WO2012160925A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012160925A1
WO2012160925A1 PCT/JP2012/060887 JP2012060887W WO2012160925A1 WO 2012160925 A1 WO2012160925 A1 WO 2012160925A1 JP 2012060887 W JP2012060887 W JP 2012060887W WO 2012160925 A1 WO2012160925 A1 WO 2012160925A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
organic electroluminescence
light emitting
conductive
Prior art date
Application number
PCT/JP2012/060887
Other languages
English (en)
French (fr)
Inventor
将啓 中村
正人 山名
矢口 充雄
山木 健之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013516259A priority Critical patent/JP5991626B2/ja
Priority to US14/111,033 priority patent/US9024306B2/en
Publication of WO2012160925A1 publication Critical patent/WO2012160925A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an organic electroluminescence element.
  • one electrode (cathode) 101 is laminated on the surface of the substrate 104, a light emitting layer 103 is laminated on the surface of the electrode 101 via an electron injection / transport layer 105, and on the light emitting layer 103.
  • the other electrode (anode) 102 is laminated via the hole injection / transport layer 106.
  • the organic electroluminescence element includes a sealing member 107 on the surface side of the substrate 104. Therefore, in this organic electroluminescence element, light emitted from the light emitting layer 103 is radiated through the electrode 102 formed as a light transmissive electrode and the sealing member 107 formed of a transparent body.
  • Examples of the material of the reflective electrode 101 include Al, Zr, Ti, Y, Sc, Ag, and In.
  • Examples of the material of the electrode 102 which is a light transmissive electrode include indium-tin oxide (ITO) and indium-zinc oxide (IZO).
  • the organic electroluminescence element In order to light the organic electroluminescence element with high brightness, it is necessary to pass a larger current.
  • the organic electroluminescence element generally has a higher sheet resistance of an anode made of an ITO film than that of a cathode made of a metal film, an alloy film, a metal compound film, etc., the potential gradient at the anode is high. As a result, the in-plane variation in luminance increases.
  • the document 2 includes a first conductive layer 220, an electroluminescent material 230, a second conductive layer 240, and a substrate 245, and the first conductive layer 220 has a rectangular opening.
  • An electroluminescent lamp 210 comprising a rectangular grid electrode having 250 has been proposed.
  • Document 2 describes that it is preferable to form the first conductive layer 220 and the second conductive layer 240 with conductive ink such as silver ink or carbon ink.
  • Document 2 describes that the first conductive layer 220, the electroluminescent material 230, and the second conductive layer 240 are formed by a screen printing method, an offset printing method, or the like.
  • Document 2 describes that when the electroluminescence lamp 210 with uniform brightness is required, the density of the openings 250 is made substantially constant over the lamp surface.
  • the first conductive layer 220 has the opening 250, and thus the first conductive layer 220 in the electroluminescent material 230 has the first conductive layer 220. Carriers are injected only into the portion immediately below the layer 220.
  • the electroluminescent lamp 210 there is a concern that the light emission efficiency at the portion corresponding to the opening 250 in the electroluminescent material 230 is decreased, and the external quantum efficiency is decreased.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide an organic electroluminescence device capable of reducing luminance unevenness and improving external quantum efficiency. is there.
  • the organic electroluminescent element of the 1st form which concerns on this invention is a 2nd surface of the light emitting layer, the 1st electrode layer arrange
  • a second electrode layer disposed on the conductive layer; a conductive layer; and an insulating layer.
  • the light emitting layer is configured to emit light when a predetermined voltage is applied between the first electrode layer and the second electrode layer.
  • the second electrode layer includes an electrode portion that covers the second surface and an opening formed in the electrode portion so as to expose the second surface.
  • the conductive layer is configured to transmit the light, and is formed on an exposed region exposed from the opening in the second surface so as to be electrically connected to the electrode portion and the light emitting layer.
  • the insulating layer is interposed between the electrode portion and the second surface.
  • the conductive layer is formed so as to cover the second electrode layer.
  • the thickness of the part covering the exposed region in the conductive layer is the insulating layer, the electrode part, Less than the total thickness.
  • the organic electroluminescence device of the fourth form according to the present invention includes a hole injection layer in addition to any of the first to third forms.
  • the first electrode layer is a cathode.
  • the second electrode layer is an anode.
  • the hole injection layer is interposed between the light emitting layer, the conductive layer, and the electrode portion.
  • the insulating layer is located between the hole injection layer and the electrode part.
  • the organic electroluminescence device of the fifth aspect according to the present invention includes an electron blocking layer in addition to any of the first to third aspects.
  • the first electrode layer is a cathode.
  • the second electrode layer is an anode.
  • the conductive layer is configured to function as a hole injection layer.
  • the electron blocking layer is interposed between the light emitting layer, the conductive layer, and the electrode part.
  • the insulating layer is located between the electron blocking layer and the electrode part.
  • the second electrode layer is formed using a mixture of a metal powder and an organic binder.
  • the conductive layer is formed using a transparent medium mixed with a conductive nanostructure.
  • a transparent conductive film, or a metal thin film having a thickness capable of transmitting the light is formed using a transparent conductive film, or a metal thin film having a thickness capable of transmitting the light.
  • the resistivity of the material of each of the first electrode layer and the second electrode layer is a transparent conductive material. Lower than the resistivity of the conductive oxide.
  • FIG. 1 is a schematic cross-sectional view of an organic electroluminescence element of Embodiment 1.
  • FIG. 3 is a schematic plan view of a second electrode in the organic electroluminescence element of Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view of a main part of the organic electroluminescence element of Embodiment 1.
  • FIG. 6 is a schematic plan view of another configuration example of the second electrode in the organic electroluminescence element of Embodiment 1.
  • FIG. 6 is a schematic plan view of another configuration example of the second electrode in the organic electroluminescence element of Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view of a main part of an organic electroluminescence element of Embodiment 2.
  • FIG. It is a schematic sectional drawing of the organic electroluminescent element of a prior art example. It is a see-through
  • the organic electroluminescence element includes a substrate 10, a first electrode 20 provided on one surface (upper surface in FIG. 1) side of the substrate 10, and a second electrode facing the first electrode 20 on the one surface side of the substrate 10. 40 and a functional layer 30 including the light emitting layer 32 between the first electrode 20 and the second electrode 40.
  • the organic electroluminescence element includes a light emitting layer 32, a first electrode (first electrode layer) 20, and a second electrode (second electrode layer) 40.
  • the first electrode 20 is disposed on the first surface (lower surface in FIG. 1) 32a in the thickness direction of the light emitting layer 32 (up and down direction in FIG. 1).
  • the second electrode 40 is disposed on the second surface (upper surface in FIG. 1) 32 b in the thickness direction of the light emitting layer 32.
  • first electrode 20 is not necessarily formed directly on the first surface 32 a of the light emitting layer 32.
  • second electrode 40 is not necessarily formed directly on the second surface 32 b of the light emitting layer 32.
  • the organic electroluminescence element has a first terminal portion (not shown) electrically connected to the first electrode 20 via a first lead wiring (not shown), and a second lead to the second electrode 40. And a second terminal portion 47 electrically connected via the wiring 46.
  • the first lead wiring, the first terminal portion, the second lead wiring 46 and the second terminal portion 47 are provided on the one surface side of the substrate 10.
  • an insulating film 60 that electrically insulates the second lead wiring 46 from the functional layer 30, the first electrode 20, and the first lead wiring is provided on the one surface side of the substrate 10. .
  • the insulating film 60 straddles the one surface of the substrate 10, the side surface of the first electrode 20, the side surface of the functional layer 30, and the outer peripheral portion of the surface of the functional layer 30 on the second electrode 40 side (upper surface in FIG. 1). Is formed.
  • the organic electroluminescence element has a resistivity (electric resistivity) of each of the first electrode 20 and the second electrode 40 that is higher than a resistivity (electric resistivity) of a transparent conductive oxide (Transparent Oxide: TCO). It is low.
  • transparent conductive oxide include ITO, AZO, GZO, and IZO.
  • the second electrode 40 has a first opening 41 (see FIGS. 2 and 3) for extracting light from the functional layer 30. That is, as shown in FIG. 1, the second electrode 40 has an electrode portion (electrode pattern) 40 a that covers the second surface 32 b of the light emitting layer 32 and an electrode pattern 40 a that exposes the second surface 32 b of the light emitting layer 32. And an opening portion (first opening portion) 41 formed in the. In the present embodiment, the second electrode 40 has a plurality of openings 41.
  • the functional layer 30 is located immediately below the second electrode 40 on the second electrode 40 side of the light emitting layer 32, and the second opening 37 for extracting light from the functional layer 30 (see FIG. 3).
  • Insulating layer 35 having
  • a conductive layer 50 that is in contact with the second electrode 40 and the functional layer 30 and has optical transparency is provided in the second opening 37.
  • the organic electroluminescence element further includes an insulating layer 35 and a conductive layer 50.
  • the insulating layer 35 is interposed between the electrode part 40a and the second surface 32b. More specifically, the insulating layer 35 is interposed between the second surface 32b and the electrode part 40a so as to overlap the electrode part 40a but not the first opening part 41 in the thickness direction of the light emitting layer 32. In a strict sense, the insulating layer 35 does not need to be interposed between the second surface 32b and the electrode portion 40a so as not to overlap the first opening 41. That is, the insulating layer 35 may partially overlap with the first opening 41 as long as it does not excessively prevent light emission through the first opening 41.
  • the conductive layer 50 is configured to transmit light emitted from the light emitting layer 32.
  • the conductive layer 50 is formed on a region (exposed region) 32c exposed from the opening 41 in the second surface 32b so as to be electrically connected to the electrode portion 40a and the light emitting layer 32. That is, the conductive layer 50 functions as an auxiliary electrode layer for uniformly applying a voltage to the second surface 32 b of the light emitting layer 32.
  • the conductive layer 50 is formed so as to cover the entire second electrode layer 40.
  • the organic electroluminescence element can extract light from the second electrode 40 side.
  • the organic electroluminescence element of the present embodiment can be used as a top emission type organic electroluminescence element.
  • the organic electroluminescence element has a cover substrate 70 that is disposed opposite to the one surface side of the substrate 10 and has translucency, and a frame shape (this embodiment) interposed between the peripheral portion of the substrate 10 and the peripheral portion of the cover substrate 70.
  • a frame portion 80 having a rectangular frame shape.
  • the organic electroluminescence element includes the element portion 1 including the first electrode 20, the functional layer 30, the second electrode 40, the conductive layer 50, and the like in a space surrounded by the substrate 10, the cover substrate 70, and the frame portion 80. It is preferable to include a sealing portion 90 made of a light-transmitting material (for example, a light-transmitting resin) to be sealed.
  • a light-transmitting material for example, a light-transmitting resin
  • the substrate 10 has a rectangular shape in plan view.
  • the planar view shape of the substrate 10 is not limited to a rectangular shape, and may be, for example, a polygonal shape or a circular shape other than the rectangular shape.
  • the glass substrate is used as the substrate 10, but is not limited thereto, and for example, a plastic plate or a metal plate may be used.
  • a material for the glass substrate for example, soda lime glass, non-alkali glass, or the like can be employed.
  • a material of the plastic plate for example, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polycarbonate, or the like can be employed.
  • a material of the metal plate for example, aluminum, copper, stainless steel, or the like can be employed.
  • the substrate 10 may be rigid or flexible.
  • the unevenness on the one surface of the substrate 10 may cause a leak current of the organic electroluminescence element (may cause deterioration of the organic electroluminescence element). .
  • the arithmetic average roughness Ra specified in JIS B 0601-2001 is preferably 10 nm or less, and preferably several nm or less. More preferable.
  • a plastic plate is used as the substrate 10, it is possible to obtain at low cost an arithmetic average roughness Ra of one surface or less of the above-mentioned surface without particularly high precision polishing. It is.
  • the glass substrate is used as the cover substrate 70, but is not limited thereto, and for example, a plastic plate or the like may be used.
  • a material for the glass substrate for example, soda lime glass, non-alkali glass, or the like can be employed.
  • a material of the plastic plate for example, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polycarbonate, or the like can be employed.
  • a flat substrate is used as the cover substrate 70, but is not limited to this, and a substrate in which a storage recess for storing the above-described element unit 1 is formed on the surface facing the substrate 10 is used.
  • the peripheral portion of the storage recess on the facing surface may be joined to the substrate 10 side over the entire circumference.
  • a light extraction structure (not shown) that suppresses reflection of light emitted from the light emitting layer 32 on the outer surface.
  • a light extraction structure (not shown) that suppresses reflection of light emitted from the light emitting layer 32 on the outer surface.
  • Examples of such a light extraction structure part include an uneven structure part having a two-dimensional periodic structure.
  • the period of such a two-dimensional periodic structure is such that when the wavelength of light emitted from the light emitting layer 32 is in the range of 300 to 800 nm, for example, the wavelength in the medium is ⁇ (the wavelength in vacuum is divided by the refractive index of the medium). Value), it is desirable to set appropriately within the range of 1/4 to 10 times the wavelength ⁇ .
  • Such an uneven structure portion is formed in advance on the outer surface side of the cover substrate 70 by, for example, an imprint method such as a thermal imprint method (thermal nanoimprint method) or an optical imprint method (photo nanoimprint method). It is possible.
  • the cover substrate 70 may be formed by injection molding, and the concavo-convex structure portion may be directly formed on the cover substrate 70 using an appropriate mold at the time of injection molding.
  • the concavo-convex structure portion can also be configured by a member different from the cover substrate 70, for example, a prism sheet (for example, a light diffusion film such as Lightup (registered trademark) GM3 manufactured by Kimoto Co., Ltd.). Can be configured.
  • the organic electroluminescence element of this embodiment by providing the above-described light extraction structure portion, it is possible to reduce the reflection loss of the light emitted from the light emitting layer 32 and reaching the outer surface side of the cover substrate 70, and to improve the light extraction efficiency. Can be achieved.
  • the first bonding material is not limited thereto, and for example, an acrylic resin may be used.
  • the epoxy resin or acrylic resin used as the first bonding material may be, for example, an ultraviolet curable type or a thermosetting type.
  • you may use what made the epoxy resin contain a filler (for example, a silica, an alumina, etc.) as a 1st joining material.
  • the frame portion 80 is airtightly bonded to the one surface side of the substrate 10 over the entire periphery of the surface of the frame portion 80 facing the substrate 10 side.
  • an epoxy resin is used, but is not limited thereto, and for example, an acrylic resin, frit glass, or the like may be employed.
  • the epoxy resin or acrylic resin used as the second bonding material may be, for example, an ultraviolet curable type or a thermosetting type.
  • you may use what made the epoxy resin contain a filler (for example, silica, alumina, etc.) as a 2nd joining material.
  • the frame portion 80 is airtightly bonded to the cover substrate 70 over the entire circumference of the surface of the frame portion 80 facing the cover substrate 70.
  • polyimide As a material of the insulating film 60, for example, polyimide, novolac resin, epoxy resin, or the like can be used.
  • the translucent material that is a material of the sealing portion 90 for example, a translucent resin such as an epoxy resin or a silicone resin can be used, but a material having a small refractive index difference from the functional layer 30 is more preferable.
  • the light transmissive material may be a light transmissive resin mixed with a light diffusing material made of glass or the like.
  • an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and bonded at the nm level or molecular level may be used.
  • the first electrode 20 constitutes a cathode and the second electrode 40 constitutes an anode.
  • the functional layer 30 includes a light emitting layer 32, an interlayer 33, a carrier injection layer 34, and an insulating layer 35 in this order from the first electrode 20 side.
  • the insulating layer 35 has a second surface 32b of the light emitting layer 32 (in this embodiment, a carrier injection layer) so as to overlap the electrode portion (electrode pattern) 40a in the thickness direction of the light emitting layer 32. 34) and the electrode portion 40a.
  • the insulating layer 35 includes an insulating portion (insulating pattern) 38 that covers the second surface 32 b of the light emitting layer 32 and an insulating pattern 38 that exposes the second surface 32 b of the light emitting layer 32. And an opening (second opening) 37 to be formed.
  • the insulating layer 35 has a plurality of openings 37.
  • the insulating layer 35 is formed in substantially the same shape (square shape) as the second electrode 40.
  • the insulating layer 35 is formed on the light emitting layer 32 such that the insulating pattern 38 overlaps the electrode pattern 40a of the second electrode 40 and the second opening 37 overlaps the first opening 41 in the thickness direction of the light emitting layer 32. Placed in.
  • the first carrier injected from the first electrode 20 to the functional layer 30 is an electron
  • the second carrier injected from the second electrode 40 to the functional layer 30 is a hole
  • a carrier injection layer (hereinafter referred to as a first carrier injection layer) between the first electrode 20 and the light emitting layer 32.
  • the first carrier injection layer on the first electrode 20 side in the light emitting layer 32 is an electron injection layer
  • the carrier injection layer 34 on the second electrode 40 side in the light emitting layer 32 (hereinafter referred to as the second carrier injection layer 34). ) Is a hole injection layer.
  • the first electrode 20 forms an anode and the second electrode 40 forms a cathode
  • a hole injection layer is used as the first carrier injection layer and an electron injection layer is used as the second carrier injection layer 34.
  • the interlayer 33 may be provided between the first carrier injection layer and the light emitting layer 32.
  • the structure of the functional layer 30 described above is not limited to the above-described example.
  • an electron transport layer is provided as the first carrier transport layer between the first carrier injection layer and the light emitting layer 32, or the second carrier injection layer 34 is provided.
  • a structure in which a hole transport layer is provided as a second carrier transport layer between the contact layer 33 and the interlayer 33 may be used.
  • the functional layer 30 only needs to include the light emitting layer 32 and the insulating layer 35 (that is, the functional layer 30 may be only the light emitting layer 32 and the insulating layer 35).
  • the first carrier injection layer, the first carrier transport layer, the interlayer 33, the second carrier transport layer, the second carrier injection layer 34, and the like may be provided as appropriate.
  • the light emitting layer 32 is configured to emit light when a predetermined voltage is applied between the first electrode layer (first electrode) 20 and the second electrode layer (second electrode) 40.
  • the light emitting layer 32 may have a single layer structure or a multilayer structure.
  • the emission layer may be doped with three types of dopant dyes of red, green, and blue, or the blue hole-transporting emission layer and the green electron-transporting property.
  • a laminated structure of a light emitting layer and a red electron transporting light emitting layer may be adopted, or a laminated structure of a blue electron transporting light emitting layer, a green electron transporting light emitting layer and a red electron transporting light emitting layer may be adopted. Good.
  • Examples of the material of the light emitting layer 32 include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, and the like, polyfluorene derivatives, polyvinylcarbazole derivatives, dye bodies, and metal complex light emitting materials.
  • phosphorescent materials for example, luminescent materials such as iridium complexes, osmium complexes, platinum complexes, and europium complexes, or compounds or polymers having these in the molecule Can also be suitably used. These materials can be appropriately selected and used as necessary.
  • the light emitting layer 32 is preferably formed by a wet process such as a coating method (for example, spin coating method, spray coating method, die coating method, gravure printing method, screen printing method, etc.).
  • a coating method for example, spin coating method, spray coating method, die coating method, gravure printing method, screen printing method, etc.
  • the method for forming the light emitting layer 32 is not limited to the coating method, and the light emitting layer 32 may be formed by a dry process such as a vacuum deposition method or a transfer method.
  • the material for the electron injection layer examples include metal fluorides such as lithium fluoride and magnesium fluoride, metal halides such as sodium chloride and magnesium chloride, titanium, zinc, magnesium, calcium, An oxide such as barium or strontium can be used.
  • the electron injection layer can be formed by a vacuum deposition method.
  • the material of the electron injection layer for example, an organic semiconductor material mixed with a dopant (alkali metal or the like) that promotes electron injection can be used.
  • the electron injection layer can be formed by a coating method.
  • the material for the electron transport layer can be selected from a group of compounds having electron transport properties.
  • this type of compound include metal complexes known as electron transporting materials such as Alq3, and compounds having a heterocyclic ring such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc.
  • any generally known electron transport material can be used.
  • a low molecular material or a polymer material having a low LUMO (Lowest Unoccupied Molecular Molecular) level can be used as a material for the hole transport layer.
  • a low molecular material or a polymer material having a low LUMO (Lowest Unoccupied Molecular Molecular) level can be used as a material for the hole transport layer.
  • examples thereof include polymers containing aromatic amines such as polyvinyl carbazole (PVCz), polyarylene derivatives such as polypyridine and polyaniline, and polyarylene derivatives having aromatic amines in the main chain, but are not limited thereto. .
  • Examples of the material for the hole transport layer include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD) and N, N′-bis (3-methylphenyl).
  • -(1,1'-biphenyl) -4,4'-diamine (TPD) 2-TNATA
  • MTDATA 4,4′-N, N′-dicarbazole biphenyl
  • spiro-NPD spiro-TPD
  • spiro-TAD spiro-TAD
  • TNB trispiro-NPD
  • Examples of the material for the hole injection layer include organic materials including thiophene, triphenylmethane, hydrazoline, amiramine, hydrazone, stilbene, triphenylamine, and the like.
  • organic materials including thiophene, triphenylmethane, hydrazoline, amiramine, hydrazone, stilbene, triphenylamine, and the like.
  • polyvinyl carbazole, polyethylenedioxythiophene: polystyrene sulfonate (PEDOT: PSS), aromatic amine derivatives such as TPD, etc. these materials may be used alone, or two or more kinds of materials. May be used in combination.
  • Such a hole injection layer can be formed by a wet process such as a coating method (spin coating method, spray coating method, die coating method, gravure printing method, etc.).
  • the interlayer 33 has a carrier blocking function (here, an electron barrier) that suppresses leakage of first carriers (here, electrons) from the light emitting layer 32 side to the second electrode 40 side. Then, it preferably has an electron blocking function, and further has a function of transporting second carriers (here, holes) to the light emitting layer 32, a function of suppressing quenching of the excited state of the light emitting layer 32, and the like. Preferably it is.
  • the interlayer 33 constitutes an electron blocking layer that suppresses leakage of electrons from the light emitting layer 32 side.
  • the interlayer 33 In the organic electroluminescence element, by providing the interlayer 33, it becomes possible to improve the luminous efficiency and extend the life.
  • polyarylamine or a derivative thereof polyfluorene or a derivative thereof, polyvinylcarbazole or a derivative thereof, a triphenyldiamine derivative, or the like can be used.
  • Such an interlayer 33 can be formed by a wet process such as a coating method (spin coating method, spray coating method, die coating method, gravure printing method, etc.).
  • the insulating layer 35 for example, polyimide, novolac resin, epoxy resin, or the like can be used.
  • Such an insulating layer 35 can be formed by a wet process such as a coating method (spin coating method, spray coating method, die coating method, gravure printing method, or the like).
  • the cathode is an electrode for injecting electrons (first carriers) that are first charges into the functional layer 30.
  • first electrode 20 is a cathode
  • Examples of the electrode material for the cathode include aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin, and alloys of these with other metals, such as magnesium-silver mixture, magnesium-indium mixture, aluminum -Lithium alloys can be mentioned as examples.
  • a metal, a metal oxide, etc., and a mixture of these and other metals for example, an ultrathin film made of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) and aluminum.
  • a laminated film with a thin film can also be used.
  • the cathode material is preferably a metal having a high reflectance with respect to light emitted from the light emitting layer 32 and a low resistivity, and preferably aluminum or silver.
  • the material of the first electrode 20 is a work function It is preferable to use a large metal, and it is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference between the energy level of the first electrode 20 and the HOMO (Highest Occupied Molecular Orbital) level does not become too large. .
  • the second electrode 40 is made of an electrode containing metal powder and an organic binder.
  • the second electrode (second electrode layer) 40 is formed using a mixture of metal powder and an organic binder.
  • this type of metal for example, silver, gold, copper or the like can be employed.
  • the organic electroluminescence element can reduce the resistivity and sheet resistance of the second electrode 40 as compared with the case where the second electrode 40 is a thin film formed of a conductive transparent oxide. It is possible to reduce luminance unevenness by reducing the resistance of the two electrodes 40.
  • the conductive material of the second electrode 40 an alloy, carbon black, or the like can be used instead of a metal.
  • the second electrode 40 can be formed, for example, by printing a paste (printing ink) in which an organic binder and an organic solvent are mixed in a metal powder by, for example, a screen printing method or a gravure printing method.
  • a paste printing ink
  • an organic binder and an organic solvent are mixed in a metal powder by, for example, a screen printing method or a gravure printing method.
  • organic binder examples include acrylic resin, polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polyether sulfone, polyarylate, polycarbonate resin, polyurethane, polyacrylonitrile, polyvinyl acetal, polyamide, polyimide, and diacryl phthalate resin.
  • the first electrode 20 has a thickness of 80 to 200 nm
  • the first carrier injection layer has a thickness of 5 to 50 nm
  • the light emitting layer 32 has a thickness of 60 to 100 nm
  • an interlayer The film thickness of 33 is set to 15 nm
  • the film thickness of the second carrier injection layer 34 is set to 10 to 100 nm
  • the film thickness of the insulating layer 35 is set to 80 nm. is not.
  • the second electrode 40 is formed in a lattice shape (mesh shape) and has a plurality of (36 in the example shown in FIG. 2) first opening portions 41. .
  • each shape of each 1st opening part 41 is square shape.
  • the second electrode 40 shown in FIG. 2 is formed in a square lattice shape.
  • the wiring pattern 40a includes a plurality of thin line portions 44 (44a) along the first direction (left-right direction in FIG. 2) and a second direction (FIG. 2 in the vertical direction), and a plurality of thin line portions 44 (44b).
  • a plurality (seven in the illustrated example) of thin line portions 44a are arranged at equal intervals along the second direction.
  • a plurality (seven in the illustrated example) of thin line portions 44b are arranged at equal intervals along the first direction.
  • the plurality of thin wire portions 44a are orthogonal to the plurality of thin wire portions 44b.
  • a space surrounded by the adjacent thin wire portions 44 a and 44 a and the adjacent thin wire portions 44 b and 44 b is the first opening 41.
  • the second electrode 40 has, for example, a line width L1 (see FIG. 3) of 1 ⁇ m to 100 ⁇ m and a height H1 (see FIG. 3) regarding the dimensions of the square-lattice electrode pattern 40a constituting the second electrode 40.
  • 50 nm to 100 ⁇ m and the pitch P 1 (see FIG. 3) may be set to 100 ⁇ m to 2000 ⁇ m.
  • the numerical ranges of the line width L1, the height H1, and the pitch P1 of the electrode pattern 40a of the second electrode 40 are not particularly limited, and may be set as appropriate based on the planar size of the element portion 1.
  • the line width L1 of the electrode pattern 40a of the second electrode 40 is preferably narrow from the viewpoint of the utilization efficiency of the light emitted from the light emitting layer 32, and luminance unevenness is reduced by reducing the resistance of the second electrode 40. Therefore, it is preferable that the width is appropriately set based on the planar size of the organic electroluminescence element.
  • the use efficiency of the material of the second electrode 40 when the second electrode 40 is formed by a coating method such as a screen printing method from the viewpoint of (material use efficiency), the viewpoint of the emission angle of light emitted from the functional layer 30, and the like, 100 nm or more and 10 ⁇ m or less are more preferable.
  • each first opening 41 in the second electrode 40 has an opening whose opening area gradually increases as the distance from the functional layer 30 increases, as shown in FIGS. As a shape.
  • the organic electroluminescence element can increase the spread angle of the light emitted from the functional layer 30 and can further reduce the luminance unevenness.
  • the organic electroluminescence element can reduce reflection loss and absorption loss at the second electrode 40, and can further improve the external quantum efficiency.
  • each first opening 41 is not limited to a square shape, and may be, for example, a rectangular shape, a regular triangle shape, or a regular hexagonal shape.
  • the second electrode 40 has a triangular lattice shape when each of the first openings 41 is a regular triangle, and the hexagonal lattice when each of the first openings 41 is a regular hexagon. It becomes the shape of.
  • the second electrode 40 is not limited to a lattice shape, and may be, for example, a comb shape or may be configured by two comb-shaped electrode patterns. That is, the organic electroluminescence element may include a plurality of second electrodes 40.
  • the number of the first openings 41 is not particularly limited, and the number of the second electrodes 40 is not limited to a plurality, and may be one.
  • the second electrode 40 has a comb shape or is configured by two comb-shaped electrode patterns, the number of the first openings 41 can be one.
  • the second electrode 40 may have a planar shape as shown in FIG. 4, for example. That is, the second electrode 40 has a constant line width of the linear thin line portion 44 in the electrode pattern a in plan view, and the interval between the adjacent thin line portions 44 as it approaches the central portion from the peripheral portion of the second electrode 40. It is good also as a shape which becomes narrow and the opening area of the 1st opening part 41 becomes small.
  • a plurality (nine in the illustrated example) of fine wire portions 44a are spaced apart in the center side from the edge side of the wiring pattern 40a along the second direction (vertical direction in FIG. 4). It is arranged to be narrow.
  • a plurality (nine in the illustrated example) of thin line portions 44b are arranged along the first direction (left-right direction in FIG. 4) so that the interval is narrower on the center side than the edge side of the wiring pattern 40a.
  • the second electrode 40 has a planar shape as shown in FIG. 4, so that the second terminal portion 47 in the second electrode 40 is compared with the planar shape as shown in FIG. 2. It becomes possible to improve the light emission efficiency in the central part far from the peripheral part (see FIG. 1), and to improve the external quantum efficiency.
  • the organic electroluminescence element has the first terminal portion of the functional layer 30 as compared with the case where the planar shape as shown in FIG. 2 is obtained by making the planar shape of the second electrode 40 as shown in FIG.
  • the organic electroluminescence element since it is possible to suppress current concentration in the peripheral portion where the distance from the second terminal portion 47 is short, it is possible to extend the life.
  • the second electrode 40 may have a planar shape as shown in FIG. 5, for example. That is, the second electrode 40 has a line width of the four first thin wire portions 42 on the outermost periphery of the second electrode 40 in plan view, and one second thin wire portion 43 in the center in the left-right direction in FIG.
  • the line width is set to be wider than the fine line part (third fine line part) 44 between the first fine line part 42 and the second fine line part 43.
  • the second electrode 40 has a planar shape as shown in FIG. 5, so that the second terminal portion 47 (see FIG. 1) of the second electrode 40 is compared with the planar shape as shown in FIG. 2. It is possible to improve the light emission efficiency in the central part far from the peripheral part, and it is possible to improve the external quantum efficiency.
  • the height of the first thin wire portion 42 and the second thin wire portion 43 having a relatively wide line width is set higher than the height of the third thin wire portion 44.
  • the resistance of each of the first thin wire portion 42 and the second thin wire portion 43 can be further reduced.
  • the conductive layer 50 is provided in the second opening 37 so as to be in contact with the second electrode 40 and the functional layer 30. That is, as shown in FIG. 3, the conductive layer 50 includes a portion (first portion) 50 a that covers a region (exposed region) 32 c exposed from the opening (first opening) 41 in the second surface 32 b, and And a part (second part) 50b covering the electrode part 40a.
  • the conductive layer 50 is preferably composed of either a transparent conductive film including a conductive nanostructure and a transparent medium, or a metal thin film having a thickness capable of transmitting light from the functional layer 30.
  • the conductive layer 50 can transmit a transparent conductive film formed using a transparent medium mixed with conductive nanostructures, or light (light emitted from the light emitting layer 32). It is a thin metal film.
  • the conductive layer 50 functions as a second carrier injection path from the second electrode 40 to the functional layer 30.
  • the second carrier is a hole when the second electrode 40 is an anode, and an electron when the second electrode 40 is a cathode.
  • the second carrier is injected from the second electrode 40 into the functional layer 30 only through the interface where the second electrode 40 and the functional layer 30 are in contact.
  • the injection of the second carrier from the second electrode 40 to the functional layer 30 is performed not only at the interface between the second electrode 40 and the functional layer 30. This is performed through the interface between the second electrode 40 and the conductive layer 50 and the interface between the conductive layer 50 and the functional layer 30.
  • the injection of the second carrier from the second electrode 40 to the functional layer 30 is as follows. It is presumed that this is mainly performed along a path passing through the interface between the second electrode 40 and the conductive layer 50. That is, in the organic electroluminescence element of the present embodiment, the outermost layer excluding the insulating layer 35 in the interface between the second electrode 40 and the conductive layer 50 and the conductive layer 50 and the functional layer 30 (in the example of FIG. It is presumed that the second carrier is injected into the functional layer 30 through a path passing through the two interfaces of the two-carrier injection layer 34).
  • the resistivity of the conductive layer 50 is lower, the lateral conductivity from the second electrode 40 is improved, and the in-plane variation of the current flowing through the light emitting layer 32 can be reduced, resulting in uneven luminance. It becomes possible to reduce.
  • conductive nanostructure conductive nanoparticles, conductive nanowires, or the like can be used.
  • the particle diameter of the conductive nanoparticles is preferably 1 to 100 nm.
  • the diameter of the conductive nanowire is preferably 1 to 100 nm.
  • the material for the conductive nanostructure for example, silver, gold, ITO, IZO and the like can be employed.
  • binder that is a transparent medium examples include acrylic resin, polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polyethersulfone, polyarylate, polycarbonate resin, polyurethane, polyacrylonitrile, polyvinyl acetal, polyamide, polyimide, diethylene.
  • acrylic phthalate resin examples include acrylic phthalate resin, cellulose resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, other thermoplastic resins, and copolymers of two or more monomers constituting these resins. It is not limited to.
  • a conductive polymer such as polythiophene, polyaniline, polypyrrole, polyphenylene, polyphenylene vinylene, polyacetylene, polycarbazole as the binder. These may be used alone or in combination.
  • the conductive layer 50 can further improve conductivity by adopting a conductive polymer as a binder.
  • a binder in order to improve electroconductivity, you may employ
  • the conductive layer 50 is formed of a metal thin film as described above, for example, silver or gold can be employed as the material of the metal thin film.
  • the thickness of this type of metal thin film may be 30 nm or less, but is preferably 20 nm or less and more preferably 10 nm or less from the viewpoint of light transmittance. However, if the thickness is too thin, the effect of improving the injection property of the second carrier to the functional layer 30 along the path from the second electrode 40 through the conductive layer 50 is reduced.
  • the resistivity of each of the first electrode 20 and the second electrode 40 is lower than the resistivity of the transparent conductive oxide, and the second electrode 40 has a function.
  • a first opening 41 for extracting light from the layer 30, and the functional layer 30 is located immediately below the second electrode 40 on the second electrode 40 side of the light emitting layer 32 and is used for extracting light from the functional layer 30.
  • An insulating layer 35 having a second opening 37 is included, and the second opening 37 is provided with a conductive layer 50 that is in contact with the second electrode 40 and the functional layer 30 and has light transmittance.
  • the organic electroluminescence element of the present embodiment includes the light emitting layer 32, the first electrode layer (first electrode) 20 disposed on the first surface 32 a in the thickness direction of the light emitting layer 32, and the light emitting layer 32.
  • the second electrode layer (second electrode) 40, the conductive layer 50, and the insulating layer 35 are provided on the second surface 32 b in the thickness direction.
  • the light emitting layer 32 is configured to emit light when a predetermined voltage is applied between the first electrode layer 20 and the second electrode layer 40.
  • the second electrode layer 40 includes an electrode part (electrode pattern) 40a covering the second surface 32b, and an opening part (first opening part) 41 formed in the electrode part 40a so as to expose the second surface 32b. Have.
  • the conductive layer 50 is configured to transmit light (light from the light emitting layer 32).
  • the conductive layer 50 is formed on the exposed region 32c exposed from the opening 41 in the second surface 32b so as to be electrically connected to the electrode portion 40a and the light emitting layer 32.
  • the insulating layer 35 is interposed between the electrode part 40a and the second surface 32b.
  • the resistivity of each material of the first electrode layer 20 and the second electrode layer 40 is lower than the resistivity of the transparent conductive oxide.
  • the transparent conductive oxide is, for example, ITO, AZO, GZO, IZO or the like.
  • the organic electroluminescence element of this embodiment it is possible to reduce the luminance unevenness and to improve the external quantum efficiency.
  • the conductive layer 50 covers the second electrode 40.
  • the conductive layer 50 is formed so as to cover the second electrode layer 40.
  • the carrier injectability from the second electrode 40 to the functional layer 30 can be further improved.
  • the height (first height) from the light emitting layer 32 to the surface of the conductive layer 50 in the second opening 37 is from the light emitting layer 32 to the tip of the second electrode 40. It is preferable to be lower than the height (second height).
  • the thickness of the portion covering the exposed region 32c in the conductive layer 50 is smaller than the total thickness of the insulating layer 35 and the electrode portion 40a.
  • the first height is the film thickness of the interlayer 33, the film thickness of the second carrier injection layer 34, and the film thickness of the conductive layer 50 immediately above the second carrier injection layer 34. And the total value.
  • the second height is a total value of the film thickness of the interlayer 33, the film thickness of the second carrier injection layer 34, the film thickness of the insulating layer 35, and the height H1 of the second electrode 40.
  • the organic electroluminescence element has the first height lower than the second height, so that the optical loss in the conductive layer 50 can be reduced, and the external quantum efficiency can be improved. It becomes possible.
  • the film thickness of the conductive layer 50 may be larger than the film thickness of the insulating layer 35.
  • the second electrode 40 is an anode
  • the functional layer 30 includes a hole injection layer as the second carrier injection layer 34 on the second electrode 40 side with respect to the light emitting layer 32.
  • the functional layer 30 includes a hole injection layer as the second carrier injection layer 34 on the second electrode 40 side with respect to the light emitting layer 32.
  • it is.
  • the organic electroluminescence device of this embodiment further includes a hole injection layer (second carrier injection layer in this embodiment) 34.
  • the first electrode layer 20 is a cathode.
  • the second electrode layer 40 is an anode.
  • the hole injection layer 34 is interposed between the light emitting layer 32, the conductive layer 50, and the electrode part 40a.
  • the insulating layer 35 is located between the hole injection layer 34 and the electrode part 40a.
  • the hole injection layer is configured to promote the movement of holes from the conductive layer 50 to the light emitting layer 32.
  • the organic electroluminescence element it is possible to more efficiently inject holes, which are the second carriers, into the light emitting layer 32, and as a result, it is possible to improve the external quantum efficiency.
  • an electron blocking layer (this embodiment) that suppresses leakage of electrons from the light emitting layer 32 to the hole injection layer 34 side is provided between the light emitting layer 32 and the hole injection layer 34.
  • an interlayer (this embodiment) that suppresses leakage of electrons from the light emitting layer 32 to the hole injection layer 34 side is provided between the light emitting layer 32 and the hole injection layer 34.
  • an interlayer (this embodiment) that suppresses leakage of electrons from the light emitting layer 32 to the hole injection layer 34 side is provided between the light emitting layer 32 and the hole injection layer 34.
  • an interlayer 33 is interposed.
  • the organic electroluminescence element of the present embodiment is substantially the same as that of the first embodiment.
  • the conductive layer 50 has a hole injection function
  • the functional layer 30 includes the second electrode 40 and the conductive layer. 50 is different in that, for example, an interlayer 33 is included as the outermost layer in contact with 50.
  • the organic electroluminescence element of this embodiment since the conductive layer 50 has a hole injection function, the second carrier injection layer 34 as the hole injection layer described in the first embodiment is not provided.
  • symbol is attached
  • the conductive layer 50 having a hole injection function can be formed by, for example, the conductive nanostructure and the conductive polymer described in the first embodiment.
  • the conductive layer 50 having a hole injection function can be formed of a composite film in which a conductive nanostructure is mixed with the material of the hole injection layer described in the first embodiment.
  • the second electrode 40 is an anode
  • the conductive layer 50 has a hole injection function
  • the functional layer 30 is the most in contact with both the second electrode 40 and the conductive layer 50.
  • an interlayer 33 is included (an electron blocking layer that suppresses leakage of electrons from the light emitting layer 32 side is included).
  • the organic electroluminescence element of this embodiment further includes an electron blocking (interlayer in this embodiment) 33.
  • the first electrode layer 20 is a cathode.
  • the second electrode layer 40 is an anode.
  • the conductive layer 50 is configured to function as a hole injection layer.
  • the electron blocking layer 33 is interposed between the light emitting layer 32, the conductive layer 50, and the electrode part 40a.
  • the insulating layer 35 is located between the electron blocking layer (interlayer) 33 and the electrode part 40a.
  • the electron blocking layer 33 is configured not to pass electrons. Accordingly, the electron blocking layer 33 suppresses leakage of electrons from the light emitting layer 32 to the conductive layer 50 and the electrode part 40a side.
  • the organic electroluminescence element of the present embodiment it is possible to further reduce luminance unevenness.
  • the organic electroluminescence element described in the first and second embodiments can be suitably used as an organic electroluminescence element for illumination, for example, but is not limited to illumination and can be used for other purposes.
  • each figure demonstrated in Embodiment 1, 2 is typical, and the ratio of each magnitude

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明に係る有機エレクトロルミネッセンス素子は、発光層と、前記発光層の厚み方向の第1面上に配置される第1電極層と、前記発光層の厚み方向の第2面上に配置される第2電極層と、導電性層と、絶縁層と、を備える。前記発光層は、前記第1電極層と前記第2電極層との間に所定の電圧が印加されると光を放射するように構成される。前記第2電極層は、前記第2面を覆う電極部と、前記第2面を露出させるように前記電極部に形成される開口部と、を有する。前記導電性層は、前記光を透過させるように構成され、前記電極部と前記発光層とに電気的に接続されるように前記第2面において前記開口部から露出する露出領域上に形成される。前記絶縁層は、前記電極部と前記第2面との間に介在される。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関するものである。
 従来から、図7に示す構成の有機エレクトロルミネッセンス素子が提案されている(文献1[日本国公開特許公報2006-331694号])。
 この有機エレクトロルミネッセンス素子は、一方の電極(陰極)101が基板104の表面に積層され、電極101の表面上に電子注入・輸送層105を介して発光層103が積層され、発光層103上に、ホール注入・輸送層106を介して他方の電極(陽極)102が積層されている。
 また、この有機エレクトロルミネッセンス素子は、基板104の上記表面側に封止部材107を備えている。したがって、この有機エレクトロルミネッセンス素子では、発光層103で発光した光が、光透過性電極として形成される電極102、透明体で形成される封止部材107を通して放射されるようになっている。
 反射性の電極101の材料としては、例えば、Al、Zr、Ti、Y、Sc、Ag、Inなどが挙げられている。また、光透過性電極である電極102の材料としては、例えば、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)などが挙げられている。
 ところで、有機エレクトロルミネッセンス素子を高輝度で点灯させるためには、より大きな電流を流す必要がある。しかしながら、有機エレクトロルミネッセンス素子は、一般的に、ITO膜からなる陽極のシート抵抗が、金属膜、合金膜、金属化合物膜などからなる陰極のシート抵抗に比べて高いため、陽極での電位勾配が大きくなって、輝度の面内ばらつきが大きくなってしまう。
 また、従来から、スパッタ法により形成されるITO膜からなる電極を備えた構成の問題点を解決するエレクトロルミネセンス・ランプとして、ITO膜からなる電極を用いずに構成されたエレクトロルミネセンス・ランプが提案されている(文献2[日本国公表特許公報2002-502540号])。
 文献2には、例えば、図8に示すように、第1の導電層220、エレクトロルミネセンス物質230、第2の導電層240および基板245を備え、第1の導電層220が、矩形の開口250を有する矩形格子電極により構成されてなるエレクトロルミネセンス・ランプ210が提案されている。
 ここで、文献2には、第1の導電層220および第2の導電層240を、銀インク、炭素インクなどの導電性インクで形成することが好ましい旨が記載されている。
 また、文献2には、第1の導電層220、エレクトロルミネセンス物質230、第2の導電層240を、スクリーン印刷法やオフセット印刷法などにより形成することが記載されている。
 なお、文献2には、均一な明るさのエレクトロルミネセンス・ランプ210が必要な場合は、ランプ表面にわたって開口250の密度を略一定とすることが記載されている。
 ところで、図8に示した構成のエレクトロルミネセンス・ランプ210では、第1の導電層220が開口250を有しているので、第1の導電層220からエレクトロルミネセンス物質230における第1の導電層220直下の部位のみへキャリアが注入される。
 このため、エレクトロルミセセンス・ランプ210では、エレクトロルミネッセンス物質230において開口250に対応する部位での発光効率が低下し、外部量子効率が低下してしまう懸念がある。
 本発明は上記事由に鑑みて為されたものであり、その目的は、輝度むらの低減を図ることが可能で且つ外部量子効率の向上を図ることが可能な有機エレクトロルミネッセンス素子を提供することにある。
 本発明に係る第1の形態の有機エレクトロルミネッセンス素子は、発光層と、前記発光層の厚み方向の第1面上に配置される第1電極層と、前記発光層の厚み方向の第2面上に配置される第2電極層と、導電性層と、絶縁層と、を備える。前記発光層は、前記第1電極層と前記第2電極層との間に所定の電圧が印加されると光を放射するように構成される。前記第2電極層は、前記第2面を覆う電極部と、前記第2面を露出させるように前記電極部に形成される開口部と、を有する。前記導電性層は、前記光を透過させるように構成され、前記電極部と前記発光層とに電気的に接続されるように前記第2面において前記開口部から露出する露出領域上に形成される。前記絶縁層は、前記電極部と前記第2面との間に介在される。
 本発明に係る第2の形態の有機エレクトロルミネッセンス素子では、第1の形態に加えて、前記導電性層は、前記第2電極層を覆うように形成される。
 本発明に係る第3の形態の有機エレクトロルミネッセンス素子では、第1または第2の形態に加えて、前記導電性層において前記露出領域を覆う部位の厚さは、前記絶縁層と前記電極部との厚さの合計よりも小さい。
 本発明に係る第4の形態の有機エレクトロルミネッセンス素子は、第1~第3の形態のいずれかに加えて、ホール注入層を備える。前記第1電極層は、陰極である。前記第2電極層は、陽極である。前記ホール注入層は、前記発光層と前記導電性層および前記電極部との間に介在される。前記絶縁層は、前記ホール注入層と前記電極部との間に位置する。
 本発明に係る第5の形態の有機エレクトロルミネッセンス素子は、第1~第3の形態のいずれかに加えて、電子ブロッキング層を備える。前記第1電極層は、陰極である。前記第2電極層は、陽極である。前記導電性層は、ホール注入層として機能するように構成される。前記電子ブロッキング層は、前記発光層と前記導電性層および前記電極部との間に介在される。前記絶縁層は、前記電子ブロッキング層と前記電極部との間に位置する。
 本発明に係る第6の形態の有機エレクトロルミネッセンス素子では、第1~第5の形態のいずれかに加えて、前記第2電極層は、金属の粉末と有機バインダとの混合物を用いて形成される。
 本発明に係る第7の形態の有機エレクトロルミネッセンス素子では、第1~第6の形態のいずれかに加えて、前記導電性層は、導電性ナノ構造体が混入された透明媒体を用いて形成される透明導電膜、あるいは、前記光を透過させることができる厚みの金属薄膜である。
 本発明に係る第8の形態の有機エレクトロルミネッセンス素子では、第1~第7の形態のいずれかに加えて、前記第1電極層および前記第2電極層それぞれの材料の抵抗率が、透明導電性酸化物の抵抗率よりも低い。
実施形態1の有機エレクトロルミネッセンス素子の概略断面図である。 実施形態1の有機エレクトロルミネッセンス素子における第2電極の概略平面図である。 実施形態1の有機エレクトロルミネッセンス素子の要部概略断面図である。 実施形態1の有機エレクトロルミネッセンス素子における第2電極の他の構成例の概略平面図である。 実施形態1の有機エレクトロルミネッセンス素子における第2電極の別の構成例の概略平面図である。 実施形態2の有機エレクトロルミネッセンス素子の要部概略断面図である。 従来例の有機エレクトロルミネッセンス素子の概略断面図である。 従来例のエレクトロルミネセンス・ランプの透視上面および断面図である。
 (実施形態1)
 以下、本実施形態の有機エレクトロルミネッセンス素子について図1~図3に基づいて説明する。
 有機エレクトロルミネッセンス素子は、基板10と、基板10の一表面(図1における上面)側に設けられた第1電極20と、基板10の上記一表面側で第1電極20に対向した第2電極40と、第1電極20と第2電極40との間にあり発光層32を含む機能層30とを備えている。
 すなわち、有機エレクトロルミネッセンス素子(有機発光ダイオード)は、発光層32と、第1電極(第1電極層)20と、第2電極(第2電極層)40と、を備える。第1電極20は、発光層32の厚み方向(図1における上下方向)の第1面(図1における下面)32a上に配置される。第2電極40は、発光層32の厚み方向の第2面(図1における上面)32b上に配置される。
 なお、第1電極20は、必ずしも、発光層32の第1面32aに直接的に形成されている必要はない。また、第2電極40は、必ずしも、発光層32の第2面32bに直接的に形成されている必要はない。
 また、有機エレクトロルミネッセンス素子は、第1電極20に第1引出し配線(図示せず)を介して電気的に接続された第1端子部(図示せず)と、第2電極40に第2引出し配線46を介して電気的に接続された第2端子部47とを備えている。第1引出し配線、第1端子部、第2引出し配線46および第2端子部47は、基板10の上記一表面側に設けられている。
 また、有機エレクトロルミネッセンス素子は、第2引出し配線46と機能層30、第1電極20、第1引出し配線とを電気的に絶縁する絶縁膜60が基板10の上記一表面側に設けられている。この絶縁膜60は、基板10の上記一表面と第1電極20の側面と機能層30の側面と、機能層30における第2電極40側の表面(図1における上面)の外周部とに跨って形成されている。
 また、有機エレクトロルミネッセンス素子は、第1電極20および第2電極40それぞれの抵抗率(電気抵抗率)を、透明導電性酸化物(Transparent Conducting Oxide:TCO)の抵抗率(電気抵抗率)よりも低くしてある。透明導電性酸化物としては、例えば、ITO、AZO、GZO、IZOなどがある。
 また、有機エレクトロルミネッセンス素子は、第2電極40が、機能層30からの光の取り出し用の第1開口部41(図2および図3参照)を有している。すなわち、第2電極40は、図1に示すように、発光層32の第2面32bを覆う電極部(電極パターン)40aと、発光層32の第2面32bを露出させるように電極パターン40aに形成される開口部(第1開口部)41と、を有する。本実施形態では、第2電極40は、複数の開口部41を有する。
 また、有機エレクトロルミネッセンス素子は、機能層30が、発光層32の第2電極40側において第2電極40の直下にあり機能層30からの光取出し用の第2開口部37(図3参照)を有する絶縁層35を含んでいる。
 また、有機エレクトロルミネッセンス素子は、第2開口部37に、第2電極40と機能層30とに接し且つ光透過性を有する導電性層50が設けられている。
 すなわち、有機エレクトロルミネッセンス素子は、さらに、絶縁層35と、導電性層50と、を備える。
 絶縁層35は、電極部40aと第2面32bとの間に介在される。より詳しくは、絶縁層35は、発光層32の厚み方向において電極部40aと重なるが第1開口部41とは重ならないように、第2面32bと電極部40aとの間に介在される。なお、絶縁層35は、厳密な意味で、第1開口部41と重ならないように第2面32bと電極部40aとの間に介在されている必要はない。つまり、絶縁層35は、第1開口部41を通じた光の放射を過度に妨げなければ、第1開口部41と部分的に重なっていてもよい。
 導電性層50は、発光層32から放射される光を透過させるように構成される。導電性層50は、電極部40aと発光層32とに電気的に接続されるように、第2面32bにおいて開口部41から露出する領域(露出領域)32c上に形成される。すなわち、導電性層50は、発光層32の第2面32bに均一に電圧を与えるための補助電極層として機能する。特に、本実施形態では、導電性層50は、第2電極層40の全体を覆うように形成されている。
 これにより、有機エレクトロルミネッセンス素子は、第2電極40側から光を取り出すことが可能となる。要するに、本実施形態の有機エレクトロルミネッセンス素子は、トップエミッション型の有機エレクトロルミネッセンス素子として用いることが可能となる。
 有機エレクトロルミネッセンス素子は、基板10の上記一表面側に対向配置され透光性を有するカバー基板70と、基板10の周部とカバー基板70の周部との間に介在する枠状(本実施形態では、矩形枠状)のフレーム部80とを備えていることが好ましい。
 また、有機エレクトロルミネッセンス素子は、基板10とカバー基板70とフレーム部80とで囲まれる空間に、第1電極20、機能層30、第2電極40、導電性層50などからなる素子部1を封止する透光性材料(例えば、透光性樹脂など)からなる封止部90を備えていることが好ましい。
 以下、有機エレクトロルミネッセンス素子の各構成要素について詳細に説明する。
 基板10は、平面視形状を矩形状としてある。ここで、基板10の平面視形状は、矩形状に限らず、例えば、矩形状以外の多角形状、円形状などでもよい。
 基板10としては、ガラス基板を用いているが、これに限らず、例えば、プラスチック板や、金属板などを用いてもよい。ガラス基板の材料としては、例えば、ソーダライムガラス、無アルカリガラスなどを採用することができる。また、プラスチック板の材料としては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリカーボネートなどを採用することができる。また、金属板の材料としては、例えば、アルミニウム、銅、ステンレス鋼などを採用することができる。プラスチック板を用いる場合は、プラスチック基板の表面にSiON膜、SiN膜などが成膜されたものを用いることで、水分の透過を抑えることが好ましい。なお、基板10は、リジッドなものでもよいし、フレキシブルなものでもよい。
 基板10としてガラス基板を用いる場合には、基板10の上記一表面の凹凸が有機エレクトロルミネッセンス素子のリーク電流などの発生原因となることがある(有機エレクトロルミネッセンス素子の劣化原因となることがある)。このため、基板10としてガラス基板を用いる場合には、上記一表面の表面粗さが小さくなるように高精度に研磨された素子形成用のガラス基板を用意することが好ましい。
 基板10の上記一表面の表面粗さについては、JIS B 0601-2001(ISO 4287-1997)で規定されている算術平均粗さRaが10nm以下であることが好ましく、数nm以下であることが、より好ましい。これに対して、基板10としてプラスチック板を用いる場合には、特に高精度な研磨を行わなくても、上記一表面の算術平均粗さRaが数nm以下のものを低コストで得ることが可能である。
 カバー基板70としては、ガラス基板を用いているが、これに限らず、例えば、プラスチック板などを用いてもよい。ガラス基板の材料としては、例えば、ソーダライムガラス、無アルカリガラスなどを採用することができる。また、プラスチック板の材料としては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリカーボネートなどを採用することができる。
 本実施形態では、カバー基板70として、平板状のものを用いているが、これに限らず、基板10との対向面に、上述の素子部1を収納する収納凹所を形成したものを用い、上記対向面における収納凹所の周部を全周に亘って基板10側と接合するようにしてもよい。
 この場合は、別部材のフレーム部80を用いる必要がなくなるという利点がある。一方、平板状のカバー基板70と枠状のフレーム部80とを別部材により構成している場合には、カバー基板70に要求される光学的な物性(光透過率、屈折率など)と、フレーム部80に要求される物性(ガスバリア性など)との両方の要求を各別に満たす材料を採用することが可能になるという利点がある。
 カバー基板70における外面側(基板10側とは反対の面側、図1における上面側)には、発光層32から放射された光の上記外面での反射を抑制する光取出し構造部(図示せず)を備えていることが好ましい。
 このような光取出し構造部としては、例えば、2次元周期構造を有した凹凸構造部が挙げられる。このような2次元周期構造の周期は、発光層32で発光する光の波長が例えば300~800nmの範囲内にある場合、媒質内の波長をλ(真空中の波長を媒質の屈折率で除した値)とすれば、波長λの1/4~10倍の範囲で適宜設定することが望ましい。このような凹凸構造部は、例えば、カバー基板70の上記外面側に、例えば、熱インプリント法(熱ナノインプリント法)、光インプリント法(光ナノインプリント法)などのインプリント法により、予め形成することが可能である。
 また、カバー基板70の材料によっては、カバー基板70を射出成形により形成するようにし、射出成形時に適宜の金型を用いて、カバー基板70に凹凸構造部を直接形成することも可能である。また、凹凸構造部は、カバー基板70とは別部材により構成することも可能であり、例えば、プリズムシート(例えば、株式会社きもと製のライトアップ(登録商標)GM3のような光拡散フィルムなど)により構成することができる。
 本実施形態の有機エレクトロルミネッセンス素子では、上述の光取出し構造部を備えることにより、発光層32から放射されカバー基板70の上記外面側まで到達した光の反射ロスを低減でき、光取り出し効率の向上を図ることが可能となる。
 フレーム部80と基板10の上記一表面側とを接合する第1接合材料としては、エポキシ樹脂を用いているが、これに限らず、例えば、アクリル樹脂などを採用してもよい。第1接合材料として用いるエポキシ樹脂やアクリル樹脂は、例えば、紫外線硬化型のものでもよいし、熱硬化型のものでもよい。また、第1接合材料として、エポキシ樹脂にフィラー(例えば、シリカ、アルミナなど)を含有させたものを用いてもよい。ここで、フレーム部80は、基板10の上記一表面側に対して、フレーム部80における基板10側との対向面を全周に亘って気密的に接合してある。
 また、フレーム部80とカバー基板70とを接合する第2接合材料としては、エポキシ樹脂を用いているが、これに限らず、例えば、アクリル樹脂、フリットガラスなどを採用してもよい。第2接合材料として用いるエポキシ樹脂やアクリル樹脂は、例えば、紫外線硬化型のものでもよいし、熱硬化型のものでもよい。また、第2接合材料として、エポキシ樹脂にフィラー(例えば、シリカ、アルミナなど)を含有させたものを用いてもよい。ここで、フレーム部80は、カバー基板70に対して、フレーム部80におけるカバー基板70との対向面を全周に亘って気密的に接合してある。
 絶縁膜60の材料としては、例えば、ポリイミド、ノボラック樹脂、エポキシ樹脂などを用いることができる。
 封止部90の材料である透光性材料としては、例えば、エポキシ樹脂やシリコーン樹脂などの透光性樹脂を用いることができるが、機能層30との屈折率差の小さな材料が、より好ましい。また、透光性材料は、透光性樹脂にガラスなどからなる光拡散材を混合したものを用いてもよい。また、透光性材料は、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料を用いてもよい。
 本実施形態の有機エレクトロルミネッセンス素子では、第1電極20が陰極を構成し、第2電極40が陽極を構成している。
 そして、機能層30は、第1電極20側から順に、発光層32、インターレイヤー33、キャリア注入層34、絶縁層35を備えている。
 本実施形態の有機エレクトロルミネッセンス素子では、絶縁層35は、発光層32の厚み方向において電極部(電極パターン)40aと重なるように発光層32の第2面32b(本実施形態では、キャリア注入層34の表面)と電極部40aとの間に介在されている。
 たとえば、絶縁層35は、図3に示すように、発光層32の第2面32bを覆う絶縁部(絶縁パターン)38と、発光層32の第2面32bを露出させるように絶縁パターン38に形成される開口部(第2開口部)37と、を有する。本実施形態では、絶縁層35は、複数の開口部37を有する。本実施形態の有機エレクトロルミネッセンス素子では、絶縁層35は、第2電極40とほぼ同じ形(正方形状)に形成されている。
 絶縁層35は、発光層32の厚み方向において、絶縁パターン38が第2電極40の電極パターン40aに、第2開口部37が第1開口部41に、それぞれ重なるようにして、発光層32上に配置される。
 ここで、第1電極20から機能層30へ注入する第1キャリアは電子であり、第2電極40から機能層30へ注入する第2キャリアは正孔である。
 ここで、第1電極20と発光層32との間には、キャリア注入層(以下、第1キャリア注入層と称する)を設けることが好ましい。発光層32における第1電極20側にある第1キャリア注入層は、電子注入層であり、発光層32における第2電極40側にあるキャリア注入層34(以下、第2キャリア注入層34と称する)は、ホール注入層である。
 なお、第1電極20が陽極を構成し、第2電極40が陰極を構成する場合には、例えば、第1キャリア注入層としてホール注入層を、第2キャリア注入層34として電子注入層を採用し、第1キャリア注入層と発光層32との間にインターレイヤー33を設ければよい。
 上述の機能層30の構造は、上述の例に限らず、例えば、第1キャリア注入層と発光層32との間に第1キャリア輸送層として電子輸送層を設けたり、第2キャリア注入層34とインターレイヤー33との間に第2キャリア輸送層としてホール輸送層を設けたりした構造でもよい。
 また、機能層30は、発光層32と絶縁層35とを含んでいればよく(つまり、機能層30は、発光層32と絶縁層35とだけでもよく)、発光層32および絶縁層35以外の、第1キャリア注入層、第1キャリア輸送層、インターレイヤー33、第2キャリア輸送層、第2キャリア注入層34などは適宜設ければよい。
 発光層32は、第1電極層(第1電極)20と第2電極層(第2電極)40との間に所定の電圧が印加されると光を放射するように構成される。発光層32は、単層構造でも多層構造でもよい。例えば、所望の発光色が白色の場合には、発光層中に赤色、緑色、青色の3種類のドーパント色素をドーピングするようにしてもよいし、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよいし、青色電子輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよい。
 発光層32の材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体など、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、色素体、金属錯体系発光材料を高分子化したものなどや、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、およびこれらの誘導体、あるいは、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、およびこれらの発光性化合物からなる基を分子の一部分に有する化合物などが挙げられる。また、上記化合物に代表される蛍光色素由来の化合物のみならず、いわゆる燐光発光材料、例えばイリジウム錯体、オスミウム錯体、白金錯体、ユーロピウム錯体などの発光材料、又はそれらを分子内に有する化合物若しくは高分子も好適に用いることができる。これらの材料は、必要に応じて、適宜選択して用いることができる。
 発光層32は、塗布法(例えば、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法、スクリーン印刷法など)のような湿式プロセスによって成膜することが好ましい。ただし、発光層32の成膜方法は、塗布法に限らず、例えば、真空蒸着法、転写法などの乾式プロセスによって発光層32を成膜してもよい。
 電子注入層の材料は、例えば、フッ化リチウムやフッ化マグネシウムなどの金属フッ化物、塩化ナトリウム、塩化マグネシウムなどに代表される金属塩化物などの金属ハロゲン化物や、チタン、亜鉛、マグネシウム、カルシウム、バリウム、ストロンチウムなどの酸化物、などを用いることができる。これらの材料の場合、電子注入層は、真空蒸着法により形成することができる。
 また、電子注入層の材料は、例えば、電子注入を促進させるドーパント(アルカリ金属など)を混合した有機半導体材料を用いることができる。このような材料の場合、電子注入層は、塗布法により形成することができる。
 また、電子輸送層の材料は、電子輸送性を有する化合物の群から選定することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体や、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体などのヘテロ環を有する化合物などが挙げられるが、この限りではなく、一般に知られる任意の電子輸送材料を用いることが可能である。
 ホール輸送層の材料としては、LUMO(Lowest Unoccupied Molecular Orbital)準位が小さい低分子材料や高分子材料を用いることができる。例えば、ポリビニルカルバゾール(PVCz)や、ポリピリジン、ポリアニリンなどの側鎖や主鎖に芳香族アミンを有するポリアリーレン誘導体などの芳香族アミンを含むポリマーなどが挙げられるが、これらに限定されるものではない。
 なお、ホール輸送層の材料としては、例えば、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを用いることが可能である。
 ホール注入層の材料としては、例えば、チオフェン、トリフェニルメタン、ヒドラゾリン、アミールアミン、ヒドラゾン、スチルベン、トリフェニルアミンなどを含む有機材料が挙げられる。具体的には、たとえば、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン:ポリスチレンスルホネート(PEDOT:PSS)、TPDなどの芳香族アミン誘導体などで、これらの材料を単独で用いてもよいし、2種類以上の材料を組み合わせて用いてもよい。
 このようなホール注入層は、塗布法(スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など)のような湿式プロセスによって成膜することができる。
 インターレイヤー33は、発光層32側からの第2電極40側への第1キャリア(ここでは、電子)の漏れを抑制する第1キャリア障壁(ここでは、電子障壁)としてのキャリアブロッキング機能(ここでは、電子ブロッキング機能)を有することが好ましく、更に、第2キャリア(ここでは、正孔)を発光層32へ輸送する機能、発光層32の励起状態の消光を抑制する機能などを有していることが好ましい。なお、本実施形態では、インターレイヤー33が、発光層32側からの電子の漏れを抑制する電子ブロッキング層を構成している。
 有機エレクトロルミネッセンス素子では、インターレイヤー33を設けることにより、発光効率の向上および長寿命化を図ることが可能となる。
 インターレイヤー33の材料としては、例えば、ポリアリールアミン若しくはその誘導体、ポリフルオレン若しくはその誘導体、ポリビニルカルバゾール若しくはその誘導体、トリフェニルジアミン誘導体などを用いることができる。
 このようなインターレイヤー33は、塗布法(スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など)のような湿式プロセスによって成膜することができる。
 絶縁層35の材料としては、例えば、ポリイミド、ノボラック樹脂、エポキシ樹脂などを用いることができる。このような絶縁層35は、塗布法(スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など)のような湿式プロセスによって成膜することができる。
 また、陰極は、機能層30中に第1電荷である電子(第1キャリア)を注入するための電極である。第1電極20が陰極の場合、陰極の材料としては、仕事関数の小さい金属、合金、電気伝導性化合物およびこれらの混合物からなる電極材料を用いることが好ましく、第1電極20のエネルギー準位とLUMO(Lowest Unoccupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。
 陰極の電極材料としては、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫など、およびこれらと他の金属との合金、例えばマグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を例として挙げることができる。また、金属、金属酸化物など、およびこれらと他の金属との混合物、例えば、酸化アルミニウムからなる極薄膜(ここでは、トンネル注入により電子を流すことが可能な1nm以下の薄膜)とアルミニウムからなる薄膜との積層膜なども使用可能である。
 陰極を反射電極とする場合、陰極の材料としては、発光層32から放射される光に対する反射率が高く、且つ、抵抗率の低い金属が好ましく、アルミニウムや銀が好ましい。
 なお、第1電極20が、機能層30中に第2電荷であるホール(第2キャリア)を注入するための電極である陽極を構成する場合、第1電極20の材料としては、仕事関数の大きい金属を用いることが好ましく、第1電極20のエネルギー準位とHOMO(Highest Occupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。
 第2電極40は、金属の粉末と有機バインダとを含む電極からなる。換言すれば、第2電極(第2電極層)40は、金属の粉末と有機バインダとの混合物を用いて形成される。この種の金属としては、例えば、銀、金、銅などを採用することができる。
 これにより、有機エレクトロルミネッセンス素子は、第2電極40が、導電性透明酸化物により形成された薄膜の場合に比べて、第2電極40の抵抗率およびシート抵抗を小さくすることが可能となり、第2電極40の低抵抗化により輝度むらを低減することが可能となる。なお、第2電極40の導電性材料としては、金属の代わりに、合金や、カーボンブラックなどを用いることも可能である。
 第2電極40は、例えば、金属の粉末に有機バインダおよび有機溶剤を混合させたペースト(印刷インク)を、例えばスクリーン印刷法、グラビア印刷法などにより印刷して形成することができる。
 有機バインダとしては、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリスチレン、ポリエーテルスルホン、ポリアリレート、ポリカーボネート樹脂、ポリウレタン、ポリアクリルニトリル、ポリビニルアセタール、ポリアミド、ポリイミド、ジアクリルフタレート樹脂、セルロース系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、その他の熱可塑性樹脂や、これらの樹脂を構成する単量体の2種以上の共重合体が挙げられるが、これらに限定されるものではない。
 なお、本実施形態の有機エレクトロルミネッセンス素子では、第1電極20の膜厚を80~200nm、第1キャリア注入層の膜厚を5~50nm、発光層32の膜厚を60~100nm、インターレイヤー33の膜厚を15nm、第2キャリア注入層34の膜厚を10~100nm、絶縁層35の膜厚を80nmにそれぞれ設定してあるが、これらの数値は一例であって、特に限定するものではない。
 第2電極40は、図1および図2に示すように、格子状(網状)に形成されており、複数(図2に示した例では、36)の第1開口部41を有している。ここで、図2に示した第2電極40は、各第1開口部41の各々の形状が正方形状である。要するに、図2に示した第2電極40は、正方格子状に形成されている。
 図2に示される第2電極40では、配線パターン40aは、第1方向(図2における左右方向)に沿った複数の細線部44(44a)と、第1方向と直交する第2方向(図2における上下方向)に沿った複数の細線部44(44b)とで構成されている。複数(図示例では7つ)の細線部44aは第2方向に沿って等間隔に配置されている。複数(図示例では7つ)の細線部44bは第1方向に沿って等間隔に配置されている。複数の細線部44aは複数の細線部44bと互いに直交している。図2に示される第2電極40では、隣り合う細線部44a,44aと、隣り合う細線部44b,44bとで囲まれる空間が、第1開口部41である。
 第2電極40は、第2電極40を構成している正方格子状の電極パターン40aの寸法に関して、例えば、線幅L1(図3参照)を1μm~100μm、高さH1(図3参照)を50nm~100μm、ピッチP1(図3参照)を100μm~2000μmとすればよい。
 ただし、第2電極40の電極パターン40aの線幅L1、高さH1およびピッチP1それぞれの数値範囲は、特に限定するものではなく、素子部1の平面サイズに基づいて適宜設定すればよい。
 ここにおいて、第2電極40の電極パターン40aの線幅L1については、発光層32で発光する光の利用効率の観点からは狭い方が好ましく、第2電極40の低抵抗化によって輝度むらを低減するという観点からは広い方が好ましいので、有機エレクトロルミネッセンス素子の平面サイズなどに基づいて適宜設定することが好ましい。
 また、第2電極40の高さH1については、第2電極40の低抵抗化の観点、第2電極40をスクリーン印刷法などの塗布法により形成する際の第2電極40の材料の使用効率(材料使用効率)の観点、機能層30から放射される光の放射角の観点などから、100nm以上10μm以下が、より好ましい。
 また、本実施形態の有機エレクトロルミネッセンス素子では、第2電極40における各第1開口部41を、図1および図3に示したように、機能層30から離れるにつれて開口面積が徐々に大きくなる開口形状としてある。
 これにより、有機エレクトロルミネッセンス素子は、機能層30から放射される光の広がり角を大きくすることが可能になり、輝度むらを、より低減することが可能となる。また、有機エレクトロルミネッセンス素子は、第2電極40での反射損失や吸収損失を低減することが可能となり、外部量子効率のより一層の向上を図ることが可能となる。
 第2電極40を格子状の形状とする場合、各第1開口部41の各々の形状は正方形状に限らず、例えば、長方形状や正三角形状や正六角形状の形状としてもよい。
 第2電極40は、各第1開口部41の各々の形状が正三角形状の場合、三角格子状の形状となり、各第1開口部41の各々の形状が正六角形状の場合、六角格子状の形状となる。なお、第2電極40は、格子状の形状に限らず、例えば、櫛形状の形状でもよいし、2つの櫛形状の電極パターンにより構成してもよい。すなわち、有機エレクトロルミネッセンス素子は、複数の第2電極40を備えていてもよい。
 また、第2電極40は、第1開口部41の数も特に限定するものではなく、複数に限らず、1つでもよい。例えば、第2電極40を櫛形状の形状としたり、2つの櫛形状の電極パターンにより構成とした場合などは、第1開口部41の数を1つとすることが可能である。
 また、第2電極40は、例えば、図4に示すような平面形状としてもよい。すなわち、第2電極40は、平面視において、電極パターンaにおける直線状の細線部44の線幅を一定として、第2電極40における周部から中心部に近づくにつれて隣り合う細線部44間の間隔が狭くなり第1開口部41の開口面積が小さくなる形状としてもよい。
 図4に示される第2電極40では、複数(図示例では9つ)の細線部44aは第2方向(図4における上下方向)に沿って、配線パターン40aの縁側よりも中心側において間隔が狭くなるように配置されている。複数(図示例では9つ)の細線部44bは第1方向(図4における左右方向)に沿って、配線パターン40aの縁側よりも中心側において間隔が狭くなるように配置されている。
 有機エレクトロルミネッセンス素子は、第2電極40の平面形状を図4のような平面形状とすることにより、図2のような平面形状とした場合に比べて、第2電極40において第2端子部47(図1参照)からの距離が周部よりも遠い中央部での発光効率を向上させることが可能となり、外部量子効率の向上を図ることが可能となる。
 また、有機エレクトロルミネッセンス素子は、第2電極40の平面形状を図4のような形状とすることにより、図2のような平面形状とした場合に比べて、機能層30のうち第1端子部および第2端子部47からの距離が近い周部での電流集中を抑制することが可能となるから、長寿命化を図ることが可能となる。
 また、第2電極40は、例えば、図5に示すような平面形状としてもよい。すなわち、第2電極40は、平面視において、第2電極40における最外周にある4つの第1細線部42の線幅と、図5において左右方向の中央にある1つの第2細線部43の線幅とを、第1細線部42と第2細線部43との間にある細線部(第3細線部)44よりも幅広としてある。
 有機エレクトロルミネッセンス素子は、第2電極40を図5のような平面形状とすることにより、図2のような平面形状の場合に比べて、第2電極40において第2端子部47(図1参照)からの距離が周部よりも遠い中央部での発光効率を向上させることが可能となり、外部量子効率の向上を図ることが可能となる。
 なお、第2電極40は、図5のような平面形状とする場合、相対的に線幅の広い第1細線部42および第2細線部43の高さを第3細線部44の高さよりも高くすることにより、第1細線部42および第2細線部43それぞれの、より一層の低抵抗化を図ることが可能となる。
 導電性層50は、第2電極40と機能層30とに接するように第2開口部37に設けられている。すなわち、導電性層50は、図3に示すように、第2面32bのうち開口部(第1開口部)41から露出する領域(露出領域)32cを覆う部位(第1部位)50aと、電極部40aを覆う部位(第2部位)50bと、を有する。
 また、導電性層50は、導電性ナノ構造体と透明媒体とを含む透明導電膜、あるいは、機能層30からの光を透過可能な厚みの金属薄膜、のいずれかにより構成することが好ましい。換言すれば、導電性層50は、導電性ナノ構造体が混入された透明媒体を用いて形成される透明導電膜、あるいは、光(発光層32から放射される光)を透過させることができる厚みの金属薄膜である。
 この導電性層50は、第2電極40から機能層30への第2キャリアの注入経路としての機能を有している。第2キャリアは、第2電極40が陽極の場合、正孔であり、第2電極40が陰極の場合、電子である。
 ここで、導電性層50がない場合や、導電性層50の代わりに第1開口部41および第2開口部37が電気絶縁性の封止部90の一部により埋め込まれている場合には、第2電極40から機能層30への第2キャリアの注入は、第2電極40と機能層30との接している界面のみを通して行われるものと推測される。
 これに対して、導電性層50を設けた場合には、第2電極40から機能層30への第2キャリアの注入は、第2電極40と機能層30との接している界面だけでなく、第2電極40と導電性層50との界面および導電性層50と機能層30との界面を通して行われることとなる。
 ここで、本実施形態の有機エレクトロルミネッセンス素子では、機能層30が、第2電極40直下に絶縁層35を備えているので、第2電極40から機能層30への第2キャリアの注入は、主に、第2電極40と導電性層50との界面を通る経路で行われることになるものと推測される。すなわち、本実施形態の有機エレクトロルミネッセンス素子では、第2電極40と導電性層50との界面、導電性層50と機能層30において絶縁層35を除いた最表層(図1の例では、第2キャリア注入層34)との界面、の2つの界面を通る経路で機能層30への第2キャリアの注入が行われるものと推測される。
 ここで、導電性層50の抵抗率が低いほど、第2電極40から横方向への通電性が向上し、発光層32に流れる電流の面内ばらつきを低減することが可能となり、輝度むらを低減することが可能となる。
 導電性ナノ構造体としては、導電性ナノ粒子や、導電性ナノワイヤなどを用いることができる。なお、導電性ナノ粒子の粒子径は1~100nmであることが好ましい。また、導電性ナノワイヤの直径は1~100nmであることが好ましい。
 導電性ナノ構造体の材料としては、例えば、銀、金、ITO、IZOなどを採用することができる。
 透明媒体であるバインダとしては、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリスチレン、ポリエーテルスルホン、ポリアリレート、ポリカーボネート樹脂、ポリウレタン、ポリアクリルニトリル、ポリビニルアセタール、ポリアミド、ポリイミド、ジアクリルフタレート樹脂、セルロース系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、その他の熱可塑性樹脂や、これらの樹脂を構成する単量体の2種以上の共重合体が挙げられるが、これらに限定されるものではない。
 ただし、バインダとしては、ポリチオフェン、ポリアニリン、ポリピロール、ポリフェニレン、ポリフェニレンビニレン、ポリアセチレン、ポリカルバゾールなどの導電性高分子を用いることが好ましい。これらは単独で用いてもよいし、組み合わせて用いてもよい。
 導電性層50は、バインダとして導電性高分子を採用することによって、導電性を、より向上させることが可能となる。また、バインダとしては、導電性を高めるために、例えば、スルホン酸、ルイス酸、プロトン酸、アルカリ金属、アルカリ土類金属などのドーパントをドーピングしたものを採用してもよい。
 また、導電性層50を上述のように金属薄膜により構成する場合、金属薄膜の材料としては、例えば、銀、金などを採用することができる。この種の金属薄膜の厚みは、30nm以下であればよいが、光透過性の観点からは20nm以下が好ましく、10nm以下が、より好ましい。ただし、厚みが薄くなりすぎると、第2電極40から導電性層50を通る経路での機能層30へ第2キャリアの注入性を向上させる効果が低くなる。
 以上説明したように、本実施形態の有機エレクトロルミネッセンス素子では、第1電極20および第2電極40それぞれの抵抗率が、透明導電性酸化物の抵抗率よりも低く、第2電極40が、機能層30からの光の取り出し用の第1開口部41を有し、機能層30が、発光層32の第2電極40側において第2電極40の直下にあり機能層30からの光取出し用の第2開口部37を有する絶縁層35を含み、第2開口部37には、第2電極40と機能層30とに接し且つ光透過性を有する導電性層50が設けられている。
 換言すれば、本実施形態の有機エレクトロルミネッセンス素子は、発光層32と、発光層32の厚み方向の第1面32a上に配置される第1電極層(第1電極)20と、発光層32の厚み方向の第2面32b上に配置される第2電極層(第2電極)40と、導電性層50と、絶縁層35と、を備える。発光層32は、第1電極層20と第2電極層40との間に所定の電圧が印加されると光を放射するように構成される。第2電極層40は、第2面32bを覆う電極部(電極パターン)40aと、第2面32bを露出させるように電極部40aに形成される開口部(第1開口部)41と、を有する。導電性層50は、光(発光層32からの光)を透過させるように構成される。導電性層50は、電極部40aと発光層32とに電気的に接続されるように、第2面32bにおいて開口部41から露出する露出領域32c上に形成される。絶縁層35は、電極部40aと第2面32bとの間に介在される。
 特に、本実施形態の有機エレクトロルミネッセンス素子では、第1電極層20および第2電極層40それぞれの材料の抵抗率が、透明導電性酸化物の抵抗率よりも低い。なお、透明導電性酸化物は、例えば、ITO、AZO、GZO、IZOなどである。
 しかして、本実施形態の有機エレクトロルミネッセンス素子では、輝度むらの低減を図ることが可能で且つ外部量子効率の向上を図ることが可能となる。
 この有機エレクトロルミネッセンス素子においては、導電性層50が、第2電極40を覆っていることが好ましい。
 換言すれば、本実施形態の有機エレクトロルミネッセンス素子では、導電性層50は、第2電極層40を覆うように形成される。
 これにより、有機エレクトロルミネッセンス素子では、第2電極40から機能層30へのキャリアの注入性を、より向上させることが可能となる。
 また、この有機エレクトロルミネッセンス素子においては、第2開口部37における発光層32から導電性層50の表面までの高さ(第1高さ)が、発光層32から第2電極40の先端までの高さ(第2高さ)よりも低いことが好ましい。
 換言すれば、本実施形態の有機エレクトロルミネッセンス素子では、導電性層50において露出領域32cを覆う部位の厚さは、絶縁層35と電極部40aとの厚さの合計よりも小さい。
 ここで、図3の例について説明すれば、第1高さは、インターレイヤー33の膜厚と第2キャリア注入層34の膜厚と第2キャリア注入層34直上の導電性層50の膜厚との合計値である。また、第2高さは、インターレイヤー33の膜厚と第2キャリア注入層34の膜厚と絶縁層35の膜厚と第2電極40の高さH1との合計値である。
 有機エレクトロルミネッセンス素子は、上述のように第1高さが第2高さよりも低いことにより、導電性層50内での光損失を低減することが可能となり、外部量子効率の向上を図ることが可能となる。なお、導電性層50の膜厚は、絶縁層35の膜厚よりも大きくてもよい。
 また、この有機エレクトロルミネッセンス素子においては、第2電極40が陽極であり、機能層30が、発光層32よりも第2電極40側にある第2キャリア注入層34としてのホール注入層を含んでいることが好ましい。
 換言すれば、本実施形態の有機エレクトロルミネッセンス素子は、ホール注入層(本実施形態では第2キャリア注入層)34をさらに備える。第1電極層20は、陰極である。第2電極層40は、陽極である。ホール注入層34は、発光層32と導電性層50および電極部40aとの間に介在される。絶縁層35は、ホール注入層34と電極部40aとの間に位置する。なお、ホール注入層は、導電性層50から発光層32へのホールの移動を促進するように構成される。
 これにより、有機エレクトロルミネッセンス素子では、発光層32へ第2キャリアであるホールを、より効率良く注入することが可能となり、結果的に外部量子効率の向上を図ることが可能となる。
 なお、本実施形態の有機エレクトロルミネッセンス素子においては、発光層32とホール注入層34との間には、発光層32からホール注入層34側への電子の漏れを抑制する電子ブロッキング層(本実施形態ではインターレイヤー)33が介在される。
 (実施形態2)
 本実施形態の有機エレクトロルミネッセンス素子は、実施形態1と略同じであり、図6に示すように、導電性層50がホール注入機能を備え、機能層30が、第2電極40と導電性層50との両方が接する最表層として、インターレイヤー33を含んでいる点などが相違する。
 また、本実施形態の有機エレクトロルミネッセンス素子では、導電性層50がホール注入機能を備えているので、実施形態1において説明した、ホール注入層としての第2キャリア注入層34を設けていない。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 ホール注入機能を備えた導電性層50は、例えば、実施形態1において説明した導電性ナノ構造体と導電性高分子とにより形成することができる。また、ホール注入機能を備えた導電性層50は、実施形態1において説明したホール注入層の材料に導電性ナノ構造体を混合させた複合膜により構成することもできる。
 本実施形態の有機エレクトロルミネッセンス素子では、第2電極40が陽極であり、導電性層50がホール注入機能を備え、機能層30が、第2電極40と導電性層50との両方が接する最表層として、インターレイヤー33を含んでいる(発光層32側からの電子の漏れを抑制する電子ブロッキング層を含んでいる)。
 換言すれば、本実施形態の有機エレクトロルミネッセンス素子は、電子ブロッキング(本実施形態ではインターレイヤー)33をさらに備える。第1電極層20は、陰極である。第2電極層40は、陽極である。導電性層50は、ホール注入層として機能するように構成される。電子ブロッキング層33は、発光層32と導電性層50および電極部40aとの間に介在される。絶縁層35は、電子ブロッキング層(インターレイヤー)33と電極部40aとの間に位置する。なお、電子ブロッキング層33は、電子を通さないように構成される。したがって、電子ブロッキング層33は、発光層32から導電性層50および電極部40a側への電子の漏れを抑制する。
 したがって、本実施形態の有機エレクトロルミネッセンス素子によれば、輝度むらを、より低減することが可能となる。
 実施形態1,2で説明した有機エレクトロルミネッセンス素子は、例えば、照明用の有機エレクトロルミネッセンス素子として好適に用いることができるが、照明用に限らず、他の用途に用いることも可能である。
 なお、実施形態1,2において説明した各図は、模式的なものであり、各構成要素の大きさや厚さそれぞれの比が、必ずしも実際のものの寸法比を反映しているとは限らない。

Claims (8)

  1.  発光層と、
     前記発光層の厚み方向の第1面上に配置される第1電極層と、
     前記発光層の厚み方向の第2面上に配置される第2電極層と、
     導電性層と、
     絶縁層と、
     を備え、
     前記発光層は、前記第1電極層と前記第2電極層との間に所定の電圧が印加されると光を放射するように構成され、
     前記第2電極層は、前記第2面を覆う電極部と、前記第2面を露出させるように前記電極部に形成される開口部と、を有し、
     前記導電性層は、
      前記光を透過させるように構成され、
      前記電極部と前記発光層とに電気的に接続されるように前記第2面において前記開口部から露出する露出領域上に形成され、
     前記絶縁層は、前記電極部と前記第2面との間に介在される
     ことを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記導電性層は、前記第2電極層を覆うように形成される
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  3.  前記導電性層において前記露出領域を覆う部位の厚さは、前記絶縁層と前記電極部との厚さの合計よりも小さい
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  4.  ホール注入層をさらに備え、
     前記第1電極層は、陰極であり、
     前記第2電極層は、陽極であり、
     前記ホール注入層は、前記発光層と前記導電性層および前記電極部との間に介在され、
     前記絶縁層は、前記ホール注入層と前記電極部との間に位置する
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  5.  電子ブロッキング層をさらに備え、
     前記第1電極層は、陰極であり、
     前記第2電極層は、陽極であり、
     前記導電性層は、ホール注入層として機能するように構成され、
     前記電子ブロッキング層は、前記発光層と前記導電性層および前記電極部との間に介在され、
     前記絶縁層は、前記電子ブロッキング層と前記電極部との間に位置する
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  6.  前記第2電極層は、金属の粉末と有機バインダとの混合物を用いて形成される
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  7.  前記導電性層は、導電性ナノ構造体が混入された透明媒体を用いて形成される透明導電膜、あるいは、前記光を透過させることができる厚みの金属薄膜である
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
  8.  前記第1電極層および前記第2電極層それぞれの材料の抵抗率が、透明導電性酸化物の抵抗率よりも低い
     ことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
PCT/JP2012/060887 2011-05-20 2012-04-23 有機エレクトロルミネッセンス素子 WO2012160925A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013516259A JP5991626B2 (ja) 2011-05-20 2012-04-23 有機エレクトロルミネッセンス素子
US14/111,033 US9024306B2 (en) 2011-05-20 2012-04-23 Organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-113513 2011-05-20
JP2011113513 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012160925A1 true WO2012160925A1 (ja) 2012-11-29

Family

ID=47217009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060887 WO2012160925A1 (ja) 2011-05-20 2012-04-23 有機エレクトロルミネッセンス素子

Country Status (3)

Country Link
US (1) US9024306B2 (ja)
JP (1) JP5991626B2 (ja)
WO (1) WO2012160925A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2398086A1 (en) * 2010-06-17 2011-12-21 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Opto-electric device and method of manufacturing thereof
WO2012160926A1 (ja) * 2011-05-20 2012-11-29 パナソニック株式会社 有機エレクトロルミネッセンス素子
KR102415045B1 (ko) * 2017-11-28 2022-06-29 엘지디스플레이 주식회사 Oled 조명 장치
TWI677743B (zh) * 2018-05-04 2019-11-21 元太科技工業股份有限公司 電泳顯示裝置
CN109768183B (zh) * 2019-01-25 2023-05-23 固安翌光科技有限公司 一种有机光电器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134964A (ja) * 1996-10-30 1998-05-22 Nec Corp 表示装置およびその製造方法
JP2002352963A (ja) * 2001-05-23 2002-12-06 Sony Corp 表示装置
JP2005302397A (ja) * 2004-04-08 2005-10-27 Seiko Precision Inc El装置
JP2006059796A (ja) * 2004-07-22 2006-03-02 Sharp Corp 有機発光素子、それを備えた表示装置、及び有機発光素子の製造方法
JP2008243567A (ja) * 2007-03-27 2008-10-09 Takiron Co Ltd 機能性薄膜素子、表示体、調光体、光起電力モジュール、導電層のイオン化ポテンシャル制御方法、及び機能性薄膜素子の製造方法
JP2009224183A (ja) * 2008-03-17 2009-10-01 Fujifilm Corp 金属酸化物微粒子、及び透明導電膜、並びに分散液、及びデバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054809A (en) 1996-08-14 2000-04-25 Add-Vision, Inc. Electroluminescent lamp designs
JP2001210469A (ja) 2000-01-28 2001-08-03 Sharp Corp 有機エレクトロルミネッセンス素子の製造方法
JP2003017249A (ja) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd 表示装置およびその製造方法
US6855636B2 (en) 2002-10-31 2005-02-15 3M Innovative Properties Company Electrode fabrication methods for organic electroluminscent devices
JP2006331694A (ja) 2005-05-23 2006-12-07 Matsushita Electric Works Ltd 有機発光素子及び有機発光素子用基板
JP2007213999A (ja) * 2006-02-10 2007-08-23 Seiko Epson Corp 有機el装置の製造方法及び有機el装置
JP2010272271A (ja) * 2009-05-20 2010-12-02 Sharp Corp 有機el素子
EP2398086A1 (en) * 2010-06-17 2011-12-21 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Opto-electric device and method of manufacturing thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134964A (ja) * 1996-10-30 1998-05-22 Nec Corp 表示装置およびその製造方法
JP2002352963A (ja) * 2001-05-23 2002-12-06 Sony Corp 表示装置
JP2005302397A (ja) * 2004-04-08 2005-10-27 Seiko Precision Inc El装置
JP2006059796A (ja) * 2004-07-22 2006-03-02 Sharp Corp 有機発光素子、それを備えた表示装置、及び有機発光素子の製造方法
JP2008243567A (ja) * 2007-03-27 2008-10-09 Takiron Co Ltd 機能性薄膜素子、表示体、調光体、光起電力モジュール、導電層のイオン化ポテンシャル制御方法、及び機能性薄膜素子の製造方法
JP2009224183A (ja) * 2008-03-17 2009-10-01 Fujifilm Corp 金属酸化物微粒子、及び透明導電膜、並びに分散液、及びデバイス

Also Published As

Publication number Publication date
US20140021463A1 (en) 2014-01-23
JPWO2012160925A1 (ja) 2014-07-31
US9024306B2 (en) 2015-05-05
JP5991626B2 (ja) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5520418B2 (ja) 有機エレクトロルミネッセンス素子
JP6021020B2 (ja) 有機エレクトロルミネッセンス素子
JP5887540B2 (ja) 有機エレクトロルミネッセンス素子
JP5991626B2 (ja) 有機エレクトロルミネッセンス素子
JP5810319B2 (ja) 有機エレクトロルミネッセンス素子
WO2013015383A1 (ja) 有機エレクトロルミネッセンス素子
JP5991627B2 (ja) 有機エレクトロルミネッセンス素子
JP2013161682A (ja) 有機エレクトロルミネッセンス素子
JP2012243622A (ja) 有機エレクトロルミネッセンス素子
JP2013030334A (ja) 有機エレクトロルミネッセンス素子
JP2013097966A (ja) 有機エレクトロルミネッセンス素子
JP2012243623A (ja) 有機エレクトロルミネッセンス素子
JP2013030306A (ja) 有機エレクトロルミネッセンス素子
WO2012161113A1 (ja) 有機エレクトロルミネッセンス素子
WO2012161057A1 (ja) 有機エレクトロルミネッセンス素子
JP2013008625A (ja) 有機エレクトロルミネッセンス素子
WO2012160924A1 (ja) 有機エレクトロルミネッセンス素子
JP2013008624A (ja) 有機エレクトロルミネッセンス素子
WO2012161005A1 (ja) 有機エレクトロルミネッセンス素子
WO2012176584A1 (ja) 有機エレクトロルミネッセンス素子
WO2013001958A1 (ja) 有機エレクトロルミネッセンス素子
JP2013030335A (ja) 有機エレクトロルミネッセンス素子
JP2013030307A (ja) 有機エレクトロルミネッセンス素子
JP2015122154A (ja) 発光素子、それを用いた照明装置、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790118

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013516259

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111033

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790118

Country of ref document: EP

Kind code of ref document: A1