CN116590689B - 一种细长金属管内孔中SiC-ZrC复合涂层的制备方法 - Google Patents

一种细长金属管内孔中SiC-ZrC复合涂层的制备方法 Download PDF

Info

Publication number
CN116590689B
CN116590689B CN202310506821.1A CN202310506821A CN116590689B CN 116590689 B CN116590689 B CN 116590689B CN 202310506821 A CN202310506821 A CN 202310506821A CN 116590689 B CN116590689 B CN 116590689B
Authority
CN
China
Prior art keywords
powder
sic
tube
coating
metal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310506821.1A
Other languages
English (en)
Other versions
CN116590689A (zh
Inventor
陈旭军
罗怀德
陈湘
吴宗绪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoshan Huida New Materials Co ltd
Original Assignee
Shaoshan Huida New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoshan Huida New Materials Co ltd filed Critical Shaoshan Huida New Materials Co ltd
Priority to CN202310506821.1A priority Critical patent/CN116590689B/zh
Publication of CN116590689A publication Critical patent/CN116590689A/zh
Application granted granted Critical
Publication of CN116590689B publication Critical patent/CN116590689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种细长金属管内孔中SiC‑ZrC复合涂层的制备方法,属于涂层制备技术领域。本发明以硅粉和二氧化硅粉为蒸镀粉料,与CH4或C3H6经原位反应制备内涂层;再以锆粉、氯化钾和氯化锂为蒸镀粉料,与CH4或C3H6经原位反应制备外涂层,形成SiC‑ZrC复合涂层。相较于传统真空蒸镀方法,本发明方法无需高的真空环境,同时降低了生成涂层的反应温度,极大地降低了设备要求。本发明工艺简单,设备要求较低,可快速、高效的制备高性能、耐高温、耐辐照的SiC‑ZrC复合涂层。

Description

一种细长金属管内孔中SiC-ZrC复合涂层的制备方法
技术领域
本发明属于涂层制备技术领域,特别是涉及一种细长金属管内孔中SiC-ZrC复合涂层的制备方法。
背景技术
核燃料元件是核电厂反应堆的核心部件,燃料元件包壳材料是加压水慢化冷却反应堆的关键核心材料之一。反应堆的先进性、安全可靠性和经济性与所用燃料包壳材料的性能密切相关。由于包容着燃料,因此在反应的过程中包壳需要忍受高温、高压、高中子通量的考验。
锆在水中具有优良的耐腐蚀性,中子俘获截面小,是优质的包壳材料,在商业反应堆中得到广泛应用。但在极端情况下,如核电站水冷核反应堆所使用的核燃料棒包壳管材料为锆合金,海啸导致核电站冷却系统故障,锆合金包壳在高温下发生锆水反应,致使燃料棒受损,且在温度高于500℃时,锆合金会丧失其所有的强度。如何提高反应堆的安全性越来越受到大家的广泛关注。
SiC陶瓷具有熔点高,工作温度极限高,在冷却剂丧失事故发生时不会发生危险。同时具有更低的中子吸收截面,可以节省燃料。ZrC陶瓷具有高熔点、导热性好,特别是具有较小的中子吸收能力、耐辐射等特点,使其在高温结构陶瓷材料、复合材料、以及核反应堆包覆燃料颗粒阻挡层等领域中得到了较好的应用。因此,在金属管内径制备具有低中子俘获截面的高性能陶瓷涂层,是目前改进事故容错燃料(ATF,Accident Tolerant Fuel)的候选材料之一。
然而,目前制备SiC-ZrC复合涂层的方法有:采用传统化学气相沉积法进行制备,多采用ZrCl4作为前驱锆源,CH4作为碳源;三氯甲基硅烷(MTS)作为硅源、碳源。但是MTS极易氧化吸潮形成HCl,ZrCl4在空气中极易发生潮解,所以说前面备料等工序需要严格的在真空手套箱中进行操作,步骤繁琐,同时ZrCl4升华温度为300℃左右,极易冷凝在炉膛内或者气路中导致设备堵塞。传统热蒸镀+原位反应法,所需温度较高通常在1800℃以上,易造成金属管变形。上述两种方法,相较于在基体外表面而言,在细长管内表面的涂层制备难度较高,受其尺寸限制(细管径,大长径比),涂层物质难以进入管腔内部,即使进入,也较难保证涂层的均匀性。
发明内容
针对现有技术中存在的不足,本发明提供一种细长金属管内孔中SiC-ZrC复合涂层的制备方法,本发明方法无需高的真空环境,同时降低了生成涂层的反应温度,极大地降低了设备要求,可快速、高效的制备高性能、耐高温、耐辐照的SiC-ZrC复合涂层。
为实现上述目的,本发明提供了如下方案:
本发明目的之一是提供一种细长金属管内孔中SiC-ZrC复合涂层的制备方法,以硅粉和二氧化硅粉为蒸镀粉料,与CH4或C3H6经原位反应制备内涂层;再以锆粉、氯化钾和氯化锂为蒸镀粉料,与CH4或C3H6经原位反应制备外涂层,形成SiC-ZrC复合涂层。
进一步地,包括如下步骤:
(1)将硅粉和二氧化硅粉于无水乙醇中分散,磁力搅拌30min并超声振荡10min,经干燥得到混合均匀的热蒸镀硅粉料;将热蒸镀硅粉料均匀铺在打孔石墨管内部,将打孔石墨管置于金属管内径,用碳纸将打孔石墨管两端垫高,将金属管放入管式炉中进行蒸镀;
(2)反应结束后取出金属管,将锆粉、氯化钾和氯化锂均匀铺在另一根打孔石墨管内部,将打孔石墨管置于金属管中,用碳纸将打孔石墨管两端垫高,将金属管放入管式炉中进行第二次蒸镀,形成SiC-ZrC复合涂层。
进一步地,所述硅粉纯度≥99.9%,粒度为200目;所述二氧化硅粉纯度≥99%,粒度为200目;所述锆粉纯度≥99.5%,粒度为200目;所述氯化钾和氯化锂纯度均为分析纯,无粒度要求。
进一步地,所述打孔石墨管与金属管等长,内部有较细的孔径。
进一步地,步骤(1)所述硅粉和二氧化硅粉的质量比为1:1。
进一步地,步骤(1)所述蒸镀的条件为:先将炉内真空抽至100Pa以下,以5℃/min的升温速率升温至1250-1600℃,通入气体流量为60-100sccm的CH4或C3H6,调节炉内压力至0.5-1atm,保温0.5-4h,然后随炉冷却,全程使用氩气作为保护气氛。
进一步地,步骤(2)所述锆粉、氯化钾和氯化锂的质量比为80-98:1-10:1-10。
进一步地,步骤(2)所述第二次蒸镀的条件为:先将炉内真空抽至100Pa以下,以5℃/min的升温速率升温至1250-1600℃,通入气体流量为60-100sccm的CH4或C3H6,调节炉内压力至0.5-1atm,保温0.5-4h,然后随炉冷却,全程使用氩气作为保护气氛。
本发明所制备的SiC-ZrC复合涂层主要应用于耐高温、耐辐照反应堆用包壳管材料的制备。
本发明的有益效果:
本发明利用热蒸镀+化学气相沉积的原理,采用物理化学的方法降低了硅源、锆源的蒸发温度,使其在较低温度下可以发生反应,防止高温可能导致的金属软化变形问题。本发明所需粉末无需球磨,整个过程不产生对人体有毒有害的物质。
本发明采用打孔石墨管作为蒸发源,可以有效解决涂层物质难以进入管腔内部,或者即使进入,也较难保证涂层的均匀性问题,等长打孔石墨管保证了涂层物质在细长金属管孔内的均匀性,保证了生成涂层的质量。
本发明的制备方法对设备要求较低,解决了传统真空蒸镀方法需要极高的真空度的气体压力环境,以及物质源不与基材发生反应导致基体结合力弱的问题,克服了传统化学气相沉积过程中,复杂的原料准备操作,以及大量副反应产物生成的不足。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中SiC涂层的扫描电镜照片;
图2为本发明实施例1中SiC-ZrC复合涂层的扫描电镜照片;
图3为本发明实施例1中SiC涂层的XRD衍射图谱;
图4为本发明实施例1中SiC-ZrC复合涂层的XRD衍射图谱。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合实施例对本发明作进一步详细描述。
实施例1
(1)准备细长钼管,超声清洗30min,鼓风烘干后备用。将硅粉和二氧化硅粉按照1:1的质量比于无水乙醇中分散,使用磁力搅拌器搅拌30min,超声振荡10min,鼓风干燥机中干燥过筛,获得混合均匀的热蒸镀硅粉料;
将热蒸镀硅粉料均匀铺在细长打孔石墨管内部,将细长打孔石墨管置于钼管内径,使用碳纸将石墨管两端垫高,将钼管放入管式炉中进行蒸镀,从室温开始以5℃/min的升温速率升温至1400℃,通入气体流量为80sccm的丙烯后保温2h,然后随炉冷却,全程使用氩气作为保护气氛,得到SiC涂层。SiC涂层的扫描电镜照片见图1,XRD衍射图谱见图3,由图1和图3可知,所制备的SiC涂层分布均匀无裂纹,物相为纯碳化硅相。
(2)反应结束后取出钼管,将锆粉、氯化钾和氯化锂按80:10:10的质量比均匀铺在另一根打孔石墨管内部,将打孔石墨管置于金属管中,使用碳纸将石墨管两端垫高,将钼管放入管式炉中进行蒸镀,从室温开始以5℃/min的升温速率升温至1400℃,通入气体流量为80sccm的丙烯后保温2h,然后随炉冷却,全程使用氩气作为保护气氛,形成SiC-ZrC复合涂层。SiC-ZrC复合涂层的扫描电镜照片见图2,XRD衍射图谱见图4,由图2和图4可知,在SiC涂层上蒸镀所得的ZrC涂层分布均匀且晶粒细小,物相分布为纯ZrC和很小部分的C颗粒。随后使用1.9x1016ion/cm2 Si离子对制备了SiC-ZrC复合内涂层的样品进行离子辐照,并对辐照后的样品进行了显微力学性能分析。辐照后,ZrC晶粒纳米硬度和弹性模量的增加率分别为3.85%、-3.09%;SiC晶粒纳米硬度和弹性模量的增加率分别为9.21%、-7.75%。辐照后SiC-ZrC复合涂层显微力学性能变化不大,表明辐照前后SiC、ZrC的弹性性质并未发生变化,表明碳化物涂层可以起到很好的防护作用。
实施例2
同实施例1,区别在于,步骤(1)和步骤(2)的蒸镀条件均为:从室温开始以5℃/min的升温速率升温至1600℃,通入气体流量为100sccm的CH4后保温4h。
实施例3
同实施例1,区别在于,锆粉、氯化钾和氯化锂的质量比为98:1:1。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (1)

1.一种细长金属管内孔中SiC-ZrC复合涂层的制备方法,其特征在于,以硅粉和二氧化硅粉为蒸镀粉料,与CH4或C3H6经原位反应制备内涂层;再以锆粉、氯化钾和氯化锂为蒸镀粉料,与CH4或C3H6经原位反应制备外涂层,形成SiC-ZrC复合涂层;
所述的细长金属管内孔中SiC-ZrC复合涂层的制备方法,包括如下步骤:
(1)将硅粉和二氧化硅粉于无水乙醇中分散,搅拌30min并振荡10min,经干燥得到混合均匀的热蒸镀硅粉料;将热蒸镀硅粉料均匀铺在打孔石墨管内部,将打孔石墨管置于金属管内径,用碳纸将打孔石墨管两端垫高,将金属管放入管式炉中进行蒸镀;
(2)反应结束后取出金属管,将锆粉、氯化钾和氯化锂均匀铺在另一根打孔石墨管内部,将打孔石墨管置于金属管中,用碳纸将打孔石墨管两端垫高,将金属管放入管式炉中进行第二次蒸镀,形成SiC-ZrC复合涂层;
所述步骤(1)中硅粉和二氧化硅粉的质量比为1:1;
所述步骤(1)中蒸镀的条件为:以5℃/min的升温速率升温至1250-1600℃,通入气体流量为60-100sccm的CH4或C3H6后保温0.5-4h,然后随炉冷却,全程使用氩气作为保护气氛;
所述步骤(2)中锆粉、氯化钾和氯化锂的质量比为80-98:1-10:1-10;
所述步骤(2)中第二次蒸镀的条件为:以5℃/min的升温速率升温至1250-1600℃,通入气体流量为60-100sccm的CH4或C3H6后保温0.5-4h,然后随炉冷却,全程使用氩气作为保护气氛。
CN202310506821.1A 2023-05-08 2023-05-08 一种细长金属管内孔中SiC-ZrC复合涂层的制备方法 Active CN116590689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310506821.1A CN116590689B (zh) 2023-05-08 2023-05-08 一种细长金属管内孔中SiC-ZrC复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310506821.1A CN116590689B (zh) 2023-05-08 2023-05-08 一种细长金属管内孔中SiC-ZrC复合涂层的制备方法

Publications (2)

Publication Number Publication Date
CN116590689A CN116590689A (zh) 2023-08-15
CN116590689B true CN116590689B (zh) 2023-12-01

Family

ID=87600071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310506821.1A Active CN116590689B (zh) 2023-05-08 2023-05-08 一种细长金属管内孔中SiC-ZrC复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN116590689B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112737A (ja) * 1997-06-23 1999-01-19 Kansai Electric Power Co Inc:The 電気化学蒸着装置およびそれを用いた固体電解質成膜方法
CN108530110A (zh) * 2018-06-08 2018-09-14 中南大学 一种c/c复合材料的超高温陶瓷涂层及其制备方法
CN111485220A (zh) * 2020-05-28 2020-08-04 西北工业大学 一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法
CN112391606A (zh) * 2020-11-13 2021-02-23 南昌大学 一种SiC-Hf(Ta)C复合涂层的制备方法、复合涂层及石墨基座
CN113106416A (zh) * 2021-03-20 2021-07-13 西北工业大学 一种抗烧蚀ZrC/SiC多层交替涂层及制备方法
WO2022246598A1 (zh) * 2021-05-24 2022-12-01 中国科学技术大学 用于金属镍镀层的电解液及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112737A (ja) * 1997-06-23 1999-01-19 Kansai Electric Power Co Inc:The 電気化学蒸着装置およびそれを用いた固体電解質成膜方法
CN108530110A (zh) * 2018-06-08 2018-09-14 中南大学 一种c/c复合材料的超高温陶瓷涂层及其制备方法
CN111485220A (zh) * 2020-05-28 2020-08-04 西北工业大学 一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法
CN112391606A (zh) * 2020-11-13 2021-02-23 南昌大学 一种SiC-Hf(Ta)C复合涂层的制备方法、复合涂层及石墨基座
CN113106416A (zh) * 2021-03-20 2021-07-13 西北工业大学 一种抗烧蚀ZrC/SiC多层交替涂层及制备方法
WO2022246598A1 (zh) * 2021-05-24 2022-12-01 中国科学技术大学 用于金属镍镀层的电解液及其应用

Also Published As

Publication number Publication date
CN116590689A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
CN103073332B (zh) 具有纳米孔结构的过渡金属碳化物陶瓷及其制备方法
CN103924111B (zh) 一种硬质合金纳米粒径粉末与高性能烧结块体材料的制备方法
CN111377449A (zh) 一种碳化硼纳米颗粒的制备方法
CN105836730A (zh) 一种石墨材料表面原位自生碳纳米管的方法
CN103950946A (zh) 一种硼化铌纳米粉体的制备方法
CN112851352A (zh) 一种超高温高熵碳化物粉体及其制备方法
CN109574014B (zh) 一种b4c纤维毡及其制备方法
CN116590689B (zh) 一种细长金属管内孔中SiC-ZrC复合涂层的制备方法
CN112592183B (zh) 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法
CN108866496B (zh) 抗辐照损伤金属纳米晶/碳纳米管复合材料及其制备方法
CN113666754A (zh) 一种高熵硼化物纳米粉体及其制备方法和应用
US11465905B2 (en) Chemical synthesis method for fabricating boron carbide powders
CN108002839B (zh) 一种ZrC1-x-SiC复相陶瓷的制备方法
CN109020587A (zh) 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法
CN112897528B (zh) 一种激光烧结合成碳化硼/碳粉体材料的方法
CN112694331B (zh) 采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法
CN106587063A (zh) 一种软机械力化学辅助微波合成碳化钛的方法
McHugh et al. Synthesis and analysis of alpha silicon carbide components for encapsulation of fuel rods and pellets
Zhang et al. In-situ synthesized nanocrystalline UO2/SiC composite with superior thermal conductivity
CN111793823B (zh) 高纯度六硼化钆多晶及其制备方法
CN108751197A (zh) 前驱体浸渍裂解与磁拉法原位制备3d碳化物纳米线阵列的方法
CN107382321A (zh) 一种超细碳化锆粉体及其制备方法
CN115747591B (zh) 一种高韧性铝合金材料及其制备工艺
CN110885085B (zh) 一种ZrC陶瓷前驱体及陶瓷粉体和制备方法
Shimoo et al. Effect of Vacuum Heat Treatment on Electron‐Beam‐Irradiation‐Cured Polycarbosilane Fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant