WO2012115072A1 - 炭素材料及びその製造方法 - Google Patents

炭素材料及びその製造方法 Download PDF

Info

Publication number
WO2012115072A1
WO2012115072A1 PCT/JP2012/054042 JP2012054042W WO2012115072A1 WO 2012115072 A1 WO2012115072 A1 WO 2012115072A1 JP 2012054042 W JP2012054042 W JP 2012054042W WO 2012115072 A1 WO2012115072 A1 WO 2012115072A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
carbon
chromium carbide
particles
carbide layer
Prior art date
Application number
PCT/JP2012/054042
Other languages
English (en)
French (fr)
Inventor
薫 瀬谷
紘明 松永
章義 武田
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to US13/983,788 priority Critical patent/US8896099B2/en
Priority to CN2012800059979A priority patent/CN103328411A/zh
Priority to KR1020137024604A priority patent/KR20140057477A/ko
Priority to EP12749856.6A priority patent/EP2679565A1/en
Publication of WO2012115072A1 publication Critical patent/WO2012115072A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4519Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application application under an other specific atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4545Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a powdery material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed

Definitions

  • the present invention relates to a carbon material and a method for producing the same, and more particularly, to a carbon material that is surface-modified and suppressed from generating particles and a method for producing the same.
  • the carbon material is lightweight, has excellent chemical and thermal stability, and has good thermal and electrical conductivity while being non-metallic. However, since it has dust generation properties, its use is limited as a material in a semiconductor manufacturing process or the like.
  • Patent Document 1 and Patent Document 2 an invention in which a chromium carbide layer made of Cr 23 C 6 is provided on the surface of a carbon substrate by treating the carbon substrate with a chromium halide gas. Proposed.
  • chromium carbide having a large composition ratio of chromium such as Cr 23 C 6 is formed, the hardness of the chromium carbide is increased and defects are likely to occur during handling.
  • particles are generated, there is a problem that it cannot be used for a member (for example, a jig) used in the semiconductor manufacturing apparatus, such as a member in which low dust generation is regarded as important.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a carbon material that can be used in the field of semiconductor manufacturing and the like and a method for manufacturing the same by suppressing the generation of particles. .
  • the present invention is characterized in that, in a carbon material in which a chromium carbide layer is formed on the surface of a carbon base material, the chromium carbide layer contains Cr 3 C 2 as a main component. If the chromium carbide layer is mainly composed of Cr 3 C 2 , the composition ratio of chromium is smaller than that of Cr 23 C 6 (the composition ratio of the carbon ratio is increased), so the hardness is lowered (becomes flexible). ), It becomes difficult to cause defects due to handling. As a result, the generation of particles (dust generation) can be suppressed, so that the carbon material can be used in fields where low dust generation is important, such as the semiconductor manufacturing field. Note that “Cr 3 C 2 as a main component” refers to a case where the ratio of Cr 3 C 2 in the chromium carbide layer exceeds 50 wt%.
  • the carbon material after washing was subjected to ultrasonication in 3000 mL of pure water to extract particles, and the number of particles was measured with a particle counter.
  • the number of particles is preferably less than 100 per 100 mm 2 of the surface area of the carbon material, and more preferably less than 50.
  • the cleaned carbon material is subjected to ultrasonication in 3000 mL of pure water to extract particles, and when the number of particles is measured with a particle counter, 0.1 ⁇ m or more
  • the number of particles is preferably less than 1000 per 100 mm 2 of the surface area of the carbon material, and more preferably less than 500.
  • the chromium carbide layer preferably has an orthorhombic structure.
  • the present invention provides a first step of forming a chromium carbide layer containing chromium carbide other than Cr 3 C 2 on the surface of the carbon base material, and the carbon base material in a reducing atmosphere. heat treatment under, and having a second step to convert the chromium carbide other than the Cr 3 C 2 to Cr 3 C 2.
  • the carbon material mentioned above can be produced by such a method.
  • the chromium carbide layer before over-heat treatment may be contained is chromium carbide other than Cr 3 C 2, therefore, it is composed of only chromium carbide other than Cr 3 C 2, and Cr 3 C 2 cr 3 C 2 other than chromium carbide may be configured with.
  • the carbon base material embedded in the surface modifier containing the chromium particles and the thermally decomposable hydrogen halide generator is heated together with a carbon member other than the carbon base material. It is desirable to form a chromium carbide layer containing chromium carbide other than Cr 3 C 2 on the surface of the material. With such a method, the chromium carbide layer can be easily formed.
  • the chromium carbide other than Cr 3 C 2 is preferably composed of at least one selected from the group consisting of Cr 2 C, Cr 7 C 3 , and Cr 23 C 6 , and the reducing atmosphere is A hydrogen gas atmosphere is desirable.
  • the heat treatment in the second step is desirably performed at 500 ° C. or higher and 1500 ° C. or lower.
  • the temperature during the heat treatment in the second step is regulated to 500 ° C. or more and 1500 ° C. or less, while Cr 2 C or the like may not be converted to Cr 3 C 2 when the temperature is less than 500 ° C. This is because, even if the temperature exceeds 1500 ° C., the conversion rate cannot be increased any more, and the energy loss increases and the production cost of the carbon material increases.
  • the temperature is particularly preferably 800 ° C. or higher and 1100 ° C. or lower.
  • the heat treatment in the second step is desirably performed under a reduced pressure of 10 to 1000 Pa.
  • the reason for regulating in this way is that if the pressure exceeds 1000 Pa or less than 10 Pa, the cost of the gas used for the apparatus and processing becomes too high, so it is not practical.
  • a pressure of 10 to 1000 Pa is preferable because the structure on the apparatus is simplified and the conversion effect can be sufficiently exerted.
  • the above chromium carbide layer after the treatment it is preferable that a orthorhombic consisting mainly of Cr 3 C 2.
  • a carbon material can be used even in the semiconductor manufacturing field where importance is placed on low dust generation.
  • the carbon material of the present invention is used as a jig in the field of semiconductor manufacturing, there is an excellent effect that it is possible to prevent adhesion of particles to the counterpart material.
  • the present invention is a carbon material having a chromium carbide layer composed of Cr 3 C 2 on the surface of a carbon substrate.
  • This carbon material is prepared by passing through the surface of the carbon substrate, a first step of forming a chromium carbide layer comprising chromium carbide other than Cr 3 C 2, a second step of heat treatment in a reducing atmosphere be able to.
  • a chromium carbide layer containing chromium carbide other than Cr 3 C 2 hereinafter, a chromium carbide layer containing chromium carbide other than Cr 3 C 2 may be simply referred to as a chromium carbide layer
  • a chromium carbide layer is used for the carbon base material.
  • the heat treatment in the second step is preferably performed in a temperature range of 500 ° C. to 1500 ° C. under a reduced pressure of 10 to 1000 Pa.
  • the carbon material before the heat treatment will be described.
  • the carbon material (the carbon material before the heat treatment in the second step) is, for example, carbon embedded in a surface modifier (powder) containing chromium particles and a pyrolytic hydrogen halide generator.
  • the substrate can be produced by heat treatment together with a carbon member other than the carbon substrate (first step).
  • the carbon member include containers made of carbon such as a graphite crucible, carbon powder, and the like.
  • the chromium carbide layer can be formed almost uniformly on the carbon base material with no color unevenness by the treatment for less than 1 hour.
  • This chromium carbide layer can be sufficiently formed in 30 minutes.
  • This treatment time may be longer, for example, 1 hour or longer when the chromium carbide layer needs to be thickened.
  • the carbon substrate is not particularly limited, and examples thereof include isotropic graphite materials, anisotropic graphite materials, and carbon fiber materials.
  • This carbon substrate preferably has a bulk density of 1.0 to 2.1 g / cm 3 and preferably has a porosity of 40% or less.
  • the above-mentioned thermally decomposable hydrogen halide generator is a substance that maintains a solid state at normal temperature and pressure and decomposes by heating to generate hydrogen halides such as hydrogen chloride, hydrogen fluoride, and hydrogen bromide.
  • the thermal decomposition temperature of the thermally decomposable hydrogen halide generator is preferably 200 ° C. or higher because it is easy to handle before heating.
  • the hydrogen halide generated from the thermally decomposable hydrogen halide generator reacts with chromium during the heat treatment to generate chromium halide gas. By treating the carbon substrate with this chromium halide gas, a chromium carbide layer can be formed on the surface of the carbon substrate.
  • the carbon substrate is treated with gas in this way, a chromium carbide layer is formed almost uniformly on the carbon substrate even when it has a complicated shape such as holes and grooves formed in the carbon substrate. can do.
  • ammonium chloride is preferable because of its availability.
  • Examples of the carbon member include a container made of carbon, such as a graphite crucible, and carbon powder.
  • a container made of carbon such as a graphite crucible, and carbon powder.
  • a graphite crucible As the carbon member.
  • a graphite crucible when processing, it is possible to suppress the flow of gas around the embedded carbon base material, and to form a chromium carbide layer more uniformly on the surface of the carbon base material without color unevenness. it can. Further, since the gas generated from the powder can be kept to some extent in the graphite crucible, the generated gas can be used effectively.
  • the graphite crucible is preferably covered with this lid, and the gas flow around the carbon substrate can be further suppressed by this lid. Examples of the lid include those made of graphite, sheets made of graphite, and the like. In order to escape the gas generated in the container, it is preferable to provide a vent hole in the container or the lid. In addition, when using the sheet
  • the container When carbon powder is used as the carbon member, the container is filled with powder containing chromium particles, a pyrolytic hydrogen halide generator and carbon powder, and the carbon base material is embedded in the powder filled in the container. What is necessary is just to heat-process.
  • a container when using carbon powder as this carbon member, a container is not specifically limited. And when processing, you may suppress the flow of the gas in a container, such as covering or covering with a sheet of graphite. Moreover, you may use said graphite crucible as a container.
  • ⁇ Introduced gas is not directly blown into the container in which the carbon substrate is embedded. On the contrary, even if it is going to process while introducing hydrogen gas, containers, such as a graphite crucible, obstruct hydrogen gas, and it is difficult to perform processing using hydrogen gas efficiently.
  • the apparatus When used for manufacture of carbon material (carbon material before performing heat treatment in the second step)
  • the apparatus includes a heating furnace 1 having a heater, and a processed product placed in the heating furnace 1 Is to be heat-treated.
  • the heating furnace 1 is provided with an intake port 4 and an exhaust port 5.
  • An inert gas such as nitrogen gas or argon gas can be introduced from the intake port 4, while the inert gas or the like is naturally exhausted from the exhaust port 5.
  • a graphite crucible 6 is arranged in the heating furnace 1.
  • the graphite crucible 6 is filled with powder (surface modifying agent) 3, and the carbon substrate 2 to be processed is embedded in the filled powder 3.
  • the powder 3 contains a thermally decomposable hydrogen halide generator and chromium particles.
  • the graphite crucible 6 is covered with a lid 7, and the lid 7 is provided with a vent hole.
  • the graphite crucible 6 as a carbon member is filled with the powder 3, and the filled powder 3
  • the carbon base material 2 is embedded in the lid 7.
  • this graphite crucible 6 is arrange
  • the pressure in the apparatus is reduced to 10 Pa or more and 10,000 Pa or less using a vacuum pump.
  • a reducing gas such as H 2 gas from the intake port 4
  • the temperature in the apparatus is raised to 500 ° C. or higher and 1500 ° C. or lower (preferably 800 ° C. or higher and 1100 ° C. or lower).
  • heat treatment is performed.
  • the reason for this restriction is that if the heat treatment time is less than 1 minute, Cr 2 C, Cr 7 C 3 , Cr 23 C 6, etc. may not be converted to Cr 3 C 2. This is because the conversion is sufficiently performed in 30 hours.
  • the heat treatment time in the second step is particularly preferably 5 hours or more and 25 hours or less.
  • the amount of chromium needs to be changed according to the surface area of the carbon substrate, but is restricted to about 0.6 to 0.9 g (particularly 0.7 to 0.8 g) per 1 cm 2 of the carbon substrate. Is preferred. This is because a chromium carbide layer having a film thickness described later can be obtained by regulating in this way.
  • the weight ratio of chromium powder to ammonium chloride is preferably regulated to 6: 1 to 7: 1.
  • the amount of ammonium chloride powder is too small, a chromium carbide layer is not sufficiently formed on the carbon substrate, while when the amount of ammonium chloride powder is too large, the generation of the metal carbide layer becomes insufficient due to excessive supply of hydrogen halide. This is because.
  • the weight ratio of chromium powder to ammonium chloride is 6: 1 to 7: 1.
  • the thickness of the chromium carbide layer is preferably 1 ⁇ m or more and 50 ⁇ m or less. This is because when the thickness of the chromium carbide layer is less than 1 ⁇ m, there is a problem that it is difficult to modify the entire surface of the carbon to be processed, whereas when the thickness of the chromium carbide layer exceeds 50 ⁇ m. This is because the dimensional change of the final carbon material becomes too large, which may cause a disadvantage that the dimensional control is difficult.
  • the carbon material before heat processing is produced.
  • the temperature in the said heat processing is 1000 degreeC, and processing time is 30 minutes.
  • the film thickness of the chromium carbide layer was 2 to 3 ⁇ m, and the chromium carbide layer was substantially composed of Cr 2 C.
  • the carbon material produced as described above is directly placed in the apparatus, and then the pressure in the apparatus is reduced to 150 Pa using a vacuum pump.
  • heat treatment was performed by introducing the H 2 gas from the intake port 4 while raising the temperature in the apparatus to 1100 ° C. and maintaining such a state for 20 hours.
  • the Cr 2 C was converted to Cr 3 C 2
  • the chromium carbide layer was composed mainly of Cr 3 C 2 as shown in Experiment 3 described later.
  • the carbon material thus produced is hereinafter referred to as the present invention material A.
  • ⁇ Comparative Example 1> A carbon material was produced in the same manner as in the above example except that the heat treatment was not performed. Thereby, since Cr 2 C does not convert to Cr 3 C 2 , the chromium carbide layer is substantially composed of Cr 2 C as shown in Experiment 4 described later. The carbon material thus produced is hereinafter referred to as a comparative material Z1.
  • Comparative Example 2 A carbon substrate was used as a carbon material (a chromium carbide layer was not formed on the surface of the carbon substrate). The carbon material thus produced is hereinafter referred to as comparative material Z2.
  • Table 1 shows the results of measuring the particle amounts of the inventive material A and the comparative materials Z1 and Z2 by the following method.
  • Measurement method of the amount of particles After each material is immersed in pure water and thoroughly washed (wash for 5 minutes or more), the washed specimen is subjected to ultrasonication in 3000 ml of pure water to extract particles, and the particle counter The number of particles was measured with a XP-L7W (Lion Corporation). Then, the number of particles per unit surface area (100 mm 2 ) of each material was determined.
  • the comparative material Z1 in which the chromium carbide layer is formed on the surface of the carbon substrate is compared with the comparative material Z2 in which the chromium carbide layer is not formed on the surface of the carbon substrate.
  • the amount of particles is decreasing, it is necessary to further reduce particles in order to use them in the field of semiconductor manufacturing.
  • material A in which the heat treatment is performed after forming the chromium carbide layer on the surface of the carbon base material the amount of particles is drastically compared not only with the comparative material Z2 but also with the comparative material Z1. It can be seen that it can be used sufficiently even in the field of semiconductor manufacturing.
  • the number of particles generated by this friction is preferably less than 500 per unit area (100 mm 2 ), and more preferably less than 100.
  • the material A of the present invention has a smaller proportion of chromium and a larger proportion of carbon than the comparative material Z1.
  • the material A of the present invention is considered to be a stable chromium carbide layer substantially equal to the composition of Cr 3 C 2 even when viewed from the ratio of carbon and chromium.
  • the comparative material Z1 since the ratio of chromium is large, unreacted chromium remains, and it is considered that the chromium carbide layer is unstable. It is considered that the particles generated thereby cannot be suppressed.
  • the chromium carbide layer mainly has an orthorhombic structure, whereby the chromium carbide layer is stabilized, and it is considered that the generation of particles is further suppressed.
  • crystals on the surface are developed, and it is considered that the effect of suppressing particles is high.
  • the chromium carbide layer on the surface of the comparative material Z1 has a crystal structure mainly composed of Cr 2 C.
  • FIG. 2 in the comparative material Z1, crystals on the surface are not developed, and the structure is not clear, which is considered to be unstable.
  • the chromium carbide layer before the heat treatment is made of Cr 2 C, but is not limited to this, and may be made of Cr 7 C 3 or Cr 23 C 6. Moreover, you may be comprised with these mixtures.
  • the chromium carbide layer before the heat treatment may contain Cr 3 C 2 . In this case, when the heat treatment, Cr 3 C 2 other than chromium carbide is converted to Cr 3 C 2, Cr 3 C 2 has intact is maintained.
  • the carbon material and the manufacturing method thereof of the present invention can be used as a member for a semiconductor manufacturing apparatus, a jig for manufacturing an electronic device (sensor, etc.), and a positioning jig for bonding other materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

 パーティクルが発生するのを抑制することにより、発塵性が低いことが重要視される半導体製造分野等においても用いることができる炭素材料及びその製造方法を提供することを目的としている。 炭素基材の表面に炭化クロム層が形成された炭素材料において、上記炭化クロム層がCrから構成されていることを特徴とするものであり、炭素基材の表面に、Cr以外の炭化クロムを含む炭化クロム層を形成する第1ステップと、上記炭素基材を還元性雰囲下で加熱処理し、上記Cr以外の炭化クロムをCrに転化させる第2ステップとを経ることにより作製することができる。

Description

炭素材料及びその製造方法
 本発明は、炭素材料およびその製造方法に関するものであり、特に表面改質され、パーティクルが発生するのが抑制された炭素材料及びその製造方法に関するものである。
 炭素材は、軽量であるとともに、化学的・熱的安定性に優れ、非金属でありながら熱伝導性および電気伝導性が良好であるという特性を有している。しかし、発塵性を有するため、半導体製造工程等における材料としては使用が制限される。
 そこで、下記特許文献1や、特許文献2に示されるように、ハロゲン化クロムガスにて炭素基材を処理することによって、炭素基材の表面にCr23からなる炭化クロム層を設ける発明が提案されている。しかしながら、Cr23等のクロムの組成比が大きな炭化クロムを形成した場合には、炭化クロムの硬度が高くなって、ハンドリング等で欠損が生じ易くなる。この結果、パーティクルが発生するため、半導体製造装置内部に使用される部材(例えば、冶具)等、発塵性が低いことが重要視される部材に用いることができないという課題を有していた。
特開平8-143384号 特開平8-143385号
 本発明は、上記問題点に鑑みなされたものであり、パーティクルが発生するのを抑制することにより、半導体製造分野等においても用いることができる炭素材料及びその製造方法を提供することを目的としている。
 本発明は上記目的を達成するために、炭素基材の表面に炭化クロム層が形成された炭素材料において、上記炭化クロム層がCrを主成分とすることを特徴とする。
 炭化クロム層がCrを主成分としていれば、Cr23等に比べてクロムの組成比が小さくなる(炭素比率の組成比が大きくなる)ため、硬度が低くなり(柔軟になり)、ハンドリング等で欠損が生じ難くなる。この結果、パーティクルの発生(発塵性)を抑制することができるので、半導体製造分野等、発塵性が低いことが重要視される分野で炭素材料を用いることができる。尚、Crを主成分とするとは、炭化クロム層におけるCrの割合が50重量%を超えている場合をいう。
 ここで、炭素材料を純水に浸して洗浄した後、洗浄後の炭素材料を3000mLの純水中で超音波をかけて粒子を抽出し、パーティクルカウンタでパーティクル数を測定した際、0.2μm以上のパーティクル数が前記炭素材料の表面積100mm当たり100個未満であることが好ましく、50個未満であることが一層望ましい。
 また、炭素材料を純水に浸して洗浄した後、洗浄後の炭素材料を3000mLの純水中で超音波をかけて粒子を抽出し、パーティクルカウンタでパーティクル数を測定した際、0.1μm以上のパーティクル数が前記炭素材料の表面積100mm当たり1000個未満であることが好ましく、500個未満であることが一層望ましい。
 さらに、前記炭化クロム層は、主として斜方晶の構造となっていることが好ましい。
 また、本発明は上記目的を達成するために、炭素基材の表面に、Cr以外の炭化クロムを含む炭化クロム層を形成する第1ステップと、上記炭素基材を還元性雰囲下で加熱処理し、上記Cr以外の炭化クロムをCrに転化させる第2ステップと、を有することを特徴とする。
 このような方法により、上述した炭素材料を作製することができる。尚、過熱処理前の炭化クロム層にはCr以外の炭化クロムが含まれていれば良く、したがって、Cr以外の炭化クロムのみで構成されていても、CrとCr以外の炭化クロムとで構成されていても良い。
 上記第1ステップにおいて、クロム粒子と熱分解性ハロゲン化水素発生剤とを含む表面改質剤に埋め込まれた炭素基材を、該炭素基材以外の炭素部材とともに加熱処理することにより、炭素基材の表面にCr以外の炭化クロムを含む炭化クロム層を形成することが望ましい。
 このような方法であれば、炭化クロム層を容易に形成することができる。
 上記Cr以外の炭化クロムが、CrC、Cr、及びCr23からなる群から選択される少なくとも1種から構成されることが望ましく、また、上記還元性雰囲気は水素ガス雰囲気であることが望ましい。
 上記第2ステップにおける加熱処理は500℃以上1500℃以下で行うことが望ましい。
 ここで、第2ステップにおける加熱処理時の温度を500℃以上1500℃以下に規制するのは、当該温度が500℃未満ではCrC等がCrに転化しないことがある一方、当該温度が1500℃を超えても転化速度をそれ以上高めることができないばかりか、エネルギー損失が大きくなって、炭素材料の製造コストが高騰するからである。尚、Crに円滑に転化させ、且つ、炭素材料の製造コストを低減するためには、当該温度は800℃以上1100℃以下であることが特に好ましい。
 上記第2ステップにおける加熱処理は10~1000Paの減圧下で行うことが望ましい。
 このように規制するのは、圧力が1000Paを超えたり、10Pa未満では、装置や処理に使用するガス等のコストがかかりすぎるため実用的ではなくなるからである。また、10~1000Paの圧力であれば装置上の構成が簡単になるとともに、転化効果を十分発揮でき、好ましい。そして、処理後の上記の炭化クロム層は、Crを主体とする斜方晶となっていることが好ましい。
 本発明によれば、パーティクルの発生(発塵性)を抑制することができるので、発塵性が低いことが重要視される半導体製造分野等においても炭素材料を用いることができる。例えば、本発明の炭素材料を半導体製造分野における治具として使用した際に、相手材へのパーティクル付着を防止することが可能となるといった優れた効果を奏する。
本発明の炭素材料の製造方法に用いられる装置の一例を示す図である。 比較材料Z1の表面のSEM画像である、 本発明材料Aの表面のSEM画像である。 本発明材料Aと比較材料Z1とのX線回折チャートを示すグラフである。
 以下、本発明について説明する。
 本発明は、炭素基材の表面に、Crから構成された炭化クロム層を有する炭素材料である。この炭素材料は、炭素基材の表面に、Cr以外の炭化クロムを含む炭化クロム層を形成する第1ステップと、還元性雰囲気下で加熱処理する第2ステップを経ることにより作製することができる。この際、Cr以外の炭化クロムを含む炭化クロム層(以下、Cr以外の炭化クロムを含む炭化クロム層を、単に、炭化クロム層と称することがある)を炭素基材の表面に形成する第1ステップでは、CVR法を用いるのが好ましい。第2ステップにおける加熱処理は、10~1000Paの減圧下で、500℃以上1500℃以下の温度範囲で行うのが好ましい。
 以下、加熱処理前の炭素材料について説明する。
 上記炭素材料(第2ステップにおける加熱処理を行う前の炭素材料)は、例えば、クロム粒子と熱分解性ハロゲン化水素発生剤等とを含む表面改質剤(粉体状)に埋め込まれた炭素基材を、該炭素基材以外の炭素部材とともに加熱処理することにより作製できる(第1ステップ)。
 上記炭素部材としては、黒鉛坩堝等の炭素からなる容器、炭素粉末などが挙げられる。このように、炭素部材とともに、処理されるべき炭素基材を加熱処理することにより、短時間で炭素基材に炭化クロム層を形成することができる。
 第1ステップにおける加熱処理は、1時間未満の処理にて炭素基材に炭化クロム層を色むらなくほぼ均一に形成することができる。この炭化クロム層は、30分もあれば十分形成することができる。この処理時間は、炭化クロム層を厚くする必要がある場合には、より長時間、たとえば1時間以上であってもよい。また、上記第1ステップにおける加熱処理は、500℃以上1500℃以下で行うことが好ましく、特に、800℃以上1200℃以下で行うことが好ましい。この温度範囲内で処理することにより、効率的に炭素基材を処理することができる。
 また、上記第1ステップにおける加熱処理は、常圧で行うことが好ましい。常圧で処理できることにより、真空ポンプ等の設備が不要であって、減圧にかかる時間が不要となり、処理が簡易となるとともに、処理時間の短縮となる。
 以下、本発明において使用される各部材について一例を示す。
 上記炭素基材としては、特に限定されるものではなく、たとえば等方性黒鉛材、異方性黒鉛材、炭素繊維材等が挙げられる。この炭素基材は、かさ密度が1.0~2.1g/cmであることが好ましく、気孔率40%以下であることが好ましい。
 上記熱分解性ハロゲン化水素発生剤とは、常温・常圧では固体状態を保ち、加熱により分解して、塩化水素、フッ化水素、臭化水素等のハロゲン化水素を発生するものである。この熱分解性ハロゲン化水素発生剤の熱分解温度としては、200℃以上の温度であることが、加熱する前の取り扱いが容易であり好ましい。この熱分解性ハロゲン化水素発生剤から発生したハロゲン化水素は、加熱処理中にクロムと反応してハロゲン化クロムガスを発生する。このハロゲン化クロムガスにより炭素基材を処理することにより炭素基材の表面に炭化クロム層を形成することができる。このように炭素基材の処理がガスによるものであるため、炭素基材に穴、溝等を形成したような複雑な形状である場合においても、炭素基材にほぼ均一に炭化クロム層を形成することができる。この熱分解性ハロゲン化水素発生剤としては、入手のしやすさから塩化アンモニウムが好ましい。
 上記炭素部材としては、たとえば黒鉛坩堝等の炭素からなる容器、炭素粉末などが挙げられる。
 炭素部材を用いることにより、炭素基材の処理時間を短縮することができるとともに、水素ガスの供給を不要にすることができ、より簡易に炭素基材を表面改質することができる。
 上記炭素部材としては、黒鉛坩堝を用いることが好ましい。処理する際に黒鉛坩堝を用いることにより、埋め込まれた炭素基材の周囲における気体の流れを抑制することができ、炭素基材の表面に色むらなくより均一に炭化クロム層を形成することができる。また、粉体から発生したガスを黒鉛坩堝内にある程度留めておけるため、発生したガスを有効利用することができる。この黒鉛坩堝には蓋をしておくことが好ましく、この蓋により炭素基材の周囲における気体の流れをより抑制することができる。この蓋としては、黒鉛製のもの、黒鉛からなるシート等が挙げられる。また、容器内で発生する気体を逃がすために、容器または蓋に通気孔を設けておくことが好ましい。なお、黒鉛からなるシートを使用する場合には、単に覆っているだけであるため、特に通気孔は必要ではない。
 炭素部材として、炭素粉末を使用する場合には、クロム粒子、熱分解性ハロゲン化水素発生剤および炭素粉末を含む粉体を容器に充填し、この容器に充填した粉体に炭素基材を埋め込み加熱処理すればよい。なお、この炭素部材として炭素粉末を使用する場合には、容器は特に限定されることはない。そして、処理する際に、蓋をする、あるいは黒鉛からなるシートを被せる等して、容器内の気体の流れを抑制してもよい。また、容器として上記の黒鉛坩堝を用いてもよい。
 炭素基材を埋め込んだ容器には、直接導入ガスを吹き込まないようにしている。逆に、水素ガスを導入しつつ処理しようとしても、黒鉛坩堝等の容器が水素ガスの妨げとなり、効率よく水素ガスを用いた処理を行うことは困難である。
 次に、炭素材料(第2ステップにおける加熱処理を行う前の炭素材料)の製造及び、加熱処理において用いられる装置の一例について、図1を用いて説明する。ここで、炭素材料(加熱処理前の炭素材料)の製造では、炭素部材として黒鉛坩堝を使用した場合について説明する。
(1)炭素材料(第2ステップにおける加熱処理を行う前の炭素材料)の製造に用いる場合
 上記装置は、加熱ヒーターを有する加熱炉1を備え、この加熱炉1内に載置された処理物を加熱処理するようになっている。この加熱炉1には、吸気口4および排気口5が設けられている。上記吸気口4からは、窒素ガス、アルゴンガス等の不活性ガスが導入できるようになっている一方、上記排気口5からは上記不活性ガス等が自然に排気されるようになっている。
 また、本装置には、加熱炉1内に黒鉛坩堝6が配置されるようになっている。この黒鉛坩堝6には、粉体(表面改質剤)3が充填され、この充填された粉体3に処理される炭素基材2が埋め込まれるようになっている。上記粉体3には、熱分解性ハロゲン化水素発生剤、及び、クロム粒子が含まれている。尚、上記黒鉛坩堝6は蓋体7で蓋がされるようになっており、この蓋体7には通気孔が設けられている。
 上記図1の装置で炭素材料(第2ステップにおける加熱処理を行う前の炭素材料)を製造する場合には、炭素部材としての黒鉛坩堝6に粉体3を充填し、この充填した粉体3に炭素基材2を埋設して、蓋体7をする。そして、この黒鉛坩堝6を装置に配置し、800℃以上1500℃以下で加熱する。これにより、炭素材料の製造方法を実施することができる。
(2)第2ステップにおける加熱処理に用いる場合
 炭素材料(第2ステップにおける加熱処理前の炭素材料)の製造に用いる場合と異なる点についてのみ説明する。
 第2ステップにおける加熱処理を行う際には、上記吸気口4からはHガス等の還元ガスが導入できるようになっている一方、上記排気口5は図示しない真空ポンプと連結されており、加熱炉1内を減圧できるようになっている。炭素材料(加熱処理前の炭素材料)は黒鉛坩堝6との間に配置された図示しない炭素材料からなる支持板に配置されるようになっている。
 上記図1の装置で加熱処理を行なう場合には、炭素材料を直接装置内に配置した後、真空ポンプを用いて、装置内の圧力が10Pa以上10000Pa以下となるまで減圧する。次に、吸気口4からはHガス等の還元ガスを導入しつつ、装置内の温度を500℃以上1500℃以下(好ましくは、800℃以上1100℃以下)まで上昇させる。このような状態を、1分以上30時間以下保持することによって、加熱処理が実施される。このように規制するのは、加熱処理の時間が1分未満であれば、CrC、Cr、及びCr23等をCrに転化することができないことがある一方、30時間もあれば十分に転化が行われるからである。このような観点、及びエネルギーの損失を抑制するという観点を考慮すれば、第2ステップにおける加熱処理の時間は5時間以上25時間以下であることが特に好ましい。
 尚、クロムの量は炭素基材の表面積に応じて変化させる必要があるが、炭素基材1cm当たり0.6~0.9g(特に、0.7~0.8g)程度に規制するのが好ましい。このように規制すれば、後述の膜厚の炭化クロム層を得ることができるからである。
 また、熱分解性ハロゲン化水素発生剤として塩化アンモニウムを用いる場合には、クロム粉末と塩化アンモニウムとの重量比は6:1~7:1に規制するのが好ましい。塩化アンモニウム粉が少な過ぎると、炭素基材上に炭化クロム層が十分に生成されない一方、塩化アンモニウム粉が多過ぎると、ハロゲン化水素の過剰供給により炭化金属層の生成が不十分となるという問題が生じるからである。このようなことを考慮すれば、クロム粉末と塩化アンモニウムとの重量比は、6:1~7:1であることが特に望ましい。
 更に、炭化クロム層の厚さは1μm以上50μm以下であることが好ましい。これは、炭化クロム層の厚さが1μm未満の場合には、処理されるカーボンの全面改質が困難であるという不都合が生じることがある一方、炭化クロム層の厚さが50μmを超える場合には、最終の炭素材の寸法変化が大きくなりすぎるため、寸法制御が困難であるという不都合が生じることがあるという理由による。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。
 <実施例>
 図1に示す装置を用い、黒鉛坩堝(東洋炭素株式会社製、型番IG-11)にクロム粉末(106.8g)、塩化アンモニウム(NH4Cl)粉末(15.6g)、アルミナ(Al)粉末(520.4g)からなる混合粉体を充填し、この充填された混合粉体に、炭素基材(冷間等方圧加圧成形を経た緻密質等方性黒鉛;かさ密度1.8g/cm、平均気孔半径5μm、気孔率20%、大きさ(概寸)10mm×10mm×60mm〔表面積:2600mm〕)を埋め込み、蓋をして加熱炉に配置して加熱処理した。加熱時、吸気口から窒素を導入し、排気口から自然排気させた。これにより、加熱処理前の炭素材料が作製される。尚、上記加熱処理における温度は1000℃で、処理時間は30分である。また、炭化クロム層の膜厚は2~3μmであり、また、炭化クロム層はほぼCrCで構成されていた。
 次に、同一の装置を用い、上記のようにして作製した炭素材料を直接装置内に配置した後、真空ポンプを用いて、装置内の圧力が150Paとなるまで減圧する。次いで、吸気口4からはHガスを導入しつつ、装置内の温度を1100℃まで上昇させ、このような状態を20時間保持することによって、加熱処理を行った。これにより、上記CrCがCrに転化し、後述の実験3で示すように、炭化クロム層はCrを主成分として構成されることになった。
 このようにして作製した炭素材料を、以下、本発明材料Aと称する。
 <比較例1>
 加熱処理を施さなかった他は、上記実施例と同様にして炭素材料を作製した。これにより、CrCがCrに転化しないため、後述の実験4で示すように、炭化クロム層はほぼCrCで構成される。
 このようにして作製した炭素材料を、以下、比較材料Z1と称する。
 <比較例2>
 炭素基材を炭素材料として用いた(炭素基材の表面には炭化クロム層は形成されていない)。
 このようにして作製した炭素材料を、以下、比較材料Z2と称する。
 <実験1>
 上記本発明材料A及び比較材料Z1、Z2のパーティクル量を、下記の方法で測定したので、その結果を表1に示す。
・パーティクル量の測定方法
 各材料を純水に浸して十分に洗浄(5分間以上洗浄)した後、洗浄後の試験片を3000mlの純水中で超音波をかけて粒子を抽出し、パーティクルカウンタ(リオン社製XP-L7W)でパーティクル数を測定した。そして、各材料の単位表面積(100mm)当たりのパーティクル数を求めた。
Figure JPOXMLDOC01-appb-T000001
<実験2>
 また、本発明材料Aおよび比較材料Z1に対し他材が触れる、擦れるといった状況による発塵を想定し、パーティクル数の測定を行った。その結果を表2に示す。
・気中パーティクルの測定方法
 比較材料Z1および本発明材Aの表面(490mm)を1分間に15回、指でつまんだ針の腹でなぞった。放出された粒子を、表面粒子測定器(PENTAGON TECHNOLOGIES製Surface Particle Detector QIII+)を用いて捕集し測定した。そして、各材料の単位表面積(100mm)当たりの発生パーティクル数を求めた。
Figure JPOXMLDOC01-appb-T000002
 上記表1および表2から明らかなように、炭素基材の表面に炭化クロム層が形成された比較材料Z1は、炭素基材の表面に炭化クロム層が形成されていない比較材料Z2に比べて、パーティクル量は少なくなっているが、半導体製造分野等で使用するには、パーティクルを更に低減する必要がある。これに対して、炭素基材の表面に炭化クロム層を形成した後に加熱処理を行った本発明材料Aでは、比較材料Z2のみならず比較材料Z1と比較しても、パーティクル量が飛躍的に低減しており、半導体製造分野等であっても十分に使用することができることがわかる。また、本発明材料Aでは、他材との摩擦が生じた場合においてもパーティクルの発生は明らかに低く抑えられているため、その使用、取扱いに際しパーティクル発生の懸念が非常に小さい。この摩擦により生じるパーティクル数は、単位面積(100mm)当たり500個未満が好ましく、100個未満であることがより好ましい。
 <実験3>
 上記本発明材料Aと比較材料Z1との表面において、炭素とクロムとの割合について下記の方法で調べたので、その結果を上記表1に併せて示す。また、比較材料Z1の表面のSEM画像を図2に示し、本発明材料Aの表面のSEM画像を図3に示す。
・炭素とクロムとの割合の測定方法
 この測定は、電子線マイクロアナライザ(Electron Probe X-ray Micro Analyzer)装置を用いて行った。具体的には、電子プローブを各材料の表面に照射し、放出される特性X線を測定して元素分析を行なった。
 表1、2から明らかなように、本発明材料Aは比較材料Z1に比べて、クロムの割合が少なく、炭素の割合が多くなっていることが認められる。本発明材料Aは、炭素とクロムの割合から見ても、ほぼCrの組成に等しく、安定した炭化クロム層となっていると考えられる。一方、比較材料Z1では、クロムの割合が多いことから、反応しきっていないクロムが残存しており、炭化クロム層として不安定であると考えられる。それにより発生するパーティクルを抑制しきれないと考えられる。
 <実験4>
 上記本発明材料Aと比較材料Z1のX線回析パターンの測定(線源:CuKα)を行ったので、その結果を図4に示す。図4において、上段は比較材料Z1のチャートであり、下段は本発明材料Aのチャートである。
 図4から明らかなように、本発明材料Aでは炭化クロム層がCrを主とした斜方晶の構造となっている。一方、比較材料Z1では炭化クロム層が主にCrCから構成されていることが認められる。
 このように、本発明材料Aでは炭化クロム層が主として斜方晶の構造をとることにより炭化クロム層が安定化しており、パーティクルの発生をより抑制しているものと考えられる。さらに、図3からわかるように本発明材料Aでは、表面における結晶が発達しており、パーティクルの抑制効果が高いものと考えられる。
 それに対して比較材料Z1の表面の炭化クロム層は、CrCを主とした結晶構造となっている。さらに、図2からわかるように、比較材料Z1では、表面における結晶が発達しておらず、はっきりしていない構造となっており、不安定になっていると考えられる。
(その他の事項)
(1)上記実施例では、炭素材料(第2ステップにおける加熱処理を行う前の炭素材料)として、クロム粒子と熱分解性ハロゲン化水素発生剤等とを含む表面改質剤に埋め込まれた炭素基材を、該炭素基材以外の炭素部材とともに加熱処理することにより作製したものを用いたが、これに限定するものではなく、上記特許文献1や上記特許文献2で示したもの等、如何なる製法で作製した炭素材料であっても、熱処理を行うことにより、Cr以外の炭化クロムがCrに転化するので、パーティクルを低減することが可能である。
(2)上記実施例では、加熱処理前の炭化クロム層はCrCで構成されていたが、これに限定するものではなく、CrやCr23で構成されていても良く、また、これらの混合物で構成されていても良い。また、加熱処理前の炭化クロム層には、Crが含まれていても良い。この場合、加熱処理を行うと、Cr以外の炭化クロムはCrに転化し、Crはそのままの状態が保持される。
 本発明の炭素材料及びその製造方法は、半導体製造装置の部材、電子デバイス(センサー等)製造用の治具、他材同士を接着する際の位置決め治具として用いることができる。
  1 加熱炉
  2 炭素基材
  3 粉末
  4 吸気口
  5 排気口
  6 黒鉛坩堝
  7 蓋体

Claims (11)

  1.  炭素基材の表面に炭化クロム層が形成された炭素材料において、
     上記炭化クロム層がCrを主成分としていることを特徴とする炭素材料。
  2.  炭素材料を純水に浸して洗浄した後、洗浄後の炭素材料を3000mLの純水中で超音波をかけて粒子を抽出し、パーティクルカウンタでパーティクル数を測定した際、0.2μm以上のパーティクル数が前記炭素材料の表面100mm当たり100個未満である、請求項1に記載の炭素材料。
  3.  炭素材料を純水に浸して洗浄した後、洗浄後の炭素材料を3000mLの純水中で超音波をかけて粒子を抽出し、パーティクルカウンタでパーティクル数を測定した際、0.1μm以上のパーティクル数が前記炭素材料の表面100mm当たり1000個未満である、請求項1又は2に記載の炭素材料。
  4.  前記炭化クロム層は斜方晶の構造となっている、請求項1~3のいずれか1項に記載の炭素材料。
  5.  炭素基材の表面に、Cr以外の炭化クロムを含む炭化クロム層を形成する第1ステップと、
     上記炭素基材を還元性雰囲下で加熱処理し、上記Cr以外の炭化クロムをCrに転化させる第2ステップと、
     を有することを特徴とする炭素材料の製造方法。
  6.  上記第1ステップにおいて、クロム粒子と熱分解性ハロゲン化水素発生剤とを含む表面改質剤に埋め込まれた炭素基材を、該炭素基材以外の炭素部材とともに加熱処理することにより、炭素基材の表面にCr以外の炭化クロムを含む炭化クロム層を形成する、請求項5に記載の炭素材料の製造方法。
  7.  上記Cr以外の炭化クロムが、CrC、Cr、及びCr23からなる群から選択される少なくとも1種から構成される、請求項5又は6に記載の炭素材料の製造方法。
  8.  上記還元性雰囲は水素ガス雰囲気である、請求項5~7の何れか1項に記載の炭素材料の製造方法。
  9.  上記第2ステップにおける加熱処理は、500℃以上1500℃以下で行う、請求項5~8の何れか1項に記載の炭素材料の製造方法。
  10.  上記第2ステップにおける加熱処理は10~1000Paの減圧下で行う、請求項5~9の何れか1項に記載の炭素材料の製造方法。
  11.  請求項1~4のいずれかの炭素材料からなる治具。
PCT/JP2012/054042 2011-02-21 2012-02-21 炭素材料及びその製造方法 WO2012115072A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/983,788 US8896099B2 (en) 2011-02-21 2012-02-21 Carbon material and method of manufacturing the same
CN2012800059979A CN103328411A (zh) 2011-02-21 2012-02-21 碳材料及其制造方法
KR1020137024604A KR20140057477A (ko) 2011-02-21 2012-02-21 탄소 재료 및 그 제조 방법
EP12749856.6A EP2679565A1 (en) 2011-02-21 2012-02-21 Carbon material, and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-034384 2011-02-21
JP2011034384A JP2012171823A (ja) 2011-02-21 2011-02-21 炭素材料及びその製造方法

Publications (1)

Publication Number Publication Date
WO2012115072A1 true WO2012115072A1 (ja) 2012-08-30

Family

ID=46720849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054042 WO2012115072A1 (ja) 2011-02-21 2012-02-21 炭素材料及びその製造方法

Country Status (7)

Country Link
US (1) US8896099B2 (ja)
EP (1) EP2679565A1 (ja)
JP (1) JP2012171823A (ja)
KR (1) KR20140057477A (ja)
CN (1) CN103328411A (ja)
TW (1) TWI548612B (ja)
WO (1) WO2012115072A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105272320A (zh) * 2015-12-04 2016-01-27 武汉科技大学 一种铁水包包壁用不烧Al2O3-Cr7C3砖及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118186334B (zh) * 2024-05-17 2024-08-13 有研工程技术研究院有限公司 一种带有耐磨陶瓷层的金属铬材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733567A (ja) * 1993-07-22 1995-02-03 Tocalo Co Ltd 非酸化物系セラミック溶射皮膜を有する炭素材料およびその製造方法
JPH08143384A (ja) 1994-11-17 1996-06-04 Tocalo Co Ltd 炭素部材およびその製造方法
JPH08143385A (ja) 1994-11-17 1996-06-04 Tocalo Co Ltd 複合皮膜を有する炭素部材とその製造方法
WO2010067734A1 (ja) * 2008-12-08 2010-06-17 東洋炭素株式会社 炭素材の製造方法および炭素材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789077A (en) * 1994-06-27 1998-08-04 Ebara Corporation Method of forming carbide-base composite coatings, the composite coatings formed by that method, and members having thermally sprayed chromium carbide coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733567A (ja) * 1993-07-22 1995-02-03 Tocalo Co Ltd 非酸化物系セラミック溶射皮膜を有する炭素材料およびその製造方法
JPH08143384A (ja) 1994-11-17 1996-06-04 Tocalo Co Ltd 炭素部材およびその製造方法
JPH08143385A (ja) 1994-11-17 1996-06-04 Tocalo Co Ltd 複合皮膜を有する炭素部材とその製造方法
WO2010067734A1 (ja) * 2008-12-08 2010-06-17 東洋炭素株式会社 炭素材の製造方法および炭素材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105272320A (zh) * 2015-12-04 2016-01-27 武汉科技大学 一种铁水包包壁用不烧Al2O3-Cr7C3砖及其制备方法
CN105272320B (zh) * 2015-12-04 2017-05-03 武汉科技大学 一种铁水包包壁用不烧Al2O3‑Cr7C3砖及其制备方法

Also Published As

Publication number Publication date
US8896099B2 (en) 2014-11-25
KR20140057477A (ko) 2014-05-13
JP2012171823A (ja) 2012-09-10
CN103328411A (zh) 2013-09-25
TW201247593A (en) 2012-12-01
US20130313685A1 (en) 2013-11-28
EP2679565A1 (en) 2014-01-01
TWI548612B (zh) 2016-09-11

Similar Documents

Publication Publication Date Title
Wei et al. Intrinsic wettability of graphitic carbon
Cao et al. High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N 2 atmospheres
WO2012115072A1 (ja) 炭素材料及びその製造方法
JP2013542153A5 (ja)
Fan et al. Processing and properties of porous titanium with high porosity coated by bioactive titania nanotubes
JP5415061B2 (ja) 炭素材の製造方法および炭素材
Nobili et al. Thermal stability and mechanical properties of fluorinated diamond-like carbon coatings
CN116986906A (zh) 二维过渡金属化合物及其基于MXene的制备方法和用途
CN108675301A (zh) 一种利用气固法制备碳化硼的方法
JP5552303B2 (ja) 炭素材の製造方法
TWI271443B (en) Method of producing vapor from solid precursor and substrate processing system using the same
Tressaud et al. Fluorine-intercalated carbon fibers III. A transmission electron microscopy study
JP5605894B2 (ja) 炭素材料及びその製造方法
JP5670175B2 (ja) 冶具
RU2671361C1 (ru) Способ получения пленок пористого кристаллического диоксида олова
Ueda et al. Effect of Annealing in Hydrogen Atmosphere on Carbon Nanocap Formation in Surface Decomposition of 6H-SiC (000-1)
JP5159073B2 (ja) グラファイトシート及びその製造方法
Yamada et al. Changes in wettability of carbon nanowalls by oxygen plasma treatment
CN116590689B (zh) 一种细长金属管内孔中SiC-ZrC复合涂层的制备方法
Reddy et al. Sustainability of carbon nanocomposites under high temperature and pressure
JP5627089B2 (ja) 炭素材料及びその製造方法
Nesov et al. Application of ion-beam irradiation and heat treatment to optimisation of the structure and properties of composites based on multi-walled carbon nanotubes and metal oxide
Liu et al. Preparation of silicon carbide coating layer by fluidized bed chemical vapor deposition using a halogen-free precursor
Weimer ALD Produced B {sub 2} O {sub 3}, Al {sub 2} O {sub 3} and TiO {sub 2} Coatings on Gd {sub 2} O {sub 3} Burnable Poison Nanoparticles and Carbonaceous TRISO Coating Layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983788

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024604

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012749856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012749856

Country of ref document: EP