WO2012114892A1 - 蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置 - Google Patents

蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置 Download PDF

Info

Publication number
WO2012114892A1
WO2012114892A1 PCT/JP2012/053017 JP2012053017W WO2012114892A1 WO 2012114892 A1 WO2012114892 A1 WO 2012114892A1 JP 2012053017 W JP2012053017 W JP 2012053017W WO 2012114892 A1 WO2012114892 A1 WO 2012114892A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
steam
turbine
low
pressure turbine
Prior art date
Application number
PCT/JP2012/053017
Other languages
English (en)
French (fr)
Inventor
岡 勝
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12749246.0A priority Critical patent/EP2679483B1/en
Priority to KR1020137021871A priority patent/KR101624017B1/ko
Priority to CN201280009689.3A priority patent/CN103380056B/zh
Publication of WO2012114892A1 publication Critical patent/WO2012114892A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/02Use of propulsion power plant or units on vessels the vessels being steam-driven
    • B63H21/06Use of propulsion power plant or units on vessels the vessels being steam-driven relating to steam turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/10Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant

Definitions

  • the present invention relates to a steam turbine drive machine having two drive shafts, a ship equipped with the steam turbine drive machine, and a gas liquefaction device.
  • a steam turbine for rotating a propeller of a ship is a high-pressure turbine that rotates by being supplied with superheated steam guided from a boiler, and a low-pressure turbine that is rotated by being supplied with superheated steam exhausted from a high-pressure turbine.
  • a high-pressure turbine and a low-pressure turbine are arranged side by side in the ship width direction, and the rotational outputs obtained from these turbines are coupled by a speed reducer to rotate one propeller.
  • a steam turbine described in Patent Document 2 has been proposed.
  • a high-pressure turbine and a low-pressure turbine are arranged side by side in the ship width direction, and one output shaft is driven by the high-pressure turbine, and the other output shaft is driven by the low-pressure turbine, thereby avoiding an increase in installation space. is doing.
  • the single flow format of the superheated steam that drives the low-pressure turbine with the superheated steam discharged from the high-pressure turbine is adopted, an imbalance between the high-pressure turbine output and the low-pressure turbine output inevitably occurs.
  • the steam turbine described in this document eliminates an imbalance in output by providing a shaft generator and a motor on each output shaft and electrically connecting them to each other.
  • JP 2006-17007 ([0027], FIG. 1) JP 2009-56868 A
  • Patent Document 2 The steam turbine described in Patent Document 2 is excellent in that the output imbalance of each output shaft can be eliminated. However, it is necessary to provide a shaft generator and an electric motor, resulting in complicated facilities and increased costs. End up.
  • the present invention has been made in view of such circumstances, and is a steam turbine capable of independently driving two output shafts with a simple configuration after achieving two shafts without increasing the installation space. It aims at providing the ship provided with the drive machine, the steam turbine drive machine, and the gas liquefaction apparatus.
  • the steam turbine drive machine of the present invention the ship equipped with the steam turbine drive machine, and the gas liquefaction apparatus employ the following means. That is, the steam turbine drive machine according to the first aspect of the present invention is exhausted from the high-pressure turbine driven by the high-pressure turbine, the high-pressure turbine driven by the high-pressure turbine, and the high-pressure turbine.
  • the steam turbine drive employs a first drive shaft that is driven by a high-pressure turbine and a second drive shaft that is driven by a low-pressure turbine that is driven by steam supplied from the high-pressure turbine.
  • pressure control means for controlling the pressure of the steam exhausted from the high pressure side turbine and supplied to the low pressure side turbine is provided, and the pressure of the steam flowing into the low pressure side turbine has an influence on the operating conditions of the high pressure side turbine. It was decided to be able to set without receiving. Thereby, the output of the high pressure side turbine and the output of the low pressure side turbine can be controlled independently.
  • each drive shaft of the steam turbine drive machine may be used, for example, for driving a propeller of a ship, may be used as power of a compressor for liquefying gas, or power generation It may be used for driving a machine.
  • the pressure control means branches a part of the steam exhausted from the high pressure side turbine and leads it to a condenser, and the steam A pressure reducing valve that depressurizes the steam flowing through the dump path; and a control unit that controls the pressure reducing valve so that the steam flowing to the low pressure side turbine has a predetermined pressure.
  • a part of the steam exhausted from the high-pressure side turbine is guided to the condenser via the steam dump path, thereby reducing the pressure of the steam guided to the low-pressure side turbine.
  • the pressure reducing valve for reducing the pressure of the steam flowing through the steam dump path is controlled by the control unit, and the pressure of the steam flowing to the low-pressure side turbine is set to a predetermined value.
  • the steam turbine drive device may be configured such that steam guided from a different system different from the exhaust system of the high pressure side turbine is supplied to the low pressure side turbine.
  • the output of the low pressure side turbine is increased by supplying superheated steam of another system to the low pressure side turbine.
  • the low-pressure side turbine can be stably controlled.
  • Examples of the steam led from another system include utility steam led from a boiler slow heat steam line. Thereby, it can be made independent from the main turbine system, and further stable operation can be expected.
  • the said low pressure side turbine is comprised from two low pressure turbines of the 1st low pressure turbine provided in parallel with the superheated steam supplied from the said high pressure side turbine, and a 2nd low pressure turbine,
  • the configuration may be such that steam is supplied from the separate system only to the first low-pressure turbine.
  • the low-pressure side turbine was divided into two low-pressure turbines, and steam was supplied from another system only to one first low-pressure turbine. Thereby, the controllability of the low pressure side turbine is improved.
  • a steam reverse flow from the first low-pressure turbine to the high-pressure turbine side is provided in a steam supply path that connects the inlet side of the first low-pressure turbine and the exhaust side of the high-pressure turbine.
  • a check valve is provided to prevent it.
  • a ship includes a steam turbine drive device according to any one of the above, a first propeller that is rotationally driven by the first drive shaft, and a rotational drive by the second drive shaft. And a second propeller.
  • the high-pressure side turbine and the low-pressure side turbine can be applied not only to the forward turbine but also to the backward turbine.
  • a gas liquefaction apparatus according to any one of the above-described steam turbine drive, a first compressor that is rotationally driven by the first drive shaft, and the second drive shaft.
  • a second compressor that is rotationally driven by the first compressor, a first cold output unit that expands the refrigerant compressed by the first compressor to obtain cold heat, and a refrigerant that is compressed by the second compressor to expand cold
  • a second chilled heat output unit for cooling the liquefied gas by the first chilled heat output unit and the second chilled heat output unit.
  • the two compressors were driven independently to obtain two expansion cycles to liquefy the liquefied gas.
  • the gas liquefying apparatus advantageous in installation property and cost can be provided.
  • pressure control means for controlling the pressure of superheated steam exhausted from the high-pressure side turbine and supplied to the low-pressure side turbine is provided, the output of the high-pressure side turbine and the output of the low-pressure side turbine are independent with a simple configuration. Can be controlled.
  • FIG. 1 is a schematic configuration diagram illustrating a steam turbine drive according to a first embodiment of the present invention. It is the schematic block diagram which showed the steam turbine drive device concerning 2nd Embodiment of this invention. It is the schematic block diagram which showed the example which applied the steam turbine drive device of this invention to the gas liquefying apparatus. It is the schematic block diagram which showed the example which applied the steam turbine drive device of this invention when remodeling from the existing uniaxial ship to FSRU.
  • FIG. 1 shows a steam turbine drive machine 1A used for a twin-screw ship having two propellers.
  • the steam turbine drive machine 1A includes a starboard machine 3 and a port machine 5.
  • the starboard 3 includes a forward high-pressure turbine (high-pressure turbine) 7 and a reverse turbine 9.
  • a main drive steam converted into high pressure superheated steam from a marine boiler (not shown) is guided to the forward high pressure turbine 7 via a main steam pipe 8.
  • the main steam pipe 8 is provided with a main steam valve 10 whose opening degree is controlled by a control unit (not shown), whereby the output of the high-pressure turbine 7 is controlled.
  • the opening degree of the main steam valve 10 is adjusted when moving forward, and is fully closed when moving backward.
  • the reverse drive turbine 9 is guided with main drive steam converted to high-pressure superheated steam from a marine boiler (not shown) during reverse travel.
  • the forward high-pressure turbine 7 and the reverse turbine 9 are mounted on the same first drive shaft 4, and their output is decelerated via the speed reducer 20 and then propeller shaft 24 supported by the thrust bearing 22. Is transmitted to.
  • a starboard side propeller (not shown) is attached to the tip of the propeller shaft 24, and gives a propulsive force to the ship.
  • the port machine 5 includes a forward first low pressure turbine (low pressure side turbine) 11, a forward forward second low pressure turbine (low pressure side turbine) 13, and a reverse turbine 15.
  • the first forward low-pressure turbine 11, the second forward low-pressure turbine 13, and the reverse turbine 15 are mounted on the same second drive shaft 14, and their outputs are decelerated via a speed reducer 21. Then, it is transmitted to the propeller shaft 25 supported by the thrust bearing 23.
  • a port side propeller (not shown) is attached to the tip of the propeller shaft 25 and applies a propulsive force to the ship.
  • the first low-pressure turbine 11 for forward movement and the second low-pressure turbine for backward movement are installed on the same axis so as to face each other, and the expansion processes are arranged in parallel.
  • An exhaust steam pipe 27 is connected to the exhaust side of the forward high-pressure turbine 7, and further to the downstream side thereof, a first supply pipe 29 connected to the steam inlet of the forward advance first low-pressure turbine 11, A second supply pipe 31 connected to the inlet of the second low-pressure turbine 13 and a steam dump pipe (steam dump path) 33 connected to a condenser (not shown) are connected.
  • the steam dump pipe 33 is provided with a pressure reducing valve 35 whose opening degree can be adjusted in a range from fully closed to fully open. The opening degree of the pressure reducing valve 35 is controlled by a control unit (not shown).
  • the steam dump pipe 33, the pressure reducing valve 35, and the control unit that controls the pressure reducing valve 35 constitute pressure control means for controlling the pressure of superheated steam supplied to the low pressure turbines 11 and 13.
  • a low-pressure drive steam pipe 37 is connected to the steam inlet of the first low-pressure turbine 11 for advance, and low-pressure drive steam that is utility steam led from a boiler slow heat steam line is supplied.
  • the low-pressure drive steam pipe 37 is provided with a low-pressure drive steam valve 38 whose opening degree is adjusted by a control unit (not shown). Therefore, the first low-pressure turbine 11 for advance is supplied with low-pressure drive steam from the low-pressure drive steam pipe 37 in addition to the steam exhausted from the forward high-pressure turbine 7.
  • the steam turbine drive 1A having the above-described configuration operates as follows.
  • the main drive steam converted to high pressure superheated steam from the marine boiler is supplied to the forward high pressure turbine 7, and the forward high pressure turbine 7 is rotationally driven.
  • the propeller shaft 24 is driven via the first drive shaft 4 and the speed reducer 20, and the starboard side propeller rotates to generate forward thrust.
  • the output of the starboard side propeller is adjusted by the opening degree of the main steam valve 10.
  • the superheated steam exhausted from the forward high-pressure turbine 7 flows through the exhaust steam pipe 27 and through the first supply pipe 29 and the second supply pipe 31 provided in parallel.
  • the superheated steam that has flowed through the first supply pipe 29 is guided to the first low-pressure turbine 11 for forward movement, and rotationally drives the first low-pressure turbine 11 for forward movement.
  • the superheated steam that has flowed through the second supply pipe 31 is guided to the second forward low-pressure turbine 13 to rotationally drive the second forward low-pressure turbine 13.
  • the pressure of superheated steam supplied to each low-pressure turbine 11, 13 is adjusted by the pressure reducing valve 35 provided in the steam dump pipe 33.
  • the opening degree control of the pressure reducing valve 35 is performed by a control unit (not shown) and adjusted according to the thrust required for the port side propeller.
  • the propeller shaft 25 is driven via the second drive shaft 14 and the speed reducer 21, and the port side propeller is rotated to advance forward thrust. Is generated.
  • the output of the port side propeller is adjusted by the opening degree of the pressure reducing valve 35 as described above.
  • the low-pressure driving steam guided from the low-pressure driving steam pipe 37 is supplied to the first low-pressure turbine 11 for advancement.
  • the pressure of the supplied low-pressure drive steam is controlled by a low-pressure drive steam valve 38.
  • the steam that has finished work by rotating the first forward low-pressure turbine 11 and the second forward low-pressure turbine 13 is led to the condenser as exhaust steam.
  • the main drive steam is supplied to the reverse turbines 9 and 15 to rotationally drive the turbines 9 and 15.
  • the starboard side propeller and the port side propeller rotate in the reverse direction to generate reverse thrust.
  • the steam that has finished its work by rotationally driving each reverse turbine 9.15 is guided to the condenser as exhaust steam.
  • the following operational effects are obtained.
  • the forward first low pressure turbine 11 driven by the steam exhausted from the high pressure turbine 7 and the forward second low pressure turbine 13.
  • the second drive shaft 14 By adopting the second drive shaft 14 and achieving the two axes by a single flow of steam, the two axes can be realized without increasing the installation space.
  • a steam dump pipe 33 and a pressure reducing valve 35 are provided to control the pressure of steam exhausted from the forward high pressure turbine 7 and supplied to the forward first low pressure turbine 11 and forward forward second low pressure turbine 13. It was. Thereby, the pressure of the steam flowing into the first forward low-pressure turbine 11 and the second forward low-pressure turbine 13 can be set without being affected by the operating conditions of the forward high-pressure turbine 7. Therefore, the output of the forward high pressure turbine 7 and the outputs of the forward first low pressure turbine 11 and the forward forward second low pressure turbine 13 can be controlled independently. In this way, independent control of two axes can be realized with a simple configuration of adding the steam dump pipe 33, the pressure reducing valve 35, and a control unit for controlling the pressure reducing valve.
  • the low-pressure drive steam is supplied from the low-pressure drive steam pipe 37.
  • the output of the forward first low pressure turbine 11 can be increased independently of the main steam system guided to the forward high pressure turbine 7.
  • the port machine 5 driven by the first forward low-pressure turbine 11 and the second forward low-pressure turbine 13 can be stably controlled.
  • the low-pressure side turbine is divided into two low-pressure turbines (forward first low-pressure turbine 11 and forward second low-pressure turbine 13), and only the forward first low-pressure turbine 11 is low-pressure driven steam pipe 37. It was decided to supply steam from. Thereby, the controllability of the low-pressure side turbine (the first low-pressure turbine 11 for advance and the second low-pressure turbine 13 for advance) is improved.
  • the starboard 3 of the steam turbine drive 1 ⁇ / b> B of the present embodiment is provided with a forward intermediate pressure turbine 40 attached to the same first drive shaft 4 as the forward high pressure turbine 7.
  • the forward high-pressure turbine 7 and the forward intermediate-pressure turbine 40 constitute a high-pressure turbine.
  • the forward intermediate pressure turbine 40 is driven by superheated steam obtained by reheating exhaust steam from the forward high pressure turbine 7 by the reheater 42.
  • the bypass pipe 44 is branched from the exhaust steam pipe 27 on the exhaust side of the high-pressure turbine 7, and a part of the exhaust steam is led to the reheater 42 by the bypass pipe 44 and reheated, and the reheat steam is supplied. Reheat steam is guided to the forward intermediate pressure turbine 40 by the supply pipe 46.
  • the flow rate of the steam bypassed to the reheater 42 is determined by adjusting the opening degree of the bypass valve 49 provided in the exhaust steam pipe 27 on the forward high-pressure turbine 7 side.
  • the opening degree of the bypass valve 49 is controlled based on a predetermined function given to the first control unit 52.
  • the reheater 42 is generally configured as a part of a marine boiler (not shown).
  • the first control unit 52 also controls the main steam valve 10. For example, as shown in the figure indicated by reference numeral 22, the throttle opening is increased so that the opening degree increases as the forward rotational speed (RPM (AHEAD)) increases. .
  • RPM forward rotational speed
  • the superheated steam exhausted from the forward intermediate pressure turbine 40 passes through the exhaust steam pipe 48 and merges with the exhaust steam guided from the forward high pressure turbine 7 at the junction 50. It is the same as in the first embodiment in that it branches from the merged exhaust steam pipe 54 after joining to the steam dump pipe 33 and further branches to the first supply pipe 29 and the second supply pipe 31 connected in parallel. is there.
  • the combined exhaust steam pipe 54 is provided with a pressure sensor 56 for measuring the steam pressure reduced by the pressure reducing valve 35 provided in the steam dump pipe 33. This pressure sensor 56 also constitutes a part of the pressure control means of the present invention.
  • the measured pressure value PV measured by the pressure sensor 56 is sent to the second control unit 58.
  • the second control unit 58 compares the set pressure value SV given from the outside with the measured pressure value PV, and outputs the command value OP to the pressure reducing valve 35 by, for example, PID control so as to become the set pressure value SV.
  • the opening degree of the pressure reducing valve 35 is controlled based on the command value OP.
  • the dump steam that has been depressurized through the pressure reducing valve 35 is guided to the condenser 60.
  • the superheated steam after the pressure control as described above is led to the forward first low pressure turbine 11 and the forward forward second low pressure turbine 13 via the first supply pipe 29 and the second supply pipe 31, respectively. .
  • a check valve 62 is provided in the first supply pipe 29. The check valve 62 prevents the reverse flow of steam from the first forward low-pressure turbine 11 to the high-pressure turbine side (the forward high-pressure turbine 7 and the forward intermediate pressure turbine 40).
  • the steam that has finished work in the first forward low-pressure turbine 11 and the second forward low-pressure turbine 13 is guided to the condenser 60.
  • the low-pressure drive steam pipe 37 is provided with a pressure reducing valve 64 for controlling the utility steam pressure to be constant.
  • the low-pressure drive steam that has passed through the pressure reducing valve 64 is branched to the branch point 66 and then guided to the low-pressure drive steam valve 38.
  • the opening degree of the low pressure drive steam valve 38 is controlled by the third control unit 68. Specifically, the opening degree increases as the forward rotational speed (RPM (AHEAD)) increases. Thereby, the output shortage of the low pressure side turbine (the first low pressure turbine 11 for advance and the second low pressure turbine 13 for advance) is compensated independently of the main steam.
  • the opening of the low-pressure drive steam valve 38 is controlled as described above during forward travel, but is fully closed during reverse travel.
  • the high pressure reverse turbine 70 on the starboard side and the exhaust steam of the high pressure reverse turbine 70 are driven.
  • the low-pressure reverse turbine 72 is used.
  • the high pressure reverse turbine 70 is rotationally driven by the main steam guided from the reverse main steam pipe 74 branched from the main steam pipe 8.
  • a main steam valve 76 is provided in the reverse main steam pipe 74, and its opening degree is controlled by the fourth control unit 78.
  • the main steam valve 76 is controlled in opening degree when moving backward, and is fully closed when moving forward.
  • the superheated steam exhausted from the high pressure reverse turbine 70 passes through the reverse exhaust steam pipe 78 and branches to the steam dump pipe 80.
  • the steam dump pipe 80 is provided with a pressure reducing valve 82.
  • the reverse exhaust steam pipe 78 is provided with a pressure sensor 84 for measuring the steam pressure reduced by the pressure reducing valve 82.
  • the measured pressure value PV measured by the pressure sensor 84 is sent to the fifth control unit 86.
  • the fifth control unit 86 compares the set pressure value SV given from the outside with the measured pressure value PV, and outputs the command value OP to the pressure reducing valve 82 by, for example, PID control so as to become the set pressure value SV.
  • the opening of the pressure reducing valve 82 is controlled based on the command value OP.
  • the reverse steam dump pipe 80, the pressure reducing valve 82, the pressure sensor 84, and the fifth control unit 86 constitute the pressure control means of the present invention.
  • the dump steam that has been depressurized through the pressure reducing valve 82 is guided to the condenser 60.
  • the superheated steam that has flowed through the reverse exhaust steam pipe 78 without branching to the steam dump pipe 80 passes through the supply pipe 88 and is guided to the low pressure reverse turbine 72.
  • the exhaust steam pipe 78 is provided with a low pressure steam valve 90.
  • the opening degree of the low pressure steam valve 90 is controlled by the sixth control unit 92. For example, as shown in the figure indicated by reference numeral 92, the opening degree is increased in accordance with the increase in the reverse rotation speed (RPM (ASTERN)), that is, a throttle is applied. .
  • a reverse low-pressure drive steam pipe 96 is provided that branches from the branch point 66 of the low-pressure drive steam pipe 37 and joins the reverse supply pipe 88 at the junction 94.
  • the low-pressure drive steam pipe 96 is provided with a reverse-use low-pressure drive steam valve 98.
  • the opening degree of the low pressure driving steam valve 98 is controlled by the sixth control unit 92. For example, as shown in the figure indicated by reference numeral 92, when the rotational speed of the reverse rotational speed (RPM (ASTERN)) is low, it is fully closed, and when the rotational speed exceeds a predetermined rotational speed, the output is increased. As shown, the opening gradually increases.
  • the reverse low-pressure steam valve 90 and the low-pressure drive steam valve 98 are fully closed during forward travel.
  • the steam turbine drive 1B having the above-described configuration operates as follows. During forward travel, the reverse main steam valve 76, the low pressure steam valve 90, and the low pressure drive steam valve 98 are fully closed. And the main drive steam made into the high pressure superheated steam from the marine boiler is supplied to the high pressure turbine 7 for advancing, and the high pressure turbine 7 for advancing is rotationally driven. As a result, the propeller shaft 24 is driven via the first drive shaft 4 and the speed reducer 20, and the starboard side propeller rotates to generate forward thrust. The output of the starboard side propeller is adjusted by the opening degree of the main steam valve 10 controlled by the first control unit 52.
  • the superheated steam exhausted from the forward high-pressure turbine 7 flows through the exhaust steam pipe 27, and a part thereof is branched to the bypass pipe 44 according to the opening degree of the bypass valve 49 controlled by the first control unit 52. The remaining part flows downstream of the exhaust steam pipe 27.
  • the superheated steam that has flowed through the bypass pipe 44 is reheated by the reheater 42 to become reheated steam, and is guided to the forward intermediate pressure turbine 40 through the reheated steam supply pipe 46.
  • the superheated steam that has finished the work by rotating the forward intermediate pressure turbine 40 passes through the exhaust steam pipe 48 and joins with the exhaust steam guided from the forward high pressure turbine 7 at the junction 50. Then, the superheated steam flows through the first supply pipe 29 and the second supply pipe 31 provided in parallel.
  • the superheated steam that has flowed through the first supply pipe 29 and the check valve 29 is guided to the first forward low-pressure turbine 11 to rotationally drive the first forward low-pressure turbine 11.
  • the superheated steam that has flowed through the second supply pipe 31 is guided to the second forward low-pressure turbine 13 to rotationally drive the second forward low-pressure turbine 13.
  • the pressure of the superheated steam supplied to the low-pressure turbines 11 and 13 is adjusted by the pressure reducing valve 35 provided in the steam dump pipe 33. That is, the opening degree of the pressure reducing valve 35 is adjusted by the second control unit 58 that controls based on the measured pressure value PV of the pressure sensor 56 so as to become the set pressure value SV. Specifically, by increasing the opening degree of the pressure reducing valve 35, the amount of steam guided to the condenser 60 through the steam dump pipe 33 increases, so that the superheated steam guided to the low pressure turbines 11 and 13 is increased.
  • the opening degree of the pressure reducing valve 35 by reducing the opening degree of the pressure reducing valve 35, the amount of steam guided to the condenser through the steam dump pipe 33 is reduced, so that the pressure is guided to the low-pressure turbines 11 and 13.
  • the pressure of superheated steam rises.
  • the set pressure value SV given to the second control unit 58 is variable so that steam is not dumped wastefully.
  • the propeller shaft 25 is driven via the second drive shaft 14 and the speed reducer 21, and the port side propeller is rotated to advance forward thrust. Is generated.
  • the output of the port side propeller is adjusted by the opening degree of the pressure reducing valve 35 as described above.
  • the low-pressure driving steam guided from the low-pressure driving steam pipe 37 is supplied to the first low-pressure turbine 11 for advancement.
  • the pressure of the supplied low-pressure driving steam is adjusted by a low-pressure driving steam valve 38 controlled by the third control unit 68.
  • the steam that has finished working by rotating the first forward low-pressure turbine 11 and the second forward low-pressure turbine 13 is guided to the condenser 60 as exhaust steam.
  • the forward main steam valve 10 and the low-pressure drive steam valve 38 are fully closed.
  • the same operation as that when moving forward is performed, and the description thereof is omitted. That is, the high pressure reverse turbine 70 is driven by the main drive steam and the low pressure reverse turbine 72 is driven by the exhaust steam of the high pressure reverse turbine 70, the steam dump pipe 80, the pressure reducing valve 83, the pressure sensor 84, and the fifth control unit.
  • the point that the pressure is controlled by 86 and the low-pressure backward turbine 72 is assisted-driven by the low-pressure driving steam adjusted by the low-pressure driving steam valve 98 are the same as in the case of the forward movement.
  • the second drive shaft 14 driven by the low-pressure turbine 13 and achieving the two shafts by a single flow of steam the two shafts can be realized without increasing the installation space.
  • a steam dump pipe 33 is used in order to control the pressure of the steam exhausted from the forward high pressure turbine 7 and the forward intermediate pressure turbine 40 and supplied to the forward first low pressure turbine 11 and forward forward second low pressure turbine 13.
  • a pressure reducing valve 35 is used in order to control the pressure of the steam exhausted from the forward high pressure turbine 7 and the forward intermediate pressure turbine 40 and supplied to the forward first low pressure turbine 11 and forward forward second low pressure turbine 13.
  • the pressure of the steam flowing into the first forward low-pressure turbine 11 and the second forward low-pressure turbine 13 can be set without being affected by the operating conditions of the forward high-pressure turbine 7. Therefore, the output of the forward high pressure turbine 7 and the outputs of the forward first low pressure turbine 11 and the forward forward second low pressure turbine 13 can be controlled independently. In this way, independent control of two axes can be realized with a simple configuration of adding the steam dump pipe 33, the pressure reducing valve 35, and a control unit for controlling the pressure reducing valve.
  • reverse turbines 70 and 72 are also provided with a steam dump pipe 80 and a pressure reducing valve 82 in order to control the pressure of the steam supplied to the low pressure reverse turbine 72 in the same manner as in the forward use, and the same as in the forward use. The effect was obtained.
  • the low pressure drive steam 37 is connected to the low pressure drive steam. It was decided to supply.
  • the output of the first forward low-pressure turbine 11 can be increased independently of the main steam system guided to the forward high-pressure turbine 7 and the forward intermediate-pressure turbine 40.
  • the port machine 5 driven by the first forward low-pressure turbine 11 and the second forward low-pressure turbine 13 can be stably controlled.
  • the low-pressure side turbine is divided into two low-pressure turbines (forward first low-pressure turbine 11 and forward second low-pressure turbine 13), and only the forward first low-pressure turbine 11 is low-pressure driven steam pipe 37. It was decided to supply steam from. Thereby, the controllability of the low-pressure side turbine (the first low-pressure turbine 11 for advance and the second low-pressure turbine 13 for advance) is improved. Furthermore, the low-pressure driving steam supplied to the first low-pressure turbine 11 is low pressure depending on the pressure condition of superheated steam exhausted from the high-pressure turbines 7 and 40 (that is, depending on the set pressure value SV of the second control unit 58). Since the pressure of the driving steam becomes relatively large and the steam may flow backward from the first low-pressure turbine 11 to the high-pressure turbines 7 and 40, the check valve 62 is provided in the first supply pipe 29. . Thereby, stable operation is realized.
  • the gas liquefying apparatus 100 cools and liquefies natural gas (NG), which is a raw material for liquefied gas such as LNG (liquefied natural gas).
  • NG natural gas
  • the gas liquefaction apparatus 100 uses the above-described steam turbine drives 1A and 1B as a drive source of a compressor constituting the refrigeration cycle.
  • the steam turbine driving machines 1A and 1B are schematically shown, but the high pressure side turbine 102, the low pressure side turbine 103, pressure control means (not shown), and assist driving by low pressure driving steam (see FIG.
  • the first drive shaft 105 and the second drive shaft 107 have the same configuration as that of the first embodiment and the second embodiment.
  • the gas liquefaction apparatus 100 includes a first compressor 109 that is rotationally driven by a first drive shaft 105 and a second compressor 111 that is rotationally driven by a second drive shaft 107.
  • Each of the compressors 109 and 111 includes a two-stage compression unit provided on the same axis that is rotationally driven by the drive shafts 105 and 107, and the compressed refrigerant (for example, nitrogen) is supplied to a refrigeration cycle (not shown). It is guided.
  • a first cold output unit that obtains cold by expanding the refrigerant compressed by the first compressor 109, and second cold heat that obtains cold by expanding the refrigerant compressed by the second compressor 111.
  • an output section (so-called double expansion cycle).
  • the natural gas etc. used as the raw material of LNG are cooled and liquefied by the 1st cold / heat output part and the 2nd cold / heat output part.
  • An existing single-shaft steam turbine ship is provided with an output mechanism 201 composed of a speed reducer, a propeller shaft, and the like at the output destination of the steam turbine drive machine, that is, the output side of each drive shaft 205 and 207. .
  • Such a steam turbine ship is called FSRU (Floating Storage and Regasification When changing to a floating body that does not require a propulsion unit such as (Unit), the output mechanism unit 201 is not necessary. Therefore, in this embodiment, the output mechanism unit 201 is removed and modified to the same steam turbine drive machines 1A and 1B as those in the first and second embodiments.
  • the low pressure driving steam for guiding the pressure control means such as the steam dump pipe 33 and the pressure reducing valve 35 and the low pressure driving steam such as utility steam between the existing high pressure side turbine 202 and the low pressure side turbine 203.
  • An assist drive system such as a pipe 37 and a low-pressure drive steam valve 38 is additionally provided.
  • the first generator 209 and the second generator 211 that are driven by obtaining these rotations are connected to the first drive shaft 205 and the second drive shaft 207, respectively.
  • each drive shaft 205,207 can control steam turbine drive machine 1A, 1B independently, the electric power generation amount of each generator 209,211 can be adjusted arbitrarily, and it can respond to an electric power demand. Can respond flexibly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

設置スペースの増大を招かずに2軸化を図った上で、簡便な構成によって2つの出力軸を独立に駆動できる蒸気タービン駆動機を提供する。蒸気が供給されて駆動される前進用高圧タービン(7)と、前進用高圧タービン(7)によって駆動される第1駆動軸(4)と、前進用高圧タービン(7)から排気された蒸気が供給されて駆動される前進用第1低圧タービン(11)及び前進用第2低圧タービン(13)と、前進用第1低圧タービン(11)及び前進用第2低圧タービン(13)によって駆動される第2駆動軸(14)とを備えた蒸気タービン駆動機(1A)であって、前進用高圧タービン(7)から排気されて前進用第1低圧タービン(11)及び前進用第2低圧タービン(13)に供給される蒸気の圧力を制御する蒸気ダンプ配管(33)及び減圧弁(35)を備えている。

Description

蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置
 本発明は、2つの駆動軸を有する蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置に関するものである。
 船舶のプロペラを回転させる蒸気タービンとして、ボイラから導かれた過熱蒸気が供給されて回転する高圧タービンと、高圧タービンから排気された過熱蒸気が供給されて回転する低圧タービンとを備えたものが知られている(例えば特許文献1参照)。この舶用蒸気タービンは、高圧タービンと低圧タービンが船幅方向に並んで配置されており、これらタービンから得られたそれぞれの回転出力を減速機によって結合し、1つのプロペラを回転させる。
 船舶の大型化などにより、プロペラを回転させる出力軸の2軸化が要求された場合、特許文献1に記載された蒸気タービンを適用しようとすると、出力軸ごとに高圧タービンおよび低圧タービンが必要となる。しかし、機関室には設置スペース(特に船幅方向)に制約があり、設置することが困難である。
 したがって、船舶の2軸化が要求された場合には、低速ディーゼル主機直結方式や電動モーター推進方式が主として採用される。
 このような蒸気タービンの設置スペースの問題を解決するために、下記特許文献2に記載された蒸気タービンが提案されている。この蒸気タービンは、高圧タービン及び低圧タービンを船幅方向に並べて配置し、一方の出力軸を高圧タービンで駆動するとともに、他方の出力軸を低圧タービンで駆動することで、設置スペースの増大を回避している。
 しかし、高圧タービンから排出された過熱蒸気によって低圧タービンを駆動する過熱蒸気の単一フロー形式を採用しているので、高圧タービン出力と低圧タービン出力の不均衡が不可避的に生じる。これを解決するために、同文献に記載された蒸気タービンは、各出力軸に軸発電機や電動機を設けて互いに電気的に接続することで、それぞれの出力の不均衡を解消している。
特開2006-17007号公報([0027],図1) 特開2009-56868号公報
 特許文献2に記載された蒸気タービンは、各出力軸の出力アンバランスを解消できる点で優れているが、軸発電機や電動機を設ける必要があり、施設の複雑化やコストの増大を招いてしまう。
 本発明は、このような事情に鑑みてなされたものであって、設置スペースの増大を招かずに2軸化を図った上で、簡便な構成によって2つの出力軸を独立に駆動できる蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置を提供することを目的とする。
 上記課題を解決するために、本発明の蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置は以下の手段を採用する。
 すなわち、本発明の第1の態様にかかる蒸気タービン駆動機は、蒸気が供給されて駆動される高圧側タービンと、該高圧側タービンによって駆動される第1駆動軸と、前記高圧タービンから排気された蒸気が供給されて駆動される低圧側タービンと、該低圧側タービンによって駆動される第2駆動軸とを備えた蒸気タービン駆動機であって、前記高圧側タービンから排気されて前記低圧側タービンに供給される蒸気の圧力を制御する圧力制御手段を備えている。
 蒸気タービン駆動機は、高圧側タービンによって駆動される第1駆動軸と、高圧側タービンから排気された蒸気が供給されて駆動される低圧側タービンによって駆動される第2駆動軸とを採用することとし、蒸気の単一フローによって2軸化を図ることで、設置スペースの増大を招かずに2軸化を実現する。
 そして、高圧側タービンから排気されて低圧側タービンに供給される蒸気の圧力を制御する圧力制御手段を備えることとし、低圧側タービンに流入する蒸気の圧力を、高圧側タービンの運転条件に影響を受けずに設定できることとした。これにより、高圧側タービンの出力と低圧側タービンの出力を独立して制御することができる。このように、圧力制御手段を追加するという簡便な構成で2軸の独立制御が実現できる。
 なお、高圧側タービンとしては、ボイラから高圧過熱蒸気が導かれて駆動される高圧タービンを1つ備えた構成や、この高圧タービンに加えて、高圧タービンからの排気蒸気をボイラで再熱して得られた過熱蒸気によって駆動される中圧タービンを備えた構成が含まれる。
 また、蒸気タービン駆動機の各駆動軸の出力は、例えば、船舶のプロペラ駆動用に用いられてもよいし、ガスを液化するための圧縮機の動力として用いられてもよいし、あるいは、発電機の駆動用として用いられてもよい。
 さらに、前記第1の態様に係る蒸気タービン駆動機では、前記圧力制御手段は、前記高圧側タービンから排気された蒸気の一部を分岐して復水器へと導く蒸気ダンプ経路と、該蒸気ダンプ経路を流れる蒸気を減圧する減圧弁と、前記低圧側タービンへと流れる蒸気が所定圧力となるように前記減圧弁を制御する制御部とを備えている。
 高圧側タービンから排気された蒸気の一部を、蒸気ダンプ経路を介して復水器へと導くことにより、低圧側タービンへと導かれる蒸気の圧力を減じる。この際に、蒸気ダンプ経路を流れる蒸気を減圧する減圧弁を制御部によって制御し、低圧側タービンへと流れる蒸気の圧力を所定値とする。これにより、高圧側タービンの排気圧力に関わらず、低圧側タービンの入口蒸気圧を独立に制御することができる。
 さらに、前記第1の態様に係る蒸気タービン駆動機は、前記低圧側タービンには、前記高圧側タービンの排気系統とは異なる別系統から導かれる蒸気が供給される構成であってもよい。
 低圧側タービンに対して、別系統の過熱蒸気を供給することとして、低圧側タービンの出力増大を図る。これにより、高圧側タービンとは独立して出力の加減ができるので、低圧側タービンを安定して制御することができる。
 別系統から導かれる蒸気としては、例えば、ボイラ緩熱蒸気ラインから導かれるユーティリティ蒸気が挙げられる。これにより、主タービン系から独立させることができ、さらなる安定運用が期待できる。
 さらに、前記構成においては、前記低圧側タービンは、前記高圧側タービンから供給される過熱蒸気に対して並列に設けられた第1低圧タービンおよび第2低圧タービンの2つの低圧タービンから構成され、前記第1低圧タービンのみに対して、前記別系統から蒸気が供給される構成であってもよい。
 低圧側タービンを2つの低圧タービンに分け、一方の第1低圧タービンにのみに対して、別系統から蒸気を供給することとした。これにより、低圧側タービンの制御性が向上する。
 さらに、前記構成においては、前記第1低圧タービンの入口側と前記高圧側タービンの排気側とを接続する蒸気供給経路には、該第1低圧タービンから該高圧側タービン側への蒸気の逆流を防止する逆止弁が設けられている。
 第1低圧タービンに別系統からの蒸気が供給されるので、高圧側タービンから排気される過熱蒸気の圧力条件によっては(すなわち圧力制御手段の設定圧力値によっては)、別系統から供給される蒸気の圧力が相対的に大きくなり、第1低圧タービンから高圧側タービン側へと蒸気が逆流するおそれがある。そこで、この逆流を防止するために逆止弁を設けることとし、安定的な運転を実現する。
 また、本発明の第2の態様に係る船舶は、上記のいずれかに記載の蒸気タービン駆動機と、前記第1駆動軸によって回転駆動される第1プロペラと、前記第2駆動軸によって回転駆動される第2プロペラとを備えている。
 上述した蒸気タービン駆動機を用いて、2軸を独立に駆動できる蒸気タービン駆動機を用いて2つのプロペラを有する二軸船を実現することができるので、設置性およびコスト的に有利な船舶を提供することができる。
 なお、高圧側タービンおよび低圧側タービンは、前進用タービンだけでなく後進用タービンにも適用することができる。
 また、本発明の第3の態様に係るガス液化装置は、上記のいずれかに記載の蒸気タービン駆動機と、前記第1駆動軸によって回転駆動される第1圧縮機と、前記第2駆動軸によって回転駆動される第2圧縮機と、前記第1圧縮機によって圧縮された冷媒を膨張させて冷熱を得る第1冷熱出力部と、前記第2圧縮機によって圧縮された冷媒を膨張させて冷熱を得る第2冷熱出力部とを備え、前記第1冷熱出力部および前記第2冷熱出力部によって液化ガスを冷却して液化する。
 2軸を独立に駆動できる蒸気タービン駆動機を用いて、2台の圧縮機を独立に駆動し、2つの膨張サイクルを得ることで液化ガスを液化することとした。これにより、設置性およびコスト的に有利なガス液化装置を提供することができる。
 高圧側タービンから排気されて低圧側タービンに供給される過熱蒸気の圧力を制御する圧力制御手段を備えることとしたので、簡便な構成で、高圧側タービンの出力と低圧側タービンの出力を独立して制御することができる。
本発明の第1実施形態にかかる蒸気タービン駆動機を示した概略構成図である。 本発明の第2実施形態にかかる蒸気タービン駆動機を示した概略構成図である。 本発明の蒸気タービン駆動機をガス液化装置に適用した例を示した概略構成図である。 既存の一軸船からFSRUへ改造した場合に、本発明の蒸気タービン駆動機を適用した例を示した概略構成図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1を用いて説明する。
 図1には、プロペラを2つ備えた二軸船に用いられる蒸気タービン駆動機1Aが示されている。蒸気タービン駆動機1Aは、右舷機3と左舷機5を備えている。
 右舷機3は、前進用高圧タービン(高圧側タービン)7と後進用タービン9とを備えている。
 前進用高圧タービン7には、図示しない舶用ボイラから高圧過熱蒸気とされた主駆動蒸気が主蒸気配管8を介して導かれるようになっている。主蒸気配管8には、図示しない制御部によって開度制御が行われる主蒸気弁10が設けられており、これにより高圧タービン7の出力が制御されるようになっている。主蒸気弁10は、前進の時に開度調整が行われ、後進の際には全閉とされる。
 後進用タービン9には、後進時に、図示しない舶用ボイラから高圧過熱蒸気とされた主駆動蒸気が導かれるようになっている。
 前進用高圧タービン7及び後進用タービン9は、同一の第1駆動軸4上に取り付けられており、その出力は減速機20を介して減速された後に、スラスト軸受22に支持されたプロペラ軸24へと伝達される。プロペラ軸24の先端には、図示しない右舷側プロペラが取り付けられており、船舶に対して推進力を与える。
 左舷機5は、前進用第1低圧タービン(低圧側タービン)11と、前進用第2低圧タービン(低圧側タービン)13と、後進用タービン15とを備えている。これら前進用第1低圧タービン11、前進用第2低圧タービン13及び後進用タービン15は、同一の第2駆動軸14上に取り付けられており、その出力は減速機21を介して減速された後に、スラスト軸受23に支持されたプロペラ軸25へと伝達される。プロペラ軸25の先端には、図示しない左舷側プロペラが取り付けられており、船舶に対して推進力を与える。
 前進用第1低圧タービン11と後進用第2低圧タービンとは、差し向かいとなるように同軸上に設置されており、膨張プロセスが並列となっている。
 前進用高圧タービン7の排気側には、排気蒸気管27が接続され、さらにその下流側には、前進用第1低圧タービン11の蒸気入口へと接続される第1供給配管29と、前進用第2低圧タービン13の入口へと接続される第2供給配管31と、図示しない復水器へと接続される蒸気ダンプ配管(蒸気ダンプ経路)33とが接続されている。蒸気ダンプ配管33には、全閉から全開までの範囲で開度調整が可能とされた減圧弁35が設けられている。減圧弁35の開度は、図示しない制御部によって制御される。これら蒸気ダンプ配管33、減圧弁35及び減圧弁35を制御する制御部によって、各低圧タービン11,13に供給される過熱蒸気の圧力を制御する圧力制御手段が構成される。
 前進用第1低圧タービン11の蒸気入口には、低圧駆動蒸気配管37が接続されており、ボイラ緩熱蒸気ラインから導かれるユーティリティ蒸気とされた低圧駆動蒸気が供給されるようになっている。低圧駆動蒸気配管37には、図示しない制御部によって開度調整が行われる低圧駆動蒸気弁38が設けられている。したがって、前進用第1低圧タービン11は、前進用高圧タービン7から排気された蒸気に加え、低圧駆動蒸気配管37からの低圧駆動蒸気が供給されるようになっている。
 上記構成の蒸気タービン駆動機1Aは、以下のように動作する。
 舶用ボイラから高圧過熱蒸気とされた主駆動蒸気が前進用高圧タービン7に供給され、前進用高圧タービン7が回転駆動される。これにより、第1駆動軸4及び減速機20を介してプロペラ軸24が駆動され、右舷側プロペラが回転して前進推力を発生する。右舷側プロペラの出力は、主蒸気弁10の開度によって調整される。
 前進用高圧タービン7から排気された過熱蒸気は、排気蒸気管27を流れ、並列に設けられた第1供給配管29及び第2供給配管31を流れる。第1供給配管29を流れた過熱蒸気は、前進用第1低圧タービン11へと導かれ、前進用第1低圧タービン11を回転駆動する。同様に、第2供給配管31を流れた過熱蒸気は、前進用第2低圧タービン13へと導かれ、前進用第2低圧タービン13を回転駆動する。
 このように各低圧タービン11,13へ供給される過熱蒸気の圧力は、蒸気ダンプ配管33に設けた減圧弁35によって調整される。すなわち、減圧弁35の開度を大きくすることにより、蒸気ダンプ配管33を通り復水器へと導かれる蒸気量が増大するので、各低圧タービン11,13へ導かれる過熱蒸気の圧力が下がり、これとは逆に、減圧弁35の開度を小さくすることにより、蒸気ダンプ配管33を通り復水器へと導かれる蒸気量が減少するので、各低圧タービン11,13へ導かれる過熱蒸気の圧力が上がる。この減圧弁35の開度制御は、図示しない制御部によって行われ、左舷側プロペラに必要な推力に応じて調整される。
 前進用第1低圧タービン11及び前進用第2低圧タービン13が回転駆動されると、第2駆動軸14及び減速機21を介してプロペラ軸25が駆動され、左舷側プロペラが回転して前進推力を発生する。左舷側プロペラの出力は、上述したように、減圧弁35の開度によって調整される。
 左舷側プロペラの出力が不足する場合には、低圧駆動蒸気配管37から導かれる低圧駆動蒸気を前進用第1低圧タービン11へと供給する。供給される低圧駆動蒸気の圧力は、低圧駆動蒸気弁38によって制御される。
 前進用第1低圧タービン11及び前進用第2低圧タービン13を回転駆動させて仕事を終えた蒸気は、排気蒸気として復水器へと導かれる。
 後進時には、主駆動蒸気が各後進用タービン9,15へ供給され、これらタービン9,15を回転駆動する。これにより、右舷側プロペラおよび左舷側プロペラが逆方向に回転し、後進推力を発生する。各後進用タービン9.15を回転駆動させて仕事を終えた蒸気は、排気蒸気として復水器へと導かれる。
 以上の通り、本実施形態によれば、以下の作用効果を奏する。
 前進用高圧タービン7によって駆動される第1駆動軸4と、高圧タービン7から排気された蒸気が供給されて駆動される前進用第1低圧タービン11及び前進用第2低圧タービン13によって駆動される第2駆動軸14とを採用することとし、蒸気の単一フローによって2軸化を図ることで、設置スペースの増大を招かずに2軸化を実現できる。
 そして、前進用高圧タービン7から排気されて前進用第1低圧タービン11及び前進用第2低圧タービン13に供給される蒸気の圧力を制御するために、蒸気ダンプ配管33及び減圧弁35を備えることとした。これにより、前進用第1低圧タービン11及び前進用第2低圧タービン13に流入する蒸気の圧力を、前進用高圧タービン7の運転条件に影響を受けずに設定できる。したがって、前進用高圧タービン7の出力と、前進用第1低圧タービン11及び前進用第2低圧タービン13との出力を独立して制御することができる。このように、蒸気ダンプ配管33、減圧弁35及び減圧弁を制御する制御部を追加するという簡便な構成で2軸の独立制御が実現できる。
 前進用高圧タービン7の排気蒸気が導かれる第1供給配管29及び第2供給配管31とは異なる別系統の過熱蒸気供給系統として、低圧駆動蒸気配管37から低圧駆動蒸気を供給することとした。これにより、前進用高圧タービン7に導かれる主蒸気系統とは独立して、前進用第1低圧タービン11の出力増大を図ることができる。これにより、前進用第1低圧タービン11及び前進用第2低圧タービン13によって駆動される左舷機5を安定して制御することができる。
 また、低圧側タービンを2つの低圧タービン(前進用第1低圧タービン11及び前進用第2低圧タービン13)に分け、一方の前進用第1低圧タービン11にのみに対して、低圧駆動蒸気配管37から蒸気を供給することとした。これにより、低圧側タービン(前進用第1低圧タービン11及び前進用第2低圧タービン13)の制御性が向上する。
[第2実施形態]
 次に、本発明の第2実施形態について、図2を用いて説明する。本実施形態は、第1実施形態の構成をさらに発展させたものである。したがって、第1実施形態と同様の構成については同一符号を付し、その説明を省略する。
 本実施形態の蒸気タービン駆動機1Bの右舷機3には、前進用高圧タービン7と同じ第1駆動軸4に取り付けられた前進用中圧タービン40が設けられている。これら前進用高圧タービン7及び前進用中圧タービン40によって、高圧側タービンが構成されている。前進用中圧タービン40は、前進用高圧タービン7からの排気蒸気を再熱器42により再加熱して得られた過熱蒸気によって駆動される。具体的には、高圧タービン7の排気側の排気蒸気管27からバイパス配管44が分岐され、このバイパス配管44によって一部の排気蒸気が再熱器42に導かれて再加熱され、再熱蒸気供給管46によって前進用中圧タービン40へと再熱蒸気が導かれる。再熱器42へとバイパスされる蒸気流量は、前進用高圧タービン7側の排気蒸気管27に設けたバイパス弁49の開度調整によって決定される。バイパス弁49の開度は、第1制御部52に与えられた所定の関数に基づいて制御される。例えば、符号52で示した図形に示されているように、前進回転数(RPM(AHEAD))が低い場合はバイパス弁49の開度を大きくして再熱器42側にバイパスする蒸気流量を減少させ、前進回転数が高い場合はバイパス弁49の開度を小さくして再熱器42側にバイパスする蒸気流量を増大させる。なお、再熱器42は、一般的に、図示しない舶用ボイラの一部として構成される。
 第1制御部52は、主蒸気弁10も制御する。例えば、符号22で示した図形に示されているように、前進回転数(RPM(AHEAD))の回転数の増大に応じて開度が大きくなるように、すなわちスロットルを与えるようになっている。
 前進用中圧タービン40から排気された過熱蒸気は、排気蒸気管48を通り、合流点50にて前進用高圧タービン7から導かれた排気蒸気と合流する。合流した後の合流排気蒸気管54から、蒸気ダンプ配管33へ分岐し、さらに、並列に接続された第1供給配管29及び第2供給配管31へと分岐する点は第1実施形態と同様である。
 合流排気蒸気管54には、蒸気ダンプ配管33に設けた減圧弁35によって減圧された蒸気圧力を計測するための圧力センサ56が設けられている。この圧力センサ56も、本発明の圧力制御手段の一部を構成する。圧力センサ56によって計測された計測圧力値PVは、第2制御部58へと送られる。第2制御部58では、外部から与えられた設定圧力値SVと計測圧力値PVとを比較し、設定圧力値SVとなるように例えばPID制御によって減圧弁35に指令値OPを出力する。減圧弁35は、この指令値OPに基づいて、その開度が制御される。
 減圧弁35を通過して減圧された後のダンプ蒸気は、復水器60へと導かれる。
 以上のように圧力制御された後の過熱蒸気が、第1供給配管29及び第2供給配管31を介して、それぞれ、前進用第1低圧タービン11及び前進用第2低圧タービン13へと導かれる。この点は、第1実施形態と同様である。ただし、本実施形態では、第1供給配管29に逆止弁62が設けられている。この逆止弁62は、前進用第1低圧タービン11から高圧側タービン側(前進用高圧タービン7及び前進用中圧タービン40)への蒸気の逆流を防止するものである。
 前進用第1低圧タービン11及び前進用第2低圧タービン13にて仕事を終えた蒸気は、復水器60へと導かれる。
 低圧駆動蒸気配管37には、ユーティリティ蒸気圧力を一定に制御する減圧弁64が設けられている。減圧弁64を通過した低圧駆動蒸気は、分岐点66にて分岐した後に低圧駆動蒸気弁38へと導かれる。低圧駆動蒸気弁38は、第3制御部68によって、その開度が制御される。具体的には、前進回転数(RPM(AHEAD))が増大するに従い、その開度が増大するようになっている。これにより、低圧側タービン(前進用第1低圧タービン11及び前進用第2低圧タービン13)の出力不足を主蒸気とは独立して補うようになっている。低圧駆動蒸気弁38は、前進の際には上述のように開度制御されるが、後進の際には全閉とされる。
 さらに、本実施形態では、第1実施形態では共に主蒸気によって駆動されていた後進用タービン9,15に代えて、右舷側の高圧後進タービン70と、この高圧後進タービン70の排気蒸気によって駆動される低圧後進タービン72とを採用している。
 高圧後進タービン70は、主蒸気配管8から分岐した後進用主蒸気配管74から導かれた主蒸気によって回転駆動される。
 後進用主蒸気配管74には、主蒸気弁76が設けられており、第4制御部78によって、その開度が制御される。主蒸気弁76は、後進の際に開度制御が行われ、前進の際には全閉とされる。
 高圧後進タービン70から排気された過熱蒸気は、後進用の排気蒸気管78を通り、蒸気ダンプ配管80へと分岐する。蒸気ダンプ配管80には、減圧弁82が設けられている。
 後進用の排気蒸気管78には、減圧弁82によって減圧された蒸気圧力を計測するための圧力センサ84が設けられている。圧力センサ84によって計測された計測圧力値PVは、第5制御部86へと送られる。第5制御部86では、外部から与えられた設定圧力値SVと計測圧力値PVとを比較し、設定圧力値SVとなるように例えばPID制御によって減圧弁82に指令値OPを出力する。減圧弁82は、この指令値OPに基づいて、その開度が制御される。
 このように、後進用の蒸気ダンプ配管80、減圧弁82、圧力センサ84及び第5制御部86は、本発明の圧力制御手段を構成する。
 減圧弁82を通過して減圧された後のダンプ蒸気は、復水器60へと導かれる。
 蒸気ダンプ配管80へと分岐せずに後進用の排気蒸気管78を流れた過熱蒸気は、供給配管88を通過して、低圧後進タービン72へと導かれる。排気蒸気管78には、低圧蒸気弁90が設けられている。この低圧蒸気弁90は、第6制御部92によって、その開度が制御されるようになっている。例えば、符号92で示した図形に示されているように、後進回転数(RPM(ASTERN))の回転数の増大に応じて開度が大きくなるように、すなわちスロットルを与えるようになっている。
 低圧駆動蒸気配管37の分岐点66から分岐して、合流点94にて後進用の供給配管88に合流する後進用の低圧駆動蒸気管96が設けられている。この低圧駆動蒸気管96には、後進用の低圧駆動蒸気弁98が設けられている。低圧駆動蒸気弁98は、第6制御部92によって、その開度が制御される。例えば、符号92で示した図形に示されているように、後進回転数(RPM(ASTERN))の回転数が低い場合は全閉とされ、所定の回転数を超えた場合に、出力増大を図るように開度が漸次増大するようになっている。
 なお、後進用の低圧蒸気弁90及び低圧駆動蒸気弁98は、前進の際には全閉とされる。
 上記構成の蒸気タービン駆動機1Bは、以下のように動作する。
 前進の際には、後進用の主蒸気弁76、低圧蒸気弁90及び低圧駆動蒸気弁98は、全閉とされる。
 そして、舶用ボイラから高圧過熱蒸気とされた主駆動蒸気が前進用高圧タービン7に供給され、前進用高圧タービン7が回転駆動される。これにより、第1駆動軸4及び減速機20を介してプロペラ軸24が駆動され、右舷側プロペラが回転して前進推力を発生する。右舷側プロペラの出力は、第1制御部52によって制御される主蒸気弁10の開度によって調整される。
 前進用高圧タービン7から排気された過熱蒸気は、排気蒸気管27を流れ、第1制御部52によって制御されるバイパス弁49の開度に応じて、一部がバイパス配管44へと分岐され、残部が排気蒸気管27の下流側へと流れる。バイパス配管44を流れた過熱蒸気は、再熱器42にて再加熱されて再熱蒸気となり、再熱蒸気供給管46を通り前進用中圧タービン40へと導かれる。前進用中圧タービン40を回転駆動させて仕事を終えた過熱蒸気は、排気蒸気管48を通り、合流点50にて前進用高圧タービン7から導かれた排気蒸気と合流する。そして、過熱蒸気は、並列に設けられた第1供給配管29及び第2供給配管31を流れる。第1供給配管29及び逆止弁29を流れた過熱蒸気は、前進用第1低圧タービン11へと導かれ、前進用第1低圧タービン11を回転駆動する。同様に、第2供給配管31を流れた過熱蒸気は、前進用第2低圧タービン13へと導かれ、前進用第2低圧タービン13を回転駆動する。
 このように各低圧タービン11,13へ供給される過熱蒸気の圧力は、蒸気ダンプ配管33に設けた減圧弁35によって調整される。すなわち、圧力センサ56の計測圧力値PVに基づいて制御する第2制御部58によって、設定圧力値SVとなるように減圧弁35の開度が調整される。具体的には、減圧弁35の開度を大きくすることにより、蒸気ダンプ配管33を通り復水器60へと導かれる蒸気量が増大するので、各低圧タービン11,13へ導かれる過熱蒸気の圧力が下がり、これとは逆に、減圧弁35の開度を小さくすることにより、蒸気ダンプ配管33を通り復水器へと導かれる蒸気量が減少するので、各低圧タービン11,13へ導かれる過熱蒸気の圧力が上がる。ここで、第2制御部58に与える設定圧力値SVは、可変としておき、無駄に蒸気をダンプしないようにしておくことが好ましい。
 前進用第1低圧タービン11及び前進用第2低圧タービン13が回転駆動されると、第2駆動軸14及び減速機21を介してプロペラ軸25が駆動され、左舷側プロペラが回転して前進推力を発生する。左舷側プロペラの出力は、上述したように、減圧弁35の開度によって調整される。
 左舷側プロペラの出力が不足する場合には、低圧駆動蒸気配管37から導かれる低圧駆動蒸気を前進用第1低圧タービン11へと供給する。供給される低圧駆動蒸気の圧力は、第3制御部68によって制御される低圧駆動蒸気弁38によって調整される。
 前進用第1低圧タービン11及び前進用第2低圧タービン13を回転駆動させて仕事を終えた蒸気は、排気蒸気として復水器60へと導かれる。
 後進時には、前進用の主蒸気弁10、低圧駆動蒸気弁38が全閉とされる。
 後進時は、前進時と同様の動作を行うので、その説明を省略する。すなわち、主駆動蒸気によって高圧後進タービン70が駆動され、高圧後進タービン70の排気蒸気によって低圧後進タービン72が駆動される点や、蒸気ダンプ配管80、減圧弁83、圧力センサ84及び第5制御部86によって圧力制御する点、低圧駆動蒸気弁98によって調整された低圧駆動蒸気によって低圧後進タービン72がアシスト駆動される点は、前進の場合の同様である。
 以上の通り、本実施形態によれば、以下の作用効果を奏する。
 前進用高圧タービン7及び前進用中圧タービン40によって駆動される第1駆動軸4と、高圧タービン7から排気された蒸気が供給されて駆動される前進用第1低圧タービン11及び前進用第2低圧タービン13によって駆動される第2駆動軸14とを採用することとし、蒸気の単一フローによって2軸化を図ることで、設置スペースの増大を招かずに2軸化を実現できる。
 そして、前進用高圧タービン7及び前進用中圧タービン40から排気されて前進用第1低圧タービン11及び前進用第2低圧タービン13に供給される蒸気の圧力を制御するために、蒸気ダンプ配管33及び減圧弁35を備えることとした。これにより、前進用第1低圧タービン11及び前進用第2低圧タービン13に流入する蒸気の圧力を、前進用高圧タービン7の運転条件に影響を受けずに設定できる。したがって、前進用高圧タービン7の出力と、前進用第1低圧タービン11及び前進用第2低圧タービン13との出力を独立して制御することができる。このように、蒸気ダンプ配管33、減圧弁35及び減圧弁を制御する制御部を追加するという簡便な構成で2軸の独立制御が実現できる。
 また、後進タービン70,72についても前進用と同様に、低圧後進タービン72に供給される蒸気の圧力を制御するために、蒸気ダンプ配管80及び減圧弁82を備えることとし、前進用と同様の作用効果を得るようにした。
 前進用高圧タービン7及び前進用中圧タービン40の排気蒸気が導かれる第1供給配管29及び第2供給配管31とは異なる別系統の過熱蒸気供給系統として、低圧駆動蒸気配管37から低圧駆動蒸気を供給することとした。これにより、前進用高圧タービン7及び前進用中圧タービン40に導かれる主蒸気系統とは独立して、前進用第1低圧タービン11の出力増大を図ることができる。これにより、前進用第1低圧タービン11及び前進用第2低圧タービン13によって駆動される左舷機5を安定して制御することができる。
 また、低圧側タービンを2つの低圧タービン(前進用第1低圧タービン11及び前進用第2低圧タービン13)に分け、一方の前進用第1低圧タービン11にのみに対して、低圧駆動蒸気配管37から蒸気を供給することとした。これにより、低圧側タービン(前進用第1低圧タービン11及び前進用第2低圧タービン13)の制御性が向上する。
 さらに、第1低圧タービン11に供給される低圧駆動蒸気が、高圧側タービン7,40から排気される過熱蒸気の圧力条件によっては(すなわち第2制御部58の設定圧力値SVによっては)、低圧駆動蒸気の圧力が相対的に大きくなり、第1低圧タービン11から高圧側タービン7,40側へと蒸気が逆流するおそれがあるので、第1供給配管29に逆止弁62を設けることとした。これにより、安定的な運転が実現される。
[第3実施形態]
 次に本発明の第3実施形態について、図3を用いて説明する。第1実施形態及び第2実施形態では、蒸気タービン駆動機1A,1Bを二軸船へ適用することを前提としたが、本実施形態は、蒸気タービン駆動機の他の用途として、ガス液化装置100について示している。
 ガス液化装置100は、例えばLNG(液化天然ガス)等の液化ガスの原料となる天然ガス(NG)を冷却して液化するものである。ガス液化装置100は、上述した蒸気タービン駆動機1A,1Bを、冷凍サイクルを構成する圧縮機の駆動源とする。なお、同図において、蒸気タービン駆動機1A,1Bが概略的に示されているが、高圧側タービン102、低圧側タービン103、圧力制御手段(図示せず)、低圧駆動蒸気によるアシスト駆動(図示せず)、第1駆動軸105及び第2駆動軸107については、第1実施形態及び第2実施形態と同様の構成とされている。
 ガス液化装置100は、第1駆動軸105によって回転駆動される第1圧縮機109と、第2駆動軸107によって回転駆動される第2圧縮機111とを備えている。各圧縮機109,111は、それぞれ、駆動軸105,107によって回転駆動される同軸上に設けられた二段圧縮部を備えており、圧縮後の冷媒(例えば窒素)は、図示しない冷凍サイクルへと導かれる。
 図示しない冷凍サイクルでは、第1圧縮機109によって圧縮された冷媒を膨張させて冷熱を得る第1冷熱出力部と、第2圧縮機111によって圧縮された冷媒を膨張させて冷熱を得る第2冷熱出力部とが設けられている(いわゆるダブルエクスパンジョンサイクル(double expansion cycle))。そして、第1冷熱出力部および第2冷熱出力部によって、LNGの原料となる天然ガスなどが冷却されて液化されるようになっている。
 本実施形態のように、2つの膨張部を有する冷凍サイクルを実現するために、2軸を独立して制御することができる蒸気タービン駆動機1A,1Bを適用することで、設置性およびコスト的に有利なガス液化装置を提供することができる。また、各駆動軸を独立に制御できるので、一方の圧縮機を高圧用、他方の圧縮機を低圧用とすることができ、高効率な液化を実現することができる。
[第4実施形態]
 次に本発明の第4実施形態について、図4を用いて説明する。第1実施形態及び第2実施形態では、蒸気タービン駆動機1A,1Bを二軸船へ適用することを前提としたが、本実施形態は、蒸気タービン駆動機の他の用途として、船舶の推進装置として用いられた蒸気タービン駆動機を、発電用の駆動機として変換する例を示したものである。
 既存の1軸の蒸気タービン船には、蒸気タービン駆動機の出力先、すなわち各駆動軸205,207の出力側に、減速機、プロペラ軸等で構成される出力機構部201が設けられている。このような蒸気タービン船を、FSRU(Floating Storage and Regasification
Unit)のような推進器を必要としない浮体に変更する場合、出力機構部201が不要となる。
 そこで、本実施形態では、出力機構部201を取り外し、第1実施形態及び第2実施形態と同様の蒸気タービン駆動機1A,1Bに改造する。具体的には、既存の高圧側タービン202と低圧側タービン203との間に、蒸気ダンプ配管33、減圧弁35等の圧力制御手段と、ユーティリティ蒸気等の低圧駆動蒸気を導くための低圧駆動蒸気配管37や低圧駆動蒸気弁38等のアシスト駆動系とを追設する。そして、第1駆動軸205及び第2駆動軸207のそれぞれに対して、これらの回転を得て駆動される第1発電機209及び第2発電機211を接続する。
 本実施形態のように、既存の1軸の蒸気タービン船をFSRUのような浮体に変更する場合であっても、既存の推進装置を改造して発電機の駆動用として用いることができる。また、蒸気タービン駆動機1A,1Bは、各駆動軸205,207が独立して制御することができるので、各発電機209,211の発電量を任意に調整することができ、電力需要に対して柔軟に対応することができる。
1A,1B 蒸気タービン駆動機
4 第1駆動軸
7 前進用高圧タービン(高圧側タービン)
11 前進用第1低圧タービン(低圧側タービン)
13 前進用第2低圧タービン(低圧側タービン)
14 第2駆動軸
33,80 蒸気ダンプ配管(圧力制御手段)
35,82 減圧弁(圧力制御手段)
37 低圧駆動蒸気配管
56,84 圧力センサ(圧力制御手段)
58 第2制御部(圧力制御手段)
62 逆止弁
86 第5制御部(圧力制御手段)

Claims (7)

  1.  蒸気が供給されて駆動される高圧側タービンと、
     該高圧側タービンによって駆動される第1駆動軸と、
     前記高圧タービンから排気された蒸気が供給されて駆動される低圧側タービンと、
     該低圧側タービンによって駆動される第2駆動軸と、
    を備えた蒸気タービン駆動機であって、
     前記高圧側タービンから排気されて前記低圧側タービンに供給される蒸気の圧力を制御する圧力制御手段を備えている蒸気タービン駆動機。
  2.  前記圧力制御手段は、
     前記高圧側タービンから排気された蒸気の一部を分岐して復水器へと導く蒸気ダンプ経路と、
     該蒸気ダンプ経路を流れる蒸気を減圧する減圧弁と、
     前記低圧側タービンへと流れる蒸気が所定圧力となるように前記減圧弁を制御する制御部と、
    を備えている請求項1に記載の蒸気タービン駆動機。
  3.  前記低圧側タービンには、前記高圧側タービンの排気系統とは異なる別系統から導かれる蒸気が供給される請求項1又は2に記載の蒸気タービン駆動機。
  4.  前記低圧側タービンは、前記高圧側タービンから供給される過熱蒸気に対して並列に設けられた第1低圧タービンおよび第2低圧タービンの2つの低圧タービンから構成され、
     前記第1低圧タービンのみに対して、前記別系統から蒸気が供給される請求項3に記載の蒸気タービン駆動機。
  5.  前記第1低圧タービンの入口側と前記高圧側タービンの排気側とを接続する蒸気供給経路には、該第1低圧タービンから該高圧側タービン側への蒸気の逆流を防止する逆止弁が設けられている請求項4に記載の蒸気タービン駆動機。
  6.  請求項1から5のいずれかに記載の蒸気タービン駆動機と、
     前記第1駆動軸によって回転駆動される第1プロペラと、
     前記第2駆動軸によって回転駆動される第2プロペラと、
    を備えている船舶。
  7.  請求項1から5のいずれかに記載の蒸気タービン駆動機と、
     前記第1駆動軸によって回転駆動される第1圧縮機と、
     前記第2駆動軸によって回転駆動される第2圧縮機と、
     前記第1圧縮機によって圧縮された冷媒を膨張させて冷熱を得る第1冷熱出力部と、
     前記第2圧縮機によって圧縮された冷媒を膨張させて冷熱を得る第2冷熱出力部と、
    を備え、
     前記第1冷熱出力部および前記第2冷熱出力部によってガスを冷却して液化するガス液化装置。
PCT/JP2012/053017 2011-02-25 2012-02-09 蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置 WO2012114892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12749246.0A EP2679483B1 (en) 2011-02-25 2012-02-09 Steam turbine driving machine, and ship and gas liquefaction apparatus each equipped with steam turbine driving machine
KR1020137021871A KR101624017B1 (ko) 2011-02-25 2012-02-09 증기 터빈 구동기, 그리고, 증기 터빈 구동기를 구비한 선박 및 가스 액화 장치
CN201280009689.3A CN103380056B (zh) 2011-02-25 2012-02-09 蒸汽涡轮驱动机、以及具备蒸汽涡轮驱动机的船舶及气体液化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-040717 2011-02-25
JP2011040717A JP5818459B2 (ja) 2011-02-25 2011-02-25 蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置

Publications (1)

Publication Number Publication Date
WO2012114892A1 true WO2012114892A1 (ja) 2012-08-30

Family

ID=46720677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053017 WO2012114892A1 (ja) 2011-02-25 2012-02-09 蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置

Country Status (5)

Country Link
EP (1) EP2679483B1 (ja)
JP (1) JP5818459B2 (ja)
KR (1) KR101624017B1 (ja)
CN (1) CN103380056B (ja)
WO (1) WO2012114892A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415997B2 (ja) * 2015-01-23 2018-10-31 三菱重工業株式会社 船舶の統合制御装置、それを備えた船舶、及び統合制御方法並びにプログラム
KR200488336Y1 (ko) 2017-01-04 2019-01-15 한전케이피에스 주식회사 저압터빈의 구동기 커플링용 분해 조립 작업대
JP7316068B2 (ja) * 2019-03-15 2023-07-27 三菱重工マリンマシナリ株式会社 浮体式設備及び浮体式設備の製造方法
CN113006885A (zh) * 2021-03-23 2021-06-22 攀钢集团西昌钢钒有限公司 一种汽轮发电机组定压运行控制方法
CN114993067B (zh) * 2022-07-28 2022-10-14 中国船舶重工集团公司第七一九研究所 一种船用防摇摆水箱及其参数设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361483B2 (ja) * 1983-04-15 1988-11-29
JP2006017007A (ja) 2004-06-30 2006-01-19 Mitsubishi Heavy Ind Ltd 舶用蒸気タービンプラント
JP2007223358A (ja) * 2006-02-21 2007-09-06 Mitsubishi Heavy Ind Ltd 舶用推進プラントおよびこれを備えた船舶ならびに舶用推進プラントの制御方法
JP2009056868A (ja) 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd 蒸気タービン船
JP2010209858A (ja) * 2009-03-11 2010-09-24 Toshiba Corp 蒸気タービン装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912924B2 (ja) * 1977-09-27 1984-03-27 重基 大谷 蒸気循環装置
EP0379930B1 (en) * 1989-01-26 1993-05-26 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
JPH0446892A (ja) * 1990-06-12 1992-02-17 Mitsubishi Heavy Ind Ltd Lng運搬船の推進装置
US7195443B2 (en) * 2004-12-27 2007-03-27 General Electric Company Variable pressure-controlled cooling scheme and thrust control arrangements for a steam turbine
DE102006040857B4 (de) * 2006-08-31 2008-11-20 Siemens Ag Verfahren zum Betrieb eines Schiffes sowie Schiff mit einem Antriebssystem mit Abwärmerückgewinnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361483B2 (ja) * 1983-04-15 1988-11-29
JP2006017007A (ja) 2004-06-30 2006-01-19 Mitsubishi Heavy Ind Ltd 舶用蒸気タービンプラント
JP2007223358A (ja) * 2006-02-21 2007-09-06 Mitsubishi Heavy Ind Ltd 舶用推進プラントおよびこれを備えた船舶ならびに舶用推進プラントの制御方法
JP2009056868A (ja) 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd 蒸気タービン船
JP2010209858A (ja) * 2009-03-11 2010-09-24 Toshiba Corp 蒸気タービン装置

Also Published As

Publication number Publication date
EP2679483A4 (en) 2017-05-17
EP2679483B1 (en) 2019-04-10
KR101624017B1 (ko) 2016-05-24
KR20130106889A (ko) 2013-09-30
JP2012176691A (ja) 2012-09-13
EP2679483A1 (en) 2014-01-01
CN103380056A (zh) 2013-10-30
JP5818459B2 (ja) 2015-11-18
CN103380056B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5173639B2 (ja) 天然ガス処理設備および液化天然ガス運搬船
JP5818459B2 (ja) 蒸気タービン駆動機、並びに、蒸気タービン駆動機を備えた船舶及びガス液化装置
US11644234B2 (en) Systems and methods for using multiple cryogenic hydraulic turbines
US9488102B2 (en) Gas turbines in mechanical drive applications and operating methods
JP7316068B2 (ja) 浮体式設備及び浮体式設備の製造方法
US10975733B2 (en) Compressor driven by ORC waste heat recovery unit and control method
JP4801465B2 (ja) 舶用推進プラントおよびこれを備えた船舶ならびに舶用推進プラントの制御方法
KR20190062103A (ko) 초임계 이산화탄소 발전 시스템
JP4976426B2 (ja) 冷凍サイクル系統、天然ガス液化設備、及び冷凍サイクル系統の改造方法
JP4934720B2 (ja) 天然ガス液化プラント及びその電力供給システム、制御装置、運用方法
EP2460983B1 (en) Steam-driven power plant
KR20160091240A (ko) 선박의 통합 제어 장치, 그것을 구비한 선박, 및 통합 제어 방법 그리고 프로그램
JP7496740B2 (ja) 冷熱回収システム
JP2014001677A (ja) 原動機システム
JP2013142357A (ja) コンバインドサイクル発電プラント
JP5513830B2 (ja) 舶用推進プラント
JP2014118047A (ja) Lng船の蒸気ライン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280009689.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021871

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012749246

Country of ref document: EP