WO2016026412A1 - 一种双z轴磁电阻角度传感器 - Google Patents

一种双z轴磁电阻角度传感器 Download PDF

Info

Publication number
WO2016026412A1
WO2016026412A1 PCT/CN2015/087215 CN2015087215W WO2016026412A1 WO 2016026412 A1 WO2016026412 A1 WO 2016026412A1 CN 2015087215 W CN2015087215 W CN 2015087215W WO 2016026412 A1 WO2016026412 A1 WO 2016026412A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
magnetoresistive
axis magnetoresistive
permanent magnet
dual
Prior art date
Application number
PCT/CN2015/087215
Other languages
English (en)
French (fr)
Inventor
迪克⋅詹姆斯⋅G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2017509775A priority Critical patent/JP6663421B2/ja
Priority to US15/504,981 priority patent/US10690515B2/en
Priority to EP15833216.3A priority patent/EP3184954B1/en
Publication of WO2016026412A1 publication Critical patent/WO2016026412A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the present invention relates to the field of magnetic sensors, and in particular to a dual Z-axis magnetoresistive angle sensor.
  • the magnetoresistive sensor composed of a magnetoresistive sensor and a permanent magnet code disc can be applied to fields such as a magnetic encoder and a rotary position sensor.
  • a magnetoresistive sensor such as TMR, GMR, etc.
  • adopts a planar XY type magnetoresistive angle sensor chip which realizes the rotation of the permanent magnet code wheel by measuring the magnetic field components in the X and Y directions on the same chip and calculating the angle between the X magnetic field component and the Y magnetic field component.
  • Angle measurement but its main problems are as follows:
  • XY type magnetoresistive angle sensor chip when measuring the angular position together with the circular permanent magnet code disk, the chip measurement plane is located above the rotation plane area parallel to the circular permanent magnet code wheel, and the measured sensitive magnetic field comes from The distributed magnetic field of the circular permanent magnet code disk above the rotating surface area of the circular permanent magnet code disk, so that the installation space of the XY magnetoresistive angle sensor chip and the uniform magnetic field area are limited, and the space flexibility is poor.
  • the present invention proposes a dual Z-axis magnetoresistive angle sensor to replace the XY magnetoresistive angle sensor, and replaces the circular permanent magnet by measuring the radial rotating magnetic field generated outside the edge of the circular permanent magnet code disk.
  • the rotating magnetic field above the plane of rotation of the code wheel, and two separate XY magnetoresistive sensor chips are replaced by two discrete Z-axis magnetoresistive sensor chips with a phase difference of 90 degrees, since the two Z-axis magnetoresistive sensor chips are located in a circular permanent magnet code.
  • the outside of the edge of the disc so the flexibility of its installation space is greatly increased.
  • a dual Z-axis magnetoresistive angle sensor comprises a circular permanent magnet code wheel, two Z-axis magnetoresistive sensor chips and a PCB, and the circular permanent magnet code wheel is attached to a rotating shaft. And the rotating shaft rotates around a central axis of the circular permanent magnet code wheel; the two Z-axis magnetoresistive sensor chips each include a substrate and at least one Z-axis magnetoresistive sensor thereon, the Z-axis magnetic The magnetic field sensitive direction of the resistance sensor is perpendicular to a plane of the substrate; the two Z-axis magnetoresistive sensor chips are located on the PCB, and the magnetic field sensitive direction of the two Z-axis magnetoresistive sensor chips and the circle The central axes of the permanent magnet code disks are orthogonal to each other, and the two Z-axis magnetoresistive sensor chips maintain the same distance r+Det with the central axis of the circular permanent magnet code disk, where r is the circular shape The radius of the magnetic code disc, the Det
  • the circular permanent magnet code disk magnetization direction is parallel to the direction of the over diameter.
  • the Det distance is 0-2r.
  • the Z-axis magnetoresistive sensor comprises a magnetoresistive sensing unit and a flux concentrator, the flux concentrator being elongated, having a long axis parallel to the Y-axis direction and a short axis parallel to the X-axis direction.
  • the magnetoresistive sensing unit has a sensitive direction parallel to the X-axis direction and is electrically connected to a magnetoresistive bridge including at least two bridge arms, wherein each of the bridge arms is electrically connected to one or more magnetoresistive sensing units a two-port structure, and the magnetoresistive sensing units in the bridge arms are arranged in a plurality of magnetoresistive columns along a direction parallel to the Y-axis, wherein the magnetoresistance bridge is a push-pull bridge, wherein the push arm and The arms are respectively located on different sides of the Y-axis centerline above or below the flux concentrator, and the distances to the respective Y-axis centerlines are equal.
  • the flux concentrator is a soft magnetic alloy material containing one or more elements of Ni, Fe, Co elements.
  • the magnetoresistive sensing unit is a GMR or TMR magnetoresistive sensing unit.
  • the Z-axis magnetoresistive sensor comprises N+2 (an integer of N>0) flux concentrators, and the magnetoresistive column corresponds to the middle N flux concentrators.
  • the Z-axis magnetoresistive sensor comprises a flux concentrator, and the magnetoresistive column corresponds to the one flux concentrator.
  • the Z-axis magnetoresistive sensor comprises two flux concentrators, the magneto-resistance columns respectively corresponding to positions on different sides of the Y-axis center line of the two flux concentrators, and the distance corresponding flux
  • the concentrator's Y-axis centerline is the same distance.
  • the spacing S between two adjacent flux concentrators in the Z-axis magnetoresistive sensor is not less than the width Lx of the flux concentrator.
  • the push-pull bridge of the Z-axis magnetoresistive sensor is one of a half bridge, a full bridge or a quasi-bridge structure.
  • the two Z-axis magnetoresistive sensors have the same magnetic field sensitivity.
  • Figure 1 is a front view of a double Z-axis magnetoresistance rotation angle sensor
  • Figure 2 side view of the double Z-axis magnetoresistance rotation angle sensor
  • Figure 7 is a magnetic field distribution diagram of a magnetic resistance sensing unit in a Z-axis magnetoresistive sensor
  • Figure 8 is a diagram showing the electrical connection of the magnetoresistive sensing unit in the Z-axis magnetoresistive sensor
  • FIG. 9 Schematic diagram of the full bridge of the push-pull magnetoresistive sensor
  • Figure 10 is a schematic diagram of a half bridge of a push-pull magnetoresistive sensor
  • Double Z-axis magnetoresistance rotation angle sensor measures the amplitude of the magnetic field as a function of the angle of rotation
  • Figure 12 Double Z-axis magnetoresistance rotation angle sensor magnetic field measurement angle with rotation angle diagram
  • Figure 13 The double Z-axis magnetoresistance rotation angle sensor measures the relationship between the R2 and Det/R ratios of the straight line fitting curve of the magnetic field angle with the rotation angle.
  • Figures 1 and 2 are front and side views, respectively, of a dual Z-axis magnetoresistive rotation angle sensor, as can be seen, including placement on a PCB Two Z-axis magnetoresistive sensor chips 1 and 2 on 5, and a circular permanent magnet code disk 3, wherein the circular permanent magnet code disk 3 is attached to a rotating shaft 4, and the rotating shaft 4 surrounds the circle
  • the central axis 41 of the permanent magnet code disc 3 rotates, and the magnetic field sensitive directions of the two Z-axis magnetoresistive sensor chips 1 and 2 are orthogonal to each other, and are respectively located outside the rotating surface of the circular permanent magnet code disc 3, and the center of the chip
  • the normal line passes through the circle of the circular permanent magnet code disc 3, and the magnetization direction M of the circular permanent magnet code disc 3 is parallel to the linear direction of the over diameter, and the two Z-axis magnetoresistive sensor chips are separated from the circular permanent magnet code disc.
  • the same distance of the central axis 41 is r+Det, where r is the radius of the
  • FIG. 3 is a schematic diagram of a Z-axis magnetoresistive sensor chip and its Z magnetic field measurement, including a substrate 8, and at least one Z-axis magnetoresistive sensor 9 thereon, the Z-axis magnetoresistive sensor 9 including a flux concentrator 6 And a magnetoresistive element row 7 located above or below the flux concentrator 6 and at the same distance from the centerline of the flux concentrator Y-axis, the principle being that when the external magnetic field in the Z direction passes through the flux concentrator 6, due to the flux concentrator 6 is a soft magnetic alloy material of high magnetic permeability, such as a soft magnetic alloy including an alloy of one or more of elements such as Co, Fe, Ni, etc., the magnetic field is twisted above or below the flux concentrator 6, and appears The magnetic field component in the X-axis direction is proportional to the Z magnetic field so as to be detected by the magnetoresistive element row 7 located on either side of the Y-axis center line above or below the flux concentrator 6, said magnetoresistive sensing
  • FIG. 3 lists a plurality of flux concentrators labeled n1 to n7
  • FIG. 4 shows the Y-axis of the flux concentrator 6 above or below the plurality of flux concentrators 6 labeled n1 to n7.
  • the X-component magnetic field distribution at the equidistant magnetoresistive sensing unit on both sides of the center line shows that the magnetoresistive sensing unit located on both sides of the Y-axis center line senses the X-component magnetic field in the opposite direction, one of which is positive, and the other is positive.
  • the spacing S between two adjacent flux concentrators in the Z-axis magnetoresistive sensor is not less than the width Lx of the flux concentrator. In another embodiment, the spacing between two adjacent flux concentrators in the Z-axis magnetoresistive sensor is S>2Lx;
  • reducing a pitch of the magnetoresistive element column of the Z-axis magnetoresistive sensor from an upper or lower edge of the flux concentrator, or increasing a thickness Lz of the flux concentrator, or reducing the The width Lx of the flux concentrator can increase the sensitivity of the z-axis magnetoresistive sensor.
  • the Z-axis magnetoresistive sensor can have the following structural features: the magnetoresistive sensing unit is electrically connected into a push-pull type a bridge, a half bridge or a quasi-bridge structure, each bridge arm comprising one or more magnetoresistive sensing units, and electrically connected in a two-port structure, the magnetoresistive units being arranged in a magnetoresistive unit column, the push The arms and the arm are respectively located on different sides of the flux concentrator above or below the Y-axis centerline, and are equidistant from the Y-axis centerline of the corresponding flux concentrator.
  • N is an integer greater than 1
  • flux concentrators 6 including N flux concentrators 62 in the middle.
  • two flux concentrators 61 located on both sides, 71 and 72 of the magnetoresistive sensing unit row 7 are distributed at positions on both sides of the Y-axis center line corresponding to the middle N flux concentrators 62, which is Since the X magnetic field components at the positions of the magnetoresistive sensing unit rows 71 and 72 located on both sides of the Y center line corresponding to the intermediate N flux concentrators 62 are the same in magnitude and opposite in direction, a push-pull bridge structure can be constructed.
  • FIG. 6 is a structural diagram 2 of a Z-axis magnetoresistive sensor on a substrate 8, in which only one flux concentrator 6(1) is included, and the magnetoresistive element column 7(1) includes two magnetoresistive sensing units.
  • Columns 73 and 74 are distributed on both sides of the centerline of the Y-axis of the flux concentrator, because in the case of a single flux concentrator, the above two positions obviously have the same magnitude and opposite direction characteristics. Thereby, a push-pull bridge structure can be constructed.
  • Fig. 7 is a structural diagram 3 of the Z-axis magnetoresistive sensor, in which only two flux concentrators 65 and 66 are included, and the magnetoresistive sensing unit columns 75 and 76 are respectively distributed in two corresponding to the two flux concentrators.
  • the two positions also have X-magnetic components of the same magnitude and opposite directions, thus forming a push-pull bridge.
  • FIG. 7 Only the case where two rows of magnetoresistive sensing units are located at the same time is shown in FIG. 7, and actually, the case where two rows of magnetoresistive elements are simultaneously located inside may be included.
  • FIG. 8 is an electrical connection diagram of a Z-axis magnetoresistive sensor, the magnetoresistive sensing unit is electrically connected to a push-pull bridge structure, and includes at least one push arm and one arm, each of the push arm and the arm includes one or a plurality of magnetoresistive sensing units are electrically connected to form a two-port structure, and the magnetoresistive unit is arranged in a plurality of parallel magnetoresistive unit rows, wherein 81 is a connecting wire, and 82 and 83 are respectively a power input end and a ground end, 85 and 84 are signal output terminals, respectively, 6 (3) is a flux concentrator, 67 is located on both sides, 68 is in the middle, and the magnetoresistive sensing unit columns 77 and 78 are respectively located above or below the flux concentrator.
  • Fig. 8 is a full bridge structure push-pull type magnetoresistance bridge, including Four bridge arms, namely two push arms and two pull arms, each of which includes a plurality of magnetoresistive columns and forms a two-port structure.
  • the push-pull full-bridge structure of the Z magnetoresistive sensor is shown in Fig. 9.
  • the four bridge arms R1, R2, R3 and R4 constituting the full bridge are adjacent to each other and have opposite external magnetic field response characteristics.
  • Figure 10 shows the push-pull full-bridge structure, which actually includes a half-bridge type push-pull structure, consisting of two arms R1 and R2, one of which is a push arm and the other is a pull arm. Form a quasi-bridge structure.
  • Figure 11 is a view showing the sensitive magnetic fields H1 and H2 measured by the two Z-axis sensor chips when the circular permanent magnet code disk is rotated about the center line axis, and the angle between the magnetization direction M and the H1 direction of the circular permanent magnet code disk is ⁇ , you can use ⁇ to define the rotation angle of the permanent magnet code wheel.
  • the magnetic field measurement angle ⁇ between the magnetic field components H1 and H2 measured by the two Z-axis sensors is defined as follows.
  • 91 and 92 are the relationship between the sensitive magnetic fields H1 and H2 of the Z-axis magnetoresistive sensor chip 1 and the Z-axis magnetoresistive sensor 2, respectively, as a function of the rotation angle ⁇ of the circular permanent magnet code disk, and it can be seen that the magnetic field H1 and H2 changes with the rotation angle to the sine/cosine variation, and the phase is 90 degrees out of phase.
  • 93 is a relationship curve 93 between a typical magnetic field measurement angle ⁇ and a circular permanent magnet code disk rotation angle ⁇ . It can be seen that the curve 93 is a linear characteristic, indicating that there is a linear relationship between the magnetic field measurement angle and the rotation angle.
  • the rotation angle of the circular permanent magnet code disc can be measured by the output signals of the two Z-axis magnetoresistive sensor chips.
  • FIG. 13 is a graph showing the fitting parameters of the magnetic field measurement angle ⁇ with the circular permanent magnet rotation angle ⁇ when the Z-axis magnetoresistive sensor chips 1 and 2 are separated from the circular permanent magnet code disc 3 by a linear fitting.
  • the relationship between R2 and Det/R ratio is 94. It can be seen that with the increase of Det/R, R2 begins to stabilize at around 1.0, and then gradually decreases at 2.0, and the R2 linearity is high. 0.997 or more, in order to facilitate the measurement accuracy of the angle, therefore 0-2 r, r is the radius of the circular permanent magnet code disc. Therefore, it can be seen that the working space of the double Z-axis magnetoresistive angle sensor is much larger than the space of the X-Y axis smaller than the r region, so that it has greater flexibility.

Abstract

一种双Z轴磁电阻角度传感器,包括圆形永磁码盘(3)、两个Z轴磁电阻传感器芯片(1、2)和PCB(5),两个Z轴磁电阻传感器(9)位于PCB(5)上,其磁场敏感方向正交,所述Z轴磁电阻传感器芯片(1、2)包括衬底(8)以及位于衬底(8)之上的至少一个磁电阻传感器(9),其磁场敏感方向垂直于所述衬底(8),所述磁电阻传感器(9)包括通量集中器(6)和磁电阻传感单元(7),所述磁电阻传感单元(7)电连接成推挽式结构,其推臂和挽臂分别位于所述通量集中器(6)上方或下方的距离Y轴中心线等距离的两侧位置,所述圆形永磁码盘(3)具有平行于过直径方向的磁化方向,其旋转时,两个Z轴磁电阻传感器芯片(1、2)所测量的正交磁场计算出磁场测量角,可以用于表征圆形永磁码盘(3)的旋转角度,具有结构简单,灵敏度高,空间灵活性高的特点。

Description

一种双Z轴磁电阻角度传感器 技术领域
本发明涉及磁性传感器领域,特别涉及一种双Z轴磁电阻角度传感器。
背景技术
磁电阻传感器和永磁码盘构成的磁电阻角度传感器可以应用于磁编码器以及旋转位置传感器等领域,通常情况下,对于磁电阻传感器如TMR, GMR等,采用的是平面X-Y类型的磁电阻角度传感器芯片,通过对同一芯片上X、Y方向磁场分量的测量并对X磁场分量和Y磁场分量夹角进行计算,实现对永磁码盘旋转角度的测量,但其主要存在如下问题:
1)X-Y类型的磁电阻角度传感器芯片,和圆形永磁码盘一起来测量角度位置时,芯片测量平面位于在平行于圆形永磁码盘旋转平面区域位置上方,其测量的敏感磁场来自于圆形永磁码盘在圆形永磁码盘旋转面区域上方的分布磁场,因此X-Y磁电阻角度传感器芯片的安装空间和磁场均匀区受到限制,空间灵活性较差。
2)X-Y 类型的磁电阻角度传感器芯片的圆形永磁码盘在旋转平面上方的旋转磁场分布容易受到附近磁体如软磁材料或者永磁体的干扰,而使得角度测量区域发生改变,不能正确得到测量角度,稳定性较差。
发明内容
针对以上问题,本发明提出了一种双Z轴磁电阻角度传感器,来取代X-Y磁电阻角度传感器,通过测量圆形永磁码盘边缘外侧所产生的径向旋转磁场来取代位于圆形永磁码盘旋转平面上方的旋转磁场,并采用两个相差90度相位的分立的Z轴磁电阻传感器芯片来取代单一X-Y磁电阻传感器芯片,由于两个Z轴磁电阻传感器芯片位于圆形永磁码盘边缘外侧,所以其安装空间灵活性大大增加。
本发明所提出的一种双Z轴磁电阻角度传感器,包括一个圆形永磁码盘,两个Z轴磁电阻传感器芯片和PCB,所述圆形永磁码盘附着在一个旋转轴上,且所述旋转轴围绕所述圆形永磁码盘中心轴线旋转;所述两个Z轴磁电阻传感器芯片均包括衬底以及位于其上的至少一个Z轴磁电阻传感器,所述Z轴磁电阻传感器的磁场敏感方向垂直于所述衬底所在平面;所述两个Z轴磁电阻传感器芯片位于所述PCB上,且所述两个Z轴磁电阻传感器芯片的磁场敏感方向和所述圆形永磁码盘的中心轴线两两正交,且所述两个Z轴磁电阻传感器芯片与所述圆形永磁码盘中心轴线保持相同距离r+Det,其中r为所述圆形永磁码盘半径,所述Det>0;所述圆形永磁码盘旋转时,所述两个Z轴磁电阻传感器芯片分别将所圆形永磁码盘所产生的两个正交磁场信号转变成两个电压信号输出,从而根据所述两个电压信号,计算出所述圆形永磁码盘的0-360度旋转角度。
优选的,所述圆形永磁码盘磁化方向为平行于过直径的方向。
优选的,所述Det距离为0-2r。
优选的,所述Z轴磁电阻传感器包括磁电阻传感单元和通量集中器,所述通量集中器为长条形,其长轴平行于Y轴方向,短轴平行于X轴方向,所述磁电阻传感单元敏感方向平行于X轴方向,且电连接成包括至少两个桥臂的磁电阻桥,其中,每个所述桥臂为一个或多个磁电阻传感单元电连接而成的两端口结构,且所述桥臂中的磁电阻传感单元沿着平行于Y轴方向排列成多个磁电阻列,所述磁电阻桥为推挽式桥,其中,推臂和挽臂分别位于所述通量集中器上方或下方Y轴中心线的不同侧,且到各自对应的所述Y轴中心线的距离相等。
优选的,所述通量集中器为包含Ni、Fe、Co元素中的一种或多种元素的软磁合金材料。
优选的,所述磁电阻传感单元为GMR或TMR磁电阻传感单元。
优选的,所述Z轴磁电阻传感器包含N+2(N>0的整数)个通量集中器,且所述磁电阻列对应于中间N个通量集中器。
优选的,所述Z轴磁电阻传感器包含1个通量集中器,所述磁电阻列对应于所述1个通量集中器。
优选的,所述Z轴磁电阻传感器包含2个通量集中器,所述磁电阻列分别对应于所述2个通量集中器中的Y轴中心线不同侧的位置,且距离对应通量集中器的Y轴中心线相同距离。
优选的,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距S不小于所述通量集中器的宽度Lx。
优选的,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距S>2Lx,所述Lx为所述通量集中器的宽度。
优选的,所述Z轴磁电阻传感器的所述磁电阻单元列与所述通量集中器的上方或下方边缘的间距越小,或者所述通量集中器的厚度Lz越大,或者所述通量集中器的宽度Lx越小,所述z轴磁电阻传感器的灵敏度越高。
优选的,所述Z轴磁电阻传感器的推挽式电桥为半桥、全桥或者准桥结构中的一种。
优选的,所述两个Z轴磁电阻传感器具有相同的磁场灵敏度。
附图说明
图1 双Z轴磁电阻旋转角度传感器正视图;
图2 双Z轴磁电阻旋转角度传感器侧视图;
图3 Z轴磁电阻传感器结构图一;
图4 Z轴磁电阻传感器结构图二;
图5 Z轴磁电阻传感器结构图三;
图6 Z轴磁电阻传感器Z磁场测量原理图;
图7 Z轴磁电阻传感器中磁电阻传感单元位置磁场分布图;
图8 Z轴磁电阻传感器中磁电阻传感单元电连接图;
图9 推挽式磁电阻传感器全桥示意图;
图10 推挽式磁电阻传感器半桥示意图 ;
图11 双Z轴磁电阻旋转角度传感器测量磁场幅度随旋转角度关系图;
图12 双Z轴磁电阻旋转角度传感器磁场测量角度随旋转角度关系图;
图13 双Z轴磁电阻旋转角度传感器测量磁场角度随旋转角度关系曲线直线拟合参数R2与Det/R比率关系图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1和2分别为双Z轴磁电阻旋转角度传感器的正视图和侧视图,可以看出,包括放置于PCB 5上的两个Z轴磁电阻传感器芯片1和2,以及圆形永磁码盘3,其中圆形永磁码盘3附着在一个旋转轴4上,所述旋转轴4围绕着所述圆形永磁码盘3的中心轴线41旋转,两个所述Z轴磁电阻传感器芯片1和2的磁场敏感方向相互正交,且分别位于圆形永磁码盘3的旋转面外侧,芯片中心法线过圆形永磁码盘3的圆点,并且圆形永磁码盘3的磁化方向M为平行于过直径的直线方向,两个Z轴磁电阻传感器芯片距离圆形永磁码盘3中心轴线41相同的距离,为r+Det,其中r为圆形永磁码盘的半径,Det大于0。
实施例二
图3为Z轴磁电阻传感器芯片及其Z磁场测量原理图,包括衬底8,以及位于其上的至少一个Z轴磁电阻传感器9,所述Z轴磁电阻传感器9包括通量集中器6以及位于通量集中器6上方或下方且距离通量集中器Y轴中心线相同距离的磁电阻单元列7,其原理为当Z方向外磁场经过通量集中器6时,由于通量集中器6为高磁导率的软磁合金材料,如包括Co、Fe、Ni等元素中的一种或多种元素的合金的软磁合金,磁场在通量集中器6上方或下方产生扭曲,出现了X轴方向的磁场分量,并且正比于Z磁场,从而能够被位于通量集中器6上方或下方处的位于Y轴中心线两侧的磁电阻单元列7探测到,所述磁电阻传感单元的磁场敏感方向为X方向,其为TMR,GMR类型传感器单元,所述通量集中器为长条形状,其长度为Y方向,宽度为X方向,且所述多个通量集中器沿X方向等距平行排列。
为了方便说明,图3列出了标号为n1到n7的多个通量集中器,图4为标号为n1到n7的多个通量集中器6上方或下方距离通量集中器6的Y轴中心线两侧等距离的磁电阻传感单元处的X分量磁场分布,可以看出,位于Y轴中心线两侧的磁电阻传感单元感受相反方向的X分量磁场,其中一个为正,另一个为负,但两侧的两个通量集中器所对应的两个反向的X分量磁场的幅度大小并不一致,其中靠外的X磁场分量显然要大于位于靠内的X磁场分量,而位于除两侧之外的中间部分的通量集中器所对应的两个位置的X磁场分量幅度大小相同。
所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距S不小于所述通量集中器的宽度Lx。在另一实施例中,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距S>2Lx;
此外,减小所述Z轴磁电阻传感器的所述磁电阻单元列与所述通量集中器的上方或下方边缘的间距,或者增加所述通量集中器的厚度Lz,或者减小所述通量集中器的宽度Lx均能增加所述z轴磁电阻传感器的灵敏度。
实施例三
根据以上通量集中器上方或下方位置处磁电阻传感单元X磁场分量分布特征可以看出,Z轴磁电阻传感器可以具有如下结构特征:所述磁电阻传感单元电连接成推挽式全桥、半桥或者准桥结构,每个桥臂包含1个或多个磁电阻传感单元,且电连接成两端口的结构,所述磁电阻单元排布成磁电阻单元列,所述推臂和挽臂分别位于通量集中器上方或者下方Y轴中心线的不同侧,并且到对应通量集中器的Y轴中心线距离相等。
根据磁电阻单元列在通量集中器中的分布特征和数量的不同,所述Z轴磁电阻传感器可以分成如下几种结构:
图5为位于衬底8上的Z轴磁电阻传感器的结构图一,其中包含N+2(N为大于1的整数)个通量集中器6,包括位于中间的N个通量集中器62和位于两侧的2个通量集中器61,磁电阻传感单元列7中的71和72分布于中间N个通量集中器62所对应的Y轴中心线两侧的位置处,这是由于位于中间N个通量集中器62所对应Y中心线两侧的磁电阻传感单元列71和72位置处的X磁场分量大小相同,且方向相反,从而可以构成推挽式电桥结构。
图6为位于衬底8上的Z轴磁电阻传感器的结构图二,其中,只包含1个通量集中器6(1),磁电阻单元列7(1)包括两个磁电阻传感单元列73和74,且分布于通量集中器Y轴中心线的两侧位置,这是因为在单个通量集中器的情况下,以上两个位置显然X磁场分量具有大小相同,方向相反特征,从而可以构成推挽式电桥结构。
图7为Z轴磁电阻传感器的结构图三,其中,只包含2个通量集中器65和66,磁电阻传感单元列75和76分别分布于2个通量集中器所对应的两个Y轴中心线的外侧,或者内侧位置,且距离所在通量集中器Y轴中心线相同距离,显然此时两个位置也具有大小相同,方向相反的X磁场分量,从而构成推挽式电桥结构,为了方便说明,图7中只给出了两个磁电阻传感单元列同时位于外侧的情况,实际上还可以包括两个磁电阻单元列同时位于内侧的情况。
图8为Z轴磁电阻传感器的电连接图,磁电阻传感单元电连接成推挽式电桥结构,并且至少包括一个推臂和一个挽臂,每个推臂和挽臂包括1个或多个磁电阻传感单元电连接成的两端口结构,且所述磁电阻单元排成多个平行的磁电阻单元列,其中81为连接导线,82和83分别为电源输入端和接地端,85和84分别为信号输出端,6(3)为通量集中器,其中67位于两侧,68位于中间,磁电阻传感单元列77和78分别位于通量集中器的上方或下方的Y中心线两侧,且距离Y中心线有相同的距离,构成推臂和腕臂的一部分,其中磁电阻单元排列成磁电阻单元列,图8中为全桥结构推挽式磁电阻桥,包括4个桥臂,即两个推臂和两个挽臂,每个推臂和挽臂分别包含多个磁电阻列,并且形成两端口结构。Z磁电阻传感器的推挽式全桥结构如图9所示,构成全桥的四个桥臂R1,R2,R3和R4两两相邻,具有相反的外磁场响应特征。
图10给出的为推挽式全桥结构,实际上还包括半桥类型的推挽式结构,包含两个臂R1和R2,其中一个为推臂,另一个为挽臂,此外,还可以构成准桥结构。
实施例四
图11为所述圆形永磁码盘围绕中线轴线旋转时,两个Z轴传感器芯片所测量的敏感磁场H1和H2,圆形永磁码盘的磁化方向M与H1方向的夹角为φ,可以用φ来定义永磁码盘旋转角度, 两个Z轴传感器分别测量的磁场分量H1和H2之间的磁场测量角α定义如下,
α=atan(Hy/Hx), Hx>0, Hy>0
=atan(Hy/Hx)+pi, Hx>0, Hy<0
=atan(Hy/Hx)-pi, Hx<0, Hy<0
图11中91和92分别为Z轴磁电阻传感器芯片1和Z轴磁电阻传感器2的敏感磁场H1和H2随圆形永磁码盘的旋转角度φ的变化关系,可以看出,磁场H1和H2随旋转角度变化为正弦/余弦的变化关系,且相位相差90度。
图12中93为典型的磁场测量角度α和圆形永磁码盘旋转角度φ之间的关系曲线93,可以看出,曲线93为直线特征,表明磁场测量角度和旋转角度之间有线性关系,可以通过两个Z轴磁电阻传感器芯片的输出信号对圆形永磁码盘旋转角度进行测量。
图13为Z轴磁电阻传感器芯片1和2距离圆形永磁码盘3不同距离Det时,所得到的磁场测量角α随圆形永磁旋转角φ的曲线采用线性拟合时拟合参数R2与Det/R比率的关系曲线94,可以看出,随着Det/R的增加,其R2开始保持稳定在1.0附近,而后再2.0时逐渐的下降,总体上R2线性度很高,保持在0.997以上,为了便于角度的测量精度,因此旋转0-2 r,r为圆形永磁码盘半径,因此可以看出,双Z轴磁电阻角度传感器的工作空间远远大于X-Y轴的小于r区域的空间,因此具有更大的灵活性。

Claims (14)

  1. 一种双Z轴磁电阻角度传感器,包括一个圆形永磁码盘,两个Z轴磁电阻传感器芯片和PCB,其特征在于,所述圆形永磁码盘附着在一个旋转轴上,且所述旋转轴围绕所述圆形永磁码盘中心轴线旋转;所述两个Z轴磁电阻传感器芯片均包括衬底以及位于其上的至少一个Z轴磁电阻传感器,所述Z轴磁电阻传感器的磁场敏感方向垂直于所述衬底所在平面;所述两个Z轴磁电阻传感器芯片位于所述PCB上,且所述两个Z轴磁电阻传感器芯片的磁场敏感方向和所述圆形永磁码盘的中心轴线两两正交,且所述两个Z轴磁电阻传感器芯片与所述圆形永磁码盘中心轴线保持相同距离r+Det,其中r为所述圆形永磁码盘半径,所述Det>0;所述圆形永磁码盘旋转时,所述两个Z轴磁电阻传感器芯片分别将所圆形永磁码盘所产生的两个正交磁场信号转变成两个电压信号输出,从而根据所述两个电压信号,计算出所述圆形永磁码盘的0-360度旋转角度。
  2. 根据权利要求1所述的一种双Z轴磁电阻角度传感器,其特征在于,所述圆形永磁码盘磁化方向为平行于过直径的方向。
  3. 根据权利要求1所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Det距离为0-2r。
  4. 根据权利要求1所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器包括磁电阻传感单元和通量集中器,所述通量集中器为长条形,其长轴平行于Y轴方向,短轴平行于X轴方向,所述磁电阻传感单元敏感方向平行于X轴方向,且电连接成包括至少两个桥臂的磁电阻桥,其中,每个所述桥臂为一个或多个磁电阻传感单元电连接而成的两端口结构,且所述桥臂中的磁电阻传感单元沿着平行于Y轴方向排列成多个磁电阻列,所述磁电阻桥为推挽式桥,其中,推臂和挽臂分别位于所述通量集中器上方或下方Y轴中心线的不同侧,且到各自对应的所述Y轴中心线的距离相等。
  5. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述通量集中器为包含Ni、Fe、Co元素中的一种或多种元素的软磁合金材料。
  6. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述磁电阻传感单元为GMR或TMR磁电阻传感单元。
  7. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器包含N+2个通量集中器,且所述磁电阻列对应于中间N个通量集中器,所述N为大于0的整数。
  8. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器包含1个通量集中器,所述磁电阻列对应于所述1个通量集中器。
  9. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器包含2个通量集中器,所述磁电阻列分别对应于所述2个通量集中器中的Y轴中心线不同侧的位置,且距离对应通量集中器的Y轴中心线相同距离。
  10. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距S不小于所述通量集中器的宽度Lx。
  11. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距S>2Lx,所述Lx为所述通量集中器的宽度。
  12. 根据权利要求4所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器的所述磁电阻单元列与所述通量集中器的上方或下方边缘的间距越小,或者所述通量集中器的厚度Lz越大,或者所述通量集中器的宽度Lx越小,所述z轴磁电阻传感器的灵敏度越高。
  13. 根据权利要求1所述的一种双Z轴磁电阻角度传感器,其特征在于,所述Z轴磁电阻传感器的推挽式电桥为半桥、全桥或者准桥结构中的一种。
  14. 根据权利要求1所述的一种双Z轴磁电阻角度传感器,其特征在于,所述两个Z轴磁电阻传感器具有相同的磁场灵敏度。
PCT/CN2015/087215 2014-08-18 2015-08-17 一种双z轴磁电阻角度传感器 WO2016026412A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017509775A JP6663421B2 (ja) 2014-08-18 2015-08-17 デュアルz軸磁気抵抗角度センサ
US15/504,981 US10690515B2 (en) 2014-08-18 2015-08-17 Dual Z-axis magnetoresistive angle sensor
EP15833216.3A EP3184954B1 (en) 2014-08-18 2015-08-17 Magnetoresistive angle sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410406142.8A CN104197827B (zh) 2014-08-18 2014-08-18 一种双z轴磁电阻角度传感器
CN201410406142.8 2014-08-18

Publications (1)

Publication Number Publication Date
WO2016026412A1 true WO2016026412A1 (zh) 2016-02-25

Family

ID=52083155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087215 WO2016026412A1 (zh) 2014-08-18 2015-08-17 一种双z轴磁电阻角度传感器

Country Status (5)

Country Link
US (1) US10690515B2 (zh)
EP (1) EP3184954B1 (zh)
JP (1) JP6663421B2 (zh)
CN (1) CN104197827B (zh)
WO (1) WO2016026412A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690515B2 (en) 2014-08-18 2020-06-23 MultiDimension Technology Co. Ltd. Dual Z-axis magnetoresistive angle sensor
US11636889B2 (en) 2015-02-04 2023-04-25 MultiDimension Technology Co., Ltd. Automatic magnetic flow recording device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677266B (zh) * 2015-01-20 2017-11-10 江苏多维科技有限公司 强磁场误差校准的磁电阻角度传感器及其校准方法
DE102015101363B4 (de) * 2015-01-30 2019-05-23 Infineon Technologies Ag Erfassung einer Drehposition einer Welle
US9678040B2 (en) 2015-04-09 2017-06-13 International Business Machines Corporation Rotating magnetic field hall measurement system
US9772385B2 (en) * 2015-04-09 2017-09-26 International Business Machines Corporation Rotating magnetic field hall measurement system
JP6278050B2 (ja) * 2016-03-11 2018-02-14 Tdk株式会社 回転角度検出装置及び回転機械装置
JP6278051B2 (ja) * 2016-03-11 2018-02-14 Tdk株式会社 回転角度検出装置
DE102016212925A1 (de) * 2016-07-14 2018-01-18 Schaeffler Technologies AG & Co. KG Permanentmagnet für eine Sensoranordnung zur Bestimmung einer Winkelposition des Permanentmagneten
US11647678B2 (en) 2016-08-23 2023-05-09 Analog Devices International Unlimited Company Compact integrated device packages
US10697800B2 (en) * 2016-11-04 2020-06-30 Analog Devices Global Multi-dimensional measurement using magnetic sensors and related systems, methods, and integrated circuits
CN108020208A (zh) * 2017-12-16 2018-05-11 贵州航天电子科技有限公司 一种转动角测量装置
EP3520695A3 (en) 2018-01-31 2019-11-06 Analog Devices, Inc. Electronic devices
CN109781150B (zh) * 2019-01-09 2021-04-09 福建睿能科技股份有限公司 一种磁编码器的控制方法、磁编码器及针织机器
JP7209261B2 (ja) * 2019-05-17 2023-01-20 パナソニックIpマネジメント株式会社 位置検出システム
DE102019218351A1 (de) * 2019-11-27 2021-05-27 Dr. Johannes Heidenhain Gesellschaft Mit Beschränkter Haftung Sensorelement zur Speicherung von Umdrehungs- oder Positionsinformationen
CN111505545B (zh) * 2020-04-30 2022-02-18 江苏多维科技有限公司 一种机电调制磁阻旋转式磁场强探头
EP4222514A1 (en) 2020-09-29 2023-08-09 HELLA GmbH & Co. KGaA Method for detecting and compensating a stray magnetic field when determining a rotation angle of a rotatable element by means of a magneto-resistive sensor system and magneto-resistive sensor system
US11719527B2 (en) * 2021-11-04 2023-08-08 Allegro Microsystems, Llc Angle sensor with a single die using a single target
CN116817740B (zh) * 2023-08-29 2023-12-01 西安交通大学 一种基于离轴磁场传感器阵列的表盘读数感应装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075108A (ja) * 2001-09-04 2003-03-12 Asahi Kasei Corp 回転角度センサ
US20050253578A1 (en) * 2004-05-14 2005-11-17 Denso Corporation Rotational angle sensing device and assembling method thereof
CN101629802A (zh) * 2008-07-14 2010-01-20 Tdk株式会社 角度检测装置和角度检测方法
CN101918796A (zh) * 2008-01-04 2010-12-15 阿莱戈微系统公司 用于角度传感器的方法和装置
CN103901363A (zh) * 2013-09-10 2014-07-02 江苏多维科技有限公司 一种单芯片z轴线性磁阻传感器
CN104197827A (zh) * 2014-08-18 2014-12-10 江苏多维科技有限公司 一种双z轴磁电阻角度传感器
CN204043603U (zh) * 2014-08-18 2014-12-24 江苏多维科技有限公司 一种双z轴磁电阻角度传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895556B2 (ja) * 2001-04-03 2007-03-22 アルプス電気株式会社 回転角検出センサ
JP4118755B2 (ja) * 2003-01-14 2008-07-16 株式会社日本自動車部品総合研究所 回転角センサ及びこの回転角センサを具備した回転角検出装置
US8115479B2 (en) * 2006-11-21 2012-02-14 Hitachi Metals, Ltd. Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method
JP4950713B2 (ja) * 2007-03-20 2012-06-13 オークマ株式会社 アブソリュートエンコーダ
IT1403421B1 (it) * 2010-12-23 2013-10-17 St Microelectronics Srl Sensore magnetoresistivo integrato, in particolare sensore magnetoresistivo triassiale e suo procedimento di fabbricazione
CN102385043B (zh) * 2011-08-30 2013-08-21 江苏多维科技有限公司 Mtj三轴磁场传感器及其封装方法
US8952683B2 (en) * 2012-07-25 2015-02-10 Infineon Technologies Ag Magnetic out-of-axis angle sensing principle
CN103412269B (zh) * 2013-07-30 2016-01-20 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103630855B (zh) * 2013-12-24 2016-04-13 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103954920B (zh) * 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075108A (ja) * 2001-09-04 2003-03-12 Asahi Kasei Corp 回転角度センサ
US20050253578A1 (en) * 2004-05-14 2005-11-17 Denso Corporation Rotational angle sensing device and assembling method thereof
CN101918796A (zh) * 2008-01-04 2010-12-15 阿莱戈微系统公司 用于角度传感器的方法和装置
CN101629802A (zh) * 2008-07-14 2010-01-20 Tdk株式会社 角度检测装置和角度检测方法
CN103901363A (zh) * 2013-09-10 2014-07-02 江苏多维科技有限公司 一种单芯片z轴线性磁阻传感器
CN104197827A (zh) * 2014-08-18 2014-12-10 江苏多维科技有限公司 一种双z轴磁电阻角度传感器
CN204043603U (zh) * 2014-08-18 2014-12-24 江苏多维科技有限公司 一种双z轴磁电阻角度传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3184954A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690515B2 (en) 2014-08-18 2020-06-23 MultiDimension Technology Co. Ltd. Dual Z-axis magnetoresistive angle sensor
US11636889B2 (en) 2015-02-04 2023-04-25 MultiDimension Technology Co., Ltd. Automatic magnetic flow recording device

Also Published As

Publication number Publication date
EP3184954A1 (en) 2017-06-28
EP3184954A4 (en) 2018-03-14
US20170356764A1 (en) 2017-12-14
CN104197827B (zh) 2017-05-10
CN104197827A (zh) 2014-12-10
EP3184954B1 (en) 2021-10-20
US10690515B2 (en) 2020-06-23
JP6663421B2 (ja) 2020-03-11
JP2017524142A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
WO2016026412A1 (zh) 一种双z轴磁电阻角度传感器
WO2012116659A1 (zh) 独立封装的桥式磁场角度传感器
JP6426178B2 (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
CN103443590B (zh) 绝对编码装置及电动机
WO2015096731A1 (zh) 一种高灵敏度推挽桥式磁传感器
CN105785290B (zh) 磁场传感器
JP6420763B2 (ja) 直読式計量装置および直読式水量計
CN110231494A (zh) 具有分布式惠斯通桥的磁性速度传感器
WO2012031553A1 (zh) 隧道磁电阻效应磁性编码器
JP2000161905A (ja) 回転位置センサ―用磁場集中器アレイ
CN108919147B (zh) 一种三轴磁场传感器
US11525874B2 (en) Magnetic sensor with an asymmetric Wheatstone bridge
KR20150102052A (ko) 자기 센서 장치, 자기 감응 방법 및 그 제조 방법
JP6852906B2 (ja) Tmr高感度シングルチップ・ブッシュプル・ブリッジ磁場センサ
JP2011257432A (ja) 位置検出装置及び直線駆動装置
JP2019144242A (ja) 位置センサおよび位置感知方法
CN204043603U (zh) 一种双z轴磁电阻角度传感器
US20210255003A1 (en) A magnetic encoder
JP5427619B2 (ja) 回転検出装置
JP5464070B2 (ja) 電流センサ
US20230273007A1 (en) Magnetic position sensor system with high accuracy
JP2024010867A (ja) 磁気センサ装置および磁気式エンコーダ
JPH10239059A (ja) 方位探知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509775

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15504981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015833216

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833216

Country of ref document: EP