (zh) 2013-10-02
CN202119390U (zh) 2012-01-18
US20130334634A1 (en) 2013-12-19
US9123876B2 (en) 2015-09-01
JP6018093B2 (ja) 2016-11-02
EP2682773A4 (en) 2015-06-10
CN102298124A (zh) 2011-12-28
EP2682773A1 (en) 2014-01-08
JP2014507000A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
WO2012116659A1 (zh) 独立封装的桥式磁场角度传感器
JP6017461B2 (ja) 単一パッケージ磁気抵抗角度センサ
WO2012097673A1 (zh) 独立封装的桥式磁场传感器
TWI440875B (zh) 穿隧磁電阻結構以及集成式3軸向磁場感測器與感測電路的製造方法
US9123877B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
JP4951129B2 (ja) Mr素子の磁化方法
US9964601B2 (en) Magnetic sensor
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
WO2012116657A1 (zh) 推挽桥式磁电阻传感器
WO2016026412A1 (zh) 一种双z轴磁电阻角度传感器
WO2015058632A1 (zh) 一种用于高强度磁场的推挽桥式磁传感器
JP2014512003A (ja) シングルチッププッシュプルブリッジ型磁界センサ
JP2015503735A (ja) 電流センサ
JP2008277834A (ja) 磁場角センサおよび磁気トンネル接合素子並びに磁場角センサの製造方法
KR20150102052A (ko) 자기 센서 장치, 자기 감응 방법 및 그 제조 방법
CN115267623B (zh) 一种磁阻磁开关传感器
US20180321334A1 (en) Tmr high-sensitivity single-chip push-pull bridge magnetic filed sensor
JP2014182096A (ja) 磁気センサ
CN108983125A (zh) 一种磁阻传感器
JP2014081318A (ja) 磁気センサ及びその磁気検出方法
CN115825826A (zh) 一种三轴全桥电路变换式线性磁场传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14002738

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013555740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012752760

Country of ref document: EP