WO2012115217A1 - 血液成分吸着用担体及び血液成分吸着カラム - Google Patents
血液成分吸着用担体及び血液成分吸着カラム Download PDFInfo
- Publication number
- WO2012115217A1 WO2012115217A1 PCT/JP2012/054506 JP2012054506W WO2012115217A1 WO 2012115217 A1 WO2012115217 A1 WO 2012115217A1 JP 2012054506 W JP2012054506 W JP 2012054506W WO 2012115217 A1 WO2012115217 A1 WO 2012115217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- nonwoven fabric
- blood component
- component adsorption
- added
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3679—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28052—Several layers of identical or different sorbents stacked in a housing, e.g. in a column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
- B01J20/321—Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
- B01J20/3217—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
- B01J20/3219—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3248—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
- B01J20/3251—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3257—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3257—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
- B01J20/3259—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulfur with at least one silicon atom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/04—Liquids
- A61M2202/0413—Blood
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/58—Use in a single column
Definitions
- the present invention relates to a blood component adsorption carrier and a blood component adsorption column.
- Inflammatory cytokines are deeply involved in the pathogenesis of inflammatory diseases such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, ulcerative colitis, and Crohn's disease, and are inflammatory in biologics such as small molecule drugs and antibodies. It has been thought that inactivating cytokines can treat these inflammatory diseases. However, since it has been found that inflammatory cytokines do not act on inflammatory sites alone, but multiple types act synergistically to develop and progress inflammatory diseases, recently, the source of inflammatory cytokines Attention has been focused on leukocyte removal therapy that removes activated leukocytes from the blood.
- the leukocyte removal column with fibers and beads as a filler is used to extracorporeally circulate the blood of patients with inflammatory diseases and selectively absorb the activated leukocytes.
- a method of removing is known.
- a carrier for selectively adsorbing granulocytes an example of using beads having a certain unevenness on the surface as a filler has been reported (Patent Document 1), and as a carrier for simultaneously adsorbing activated leukocytes and cytokines.
- Patent Documents 2 and 3 have reported examples of using a non-woven fabric or beads whose surface is modified with an amino group as a filler.
- adsorbent carriers used for selectively adsorbing activated leukocytes are not sufficiently adsorbable at present, and are used for leukocyte removal therapy to treat patients with inflammatory diseases. In order to enhance the effect, it was considered necessary to improve the adsorbability of granulocytes and monocytes, among leukocytes.
- an object of the present invention is to provide a blood component-adsorbing carrier that can selectively and efficiently remove granulocytes and monocytes and can simultaneously adsorb and remove inflammatory cytokines.
- the present inventors have found a blood component adsorption carrier capable of adsorbing and removing inflammatory cytokines in addition to granulocytes and monocytes with high efficiency.
- the invention has been completed.
- the present invention provides the blood component adsorption carrier and the blood component adsorption column described in the following (1) to (9).
- a carrier for adsorbing blood components wherein a functional group having a silyl group and an amino group is introduced on the surface of a water-insoluble carrier.
- the blood component adsorption carrier of the present invention granulocytes and monocytes can be adsorbed and removed with high efficiency from the blood of patients with inflammatory diseases, and inflammatory cytokines can also be adsorbed and removed simultaneously.
- the blood component adsorption column packed with the blood component adsorption carrier of the present invention can be used for leukocyte removal therapy, and can exhibit a suitable therapeutic effect in the treatment of severe inflammatory diseases.
- the blood component adsorption carrier of the present invention is characterized in that a functional group having a silyl group and an amino group is introduced on the surface of a water-insoluble carrier.
- Bood component adsorption carrier refers to a material capable of adsorbing and removing blood components from blood.
- a blood component refers to a component that constitutes blood, for example, a blood cell component such as red blood cells, white blood cells, or platelets or a humoral factor such as inflammatory cytokines, but for the purpose of treating inflammatory diseases. It is preferable that leukocytes and inflammatory cytokines are removed by adsorption.
- Inflammatory cytokines are proteins secreted from cells that transmit information to specific cells, such as interleukins, tumor necrosis factor- ⁇ , transforming growth factor beta, interferon- ⁇ , angiogenesis Examples include growth factors and immunosuppressive acidic proteins.
- Interleukin refers to a cytokine that is secreted by leukocytes and functions to regulate the immune system.
- Interleukin-1 interleukin-6
- IL-8 interleukin-8
- interleukin-10 interleukin-17
- interleukin-17 interleukin-17
- Adsorption refers to the state where blood components adhere to the blood component adsorption carrier and do not easily peel off.
- water-insoluble carrier examples include polyolefins such as polyethylene or polypropylene, polyesters such as polyethylene terephthalate or polybutylene terephthalate, fluorinated polymers such as Teflon (registered trademark), poly (p-phenylene ether sulfone), and the like.
- Polysulfone polymers, polyether imides, polyimides, polyamides, polyethers, polyphenylene sulfide, polystyrene or acrylic polymers, or blends and alloys of these polymers may be mentioned, but functional groups are introduced on the surface of water-insoluble carriers.
- Polystyrene is preferable for facilitating heat treatment, and polypropylene or polypropylene-polyethylene copolymer is preferable from the viewpoint of heat resistance or shape retention during processing.
- the functional group having a silyl group and an amino group means a functional group containing at least one silyl group and amino group as part of the chemical structure of the functional group.
- the “silyl group” refers to a functional group having the chemical structure shown below.
- the chemical structure of R 1, R 2 and R 3 is not particularly limited, it is preferable that R 1, R 2 and R 3 is an alkyl group or an alkoxy group, a methyl group, an ethyl group, a methoxy group or ethoxy More preferably, it is a group.
- Examples of the silyl group in which R 1 , R 2 and R 3 are all the same alkyl group include a trimethylsilyl group and a triethylsilyl group.
- Examples of the silyl group in which R 1 , R 2 and R 3 are all the same alkoxy group include a trimethoxysilyl group and a triethoxysilyl group. Furthermore, examples of the silyl group in which R 1 , R 2, and R 3 are a plurality of types of alkyl groups and / or alkoxy groups include a methyldimethoxysilyl group.
- the silyl group may contain one or more siloxane bonds, but if the siloxane bond is too continuous, the free movement of the functional group is suppressed, so the number of continuous siloxane bonds. Is preferably 5 or less.
- R 1 , R 2 and R 3 are all silyl groups substituted with an alkyl group and / or an alkoxy group, the interaction between the silyl group and blood components is facilitated.
- the number of carbon atoms and oxygen atoms constituting the alkyl group and / or alkoxy group is preferably 5 or less.
- Amino group refers to a functional group having the structure shown below.
- R 4 and R 5 are not particularly limited, examples of R 4 and R 5, for example, alkyl groups.
- R 4 and R 5 are both hydrogen
- a structure in which either R 4 or R 5 is a chemical structure other than hydrogen is referred to as a secondary amino group.
- a structure in which both 4 and R 5 are substituted with a chemical structure other than hydrogen is referred to as a tertiary amino group.
- the “amino group” in the present invention includes a functional group having the following structure, that is, a quaternary ammonium group.
- R 6 , R 7 and R 8 all represent a chemical structure other than hydrogen, and these chemical structures are not particularly limited. Examples of R 6 , R 7 and R 8 include an alkyl group.
- the amino group is used as the blood component adsorption carrier.
- the above amino group is not limited to a secondary or tertiary amino group or a fourth group because it may not only increase the possibility of cross-linking to other chemical structures, but may also cause excessive irritation to the living body.
- Preferred is a secondary ammonium group.
- spacer a chemical structure existing between the silyl group and the amino group, that is, a chemical structure in which the silicon atom of the silyl group and the nitrogen atom of the amino group are bonded.
- spacer a chemical structure in which the silicon atom of the silyl group and the nitrogen atom of the amino group are bonded.
- spacer is preferably composed of a hydrogen atom, a carbon atom, an oxygen atom, or a sulfur atom. If the spacer is excessive, the density of the silyl group decreases, so the number of atoms constituting the spacer may be 200 or less. preferable.
- the spacer is more preferably an alkyl chain, and further preferably an alkyl chain having 6 or less carbon atoms.
- examples of the reactive functional group that mediates the bond between the water-insoluble carrier and the above functional group include a halomethyl group.
- Active halogen groups such as haloacetyl group, haloacetamidomethyl group or halogenated alkyl group, epoxide group, carboxyl group, isocyanate group, thioisocyanate group or acid anhydride group. Therefore, an active halogen group is preferable, and a haloacetamidomethyl group is more preferable.
- the above-mentioned functional group in which the silyl group is located at the terminal and the spacer is an alkyl chain is, for example, a commercially available reagent that is easily available, such as reacting a silylalkylamine with a haloacetamidomethyl group.
- a commercially available reagent that is easily available, such as reacting a silylalkylamine with a haloacetamidomethyl group.
- the above functional group in which the spacer is an alkyl chain having 3 carbon atoms can be obtained by reacting 3-aminopropyltrimethoxysilane or 3-aminopropyltriethoxysilane with a haloacetamidomethyl group.
- the shape of the “water-insoluble carrier” is preferably “fiber or particle” from the viewpoint of enhancing the leukocyte adsorption efficiency.
- the cross section of the fiber may be an irregular cross section other than a perfect circle, and the fiber may be a hollow fiber.
- the “fiber diameter of the fiber” and the “particle diameter of the particle” of the “fiber or particle” are preferably 0.5 to 20 ⁇ m in order to exert the phagocytic ability of leukocytes more stably. More preferably, it is 10 ⁇ m.
- a preferred value for the lower limit is 0.5 ⁇ m, more preferably 4 ⁇ m.
- a preferable value of the upper limit value is 20 ⁇ m, more preferably 10 ⁇ m.
- the phagocytic ability of leukocytes refers to the property that granulocytes and monocytes capture microorganisms and bacteria that have entered the body such as humans and try to eat them.
- Fiber diameter of fiber refers to 10 small fiber samples taken at random and taken 2000 times using a scanning electron microscope, and 10 fibers (100 in total) for each photo. The average value of the measured values of the diameter.
- particle size of particle means that 10 small particle samples are randomly collected and 2000 times magnified photographs are taken using a scanning electron microscope. ) Is the average of the measured values of the diameter of the particles.
- a fiber having a larger diameter may be mixed from the viewpoint of securing the strength of the blood component adsorption carrier.
- the fiber diameter of such a fiber having a larger diameter is 10 ⁇ 50 ⁇ m is preferred.
- Examples of the shape of the water-insoluble carrier made of fibers include woven fabric, non-woven fabric, cotton fabric or hollow fiber.
- a skeleton material fiber such as polypropylene is added to maintain the shape. Is also preferable.
- the blood component adsorption carrier of the present invention When the blood component adsorption carrier of the present invention is made of fibers, the blood component may be removed by the principle of filtration, but in consideration of suppressing pressure loss due to clogging, granulocytes and monocytes Uses the interaction between its phagocytic ability and the “functional group having a silyl group and an amino group”, and for the inflammatory cytokine, the interaction with the “functional group having a silyl group and an amino group” is used. It is preferable to remove each by adsorption. For this reason, when the blood component adsorption carrier of the present invention is filled in a container such as a column, it is conceivable to increase the porosity.
- the porosity of the water-insoluble carrier is preferably 85 to 98%, and preferably 90 to 95%. Is more preferable.
- a preferred value for the lower limit is 85%, more preferably 90%.
- a preferable value of the upper limit is 98%, more preferably 95%. Any preferred lower limit can be combined with any preferred upper limit.
- “Void ratio” is a ratio of the void volume in the blood component adsorption carrier, and is a numerical value expressed as a percentage by dividing the void volume in the blood component adsorption carrier by the apparent volume of the blood component adsorption carrier. More specifically, it means a value calculated by the following formula 1 using a scanning electron microscope, taking a photograph of 200 times the cross section of the blood component adsorption carrier, and using the image analysis result.
- Porosity (%) ⁇ (ba) / b ⁇ ⁇ 100 (1)
- a Area of the portion occupied by the water-insoluble carrier
- b Total area of the cross section of the blood component adsorption carrier
- silyl group contained in the “functional group having a silyl group and an amino group” is presumed to greatly contribute to the selective adsorption of granulocytes and monocytes.
- silyl groups are present at a high density, free movement of functional groups is suppressed, and it is considered that the interaction with granulocytes and monocytes is not sufficient.
- the amino group contained in the “functional group having a silyl group and an amino group” also contributes greatly to the selective adsorption of granulocytes and monocytes.
- amino groups when amino groups are present at a high density, competitive adsorption with a negatively charged protein occurs, and it is assumed that the adsorption rate of granulocytes and monocytes decreases.
- the density of amino groups can be expressed by proton adsorption capacity, but the proton adsorption capacity of the blood component adsorption carrier of the present invention is 1.5 ⁇ 10 ⁇ 5 to 3.0 ⁇ 10 ⁇ 3 eq / g.
- the lower limit is preferably 1.5 ⁇ 10 ⁇ 5 eq / g, more preferably 1.0 ⁇ 10 ⁇ 4 eq / g.
- a preferable value of the upper limit is 3.0 ⁇ 10 ⁇ 3 eq / g, and more preferably 2.0 ⁇ 10 ⁇ 3 eq / g. Any preferred lower limit can be combined with any preferred upper limit.
- the proton adsorption capacity of 1 eq / g means that 1 g of adsorption carrier can adsorb 1 mol of proton.
- the silyl group contained in the “functional group having a silyl group and an amino group” is presumed to contribute to some extent to the adsorption of inflammatory cytokines.
- the inflammatory cytokine is a protein of about 1 to several tens of kDa, and contains many kinds of hydrophobic amino acids. For example, it interacts with a hydrophobic silyl group such as a trimethylsilyl group. Presumed to be.
- the container shape of the blood component adsorption column of the present invention packed with the above-described blood component adsorption carrier may be any container having an inlet and an outlet for blood.
- Examples include prismatic containers such as columnar and octagonal cylinders, containers that can be filled with blood component adsorption carriers in layers, containers that can be filled with blood component adsorption carriers wound in a cylindrical shape, or blood enters from the outer periphery of the cylinder A container that flows inward and out of the container is preferred.
- wt% means weight%
- PP non-woven fabric After producing a nonwoven fabric composed of 85 wt% of this fiber and 15 wt% of polypropylene fiber having a diameter of 20 ⁇ m, a sheet-like polypropylene net (thickness 0.5 mm, single yarn diameter 0.3 mm, opening 2 mm) between the two nonwoven fabrics.
- a non-woven fabric having a three-layer structure (hereinafter referred to as PP non-woven fabric) was obtained by needle punching.
- PSt + PP non-woven fabric A non-woven fabric (PSt + PP non-woven fabric) having a core-sheath fiber diameter of 5 ⁇ m and a bulk density of 0.02 g / cm 3 by treating a non-woven fabric made of PP with a 3 wt% sodium hydroxide aqueous solution at 95 ° C.
- nonwoven fabric A was produced.
- Nitrobenzene 46 wt%, sulfuric acid 46 wt%, paraformaldehyde 1 wt%, N-methylol- ⁇ -chloroacetamide (hereinafter referred to as NMCA) 7 wt% were mixed, stirred and dissolved at 10 ° C. or less to prepare an NMCA reaction solution.
- the NMCA reaction solution was brought to 5 ° C., and to 1 g of non-woven fabric A, the NMCA reaction solution was added at a solid-liquid ratio of about 40 mL, and reacted for 2 hours while maintaining the reaction solution at 5 ° C. in a water bath.
- non-woven fabric B a chloroacetamidomethylated non-woven fabric
- N-2- (aminoethyl) -3-aminopropyltrimethoxysilanized nonwoven fabric Add 2 g of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane to 46.5 mL of DMSO, add 3.3 mL of triethylamine, and mix 1 g of non-woven fabric B. The reaction was carried out at 40 ° C. for 2 hours.
- nonwoven fabric D was washed with DMSO and methanol, and further washed with water to obtain an N-2- (aminoethyl) -3-aminopropyltrimethoxysilanized nonwoven fabric (hereinafter, nonwoven fabric D).
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric D.
- N-2- (aminoethyl) -3-aminopropyltriethoxysilanized nonwoven fabric) 1 g of non-woven fabric B is immersed in a solution obtained by adding 0.27 mL of N-2- (aminoethyl) -3-aminopropyltriethoxysilane to 46.5 mL of DMSO and further adding 3.3 mL of triethylamine. The reaction was carried out at 40 ° C. for 2 hours.
- nonwoven fabric E N-2- (aminoethyl) -3-aminopropyltriethoxysilanized nonwoven fabric (hereinafter referred to as nonwoven fabric E).
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric E.
- N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilanized nonwoven fabric) 1 g of non-woven fabric B is immersed in a solution obtained by adding 0.21 mL of N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane to 46.5 mL of DMSO and further adding 3.3 mL of triethylamine. The reaction was carried out at 40 ° C. for 2 hours.
- nonwoven fabric F was washed with DMSO and methanol, and further washed with water to obtain an N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilanized nonwoven fabric (hereinafter, nonwoven fabric F).
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric F.
- nonwoven fabric H (Production of 3-aminopropyltriethoxysilanized nonwoven fabric) 0.18 mL of 3-aminopropyltriethoxysilane was added to 46.5 mL of DMSO, and 3.3 mL of triethylamine was further added and mixed, and 1 g of non-woven fabric B was immersed and reacted at 40 ° C. for 2 hours. After the reaction, the nonwoven fabric was washed with DMSO and methanol, and further washed with water to obtain a 3-aminopropyltriethoxysilanized nonwoven fabric (hereinafter, nonwoven fabric H). Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric H.
- nonwoven fabric I (Production of 3-ethoxypropylaminated non-woven fabric) 0.12 mL of 3-ethoxypropylamine was added to 46.5 mL of DMSO, and 3.3 mL of triethylamine was further added and mixed, and 1 g of non-woven fabric B was immersed and reacted at 40 ° C. for 2 hours. The nonwoven fabric after the reaction was washed with DMSO and methanol, and further washed with water to obtain a 3-ethoxypropylamined nonwoven fabric (hereinafter referred to as nonwoven fabric I). Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric I.
- nonwoven fabric J (Preparation of 4-aminobutyraldehyde dimethyl acetalized nonwoven fabric) 0.14 mL of 4-aminobutyraldehyde dimethyl acetal was added to 46.5 mL of DMSO, and 3.3 mL of triethylamine was further added and mixed, and 1 g of non-woven fabric B was immersed and reacted at 40 ° C. for 2 hours. After the reaction, the nonwoven fabric was washed with DMSO and methanol, and further washed with water to obtain a 4-aminobutyraldehyde dimethyl acetalized nonwoven fabric (hereinafter, nonwoven fabric J). Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric J.
- nonwoven fabric K (Production of 3-aminopropionaldehyde diethyl acetalized nonwoven fabric) 0.16 mL of 3-aminopropionaldehyde diethyl acetal was added to 46.5 mL of DMSO, and 3.3 mL of triethylamine was further added and mixed, and 1 g of non-woven fabric B was immersed and reacted at 40 ° C. for 2 hours. The nonwoven fabric after the reaction was washed with DMSO and methanol, and further washed with water to obtain a 3-aminopropionaldehyde diethyl acetalized nonwoven fabric (hereinafter referred to as nonwoven fabric K). Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric K.
- tetraethylenepentaminated polysulfone nonwoven fabric After immersing 0.1 g of the nonwoven fabric A in a solution obtained by dissolving the recovered tetraethylenepentamated polysulfone again in 20 mL of DMF, the tetraethylenepentamined polysulfone nonwoven fabric (hereinafter, referred to as “tetraethylenepentaminated polysulfone nonwoven fabric”) is pulled up immediately and further immersed in methanol. A nonwoven fabric L) was obtained. Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric L.
- N-2- (aminoethyl) -3-aminopropyltrimethoxysilanized polysulfone nonwoven fabric 1 g of chloroacetamidomethylated polysulfone was dissolved in 30 mL of DMF, and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was added thereto to a concentration of 20 mM, followed by stirring for 17 hours. By adding 600 mL of ice-cooled methanol, N-2- (aminoethyl) -3-aminopropyltrimethoxysilanized polysulfone was precipitated and recovered.
- non-woven fabric A 0.1 g of non-woven fabric A is immersed in a solution obtained by re-dissolving the collected N-2- (aminoethyl) -3-aminopropyltrimethoxysilanized polysulfone in 20 mL of DMF, and then immediately pulled up and further immersed in methanol.
- nonwoven fabric M an N-2- (aminoethyl) -3-aminopropyltrimethoxysilanized polysulfone nonwoven fabric (hereinafter, nonwoven fabric M) was obtained.
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric M.
- N-2- (aminoethyl) -3-aminopropyltriethoxysilanized polysulfone nonwoven fabric 1 g of chloroacetamidomethylated polysulfone was dissolved in 30 mL of DMF, and N-2- (aminoethyl) -3-aminopropyltriethoxysilane was added thereto so as to have a concentration of 20 mM, followed by stirring for 17 hours. By adding 600 mL of ice-cooled methanol, N-2- (aminoethyl) -3-aminopropyltriethoxysilanized polysulfone was precipitated and recovered.
- non-woven fabric A 0.1 g of non-woven fabric A is immersed in a solution obtained by re-dissolving the collected N-2- (aminoethyl) -3-aminopropyltriethoxysilanized polysulfone in 20 mL of DMF, and then immediately pulled up and further immersed in methanol.
- N N-2- (aminoethyl) -3-aminopropyltriethoxysilanized polysulfone nonwoven fabric
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric N.
- N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilanized polysulfone nonwoven fabric 1 g of chloroacetamidomethylated polysulfone was dissolved in 30 mL of DMF, and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane was added thereto to a concentration of 20 mM, followed by stirring for 17 hours. By adding 600 mL of ice-cooled methanol, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilanized polysulfone was precipitated and recovered.
- non-woven fabric O N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilanized polysulfone nonwoven fabric (hereinafter referred to as nonwoven fabric O) was obtained.
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric O.
- nonwoven fabric P Polysulfone nonwoven fabric
- nonwoven fabric Q Polysulfone nonwoven fabric
- the nonwoven fabric A After immersing 0.1 g of the nonwoven fabric A in a solution obtained by dissolving the recovered 3-ethoxypropylamined polysulfone again in 20 mL of DMF, the nonwoven fabric A is immediately pulled up and further immersed in methanol to give a 3-ethoxypropylamined polysulfone nonwoven fabric ( Hereinafter, the nonwoven fabric R) was obtained.
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric R.
- 4-aminobutyraldehyde dimethyl acetal is obtained by immersing 0.1 g of non-woven fabric A in a solution obtained by dissolving the recovered 4-aminobutyraldehyde dimethyl acetalized polysulfone again in 20 mL of DMF, and then immediately pulling up and immersing in methanol.
- Polysulfone nonwoven fabric hereinafter referred to as nonwoven fabric S
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric S.
- 3-aminopropionaldehyde diethyl acetal is obtained by immersing 0.1 g of non-woven fabric A in a solution obtained by re-dissolving the recovered 3-aminopropionaldehyde diethyl acetalized polysulfone in 20 mL of DMF.
- Polysulfone nonwoven fabric (hereinafter referred to as nonwoven fabric T) was obtained.
- Table 1 shows the structural formulas of the functional groups introduced into the nonwoven fabric T.
- Example 1 The nonwoven fabric D was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was mixed by inverting for 20 minutes in a 37 ° C. incubator, and then the adsorption rate of each blood component was calculated by the following formulas 2 to 4. The number of each blood component was measured using a multi-item automatic blood cell analyzer XT-1800i (Sysmex Corporation). The results are shown in Table 2.
- Nonwoven fabric E was cut into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Example 3 The nonwoven fabric F was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was mixed by inverting for 20 minutes in a 37 ° C. incubator. The results are shown in Table 2.
- Example 4 The non-woven fabric G was cut into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was mixed by inverting for 20 minutes in a 37 ° C. incubator. The results are shown in Table 2.
- Nonwoven fabric H was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Example 6 The nonwoven fabric M was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Example 7 The nonwoven fabric N was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Nonwoven fabric O was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was mixed by inverting for 20 minutes in a 37 ° C. incubator. The results are shown in Table 2.
- Example 9 The nonwoven fabric P was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Example 10 The nonwoven fabric Q was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was mixed by inverting for 20 minutes in a 37 ° C. incubator. The results are shown in Table 2.
- Nonwoven fabric C was cut into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Nonwoven fabric I was cut into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Nonwoven fabric J was cut into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was mixed by inverting for 20 minutes in a 37 ° C. incubator. The results are shown in Table 2.
- Nonwoven fabric K was cut into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- the nonwoven fabric L was cut out into a disk shape having a diameter of 8 mm, and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was mixed by inverting for 20 minutes in a 37 ° C. incubator. The results are shown in Table 2.
- Example 6 The nonwoven fabric R was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. After 1 mL of human blood (heparin concentration 30 U / mL) was added to this container and mixed by inverting for 20 minutes in a 37 ° C. incubator, the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Example 7 The nonwoven fabric S was cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. 1 mL of human blood (heparin concentration 30 U / mL) was added to this container, and the mixture was inverted and mixed in a 37 ° C. incubator for 20 minutes, and the adsorption rate of each blood component was calculated in the same manner as in Example 1. The results are shown in Table 2.
- Example 11 Two pieces of non-woven fabric D were cut out into a disk shape having a diameter of 8 mm and placed in a polypropylene container. To this container, 0.8 mL of fetal bovine serum (hereinafter referred to as FBS) prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL was added and mixed by inversion in a 37 ° C. incubator for 1 hour. Thereafter, the residual concentrations of IL-6 and IL-8 were measured by ELISA, and the IL-6 and IL-8 adsorption rates were calculated by the following formulas 5 and 6. The results are shown in Table 2.
- FBS fetal bovine serum
- IL-6 adsorption rate (%) ⁇ (IL-6 concentration before inversion mixing) ⁇ (IL-6 concentration after inversion mixing) ⁇ / (IL-6 concentration before inversion mixing) ⁇ 100 ⁇
- Formula 6 ⁇ (IL-6 concentration before inversion mixing) ⁇ (IL-8 concentration after inversion mixing) ⁇ / (IL-8 concentration before inversion mixing) ⁇ 100 ⁇ Formula 6
- Example 12 Two pieces of non-woven fabric E were cut into a disk shape having a diameter of 8 mm and placed in a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 13 Two pieces of the nonwoven fabric F were cut out into a disk shape having a diameter of 8 mm, and placed in a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 14 Two pieces of the nonwoven fabric G were cut out into a disk shape having a diameter of 8 mm, and placed in a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 15 Two pieces of the nonwoven fabric H were cut out into a disk shape having a diameter of 8 mm, and placed in a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 16 Two pieces of the nonwoven fabric M were cut out into a disk shape having a diameter of 8 mm, and placed in a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 17 Two pieces of the nonwoven fabric N were cut out into a disk shape having a diameter of 8 mm, and placed in a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 18 Two pieces of non-woven fabric O were cut out into a disk shape having a diameter of 8 mm and put into a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 19 Two pieces of the nonwoven fabric P were cut out into a disk shape having a diameter of 8 mm and put into a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- Example 20 Two pieces of the nonwoven fabric Q were cut out into a disk shape having a diameter of 8 mm, and placed in a polypropylene container. To this container, 0.8 mL of FBS prepared so that the concentrations of IL-6 and IL-8 were both 500 pg / mL were added and mixed by inverting in a 37 ° C. incubator for 1 hour. Similarly, the IL-6 and IL-8 adsorption rates were calculated. The results are shown in Table 2.
- the blood component adsorption carrier of the present invention in which a functional group having a silyl group is introduced on the surface of a water-insoluble carrier is compared with a carrier in which the functional group on the surface of the water-insoluble carrier has no silyl group. It was revealed that the adsorption rate of granulocytes and monocytes was high, and the adsorption rate of IL-6 and IL-8 was also high.
- the present invention can be used as a blood component adsorption column in the medical field.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
(1) 水不溶性担体の表面に、シリル基とアミノ基とを有する官能基が導入されてなる、血液成分吸着用担体。
(2) 上記水不溶性担体のプロトン吸着能は、1.5×10-5~3.0×10-3eq/gである、上記(1)に記載の血液成分吸着用担体。
(3) 上記シリル基のケイ素原子と上記アミノ基の窒素原子とは、アルキル鎖で結合されている、上記(1)又は(2)に記載の血液成分吸着用担体。
(4) 上記アルキル鎖は、炭素数6以下のアルキル鎖である、上記(3)に記載の血液成分吸着用担体。
(5) 上記シリル基は、アルキル基及び/又はアルコキシ基を有する、上記(1)~(4)のいずれかに記載の血液成分吸着用担体。
(6) 上記アルキル基は、メチル基又はエチル基である、上記(5)に記載の血液成分吸着用担体。
(7) 上記アルコキシ基は、メトキシ基又はエトキシ基である、上記(5)又は(6)に記載の血液成分吸着用担体。
(8) 上記水不溶性担体は、繊維又は粒子からなる、上記(1)~(7)のいずれかに記載の血液成分吸着用担体。
(9) 上記繊維の繊維径又は上記粒子の粒子径は、0.5~20μmである、上記(8)に記載の血液成分吸着用担体。
(10) 上記(1)~(9)のいずれかに記載の血液成分吸着用担体が充填された、血液成分吸着カラム。
空隙率(%)={(b-a)/b}×100 ・・・・・・式1
a : 水不溶性担体で占められている部分の面積
b : 血液成分吸着担体の断面の全面積
36島の海島複合繊維であって、島が更に芯鞘複合によりなるものを次の成分を用いて、紡糸速度800m/分、延伸倍率3倍の製糸条件で得た。
島の芯成分: ポリプロピレン
島の鞘成分: ポリスチレン90wt%、ポリプロピレン10wt%
海成分: エチレンテレフタレート単位を主たる繰り返し単位とし、共重合成分として5-ナトリウムスルホイソフタル酸を3wt%含む共重合ポリエステル
複合比率(重量比率): 芯:鞘:海=45:40:15
PP製不織布を95℃、3wt%の水酸化ナトリウム水溶液で処理し、海成分を溶解することによって、芯鞘繊維の直径が5μmで、嵩密度が0.02g/cm3の不織布(PSt+PP製不織布、以下、不織布A)を作製した。
ニトロベンゼン46wt%、硫酸46wt%、パラホルムアルデヒド1wt%、N-メチロール-α-クロルアセトアミド(以下、NMCA)7wt%を10℃以下で混合、撹拌、溶解しNMCA化反応液を調製した。このNMCA化反応液を5℃にし、1gの不織布Aに対し、約40mLの固液比でNMCA化反応液を加え、水浴中で反応液を5℃に保ったまま2時間反応させた。その後、反応液から不織布を取り出し、NMCA反応液と同量のニトロベンゼンに浸漬し洗浄した。続いて不織布を取り出し、メタノールに浸漬し洗浄を行い、クロロアセトアミドメチル化不織布(以下、不織布B)を得た。
テトラエチレンペンタミン(以下、TEPA)の濃度が20mM、トリエチルアミンの濃度が473mMとなるようにそれぞれを500mLのジメチルスルホキシド(以下、DMSO)に溶解した液に、10gの不織布Bを浸して40℃で3時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、TEPA化不織布(以下、不織布C)を得た。不織布Cに導入された官能基の構造式を、表1-1に示す。
0.22mLのN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン化不織布(以下、不織布D)を得た。不織布Dに導入された官能基の構造式を、表1に示す。
0.27mLのN-2-(アミノエチル)-3-アミノプロピルトリエトキシシランを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン化不織布(以下、不織布E)を得た。不織布Eに導入された官能基の構造式を、表1に示す。
0.21mLのN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン化不織布(以下、不織布F)を得た。不織布Fに導入された官能基の構造式を、表1に示す。
0.18mLの3-アミノプロピルトリメトキシシランを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、3-アミノプロピルトリメトキシシラン化不織布(以下、不織布G)を得た。不織布Gに導入された官能基の構造式を、表1に示す。
0.18mLの3-アミノプロピルトリエトキシシランを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、3-アミノプロピルトリエトキシシラン化不織布(以下、不織布H)を得た。不織布Hに導入された官能基の構造式を、表1に示す。
0.12mLの3-エトキシプロピルアミンを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、3-エトキシプロピルアミン化不織布(以下、不織布I)を得た。不織布Iに導入された官能基の構造式を、表1に示す。
0.14mLの4-アミノブチルアルデヒドジメチルアセタールを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、4-アミノブチルアルデヒドジメチルアセタール化不織布(以下、不織布J)を得た。不織布Jに導入された官能基の構造式を、表1に示す。
0.16mLの3-アミノプロピオンアルデヒドジエチルアセタールを46.5mLのDMSOに加え、さらに3.3mLのトリエチルアミンを加えて混合した液に、1gの不織布Bを浸して40℃で2時間反応させた。反応後の不織布をDMSO及びメタノールで洗浄し、さらに水洗することによって、3-アミノプロピオンアルデヒドジエチルアセタール化不織布(以下、不織布K)を得た。不織布Kに導入された官能基の構造式を、表1に示す。
32mLの5wt%ポリスルホン/ニトロベンゼン溶液に、0℃で調製した2mLの2wt%NMCA/硫酸溶液を加え、1時間撹拌した。ここに氷冷した800mLのメタノールを加えることでクロロアセトアミドメチル化ポリスルホンを析出させ、回収した。回収したクロロアセトアミドメチル化ポリスルホンを20mLのジメチルホルムアミド(以下、DMF)に溶解した液に、再度氷冷した400mLのメタノールを加えることで、クロロアセトアミドメチル化ポリスルホンを得た。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるようにテトラエチレンペンタミンを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることでテトラエチレンペンタミン化ポリスルホンを析出させ、回収した。回収したテトラエチレンペンタミン化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、テトラエチレンペンタミン化ポリスルホン不織布(以下、不織布L)を得た。不織布Lに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるようにN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることでN-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン化ポリスルホンを析出させ、回収した。回収したN-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン化ポリスルホン不織布(以下、不織布M)を得た。不織布Mに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるようにN-2-(アミノエチル)-3-アミノプロピルトリエトキシシランを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることでN-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン化ポリスルホンを析出させ、回収した。回収したN-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン化ポリスルホン不織布(以下、不織布N)を得た。不織布Nに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるようにN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることでN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン化ポリスルホンを析出させ、回収した。回収したN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン化ポリスルホン不織布(以下、不織布O)を得た。不織布Oに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるように3-アミノプロピルトリメトキシシランを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることで3-アミノプロピルトリメトキシシラン化ポリスルホンを析出させ、回収した。回収した3-アミノプロピルトリメトキシシラン化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、3-アミノプロピルトリメトキシシラン化ポリスルホン不織布(以下、不織布P)を得た。不織布Pに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるように3-アミノプロピルトリエトキシシランを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることで3-アミノプロピルトリエトキシシラン化ポリスルホンを析出させ、回収した。回収した3-アミノプロピルトリエトキシシラン化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、3-アミノプロピルトリエトキシシラン化ポリスルホン不織布(以下、不織布Q)を得た。不織布Qに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるように3-エトキシプロピルアミンを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることで3-エトキシプロピルアミン化ポリスルホンを析出させ、回収した。回収した3-エトキシプロピルアミン化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、3-エトキシプロピルアミン化ポリスルホン不織布(以下、不織布R)を得た。不織布Rに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるように4-アミノブチルアルデヒドジメチルアセタールを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることで4-アミノブチルアルデヒドジメチルアセタール化ポリスルホンを析出させ、回収した。回収した4-アミノブチルアルデヒドジメチルアセタール化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、4-アミノブチルアルデヒドジメチルアセタール化ポリスルホン不織布(以下、不織布S)を得た。不織布Sに導入された官能基の構造式を、表1に示す。
1gのクロロアセトアミドメチル化ポリスルホンを30mLのDMFに溶解し、そこへ濃度が20mMとなるように3-アミノプロピオンアルデヒドジエチルアセタールを加えて17時間撹拌した後、ここに氷冷した600mLのメタノールを加えることで3-アミノプロピオンアルデヒドジエチルアセタール化ポリスルホンを析出させ、回収した。回収した3-アミノプロピオンアルデヒドジエチルアセタール化ポリスルホンを20mLのDMFに再度溶解した液に、0.1gの不織布Aを浸した後、直ぐに引き上げてさらにメタノールに浸すことによって、3-アミノプロピオンアルデヒドジエチルアセタール化ポリスルホン不織布(以下、不織布T)を得た。不織布Tに導入された官能基の構造式を、表1に示す。
不織布Dを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、以下の式2~4により各血液成分の吸着率を算出した。なお、各血液成分数の測定は、多項目自動血球分析装置XT-1800i(シスメックス株式会社)を用いて行った。結果を表2に示す。
顆粒球吸着率(%)={(循環前血液中の顆粒球数)-(循環後血液中の顆粒球数)}/(循環前血液中の顆粒球数)×100 ・・・・・・式2
単球吸着率(%)={(循環前血液中の単球数)-(循環後血液液中の単球数)}/(循環前血液中の単球数)×100 ・・・・・・式3
リンパ球吸着率(%)={(循環前血液中のリンパ球数)-(循環後血液液中のリンパ球数)}/(循環前血液中のリンパ球数)×100 ・・・・・・式4
不織布Eを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Fを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Gを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Hを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Mを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Nを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Oを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Pを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Qを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Cを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Iを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Jを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Kを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Lを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Rを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Sを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Tを直径8mmの円板状に切り抜き、ポリプロピレン製の容器に入れた。この容器に、ヒト血液(ヘパリン濃度30U/mL)を1mL添加し、37℃のインキュベータ内で20分間転倒混和してから、実施例1と同様に各血液成分の吸着率を算出した。結果を表2に示す。
不織布Dを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したウシ胎児血清(以下、FBS)を0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してからELISA法にてIL-6及びIL-8の残濃度をそれぞれ測定し、以下の式5及び6によりIL-6及びIL-8吸着率を算出した。結果を表2に示す。
IL-6吸着率(%)={(転倒混和前のIL-6濃度)-(転倒混和後のIL-6濃度)}/(転倒混和前のIL-6濃度)×100 ・・・・・・式5
IL-8吸着率(%)={(転倒混和前のIL-8濃度)-(転倒混和後のIL-8濃度)}/(転倒混和前のIL-8濃度)×100 ・・・・・・式6
不織布Eを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Fを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Gを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Hを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Mを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Nを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Oを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Pを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Qを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Cを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Iを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Jを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Kを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Lを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Rを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Sを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
不織布Tを直径8mmの円板状に2枚切り抜き、ポリプロピレン製の容器に入れた。この容器に、IL-6及びIL-8の濃度がいずれも500pg/mLになるように調製したFBSを0.8mL添加し、37℃のインキュベータ内で1時間転倒混和してから、実施例9と同様にIL-6及びIL-8吸着率を算出した。結果を表2に示す。
Claims (10)
- 水不溶性担体の表面に、シリル基とアミノ基とを有する官能基が導入されてなる、血液成分吸着用担体。
- 前記水不溶性担体のプロトン吸着能は、1.5×10-5~3.0×10-3eq/gである、請求項1記載の血液成分吸着用担体。
- 前記シリル基のケイ素原子と前記アミノ基の窒素原子とは、アルキル鎖で結合されている、請求項1又は2記載の血液成分吸着用担体。
- 前記アルキル鎖は、炭素数6以下のアルキル鎖である、請求項3記載の血液成分吸着用担体。
- 前記シリル基は、アルキル基及び/又はアルコキシ基を有する、請求項1~4のいずれか一項記載の血液成分吸着用担体。
- 前記アルキル基は、メチル基又はエチル基である、請求項5記載の血液成分吸着用担体。
- 前記アルコキシ基は、メトキシ基又はエトキシ基である、請求項5又は6記載の血液成分吸着用担体。
- 前記水不溶性担体は、繊維又は粒子からなる、請求項1~7のいずれか一項記載の血液成分吸着用担体。
- 前記繊維の繊維径又は前記粒子の粒子径は、0.5~20μmである、請求項8記載の血液成分吸着用担体。
- 請求項1~9のいずれか一項記載の血液成分吸着用担体が充填された、血液成分吸着カラム。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2828191A CA2828191C (en) | 2011-02-25 | 2012-02-24 | Carrier for blood component adsorption and blood component adsorption column |
CN201280010236.2A CN103379927B (zh) | 2011-02-25 | 2012-02-24 | 血液成分吸附用载体和血液成分吸附柱 |
EP12749807.9A EP2679258B1 (en) | 2011-02-25 | 2012-02-24 | Carrier for blood component adsorption and blood component adsorption column |
US14/001,065 US9867927B2 (en) | 2011-02-25 | 2012-02-24 | Carrier for blood component adsorption and blood component adsorption column |
SG2013064175A SG192935A1 (en) | 2011-02-25 | 2012-02-24 | Carrier for blood component adsorption and blood component adsorption column |
AU2012221057A AU2012221057B2 (en) | 2011-02-25 | 2012-02-24 | Carrier for blood component adsorption and blood component adsorption column |
JP2012511082A JP5954172B2 (ja) | 2011-02-25 | 2012-02-24 | 血液成分吸着用担体及び血液成分吸着カラム |
KR1020137020768A KR101513522B1 (ko) | 2011-02-25 | 2012-02-24 | 혈액 성분 흡착용 담체 및 혈액 성분 흡착 컬럼 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011039980 | 2011-02-25 | ||
JP2011-039980 | 2011-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012115217A1 true WO2012115217A1 (ja) | 2012-08-30 |
Family
ID=46720991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054506 WO2012115217A1 (ja) | 2011-02-25 | 2012-02-24 | 血液成分吸着用担体及び血液成分吸着カラム |
Country Status (10)
Country | Link |
---|---|
US (1) | US9867927B2 (ja) |
EP (1) | EP2679258B1 (ja) |
JP (1) | JP5954172B2 (ja) |
KR (1) | KR101513522B1 (ja) |
CN (1) | CN103379927B (ja) |
AU (1) | AU2012221057B2 (ja) |
CA (1) | CA2828191C (ja) |
SG (1) | SG192935A1 (ja) |
TW (1) | TWI546122B (ja) |
WO (1) | WO2012115217A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10639405B2 (en) * | 2014-07-22 | 2020-05-05 | Asahi Kasei Medical Co., Ltd. | Adsorbent for removing histone and purification device for liquid derived from living organism |
SG11201901514PA (en) * | 2016-09-09 | 2019-03-28 | Toray Industries | Material for blood purification |
WO2018101156A1 (ja) * | 2016-11-29 | 2018-06-07 | 富士フイルム株式会社 | 血液成分選択吸着濾材および血液フィルター |
US20220362742A1 (en) * | 2019-10-04 | 2022-11-17 | Toray Industries, Inc. | Blood treatment material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05168706A (ja) * | 1991-09-30 | 1993-07-02 | Sekisui Chem Co Ltd | 顆粒球吸着用担体及び顆粒球除去装置 |
JPH0780062A (ja) | 1993-09-17 | 1995-03-28 | Asahi Medical Co Ltd | エンドトキシン除去器および浄化血液の製造方法 |
JP2006312804A (ja) | 2005-04-08 | 2006-11-16 | Toray Ind Inc | 吸着材および体外循環用カラム |
WO2009057574A1 (ja) * | 2007-10-30 | 2009-05-07 | Kaneka Corporation | ポリウレタン誘導体およびそれを用いた白血球除去用フィルター材 |
JP2010253181A (ja) * | 2009-04-28 | 2010-11-11 | Kaneka Corp | 新規白血球除去フィルター。 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4384954A (en) * | 1980-04-16 | 1983-05-24 | Kuraray Co., Ltd. | Column for adsorption of blood proteins |
JPS56147710A (en) * | 1980-04-16 | 1981-11-16 | Kuraray Co Ltd | Immunoglobulin adsorbent |
US4560504A (en) * | 1984-12-06 | 1985-12-24 | Uop Inc. | Carboxyl anchored immobilized antibodies |
US4927749A (en) * | 1986-04-09 | 1990-05-22 | Jeanette Simpson | Reagent for cell separation |
EP0386926A3 (en) * | 1989-03-02 | 1991-12-18 | Supelco, Inc. | Silica gel supports suitable for chromatographic separations |
JPH04256434A (ja) * | 1991-02-06 | 1992-09-11 | Mitsui Toatsu Chem Inc | 発熱物質吸着剤 |
DE69319471T2 (de) | 1992-03-17 | 1999-04-15 | Asahi Medical Co. Ltd., Tokio/Tokyo | Filtermedium mit begrenzter negativer Oberflächenladung für die Behandlung von Blutmaterial |
JP2591500B2 (ja) | 1994-11-22 | 1997-03-19 | 日本電気株式会社 | プリント配線板の製造方法 |
JP4196592B2 (ja) | 2001-05-25 | 2008-12-17 | 東レ株式会社 | 免疫系細胞吸着材料およびそれを用いた体外循環用カラムおよび免疫系細胞の除去方法 |
EP2700445B1 (en) * | 2002-11-25 | 2015-07-08 | Shiseido Company Limited | Method of preparing a chromatography packing |
EP1570272A2 (de) * | 2002-11-29 | 2005-09-07 | Max-Delbrück-Centrum Für Molekulare Medizin | Bestimmung agonistischer autoantikörper |
US7524673B2 (en) * | 2004-05-10 | 2009-04-28 | 3M Innovative Properties Company | Biological soil detector |
US8584869B2 (en) | 2005-03-31 | 2013-11-19 | Toray Industries, Inc. | Absorbent and column for extracorporeal circulation |
EP1852443A1 (en) * | 2006-05-05 | 2007-11-07 | Leukocare AG | Biocompatible three dimensional matrix for the immobilization of biological substances |
DE102006039414A1 (de) * | 2006-08-23 | 2008-02-28 | Carl Freudenberg Kg | Vliesstoffe mit positivem Zeta-Potenzial |
EP2058018A4 (en) | 2006-08-31 | 2014-01-22 | Toray Industries | ADSORPTION SUPPORT CONTAINING COMPOSITE FIBER |
-
2012
- 2012-02-23 TW TW101105936A patent/TWI546122B/zh not_active IP Right Cessation
- 2012-02-24 CA CA2828191A patent/CA2828191C/en not_active Expired - Fee Related
- 2012-02-24 JP JP2012511082A patent/JP5954172B2/ja active Active
- 2012-02-24 CN CN201280010236.2A patent/CN103379927B/zh not_active Expired - Fee Related
- 2012-02-24 SG SG2013064175A patent/SG192935A1/en unknown
- 2012-02-24 US US14/001,065 patent/US9867927B2/en active Active
- 2012-02-24 KR KR1020137020768A patent/KR101513522B1/ko active IP Right Grant
- 2012-02-24 AU AU2012221057A patent/AU2012221057B2/en not_active Ceased
- 2012-02-24 EP EP12749807.9A patent/EP2679258B1/en active Active
- 2012-02-24 WO PCT/JP2012/054506 patent/WO2012115217A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05168706A (ja) * | 1991-09-30 | 1993-07-02 | Sekisui Chem Co Ltd | 顆粒球吸着用担体及び顆粒球除去装置 |
JP2501500B2 (ja) | 1991-09-30 | 1996-05-29 | 積水化学工業株式会社 | 顆粒球吸着用担体及び顆粒球除去装置 |
JPH0780062A (ja) | 1993-09-17 | 1995-03-28 | Asahi Medical Co Ltd | エンドトキシン除去器および浄化血液の製造方法 |
JP2006312804A (ja) | 2005-04-08 | 2006-11-16 | Toray Ind Inc | 吸着材および体外循環用カラム |
WO2009057574A1 (ja) * | 2007-10-30 | 2009-05-07 | Kaneka Corporation | ポリウレタン誘導体およびそれを用いた白血球除去用フィルター材 |
JP2010253181A (ja) * | 2009-04-28 | 2010-11-11 | Kaneka Corp | 新規白血球除去フィルター。 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012115217A1 (ja) | 2014-07-07 |
JP5954172B2 (ja) | 2016-07-20 |
US20130327698A1 (en) | 2013-12-12 |
CA2828191C (en) | 2015-11-24 |
AU2012221057A1 (en) | 2013-09-12 |
AU2012221057B2 (en) | 2015-02-19 |
TWI546122B (zh) | 2016-08-21 |
KR101513522B1 (ko) | 2015-04-20 |
US9867927B2 (en) | 2018-01-16 |
SG192935A1 (en) | 2013-09-30 |
CN103379927A (zh) | 2013-10-30 |
TW201309384A (zh) | 2013-03-01 |
CN103379927B (zh) | 2016-02-24 |
EP2679258A1 (en) | 2014-01-01 |
CA2828191A1 (en) | 2012-08-30 |
EP2679258B1 (en) | 2020-05-20 |
EP2679258A4 (en) | 2014-07-23 |
KR20130118942A (ko) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101483469B1 (ko) | 혈액성분 흡착용 담체 및 혈액성분 흡착 컬럼 | |
KR100972702B1 (ko) | 흡착재 및 체외 순환용 칼럼 | |
KR20090074172A (ko) | 세포 흡착 컬럼 | |
JP5954172B2 (ja) | 血液成分吸着用担体及び血液成分吸着カラム | |
JP4983070B2 (ja) | 吸着材および体外循環用カラム | |
JP5017996B2 (ja) | 白血球およびサイトカインの吸着器 | |
JP5644149B2 (ja) | 血液成分吸着用担体 | |
JP2006288571A (ja) | 癌治療用吸着材および体外循環カラム | |
JP2007202634A (ja) | 吸着器 | |
JP2007313288A (ja) | 吸着担体および体外循環用カラム | |
JP2009233097A (ja) | 白血球除去材の性能評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280010236.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012511082 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749807 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012749807 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137020768 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14001065 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2828191 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2012221057 Country of ref document: AU Date of ref document: 20120224 Kind code of ref document: A |