WO2012114894A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012114894A1
WO2012114894A1 PCT/JP2012/053038 JP2012053038W WO2012114894A1 WO 2012114894 A1 WO2012114894 A1 WO 2012114894A1 JP 2012053038 W JP2012053038 W JP 2012053038W WO 2012114894 A1 WO2012114894 A1 WO 2012114894A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
auxiliary electrode
light emitting
emitting layer
terminal portion
Prior art date
Application number
PCT/JP2012/053038
Other languages
English (en)
French (fr)
Inventor
健雄 白井
中村 芳春
仁路 高野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/000,531 priority Critical patent/US8710735B2/en
Priority to DE201211000945 priority patent/DE112012000945T5/de
Priority to CN2012800097824A priority patent/CN103380660A/zh
Publication of WO2012114894A1 publication Critical patent/WO2012114894A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to an organic electroluminescence element (organic EL element).
  • the organic EL element In order to light up the organic electroluminescence element with high brightness, it is necessary to pass a larger current.
  • the organic EL element generally has a large potential gradient at the anode because the sheet resistance of the anode made of an ITO thin film is higher than the sheet resistance of the cathode made of a metal film, an alloy film, a metal compound film, or the like. As a result, the in-plane variation in luminance increases.
  • An organic electroluminescent device having an auxiliary electrode 105 formed on the outside of the organic light emitting layer 103 at a certain distance from the organic light emitting layer 103 on the organic light emitting layer 103 and a cathode 104 formed on the organic light emitting layer 103 is proposed. (Reference 1 [Japanese Published Patent Publication No. 2003-45674]).
  • this organic electroluminescence element light emitted from the organic light emitting layer 103 by applying a voltage between the anode 102 and the cathode 104 is emitted through the anode 102 and the transparent substrate 100.
  • the area of the non-light emitting portion is increased due to the auxiliary electrode 105, and the light emitting portion where the transparent substrate 100, the anode 102, the organic light emitting layer 103, and the cathode 104 are overlapped.
  • the area becomes smaller.
  • the area of the non-light emitting portion other than the light emitting portion is increased.
  • the width of the auxiliary electrode 105 is constant, the current flowing in the portion near the terminal portion of the anode 102 (the left end portion of the anode 102 in FIG. 5) in the longitudinal direction of the auxiliary electrode 105 becomes large.
  • the voltage drop per unit length of the auxiliary electrode 105 is larger as it is closer to the terminal part of the anode 102 and is smaller as it is farther from the terminal part, resulting in uneven brightness.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide an organic electroluminescence element capable of reducing the area of the non-light-emitting portion while reducing the luminance unevenness.
  • the organic electroluminescent element includes a first electrode, a light emitting layer, a second electrode, a first terminal portion, a second terminal portion, and an auxiliary electrode.
  • the first electrode is formed using a conductive light transmissive material.
  • the light emitting layer is formed on the first electrode using an organic material.
  • the second electrode is formed on the light emitting layer using a conductive material.
  • the first terminal portion is disposed on one end side of the light emitting layer in a first direction intersecting the thickness direction of the light emitting layer, and is electrically connected to the first electrode.
  • the second terminal portion is disposed on the other end side of the light emitting layer in the first direction, and is electrically connected to the second electrode.
  • the auxiliary electrode is formed on the first electrode so as to be located on a side of the light emitting layer in a second direction intersecting with each of the thickness direction and the first direction.
  • the auxiliary electrode is electrically connected to the first electrode.
  • the auxiliary electrode is formed in a long shape extending along the first direction using a material having a specific resistance smaller than that of the first electrode.
  • the auxiliary electrode has a plurality of portions having different thicknesses such that the sheet resistance increases as the distance from the first terminal portion increases in the length direction.
  • the auxiliary electrode has a plurality of auxiliary electrode layers having different lengths, aligned with an end closer to the first terminal portion,
  • the first electrodes are stacked in the long order.
  • the plurality of portions are arranged in order of increasing thickness from the first terminal portion toward the second terminal portion.
  • the lengths and thicknesses of the plurality of portions are the first terminal portion of the auxiliary electrode.
  • the slope of the voltage with respect to the distance from is selected to be constant.
  • Embodiment 1 shows an organic electroluminescence device of Embodiment 1, wherein (a) is a schematic plan view, (b) is a schematic cross-sectional view along AA ′ in (a), and (c) is a schematic cross-sectional view along BB ′ in (a). It is. It is a schematic sectional drawing of the modification of the organic electroluminescent element of the said Embodiment 1.
  • 2 shows an organic electroluminescence device of Embodiment 2, wherein (a) is a schematic plan view, (b) is a schematic cross-sectional view along AA ′ in (a), and (c) is a schematic cross-sectional view along BB ′ in (a). It is.
  • FIG. 2 shows a conventional organic electroluminescence device, in which (a) is a schematic plan view and (b) is a schematic cross-sectional view taken along line A-A ′ of (a).
  • the organic EL element of the present embodiment includes a first electrode 12 made of a transparent conductive film, and a second electrode having a sheet resistance smaller than that of the first electrode 12 that is disposed away from the first electrode 12 in the thickness direction of the first electrode 12.
  • An organic EL layer 13 including an electrode 14 and having a light emitting layer made of an organic material is provided between the first electrode 12 and the second electrode 14.
  • the organic EL element includes a first terminal portion 22 that is formed on a side of the light emitting portion 11 where the first electrode 12, the light emitting layer, and the second electrode 14 overlap each other, and is electrically connected to the first electrode 12. And a second terminal portion 24 that is formed on the side of the light emitting portion 11 opposite to the first terminal portion 22 side in the portion 11 and is electrically connected to the second electrode 14.
  • the organic EL element is made of a material having a specific resistance smaller than that of the first electrode 12 and is laminated on the first electrode 12 on the side of the light emitting unit 11 and electrically connected to the first terminal unit 22. It has.
  • the first electrode 12 is laminated on the one surface (upper surface in FIG. 1B) side of the substrate 10, and the second electrode on the opposite side of the first electrode 12 from the substrate 10 side. 14 opposes the first electrode 12.
  • a translucent substrate is used as the substrate 10. Therefore, the organic EL element can emit light from the other surface (the lower surface in FIG. 1B) side of the substrate 10.
  • the second electrode 14 is configured by an electrode that reflects light from the light emitting layer. That is, the second electrode 14 is configured to reflect light from the light emitting layer.
  • a region where three of the first electrode 12, the organic EL layer 13, and the second electrode 14 are projected on the other surface of the substrate 10 is a light emitting surface.
  • the substrate 10 has a rectangular shape in plan view.
  • the substrate 10 is not limited to a rectangular shape, and may be, for example, a polygonal shape or a circular shape other than the rectangular shape.
  • a glass substrate is used, but is not limited thereto, and for example, a plastic substrate may be used.
  • a glass substrate for example, an alkali-free glass substrate, a soda lime glass substrate, or the like can be used.
  • the plastic substrate for example, a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyethersulfone (PES) substrate, a polycarbonate (PC) substrate, or the like may be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PC polycarbonate
  • the unevenness on the one surface of the substrate 10 may cause leakage current of the organic EL element (may cause deterioration of the organic EL element). For this reason, when a glass substrate is used as the substrate 10, it is necessary to prepare a glass substrate for element formation that is polished with high accuracy so that the surface roughness of the one surface is reduced.
  • the arithmetic average roughness Ra defined in JIS B 0601-2001 is preferably several nm or less.
  • an arithmetic average roughness Ra of the one surface of several nanometers or less can be obtained at a low cost without performing highly accurate polishing. .
  • the first electrode 12 constitutes an anode
  • the second electrode 14 constitutes a cathode
  • the organic EL layer 13 interposed between the first electrode 12 and the second electrode 14 is, in order from the first electrode 12 side, the hole transport layer, the light emitting layer, the electron transport layer, the electron An injection layer is provided.
  • the organic EL element a region where the substrate 10, the first electrode 12, the above-described light emitting layer, and the second electrode 14 overlap in the thickness direction of the substrate 10 constitutes the light emitting unit 11. Is a non-light emitting portion.
  • the light emitting unit 11 is configured by a portion overlapping the first electrode 12.
  • the laminated structure of the organic EL layer 13 is not limited to the above-described example.
  • a hole injection layer may be interposed between the first electrode 12 and the hole transport layer.
  • the light emitting layer may have a single layer structure or a multilayer structure.
  • the emission layer may be doped with three types of dopant dyes of red, green, and blue, or the blue hole-transporting emission layer and the green electron-transporting property.
  • a laminated structure of a light emitting layer and a red electron transporting light emitting layer may be adopted, or a laminated structure of a blue electron transporting light emitting layer, a green electron transporting light emitting layer and a red electron transporting light emitting layer may be adopted. Good.
  • the organic EL layer 13 having a function of emitting light when a voltage is applied between the first electrode 12 and the second electrode 14 is used as one light-emitting unit, and a plurality of light-emitting units are intermediates having optical transparency and conductivity.
  • a multi-unit structure in which layers are stacked and electrically connected in series that is, a structure including a plurality of light emitting units overlapping in the thickness direction between one first electrode 12 and one second electrode 14
  • the first electrode 12 is formed on the one surface of the substrate 10.
  • the first electrode 12 constituting the anode is an electrode for injecting holes into the light emitting layer, and it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function. It is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference between the energy level of the first electrode 12 and the HOMO (Highest Occupied Molecular Orbital) level does not become too large.
  • HOMO Highest Occupied Molecular Orbital
  • the electrode material of the first electrode 12 examples include ITO (Indium Tin Oxide), tin oxide, zinc oxide, IZO (Indium ZincOxide), copper iodide, conductive polymers such as PEDOT and polyaniline, and arbitrary acceptors. Examples thereof include conductive light-transmitting materials such as conductive polymers and carbon nanotubes doped with.
  • the first electrode 12 may be formed as a thin film on the one surface side of the substrate 10 by, for example, sputtering, vacuum deposition, coating, or the like.
  • the sheet resistance of the first electrode 12 is preferably several hundred ⁇ / ⁇ or less, particularly preferably 100 ⁇ / ⁇ or less.
  • the film thickness of the first electrode 12 varies depending on the light transmittance of the first electrode 12, the sheet resistance, etc., but is preferably set to 500 nm or less, preferably in the range of 10 nm to 200 nm.
  • the second electrode 14 is formed on the light emitting layer (organic EL layer 13).
  • the second electrode 14 constituting the cathode is an electrode for injecting electrons into the light emitting layer, and it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a low work function, It is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less so that the difference between the energy level of the second electrode 14 and the LUMO (Lowest Unoccupied Molecular Orbital) level does not become too large.
  • LUMO Local Unoccupied Molecular Orbital
  • Examples of the electrode material of the second electrode 14 include aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, and alloys of these with other metals, such as a magnesium-silver mixture, magnesium-indium. Examples thereof include a mixture and an aluminum-lithium alloy.
  • a metal, a metal oxide, etc., and a mixture of these and other metals for example, an ultrathin film made of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum.
  • a laminated film with a thin film can also be used.
  • any material known as a material for an organic EL element can be used.
  • a light emitting material selected from these compounds in an appropriate mixture.
  • a compound that emits fluorescence typified by the above compound, but also a material system that emits light from a spin multiplet, for example, a phosphorescent material that emits phosphorescence, and a part thereof are included in a part of the molecule.
  • a compound can also be used suitably.
  • the light emitting layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. You may do.
  • the material used for the hole injection layer can be formed using a hole injection organic material, a metal oxide, a so-called acceptor organic material or inorganic material, a p-doped layer, or the like.
  • Examples of the hole injecting organic material include a material having hole transportability, a work function of about 5.0 to 6.0 eV, and a strong adhesion to the first electrode 12. Examples thereof include CuPc and starburst amine.
  • the hole-injecting metal oxide is a metal oxide containing any of molybdenum, rhenium, tungsten, vanadium, zinc, indium, tin, gallium, titanium, and aluminum, for example.
  • an oxide of a plurality of metals containing any one of the above metals such as indium and tin, indium and zinc, aluminum and gallium, gallium and zinc, titanium and niobium, etc. It may be.
  • the hole injection layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. It may be a film.
  • the material used for the hole transport layer can be selected from a group of compounds having hole transport properties, for example.
  • this type of compound include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N′-bis (3-methylphenyl)-(1 , 1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA) 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB and the like, arylamine compounds, amine compounds containing carbazole groups, An amine compound containing a fluorene derivative can be exemplified, and any generally known hole transporting material can be used.
  • the material used for the electron transport layer can be selected from a group of compounds having electron transport properties.
  • this type of compound include metal complexes known as electron transporting materials such as Alq3, and compounds having a heterocyclic ring such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc. Instead, any generally known electron transport material can be used.
  • the material of the electron injection layer is, for example, a metal fluoride such as lithium fluoride or magnesium fluoride, a metal halide such as sodium chloride or magnesium chloride, aluminum, cobalt, zirconium, Titanium, vanadium, niobium, chromium, tantalum, tungsten, manganese, molybdenum, ruthenium, iron, nickel, copper, gallium, zinc, silicon, and other metal oxides, nitrides, carbides, oxynitrides, etc., for example, aluminum oxide , Magnesium oxide, iron oxide, aluminum nitride, silicon nitride, silicon carbide, silicon oxynitride, boron nitride and other insulating materials, silicon compounds such as SiO2 and SiO, carbon compounds, etc. Can be used. These materials can be formed into a thin film by being formed by a vacuum deposition method or a sputtering method.
  • 1st terminal part 22 is formed in the elongate shape extended along the width direction (up-down direction in Fig.1 (a)) of a light emitting layer.
  • the first terminal portion 22 is formed directly on the first electrode 12 and is electrically connected to the first electrode 12.
  • the 1st terminal part 22 is arrange
  • the first direction is a direction orthogonal to the thickness direction of the light emitting layer.
  • the first direction is the length direction of the light emitting layer (the left-right direction in FIG. 1A). That is, the 1st terminal part 22 is arrange
  • the material of the first terminal portion 22 a material having a smaller specific resistance than the first electrode 12 is preferable, for example, a metal such as gold, silver, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium, An alloy containing at least one of these metals is preferable.
  • the first terminal portion 22 is not limited to a single layer structure, and may have a multilayer structure.
  • the second terminal portion 24 is formed in a long shape extending along the width direction of the light emitting layer.
  • the second terminal portion 24 is formed on the substrate 10.
  • the second terminal portion 24 is formed integrally with the second electrode 14 and is electrically connected to the second electrode 14.
  • 2nd terminal part 24 is arrange
  • the length of the second terminal portion 24 is substantially equal to that of the first terminal portion 22.
  • the same material as that of the second electrode 14 is adopted.
  • the extended portion of the second electrode 14 that extends to the substrate 10 is used as the second terminal portion 24.
  • the present invention is not limited to this, and the second terminal portion 24 is provided on the extended portion. It may be formed. In this case, as the material of the second terminal portion 24, the same material as that of the first terminal portion 22 can be employed.
  • the auxiliary electrode 15 is formed on the first electrode so as to be located on the side of the light emitting layer in the second direction intersecting with the thickness direction and the first direction (length direction) of the light emitting layer.
  • the auxiliary electrode 15 is disposed between the first terminal portion 22 and the second terminal portion 24 in the length direction of the light emitting layer.
  • the auxiliary electrode 15 is directly formed on the first electrode 12 and is electrically connected to the first electrode 12.
  • the second direction is orthogonal to the thickness direction and the first direction of the light emitting layer.
  • the second direction is the width direction of the light emitting layer (the vertical direction in FIG. 1A). That is, the auxiliary electrode 15 is located on the side of the light emitting layer in the width direction of the light emitting layer.
  • the organic EL element of this embodiment includes two auxiliary electrodes 15.
  • the two auxiliary electrodes 15 are respectively positioned on both sides of the light emitting layer (upper and lower in FIG. 1A) in the width direction of the light emitting layer.
  • the material of the auxiliary electrode 15 is preferably a material having a smaller specific resistance than the first electrode 12.
  • a metal such as gold, silver, copper, chromium, molybdenum, aluminum, palladium, tin, lead, magnesium, or an alloy containing at least one of these metals may be used.
  • the auxiliary electrode 15 is not limited to a single layer structure, and may have a multilayer structure. If the material of the auxiliary electrode 15 and the material of the first terminal portion 22 are the same material, the auxiliary electrode 15 and the first terminal portion 22 can be formed at the same time, and the cost can be reduced.
  • the planar shape of the first electrode 12 is rectangular, and the circumferential direction of the light emitting unit 11 is parallel to the circumferential direction of the first electrode 12.
  • the auxiliary electrode 15 is disposed along the circumferential direction of the light emitting unit 11.
  • the first terminal portion 12 is disposed along one side of the first electrode 12 in the peripheral portion of the rectangular first electrode 12, and the auxiliary electrode 15 is disposed in the peripheral portion of the first electrode 12.
  • the first electrodes 12 are arranged one by one along each of the two sides adjacent to the one side.
  • the first terminal portion 22 and each auxiliary electrode 15 may be continuous.
  • the auxiliary electrode 15 is formed in a long shape extending along the first direction (the length direction of the light emitting layer in the present embodiment) using a material having a specific resistance smaller than that of the first electrode 12.
  • the width of the auxiliary electrode 15 is constant.
  • the auxiliary electrode 15 is disposed to face the light emitting layer with a predetermined interval in the width direction of the light emitting layer.
  • the length of the auxiliary electrode 15 is substantially equal to the length of the light emitting layer.
  • the auxiliary electrode 15 has a constant width dimension, and the thickness is changed so that the sheet resistance increases as the distance from the first terminal portion 22 increases in the circumferential direction of the light emitting portion 11. In the example shown in FIG. 1, the thickness of the auxiliary electrode 15 is changed in one step.
  • the auxiliary electrode 15 has a plurality of portions 150 having different thicknesses so that the sheet resistance increases as the distance from the first terminal portion 22 increases in the length direction.
  • the auxiliary electrode 15 has two portions 150A and 150B having different thicknesses. Therefore, the auxiliary electrode 15 has a different sheet resistance for each part 150.
  • the part (first part) 150A of the auxiliary electrode 15 is closer to the first terminal portion 22 than the part (second part) 150B in the length direction of the auxiliary electrode 15.
  • the first portion 150A is thicker than the second portion 150B. That is, the plurality of portions 150 ⁇ / b> A and 150 ⁇ / b> B are arranged in order of increasing thickness from the first terminal portion 22 toward the second terminal portion 24.
  • the length and thickness of the plurality of portions 150 of the auxiliary electrode 15 are the voltage with respect to the distance from the first terminal portion 22 in the auxiliary electrode 15 (the driving voltage between the first terminal portion 22 and the second terminal portion 24). Is selected so that the slope of the voltage generated at the auxiliary electrode 15 is constant.
  • the thickness of the first part 150A and the second part 150B is selected so that the sheet resistance of the first part 150A is about 100 times that of the second part 150B. Further, the length of the first portion 150A is smaller than that of the second portion 150B.
  • FIG. 2 shows a modification of the organic EL element of the present embodiment.
  • the auxiliary electrode 15 (15A) is different from the organic EL element shown in FIG.
  • the auxiliary electrode 15A has three portions 150 (a first portion 150A, a second portion 150B, and a third portion 150C) having different thicknesses.
  • the first portion 150A is closer to the first terminal portion 22 than the second portion 150B in the length direction of the auxiliary electrode 15A.
  • the first portion 150A is thicker than the second portion 150B.
  • the first part 150A is shorter than the second part 150B.
  • the second portion 150B is closer to the first terminal portion 22 than the third portion 150C in the length direction of the auxiliary electrode 15.
  • the second portion 150B is thicker than the third portion 150C.
  • the second part 150B is shorter than the third part 150C.
  • the plurality of portions 150 ⁇ / b> A, 150 ⁇ / b> B, and 150 ⁇ / b> C are arranged in order of increasing thickness from the first terminal portion 22 toward the second terminal portion 24.
  • the lengths and thicknesses of the plurality of portions 150 (150A, 150B, 150C) of the auxiliary electrode 15A are determined by the voltage relative to the distance from the first terminal portion 22 in the auxiliary electrode 15A (the first terminal portion 22 and the second terminal portion 24).
  • the slope of the voltage generated at the auxiliary electrode 15A when the drive voltage is applied is selected to be constant.
  • the method of changing the thickness of the auxiliary electrode 15 is not limited to this, and the auxiliary electrode 15 may be changed in a plurality of steps or linearly.
  • the auxiliary electrode 15 may have four or more parts 150.
  • the auxiliary electrode 15 may be formed by, for example, a sputtering method, a plating method, a vapor deposition method, or the like.
  • the organic EL element of the present embodiment described above has a first electrode 12 made of a transparent conductive film, and is spaced apart from the first electrode 12 in the thickness direction of the first electrode 12 and has a sheet resistance higher than that of the first electrode 12.
  • a small second electrode 14 is provided, and a light emitting layer (organic EL layer 13) made of an organic material is provided between the first electrode 12 and the second electrode 14.
  • the organic EL element of this embodiment includes a first terminal portion 22, a second terminal portion 24, and auxiliary electrodes 15 and 15.
  • the first terminal unit 12 is disposed on the side of the light emitting unit 11 where the first electrode 12, the light emitting layer, and the second electrode 14 overlap, and is electrically connected to the first electrode 12.
  • the second terminal unit 24 is disposed on the side of the light emitting unit 11 on the side opposite to the first terminal unit 22 side in the light emitting unit 11 and is electrically connected to the second electrode 14.
  • the auxiliary electrode 15 is made of a material having a specific resistance smaller than that of the first electrode 12, is laminated on the first electrode 12 on the side of the light emitting unit 11, and is electrically connected to the first terminal unit 22.
  • the auxiliary electrode 15 is disposed along the circumferential direction of the light emitting unit 11. The thickness of the auxiliary electrode 15 is changed so that the sheet resistance increases as the distance from the first terminal portion 22 increases in the circumferential direction.
  • the organic EL element of the present embodiment includes the first electrode 12, the light emitting layer (organic EL layer 13 having a light emitting layer), the second electrode 14, the first terminal portion 22, and the second terminal portion. 24 and the auxiliary electrode 15.
  • the first electrode 12 is formed using a conductive light transmissive material.
  • the light emitting layer is formed on the first electrode 12 using an organic material.
  • the second electrode 14 is formed on the light emitting layer using a conductive material.
  • the first terminal portion 22 is disposed on one end side (left end side in FIG. 1A) of the light emitting layer in a first direction (left-right direction in FIG. 1A) that intersects the thickness direction of the light emitting layer. It is electrically connected to the electrode 12.
  • the second terminal portion 24 is disposed on the other end side (the right end side in FIG. 1A) of the light emitting layer in the first direction, and is electrically connected to the second electrode 14.
  • the auxiliary electrode 15 is formed on the first electrode 12 so as to be located on the side of the light emitting layer in the second direction (vertical direction in FIG. 1A) intersecting with the thickness direction and the first direction of the light emitting layer. Is done.
  • the auxiliary electrode 15 is electrically connected to the first electrode 12.
  • the auxiliary electrode 15 is formed in a long shape extending along the first direction using a material having a specific resistance smaller than that of the first electrode 12.
  • the auxiliary electrode 15 has a plurality of portions 150 having different thicknesses so that the sheet resistance increases as the distance from the first terminal portion 22 increases in the length direction.
  • the plurality of portions 150 are arranged in the order of thickness from the first terminal portion 22 toward the second terminal portion 24.
  • the length and thickness of the plurality of portions 150 are the voltage with respect to the distance from the first terminal portion 22 in the auxiliary electrode 15 (between the first terminal portion 22 and the second terminal portion 24).
  • the slope of the voltage generated at the auxiliary electrode 15 when the drive voltage is applied to is selected to be constant.
  • the width of the auxiliary electrode 15 is constant, and the thickness is changed so that the sheet resistance increases as the distance from the first terminal portion 22 increases in the circumferential direction of the light emitting portion 11. Therefore, compared with the case where the thickness of the auxiliary electrode 15 is constant, the voltage drop per unit length (for example, 1 cm) on the side close to the first terminal portion 22 in the auxiliary electrode 15 is reduced. Thus, the voltage drop per unit length on the side far from the first terminal portion 22 can be increased.
  • the organic EL element of the present embodiment it is possible to reduce the area of the non-light emitting portion while reducing the luminance unevenness.
  • the luminance of the organic EL element is substantially proportional to the flowing current value.
  • the organic EL element of this embodiment by providing the above-described auxiliary electrode 15, it is possible to suppress current concentration at a portion near the first terminal portion 22 in the light emitting portion 11 during driving. Therefore, it is possible to further extend the life.
  • the basic configuration of the organic EL element of the present embodiment is substantially the same as that of the first embodiment, and the auxiliary electrode 15 (15B) has a laminated structure of two auxiliary electrode layers 15 1 and 15 2. for distant auxiliary electrode layer 15 2 from the first electrode 12 in the thickness direction of, there by changing the thickness by shortening the distance from one end of the first terminal part 22 side to the other end of the second terminal portion 24 side The points are different.
  • symbol is attached
  • the auxiliary electrode 15B only needs to have a laminated structure of at least two auxiliary electrode layers 15 1 and 15 2 , and the auxiliary electrode layer 15 n (n ⁇ n) far from the first electrode 12 in the thickness direction of the first electrode 12. It is only necessary to change the thickness of the auxiliary electrode 15B by shortening the distance from one end on the first terminal portion 22 side to the other end on the second terminal portion 24 side as 2).
  • the auxiliary electrode 15B includes two auxiliary electrode layers 15 1 and 15 2 .
  • the auxiliary electrode layer 15 1 is formed directly on the first electrode 12.
  • the auxiliary electrode layer 15 2 is formed on the auxiliary electrode layer 15 1 . End closer to the first terminal portion 22 of the auxiliary electrode layer 15 2 (left end in FIG. 3 (c)), at the end closer to the first terminal portion 22 of the auxiliary electrode layer 15 1 (FIG. 3 (c) (Left end)
  • the auxiliary electrode 15B has a plurality of auxiliary electrode layers 15 n having different lengths, aligned with the end closer to the first terminal portion 22 (the left end in FIG. 3C), and the first in the longest order. It is formed by being stacked on the electrode 12.
  • the auxiliary electrode layer 15 2 the first portion 150A is constituted by a portion that overlaps with the auxiliary electrode layer 15 2 in the auxiliary electrode layer 15 1.
  • the thickness of the first portion 150A is equal to the sum of the thicknesses of the two auxiliary electrode layers 15 1 and 15 2 .
  • the second part 150B is the second part 150B.
  • the thickness of the second portion 150B is equal to the thickness of the auxiliary electrode layer 15 1.
  • the lengths and thicknesses of the two auxiliary electrode layers 15 1 and 15 2 are the voltage with respect to the distance from the first terminal portion 22 in the auxiliary electrode 15B (the driving voltage between the first terminal portion 22 and the second terminal portion 24). Is selected so that the gradient of the voltage generated in the auxiliary electrode 15B when the voltage is applied is constant.
  • the materials of the auxiliary electrode layers 15 1 and 15 2 may be different from the materials of the auxiliary electrode 15B described in the first embodiment.
  • the first terminal portion 22 has a laminated structure of two electrode layers 22 1 and 22 2 . Then, a side electrode layer 22 1 of the material and the auxiliary electrode layer 15 1 material close to the first electrode 12 in the thickness direction of the first electrode 12 and the same material, the far side of the electrode layer from the first electrode 12 22 2 certain the material and the auxiliary electrode layer 15 second material as the same material. Therefore, also in the organic EL element of the present embodiment, the first terminal portion 22 and the auxiliary electrode 15B can be formed at the same time as in the organic EL element of the first embodiment.
  • FIG. 4 shows a modification of the organic EL element of the present embodiment.
  • the auxiliary electrode 15 (15C) is different from the organic EL element shown in FIG.
  • the auxiliary electrode 15C has three portions 150 (a first portion 150A, a second portion 150B, and a third portion 150C) having different thicknesses.
  • the auxiliary electrode 15C includes three auxiliary electrode layers 15 1 , 15 2 , and 15 3 .
  • the auxiliary electrode layer 15 1 is formed directly on the first electrode 12.
  • the auxiliary electrode layer 15 2 is formed on the auxiliary electrode layer 15 1 .
  • the auxiliary electrode layer 15 3 is formed on the auxiliary electrode layer 15 2 . End closer to the first terminal portion 22 of the auxiliary electrode layer 15 2, 15 3 (left end in FIG. 4 (c)), the end closer to the first terminal portion 22 of the auxiliary electrode layer 15 1 (FIG. 4 ( c) at the left end).
  • the auxiliary electrode 15C includes a plurality of auxiliary electrode layers 15 n having different lengths, aligned with the end closer to the first terminal portion 22 (the left end in FIG. 3C), and the first in the longest order. It is formed by being stacked on the electrode 12.
  • the thickness of the first portion 150A is equal to the sum of the thicknesses of the three auxiliary electrode layers 15 1 , 15 2 , 15 3 .
  • a portion which does not overlap with the auxiliary electrode layer 15 3 in the auxiliary electrode layer 15 2 overlaps the auxiliary electrode layer 15 2 in the auxiliary electrode layer 15 1 and the second portion 150B at a site that does not overlap with the auxiliary electrode layer 15 3 Composed.
  • the thickness of the second portion 150B is equal to the sum of the thicknesses of the two auxiliary electrode layers 15 1 and 15 2 .
  • the third part 150C is equal to the thickness of the auxiliary electrode layer 15 1.
  • the lengths and thicknesses of the three auxiliary electrode layers 15 1 , 15 2 , and 15 3 are the voltage with respect to the distance from the first terminal portion 22 in the auxiliary electrode 15C (between the first terminal portion 22 and the second terminal portion 24). Is selected so that the slope of the voltage generated at the auxiliary electrode 15C when the drive voltage is applied to the auxiliary electrode 15C is constant.
  • the first terminal portion 22 includes three electrode layers 22 1 , 22 2 , and 22 3 .
  • the electrode layers 22 1 , 22 2 , and 22 3 are formed of the same material as the auxiliary electrode layers 15 1 , 15 2 , and 15 3 , respectively. Therefore, the first terminal portion 22 and the auxiliary electrode 15C can be formed simultaneously.
  • the auxiliary electrode 15 has a laminated structure of at least two auxiliary electrode layers 15 n and is far from the first electrode 12 in the thickness direction of the first electrode 12.
  • the thickness of the auxiliary electrode layer 15 n is changed by shortening the distance from one end on the first terminal portion 22 side to the other end on the second terminal portion 24 side.
  • the auxiliary electrode 15 has a plurality of auxiliary electrode layers 15 n having different lengths aligned with the end closer to the first terminal portion 22 (the left end in FIG. 3).
  • the first electrodes 12 are stacked in the long order.
  • the auxiliary electrode 15 has a laminated structure of at least two auxiliary electrode layers 15 1 and 15 2 , and the first electrode 12 in the thickness direction is the first.
  • the thickness of the auxiliary electrode 15 is changed by shortening the distance from one end on the first terminal portion 22 side to the other end on the second terminal portion 24 side as the auxiliary electrode layer 15 n (n ⁇ 2) farther from the electrode 12. Therefore, the resistance distribution of the auxiliary electrode 15 (15B, 15C) can be easily designed as compared with the first embodiment.
  • the first electrode 12 made of a transparent conductive film constitutes an anode
  • the second electrode 14 having a sheet resistance smaller than that of the first electrode 12 constitutes a cathode
  • the first electrode 12 may constitute a cathode and the second electrode 14 may constitute an anode. In any case, it is sufficient that light can be extracted through the first electrode 12 made of a transparent conductive film.
  • the organic EL elements described in the first and second embodiments can be suitably used as, for example, an organic EL element for illumination, but can be used not only for illumination but also for other purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機エレクトロルミネッセンス素子は、第1電極と、発光層と、第2電極と、第1端子部と、第2端子部と、補助電極と、を備える。前記第1電極は、導電性光透過性材料を用いて形成される。前記発光層は、有機材料を用いて前記第1電極上に形成される。前記第2電極は、導電性材料を用いて前記発光層上に形成される。前記第1端子部は、前記発光層の厚み方向と交差する第1方向において前記発光層の一端側に配置され、前記第1電極に電気的に接続される。前記第2端子部は、前記第1方向において前記発光層の他端側に配置され、前記第2電極に電気的に接続される。前記補助電極は、前記厚み方向および前記第1方向のそれぞれと交差する第2方向において前記発光層の側方に位置するように前記第1電極上に形成される。前記補助電極は、前記第1電極に電気的に接続される。前記補助電極は、前記第1電極よりも比抵抗が小さい材料を用いて前記第1方向に沿って延びる長尺状に形成される。前記補助電極は、その長さ方向において前記第1端子部から遠ざかるほどシート抵抗が大きくなるように厚さが異なる複数の部位を有する。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子(有機EL素子)に関するものである。
 有機エレクトロルミネッセンス素子を高輝度で点灯させるためには、より大きな電流を流す必要がある。しかしながら、有機EL素子は、一般的に、ITO薄膜からなる陽極のシート抵抗が、金属膜、合金膜、金属化合物膜などからなる陰極のシート抵抗に比べて高いため、陽極での電位勾配が大きくなって、輝度の面内ばらつきが大きくなってしまう。
 これに対して、従来から、図5(a),(b)に示すように、透明基板100上に形成したITO薄膜からなる陽極102と、陽極102上に形成した有機発光層103と、陽極102上で有機発光層103から一定の距離を隔てて有機発光層103の外側に形成された補助電極105と、有機発光層103上に形成した陰極104とを有する有機エレクトロルミネッセンス素子が提案されている(文献1[日本国公開特許公報第2003-45674号])。この有機エレクトロルミネッセンス素子では、陽極102と陰極104との間に電圧を印加することによって有機発光層103で発光した光が、陽極102および透明基板100を通して出射される。
 文献1に開示された有機エレクトロルミネッセンス素子では、補助電極105を設けたことにより、陽極102での電圧降下や発熱を抑制することが可能となり、高効率化および高輝度化を図ることが可能となる旨が記載されている。
 しかし、文献1に開示された有機エレクトロルミネッセンス素子では、補助電極105に起因して非発光部の面積が大きくなり、透明基板100と陽極102と有機発光層103と陰極104とが重なる発光部の面積が小さくなってしまう。言い換えれば、文献1に開示された有機エレクトロルミネッセンス素子では、発光部以外の非発光部の面積が大きくなってしまう。また、上述の有機エレクトロルミネッセンス素子では、補助電極105の幅が一定なので、補助電極105の長手方向において陽極102の端子部(図5における陽極102の左端部)に近い部分で流れる電流が大きくなる(補助電極105を通る電流量は陽極102の端子部から離れるにつれて少なくなる)。このため、上述の有機エレクトロルミネッセンス素子では、補助電極105の単位長さ当たりでの電圧降下が、陽極102の端子部に近い部分ほど大きく、端子部から遠いほど小さくなり、輝度むらが生じる。
 本発明は上記事由に鑑みて為されたものであり、その目的は、輝度むらの低減を図りながらも非発光部の面積を低減することが可能な有機エレクトロルミネッセンス素子を提供することにある。
 本発明に係る第1の形態の有機エレクトロルミネッセンス素子は、第1電極と、発光層と、第2電極と、第1端子部と、第2端子部と、補助電極と、を備える。前記第1電極は、導電性光透過性材料を用いて形成される。前記発光層は、有機材料を用いて前記第1電極上に形成される。前記第2電極は、導電性材料を用いて前記発光層上に形成される。前記第1端子部は、前記発光層の厚み方向と交差する第1方向において前記発光層の一端側に配置され、前記第1電極に電気的に接続される。前記第2端子部は、前記第1方向において前記発光層の他端側に配置され、前記第2電極に電気的に接続される。前記補助電極は、前記厚み方向および前記第1方向のそれぞれと交差する第2方向において前記発光層の側方に位置するように前記第1電極上に形成される。前記補助電極は、前記第1電極に電気的に接続される。前記補助電極は、前記第1電極よりも比抵抗が小さい材料を用いて前記第1方向に沿って延びる長尺状に形成される。前記補助電極は、その長さ方向において前記第1端子部から遠ざかるほどシート抵抗が大きくなるように厚さが異なる複数の部位を有する。
 本発明に係る第2の形態の有機エレクトロルミネッセンス素子では、第1の形態において、前記補助電極は、長さが異なる複数の補助電極層を、前記第1端子部に近い方の端を揃え、かつ、長い順に前記第1電極に積み重ねて形成される。
 本発明に係る第3の形態の有機エレクトロルミネッセンス素子では、第1または第2の形態において、前記複数の部位は、前記第1端子部から前記第2端子部に向かって、厚い順に並んでいる。
 本発明に係る第4の形態の有機エレクトロルミネッセンス素子では、第1~第3のうちいずれか1つの形態において、前記複数の部位の長さおよび厚さは、前記補助電極における前記第1端子部からの距離に対する電圧の傾きが一定になるように選択される。
実施形態1の有機エレクトロルミネッセンス素子を示し、(a)は概略平面図、(b)は(a)のA-A’概略断面図、(c)は(a)のB-B’概略断面図である。 前記実施形態1の有機エレクトロルミネッセンス素子の変形例の概略断面図である。 実施形態2の有機エレクトロルミネッセンス素子を示し、(a)は概略平面図、(b)は(a)のA-A’概略断面図、(c)は(a)のB-B’概略断面図である。 前記実施形態1の有機エレクトロルミネッセンス素子の変形例の概略断面図である。 従来例の有機エレクトロルミネッセンス素子を示し、(a)は概略平面図、(b)は(a)のA-A’概略断面図である。
 (実施形態1)
 本実施形態の有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)について、図1に基づいて説明する。
 本実施形態の有機EL素子は、透明導電膜からなる第1電極12と、第1電極12の厚み方向において第1電極12から離間して配置され第1電極12よりもシート抵抗が小さな第2電極14とを備え、第1電極12と第2電極14との間に有機材料からなる発光層を有する有機EL層13が設けられている。
 また、有機EL素子は、第1電極12と発光層と第2電極14とが重なる発光部11の側方に形成され第1電極12に電気的に接続された第1端子部22と、発光部11における第1端子部22側とは反対側で発光部11の側方に形成され第2電極14に電気的に接続された第2端子部24とを備えている。
 また、有機EL素子は、第1電極12よりも比抵抗の小さな材料からなり発光部11の側方で第1電極12に積層されて第1端子部22に電気的に接続された補助電極15を備えている。
 また、有機EL素子は、第1電極12を基板10の一表面(図1(b)における上面)側に積層してあり、第1電極12における基板10側とは反対側で、第2電極14が第1電極12に対向している。基板10としては、透光性基板を用いている。したがって、有機EL素子は、基板10の他表面(図1(b)における下面)側から光を出射させることができる。
 なお、本実施形態の有機EL素子では、第2電極14を発光層からの光を反射する電極により構成してある。すなわち、第2電極14は、発光層からの光を反射するように構成される。また、本実施形態の有機EL素子は、基板10の上記他表面のうち、第1電極12、有機EL層13、第2電極14の3つが重複して投影される領域が発光面となる。
 以下、有機EL素子の各構成要素について詳細に説明する。
 基板10は、平面視形状を矩形状としてある。ここで、基板10は、矩形状に限らず、例えば、矩形状以外の多角形状、円形状などでもよい。
 基板10としては、ガラス基板を用いているが、これに限らず、例えば、プラスチック基板を用いてもよい。ガラス基板としては、例えば、無アルカリガラス基板、ソーダライムガラス基板などを用いることができる。また、プラスチック基板としては、例えば、ポリエチレンテレフタラート(PET)基板、ポリエチレンナフタレート(PEN)基板、ポリエーテルサルフォン(PES)基板、ポリカーボネート(PC)基板などを用いてもよい。
 基板10としてガラス基板を用いる場合には、基板10の上記一表面の凹凸が有機EL素子のリーク電流などの発生原因となることがある(有機EL素子の劣化原因となることがある)。このため、基板10としてガラス基板を用いる場合には、上記一表面の表面粗さが小さくなるように高精度に研磨された素子形成用のガラス基板を用意する必要がある。
 基板10の上記一表面の表面粗さについては、JIS B 0601-2001(ISO 4287-1997)で規定されている算術平均粗さRaを、数nm以下にすることが好ましい。これに対して、基板10としてプラスチック基板を用いる場合には、特に高精度な研磨を行わなくても、上記一表面の算術平均粗さRaが数nm以下のものを低コストで得ることができる。
 有機EL素子は、第1電極12が陽極、第2電極14が陰極を構成している。そして、有機EL素子は、第1電極12と第2電極14との間に介在する有機EL層13が、第1電極12側から順に、ホール輸送層、上述の発光層、電子輸送層、電子注入層を備えている。
 有機EL素子は、基板10の厚み方向において当該基板10と第1電極12と上述の発光層と第2電極14とが重なる領域が、発光部11を構成しており、発光部11以外の領域が、非発光部となる。
 すなわち、第1電極12において発光層(有機EL層)13および第2電極14と重なる部位と、発光層において第1電極12および第2電極14と重なる部位と、第2電極14において発光層および第1電極12と重なる部位とで発光部11が構成される。
 上述の有機EL層13の積層構造は、上述の例に限らず、例えば、発光層の単層構造や、ホール輸送層と発光層と電子輸送層との積層構造や、ホール輸送層と発光層との積層構造や、発光層と電子輸送層との積層構造などでもよい。また、第1電極12とホール輸送層との間にホール注入層を介在させてもよい。
 また、発光層は、単層構造でも多層構造でもよい。例えば、所望の発光色が白色の場合には、発光層中に赤色、緑色、青色の3種類のドーパント色素をドーピングするようにしてもよいし、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよいし、青色電子輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよい。
 また、第1電極12と第2電極14とで挟んで電圧を印加すれば発光する機能を有する有機EL層13を1つの発光ユニットとして、複数の発光ユニットを光透過性および導電性を有する中間層を介して積層して電気的に直列接続したマルチユニット構造(つまり、1つの第1電極12と1つの第2電極14との間に、厚み方向に重なる複数の発光ユニットを備えた構造)を採用してもよい。
 第1電極12は、基板10の上記一表面上に形成される。陽極を構成する第1電極12は、発光層中にホールを注入するための電極であり、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物からなる電極材料を用いることが好ましく、第1電極12のエネルギー準位とHOMO(Highest Occupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。
 第1電極12の電極材料としては、例えば、ITO(Indium Tin Oxide)、酸化錫、酸化亜鉛、IZO(Indium ZincOxide)、ヨウ化銅など、PEDOT、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料を挙げることができる。ここにおいて、第1電極12は、基板10の上記一表面側に、例えば、スパッタ法、真空蒸着法、塗布法などによって薄膜として形成すればよい。
 なお、第1電極12のシート抵抗は数百Ω/□以下とすることが好ましく、特に好ましくは100Ω/□以下がよい。ここで、第1電極12の膜厚は、第1電極12の光透過率、シート抵抗などにより異なるが、500nm以下、好ましくは10nm~200nmの範囲で設定するのがよい。
 また、第2電極14は、発光層(有機EL層13)上に形成される。陰極を構成する第2電極14は、発光層中に電子を注入するための電極であり、仕事関数の小さい金属、合金、電気伝導性化合物およびこれらの混合物からなる電極材料を用いることが好ましく、第2電極14のエネルギー準位とLUMO(Lowest Unoccupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。
 第2電極14の電極材料としては、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫など、およびこれらと他の金属との合金、例えばマグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を例として挙げることができる。
 また、金属、金属酸化物など、およびこれらと他の金属との混合物、例えば、酸化アルミニウムからなる極薄膜(ここでは、トンネル注入により電子を流すことが可能な1nm以下の薄膜)とアルミニウムからなる薄膜との積層膜なども使用可能である。
 発光層の材料としては、有機EL素子用の材料として知られる任意の材料が使用可能である。例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ジスチリルアミン誘導体および各種蛍光色素など、上述の材料系およびその誘導体を始めとするものが挙げられるが、これらに限定するものではない。
 また、これらの化合物のうちから選択される発光材料を適宜混合して用いることも好ましい。また、上記化合物に代表される蛍光発光を生じる化合物のみならず、スピン多重項からの発光を示す材料系、例えば燐光発光を生じる燐光発光材料、およびそれらからなる部位を分子内の一部に有する化合物も好適に用いることができる。
 また、これらの材料からなる発光層は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など、湿式プロセスによって成膜するものであってもよい。
 上述のホール注入層に用いられる材料は、ホール注入性の有機材料、金属酸化物、いわゆるアクセプタ系の有機材料あるいは無機材料、p-ドープ層などを用いて形成することができる。
 ホール注入性の有機材料とは、ホール輸送性を有し、また仕事関数が5.0~6.0eV程度であり、第1電極12との強固な密着性を示す材料などがその例であり、例えば、CuPc、スターバーストアミンなどがその例である。
 また、ホール注入性の金属酸化物とは、例えば、モリブデン、レニウム、タングステン、バナジウム、亜鉛、インジウム、スズ、ガリウム、チタン、アルミニウムのいずれかを含有する金属酸化物である。また、1種の金属のみの酸化物ではなく、例えばインジウムとスズ、インジウムと亜鉛、アルミニウムとガリウム、ガリウムと亜鉛、チタンとニオブなど、上記のいずれかの金属を含有する複数の金属の酸化物であっても良い。
 また、これらの材料からなるホール注入層は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法などの湿式プロセスによって成膜するものであってもよい。
 また、ホール輸送層に用いる材料は、例えば、ホール輸送性を有する化合物の群から選定することができる。この種の化合物としては、例えば、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを代表例とする、アリールアミン系化合物、カルバゾール基を含むアミン化合物、フルオレン誘導体を含むアミン化合物などを挙げることができるが、一般に知られる任意のホール輸送材料を用いることが可能である。
 また、電子輸送層に用いる材料は、電子輸送性を有する化合物の群から選定することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体や、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体などのヘテロ環を有する化合物などが挙げられるが、この限りではなく、一般に知られる任意の電子輸送材料を用いることが可能である。
 また、電子注入層の材料は、例えば、フッ化リチウムやフッ化マグネシウムなどの金属フッ化物、塩化ナトリウム、塩化マグネシウムなどに代表される金属塩化物などの金属ハロゲン化物や、アルミニウム、コバルト、ジルコニウム、チタン、バナジウム、ニオブ、クロム、タンタル、タングステン、マンガン、モリブデン、ルテニウム、鉄、ニッケル、銅、ガリウム、亜鉛、シリコンなどの各種金属の酸化物、窒化物、炭化物、酸化窒化物など、例えば酸化アルミニウム、酸化マグネシウム、酸化鉄、窒化アルミニウム、窒化シリコン、炭化シリコン、酸窒化シリコン、窒化ホウ素などの絶縁物となるものや、SiO2やSiOなどをはじめとする珪素化合物、炭素化合物などから任意に選択して用いることができる。これらの材料は、真空蒸着法やスパッタ法などにより形成することで薄膜状に形成することができる。
 第1端子部22は、発光層の幅方向(図1(a)における上下方向)に沿って延びる長尺状に形成される。本実施形態では、第1端子部22は、第1電極12上に直接形成されて、第1電極12に電気的に接続される。
 第1端子部22は、図1(a)に示すように、発光層の厚み方向(図1(b)における上下方向)と交差する第1方向において発光層の一端側に配置される。本実施形態において、第1方向は、発光層の厚み方向に直交する方向である。例えば、第1方向は、発光層の長さ方向(図1(a)における左右方向)である。すなわち、第1端子部22は、発光層の長さ方向において発光層の一端側(図1(a)における左端側)に配置される。
 第1端子部22の材料としては、第1電極12よりも比抵抗の小さな材料が好ましく、例えば、金、銀、銅、クロム、モリブデン、アルミニウム、パラジウム、スズ、鉛、マグネシウムなどの金属や、これら金属の少なくとも1種を含む合金などが好ましい。また、第1端子部22は、単層構造に限らず、多層構造を採用してもよい。
 第2端子部24は、発光層の幅方向に沿って延びる長尺状に形成される。第2端子部24は、基板10上に形成される。本実施形態では、第2端子部24は、第2電極14と一体に形成されて、第2電極14に電気的に接続される。
 第2端子部24は、図1(a)に示すように、発光層の厚み方向と交差する第1方向において発光層の他端側に配置される。すなわち、第2端子部24は、発光層の長さ方向において発光層の他端側(図1(a)における右端側)に配置される。そのため、第1端子部22と第2端子部24とは発光層の長さ方向において互いに対向している。第2端子部24の長さは、第1端子部22とほぼ等しい。
 第2端子部24の材料としては、第2電極14と同じ材料を採用している。本実施形態では、第2電極14のうち基板10上まで延設された延設部を第2端子部24としているが、これに限らず、当該延設部上に、第2端子部24を形成してもよい。この場合、第2端子部24の材料としては、第1端子部22と同様の材料を採用することができる。
 補助電極15は、発光層の厚み方向および第1方向(長さ方向)のそれぞれと交差する第2方向において前記発光層の側方に位置するように前記第1電極上に形成される。また、補助電極15は、発光層の長さ方向において、第1端子部22と第2端子部24との間に配置される。補助電極15は、第1電極12上に直接形成されて、第1電極12に電気的に接続される。
 本実施形態において、第2方向は、発光層の厚み方向および第1方向にそれぞれ直交する。例えば、第2方向は、発光層の幅方向(図1(a)における上下方向)である。すなわち、補助電極15は、発光層の幅方向において発光層の側方に位置する。
 本実施形態の有機EL素子は、2つの補助電極15を備える。2つの補助電極15は、それぞれ、発光層の幅方向において発光層の両側方(図1(a)における上方および下方)に位置する。
 補助電極15の材料としては、第1電極12に比べて、比抵抗のより小さい材料が好ましい。補助電極15の材料としては、例えば、金、銀、銅、クロム、モリブデン、アルミニウム、パラジウム、スズ、鉛、マグネシウムなどの金属や、これら金属の少なくとも1種を含む合金などを採用すればよい。
 また、補助電極15は、単層構造に限らず、多層構造を採用してもよい。なお、補助電極15の材料と第1端子部22の材料とを同じ材料とすれば、補助電極15と第1端子部22とを同時に形成することが可能となり、低コスト化を図れる。
 ところで、本実施形態の有機EL素子では、第1電極12の平面形状が矩形状であり、発光部11の周方向が第1電極12の周方向に並行している。ここにおいて、補助電極15は、発光部11の周方向に沿って配置されている。
 具体的には、第1端子部12が、矩形状の第1電極12の周部において、第1電極12の1辺に沿って配置され、補助電極15が、第1電極12の周部において、第1電極12の上記1辺に隣り合う2辺それぞれに沿って1つずつ配置されている。なお、第1端子部22と各補助電極15とを連続した形状としてもよい。
 補助電極15は、第1電極12よりも比抵抗が小さい材料を用いて第1方向(本実施形態では、発光層の長さ方向)に沿って延びる長尺状に形成される。また、補助電極15の幅は一定である。補助電極15は、発光層の幅方向において、発光層と所定の間隔を空けて対向するように配置される。補助電極15の長さは、発光層の長さとほぼ等しい。
 補助電極15は、幅寸法を一定としてあり、発光部11の周方向において第1端子部22から遠ざかるにつれてシート抵抗が大きくなるように厚さを変化させてある。なお、図1に示した例では、補助電極15の厚さを1段のステップ状に変化させている。
 すなわち、補助電極15は、その長さ方向において第1端子部22から遠ざかるほどシート抵抗が大きくなるように厚さが異なる複数の部位150を有する。本実施形態では、補助電極15は、厚さが異なる2つの部位150A,150Bを有する。よって、補助電極15は、部位150毎に異なるシート抵抗を有する。
 補助電極15の部位(第1の部位)150Aは、補助電極15の長さ方向において、部位(第2の部位)150Bよりも第1端子部22に近い。また、第1の部位150Aは、第2の部位150Bよりも厚い。すなわち、複数の部位150A,150Bは、第1端子部22から第2端子部24に向かって、厚い順に並んでいる。
 なお、補助電極15の複数の部位150の長さおよび厚さは、補助電極15における第1端子部22からの距離に対する電圧(第1端子部22と第2端子部24との間に駆動電圧を印加した際に補助電極15に生じる電圧)の傾きが一定になるように選択される。
 例えば、第1の部位150Aおよび第2の部位150Bの厚さは、第1の部位150Aのシート抵抗が第2の部位150Bの100倍程度になるように選択される。また、第1の部位150Aの長さは、第2の部位150Bよりも小さい。
 図2は、本実施形態の有機EL素子の変形例を示す。図2の変形例は、補助電極15(15A)が図1に示される有機EL素子と異なっている。補助電極15Aは、厚さが異なる3つの部位150(第1の部位150A、第2の部位150B、第3の部位150C)を有する。
 第1の部位150Aは、補助電極15Aの長さ方向において第2の部位150Bよりも第1端子部22に近い。第1の部位150Aは、第2の部位150Bよりも厚い。第1の部位150Aは、第2の部位150Bよりも短い。
 第2の部位150Bは、補助電極15の長さ方向において第3の部位150Cよりも第1端子部22に近い。第2の部位150Bは、第3の部位150Cよりも厚い。第2の部位150Bは、第3の部位150Cよりも短い。
 このように、複数の部位150A,150B,150Cは、第1端子部22から第2端子部24に向かって、厚い順に並んでいる。
 補助電極15Aの複数の部位150(150A,150B,150C)の長さおよび厚さは、補助電極15Aにおける第1端子部22からの距離に対する電圧(第1端子部22と第2端子部24との間に駆動電圧を印加した際に補助電極15Aに生じる電圧)の傾きが一定になるように選択される。
 ただし、補助電極15の厚さの変化のさせ方は、これに限らず、複数段のステップ状に変化させてもよいし、線形に変化させてもよい。例えば、補助電極15は、4以上の部位150を有していても良い。補助電極15は、例えば、スパッタ法や、めっき法や、蒸着法などにより形成すればよい。
 以上述べた本実施形態の有機EL素子は、透明導電膜からなる第1電極12と、第1電極12の厚み方向において第1電極12から離間して配置され第1電極12よりもシート抵抗が小さな第2電極14とを備え、第1電極12と第2電極14との間に有機材料からなる発光層(有機EL層13)を有する。本実施形態の有機EL素子は、第1端子部22と、第2端子部24と、補助電極15,15と、を備える。第1端子部12は、第1電極12と発光層と第2電極14とが重なる発光部11の側方に配置され第1電極12に電気的に接続される。第2端子部24は、発光部11における第1端子部22側とは反対側で発光部11の側方に配置され第2電極14に電気的に接続される。補助電極15は、第1電極12よりも比抵抗の小さな材料からなり発光部11の側方で第1電極12に積層されて第1端子部22に電気的に接続される。補助電極15は、発光部11の周方向に沿って配置される。補助電極15は、周方向において第1端子部22から遠ざかるにつれてシート抵抗が大きくなるように厚さを変化させてある。
 換言すれば、本実施形態の有機EL素子は、第1電極12と、発光層(発光層を有する有機EL層13)と、第2電極14と、第1端子部22と、第2端子部24と、補助電極15と、を備える。第1電極12は、導電性光透過性材料を用いて形成される。発光層は、有機材料を用いて第1電極12上に形成される。第2電極14は、導電性材料を用いて発光層上に形成される。第1端子部22は、発光層の厚み方向と交差する第1方向(図1(a)における左右方向)において発光層の一端側(図1(a)における左端側)に配置され、第1電極12に電気的に接続される。第2端子部24は、第1方向において発光層の他端側(図1(a)における右端側)に配置され、第2電極14に電気的に接続される。補助電極15は、発光層の厚み方向および第1方向のそれぞれと交差する第2方向(図1(a)における上下方向)において発光層の側方に位置するように第1電極12上に形成される。補助電極15は、第1電極12に電気的に接続される。補助電極15は、第1電極12よりも比抵抗が小さい材料を用いて第1方向に沿って延びる長尺状に形成される。補助電極15は、その長さ方向において第1端子部22から遠ざかるほどシート抵抗が大きくなるように厚さが異なる複数の部位150を有する。
 本実施形態の有機EL素子では、複数の部位150は、第1端子部22から第2端子部24に向かって、厚い順に並んでいる。
 本実施形態の有機EL素子では、複数の部位150の長さおよび厚さは、補助電極15における第1端子部22からの距離に対する電圧(第1端子部22と第2端子部24との間に駆動電圧を印加した際に補助電極15に生じる電圧)の傾きが一定になるように選択される。
 以上説明した本実施形態の有機EL素子では、補助電極15について、幅寸法を一定としてあり、発光部11の周方向において第1端子部22から遠ざかるにつれてシート抵抗が大きくなるように厚さを変化させてあるので、補助電極15の厚さが一定である場合に比べて、補助電極15において第1端子部22に近い側での単位長さ(例えば、1cm)当たりの電圧降下を小さくする一方で第1端子部22から遠い側での単位長さ当たりの電圧降下を大きくすることが可能となる。これにより、本実施形態の有機EL素子では、補助電極15の幅寸法の縮小化を図りながらも輝度むらを低減することが可能となる。言い換えれば、本実施形態の有機EL素子では、輝度むらの低減を図りながらも非発光部の面積を低減することが可能となる。なお、有機EL素子の輝度は、流れる電流値に略比例する。
 また、本実施形態の有機EL素子では、上述の補助電極15を備えていることにより、駆動時において発光部11のうち第1端子部22に近い部位での電流集中を抑制することが可能となるから、より一層の長寿命化を図ることが可能となる。
 (実施形態2)
 以下、本実施形態の有機EL素子について図3に基づいて説明する。
 本実施形態の有機EL素子の基本構成は実施形態1と略同じであり、補助電極15(15B)が、2層の補助電極層151,152の積層構造を有し、第1電極12の厚み方向において第1電極12から遠い補助電極層152について、第1端子部22側の一端から第2端子部24側の他端までの距離を短くすることで厚さを変化させてある点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
 補助電極15Bは、少なくとも2層の補助電極層151,152の積層構造を有していればよく、第1電極12の厚み方向において第1電極12から遠い補助電極層15n(n≧2)ほど、第1端子部22側の一端から第2端子部24側の他端までの距離を短くすることで当該補助電極15Bの厚さを変化させてあればよい。
 補助電極15Bは、2つの補助電極層151,152で構成される。補助電極層151は、第1電極12上に直接形成される。補助電極層152は、補助電極層151上に形成される。補助電極層152における第1端子部22に近い方の端(図3(c)における左端)は、補助電極層151における第1端子部22に近い方の端(図3(c)における左端)に揃えられる。
 このように、補助電極15Bは、長さが異なる複数の補助電極層15nを、第1端子部22に近い方の端(図3(c)における左端)を揃え、かつ、長い順に第1電極12に積み重ねて形成される。
 本実施形態では、補助電極層152と、補助電極層151において補助電極層152と重なる部位とで第1の部位150Aが構成される。第1の部位150Aの厚さは、2つの補助電極層151,152の厚さの合計に等しい。また、補助電極層151において補助電極層152と重ならない部位が第2の部位150Bとなる。第2の部位150Bの厚さは、補助電極層151の厚さに等しい。
 2つの補助電極層151,152の長さおよび厚さは、補助電極15Bにおける第1端子部22からの距離に対する電圧(第1端子部22と第2端子部24との間に駆動電圧を印加した際に補助電極15Bに生じる電圧)の傾きが一定になるように選択される。
 各補助電極層151,152の材料は、実施形態1において説明した補助電極15Bの材料のうち互いに異なる材料を採用すればよい。
 また、本実施形態の有機EL素子では、第1端子部22が、2層の電極層221,222の積層構造を有している。そして、第1電極12の厚み方向において第1電極12に近い側の電極層221の材料と補助電極層151の材料とを同じ材料とし、第1電極12から遠い側の電極層222の材料と補助電極層152の材料とを同じ材料としてある。したがって、本実施形態の有機EL素子においても、実施形態1の有機EL素子と同様、第1端子部22と補助電極15Bとを同時に形成することが可能となる。
 図4は、本実施形態の有機EL素子の変形例を示す。図4の変形例は、補助電極15(15C)が図3に示される有機EL素子と異なっている。補助電極15Cは、補助電極15Aと同様に、厚さが異なる3つの部位150(第1の部位150A、第2の部位150B、第3の部位150C)を有する。
 補助電極15Cは、3つの補助電極層151,152,153で構成される。補助電極層151は、第1電極12上に直接形成される。補助電極層152は、補助電極層151上に形成される。補助電極層153は、補助電極層152上に形成される。補助電極層152,153における第1端子部22に近い方の端(図4(c)における左端)は、補助電極層151における第1端子部22に近い方の端(図4(c)における左端)に揃えられる。
 このように、補助電極15Cは、長さが異なる複数の補助電極層15nを、第1端子部22に近い方の端(図3(c)における左端)を揃え、かつ、長い順に第1電極12に積み重ねて形成される。
 補助電極15Cでは、補助電極層153と、補助電極層152において補助電極層153と重なる部位と、補助電極層151において補助電極層153と重なる部位とで第1の部位150Aが構成される。第1の部位150Aの厚さは、3つの補助電極層151,152,153の厚さの合計に等しい。
 また、補助電極層152において補助電極層153と重ならない部位と、補助電極層151において補助電極層152に重なるが補助電極層153に重ならない部位とで第2の部位150Bが構成される。第2の部位150Bの厚さは、2つの補助電極層151,152の厚さの合計に等しい。
 また、補助電極層151において補助電極層152と重ならない部位が第3の部位150Cとなる。第3の部位150Cの厚さは、補助電極層151の厚さに等しい。
 3つの補助電極層151,152,153の長さおよび厚さは、補助電極15Cにおける第1端子部22からの距離に対する電圧(第1端子部22と第2端子部24との間に駆動電圧を印加した際に補助電極15Cに生じる電圧)の傾きが一定になるように選択される。
 なお、図4では、第1端子部22は、3つの電極層221,222,223で構成される。電極層221,222,223は、それぞれ、補助電極層151,152,153と同じ材料で形成される。したがって、第1端子部22と補助電極15Cとを同時に形成できる。
 以上述べたように、本実施形態の有機EL素子では、補助電極15は、少なくとも2層の補助電極層15nの積層構造を有し、第1電極12の厚み方向において第1電極12から遠い補助電極層15nほど第1端子部22側の一端から第2端子部24側の他端までの距離を短くすることで前記厚さを変化させてある。
 換言すれば、本実施形態の有機EL素子では、補助電極15は、長さが異なる複数の補助電極層15nを、第1端子部22に近い方の端(図3における左端)を揃え、かつ、長い順に第1電極12に積み重ねて形成される。
 以上説明した本実施形態の有機EL素子では、実施形態1の有機EL素子と同様に、輝度むらの低減を図りながらも非発光部の面積を低減することが可能となる。
 また、本実施形態の有機EL素子では、補助電極15(15B,15C)が、少なくとも2層の補助電極層151,152の積層構造を有し、第1電極12の厚み方向において第1電極12から遠い補助電極層15n(n≧2)ほど第1端子部22側の一端から第2端子部24側の他端までの距離を短くすることで当該補助電極15の厚さを変化させてあるので、実施形態1に比べて、補助電極15(15B,15C)の抵抗分布の設計が容易になる。
 実施形態1,2で説明した有機EL素子では、透明導電膜からなる第1電極12が陽極を構成し、第1電極12よりもシート抵抗が小さな第2電極14が陰極を構成しているが、第1電極12が陰極を構成し、第2電極14が陽極を構成してもよく、いずれにしても、透明導電膜からなる第1電極12を通して光を取り出すことが可能であればよい。
 また、実施形態1,2で説明した有機EL素子は、例えば、照明用の有機EL素子として好適に用いることができるが、照明用に限らず、他の用途に用いることも可能である。

Claims (4)

  1.  導電性光透過性材料を用いて形成される第1電極と、
     有機材料を用いて前記第1電極上に形成される発光層と、
     導電性材料を用いて前記発光層上に形成される第2電極と、
     前記発光層の厚み方向と交差する第1方向において前記発光層の一端側に配置され、前記第1電極に電気的に接続される第1端子部と、
     前記第1方向において前記発光層の他端側に配置され、前記第2電極に電気的に接続される第2端子部と、
     前記厚み方向および前記第1方向のそれぞれと交差する第2方向において前記発光層の側方に位置するように前記第1電極上に形成され、前記第1電極に電気的に接続される補助電極と、
     を備え、
     前記補助電極は、前記第1電極よりも比抵抗が小さい材料を用いて前記第1方向に沿って延びる長尺状に形成され、
     前記補助電極は、その長さ方向において前記第1端子部から遠ざかるほどシート抵抗が大きくなるように厚さが異なる複数の部位を有する
     ことを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記補助電極は、長さが異なる複数の補助電極層を、前記第1端子部に近い方の端を揃え、かつ、長い順に前記第1電極に積み重ねて形成される
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  3.  前記複数の部位は、前記第1端子部から前記第2端子部に向かって、厚い順に並んでいる
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  4.  前記複数の部位の長さおよび厚さは、前記補助電極における前記第1端子部からの距離に対する電圧の傾きが一定になるように選択される
     ことを特徴とする請求項1~3のうちいずれか1項記載の有機エレクトロルミネッセンス素子。
PCT/JP2012/053038 2011-02-22 2012-02-10 有機エレクトロルミネッセンス素子 WO2012114894A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/000,531 US8710735B2 (en) 2011-02-22 2012-02-10 Organic electroluminescence element
DE201211000945 DE112012000945T5 (de) 2011-02-22 2012-02-10 Organisches Elektrolumineszenzelement
CN2012800097824A CN103380660A (zh) 2011-02-22 2012-02-10 有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035905 2011-02-22
JP2011035905A JP5735819B2 (ja) 2011-02-22 2011-02-22 有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2012114894A1 true WO2012114894A1 (ja) 2012-08-30

Family

ID=46720678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053038 WO2012114894A1 (ja) 2011-02-22 2012-02-10 有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
US (1) US8710735B2 (ja)
JP (1) JP5735819B2 (ja)
CN (1) CN103380660A (ja)
DE (1) DE112012000945T5 (ja)
TW (1) TWI462362B (ja)
WO (1) WO2012114894A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191500B (zh) 2013-03-13 2017-06-23 松下电器产业株式会社 有机电致发光元件和使用所述有机电致发光元件的照明设备
US9761443B2 (en) * 2014-01-31 2017-09-12 The Regents Of The University Of California Method for passivating surfaces, functionalizing inert surfaces, layers and devices including same
CN104091818B (zh) 2014-06-23 2017-09-29 上海天马有机发光显示技术有限公司 一种有机发光显示面板、装置及其制造方法
CN104143608B (zh) * 2014-07-25 2017-09-26 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法、显示装置
FR3025942B1 (fr) 2014-09-15 2017-12-01 Valeo Vision Module lumineux multifonction avec diode oled segmentee
WO2016151818A1 (ja) * 2015-03-25 2016-09-29 パイオニア株式会社 発光装置
CN109728029B (zh) * 2017-10-31 2021-03-30 云谷(固安)科技有限公司 显示面板和终端
CN110212114B (zh) * 2019-06-03 2021-01-29 京东方科技集团股份有限公司 显示基板、显示面板及其制备方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045674A (ja) * 2001-08-02 2003-02-14 Seiko Instruments Inc 有機エレクトロルミネセンス素子
JP2005285523A (ja) * 2004-03-30 2005-10-13 Nippon Seiki Co Ltd 有機elパネル
JP2007026862A (ja) * 2005-07-15 2007-02-01 Konica Minolta Holdings Inc 発光パネル
WO2008126269A1 (ja) * 2007-03-30 2008-10-23 Pioneer Corporation 発光装置
JP2008258317A (ja) * 2007-04-03 2008-10-23 Toyota Industries Corp スキャナ用光源

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343580A (ja) * 2001-05-11 2002-11-29 Pioneer Electronic Corp 発光ディスプレイ装置及びその製造方法
JP3864851B2 (ja) 2002-06-03 2007-01-10 株式会社豊田自動織機 面状発光装置
KR100700643B1 (ko) * 2004-11-29 2007-03-27 삼성에스디아이 주식회사 보조 전극 라인을 구비하는 유기전계발광소자 및 그의제조 방법
JP4462074B2 (ja) 2005-03-09 2010-05-12 株式会社豊田自動織機 エレクトロルミネッセンス素子
KR101245217B1 (ko) * 2006-06-12 2013-03-19 엘지디스플레이 주식회사 전계발광소자 및 그 제조방법
JP5536977B2 (ja) 2007-03-30 2014-07-02 パナソニック株式会社 面発光体
JP2008257951A (ja) 2007-04-03 2008-10-23 Toyota Industries Corp スキャナ用光源
JP2009187737A (ja) 2008-02-05 2009-08-20 Seiko Epson Corp 発光装置及び電子機器
JP2010080307A (ja) 2008-09-26 2010-04-08 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP4819204B2 (ja) 2009-10-28 2011-11-24 パナソニック株式会社 レンズシート、表示パネル装置、および表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045674A (ja) * 2001-08-02 2003-02-14 Seiko Instruments Inc 有機エレクトロルミネセンス素子
JP2005285523A (ja) * 2004-03-30 2005-10-13 Nippon Seiki Co Ltd 有機elパネル
JP2007026862A (ja) * 2005-07-15 2007-02-01 Konica Minolta Holdings Inc 発光パネル
WO2008126269A1 (ja) * 2007-03-30 2008-10-23 Pioneer Corporation 発光装置
JP2008258317A (ja) * 2007-04-03 2008-10-23 Toyota Industries Corp スキャナ用光源

Also Published As

Publication number Publication date
JP5735819B2 (ja) 2015-06-17
TW201242131A (en) 2012-10-16
DE112012000945T5 (de) 2013-11-21
US8710735B2 (en) 2014-04-29
TWI462362B (zh) 2014-11-21
CN103380660A (zh) 2013-10-30
JP2012174517A (ja) 2012-09-10
US20130320841A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5476061B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5735819B2 (ja) 有機エレクトロルミネッセンス素子
JP6089280B2 (ja) 有機エレクトロルミネッセンス素子
JP5237541B2 (ja) 有機エレクトロルミネッセンス素子
JP5452853B2 (ja) 有機エレクトロルミネッセンス素子
JP4966176B2 (ja) 有機エレクトロルミネッセンス素子
WO2011074633A1 (ja) 有機エレクトロルミネッセンス素子
JP2011054668A (ja) 有機電界発光素子
JP2010092741A (ja) 有機エレクトロルミネッセンス素子
WO2016013160A1 (ja) 発光装置
WO2012160925A1 (ja) 有機エレクトロルミネッセンス素子
WO2012121249A1 (ja) 面状発光装置
JP2010034042A (ja) 有機電界発光素子
JP2010033973A (ja) 有機エレクトロルミネッセンス素子
WO2012121251A1 (ja) 面状発光装置
WO2012160926A1 (ja) 有機エレクトロルミネッセンス素子
JP2010108652A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2012212555A (ja) 発光装置
JP2013191276A (ja) 有機エレクトロルミネッセンス素子
JP5075027B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2013136684A1 (ja) 有機エレクトロルミネッセンス素子
JP5319977B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2011204646A (ja) 有機エレクトロルミネッセンス素子
JP2010040444A (ja) 有機エレクトロルミネッセンス素子
JP2011216688A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000531

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012000945

Country of ref document: DE

Ref document number: 1120120009452

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750206

Country of ref document: EP

Kind code of ref document: A1