WO2012114835A1 - 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料 - Google Patents

水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料 Download PDF

Info

Publication number
WO2012114835A1
WO2012114835A1 PCT/JP2012/052139 JP2012052139W WO2012114835A1 WO 2012114835 A1 WO2012114835 A1 WO 2012114835A1 JP 2012052139 W JP2012052139 W JP 2012052139W WO 2012114835 A1 WO2012114835 A1 WO 2012114835A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
aqueous
liquid composition
coating film
aqueous liquid
Prior art date
Application number
PCT/JP2012/052139
Other languages
English (en)
French (fr)
Inventor
義彦 飯島
孝三郎 林
洋介 一宮
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to CN2012800103365A priority Critical patent/CN103384697A/zh
Priority to EP12749610.7A priority patent/EP2679625B1/en
Priority to JP2013500932A priority patent/JP5642869B2/ja
Priority to KR1020137024472A priority patent/KR101593767B1/ko
Publication of WO2012114835A1 publication Critical patent/WO2012114835A1/ja
Priority to US13/956,894 priority patent/US9725606B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31634Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31703Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic
    • Y10T428/31982Wood or paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • the present invention relates to an aqueous liquid composition having a low environmental load. More specifically, an aqueous liquid composition and an aqueous coating liquid that can form a functional coating film useful in various industrial fields, a functional coating film formed by the aqueous coating liquid, and the functional coating film.
  • the present invention relates to a composite material in which a film and a base material are integrated.
  • a liquid composition such as a solution, slurry or paste (hereinafter, collectively referred to as “slurry”) having various functions is used as a functional coating liquid, and this functional coating liquid is applied.
  • slurry a liquid composition
  • Attempts have been made to utilize various functions of the coating film.
  • Such attempts have been made in various fields such as paints, inks, coating agents, magnetic materials, ceramics, building materials, adhesives, liquid crystal color filters, pharmaceuticals, electronic materials, and power storage devices.
  • a paste-like conductive coating liquid composed of a conductive material, a binder resin, a curing agent, a solvent, and the like is used as a conductive adhesive, a conductive paint, a conductive ink, and the like (Non-Patent Document 1).
  • a magnetic paint in which submicron-sized magnetic particles are uniformly dispersed in a polymer solution is applied to a base film such as polyester. It is produced by.
  • an electrode of a lithium ion secondary battery is manufactured by applying a slurry prepared by mixing an active material, a conductive material, and a binder (binder) to a current collector foil and drying it (non-patent document). 2).
  • the formed coating film needs to have fastness and high adhesion to the substrate.
  • the solvent (dispersion medium) for the coating liquid a non-aqueous (organic solvent) solvent that exhibits high affinity for the substrate and is easy to dry is overwhelmingly advantageous and widely used in practice. Has been.
  • organic solvents are generally highly volatile. For this reason, not only the burden on the environment is large, but also genotoxicity must be taken into consideration, and there are still problems in safety and workability. In recent years, awareness of environmental protection and health damage prevention has increased in many industrial fields. For this reason, with respect to the use of organic solvents having the above-mentioned problems, there are increasing demands for VOC reduction and solvent-free, and there is a demand for conversion to products that are friendly to the environment and people.
  • a dispersant When attempting to disperse and stabilize the filler in the aqueous slurry, various methods such as the use of a dispersant, surface treatment of the filler, microencapsulation, ultrasonic treatment, and introduction of a polar group into the polymer can be considered. Of these methods, the use of a dispersant is advantageous in view of simplification of the manufacturing process and coating system, and cost.
  • the dispersant used in the aqueous slurry include polycarboxylic acid salts and phosphate amine salts (Non-patent Document 3) used in the paint field, polyacrylic acid amide (Non-patent Document 4) as a polymer dispersant, and the like. Can be considered.
  • the dispersant is preferably an environmentally friendly natural product-based substance.
  • the proposal (patent document 1) about using carboxymethylcellulose as an aqueous dispersing agent is made at the time of manufacture of the electrode of a nonaqueous electrolyte secondary battery.
  • carboxymethylcellulose leaves room for improvement in its dispersion effect.
  • the utilization technique of the natural polymer which can express the adhesiveness which is the same as the case where a petroleum-type binder resin is used, although it is a natural polymer which is a biological material is desired.
  • a coating solution for a power storage device electrode plate such as a secondary battery or a capacitor, which has been growing particularly recently, can be considered.
  • the electrode plate is an electrode member that unites unit members such as an electrode layer and a current collector and greatly affects the performance of the power storage device. For this reason, it has been proposed to increase the area of the thin electrode plate in order to extend the charge / discharge cycle life of the power storage device and increase the energy density.
  • a paste-like coating liquid obtained by dispersing or dissolving positive electrode active material powders such as metal oxides, sulfides, and halides, conductive materials, and binders in an appropriate solvent is used as a metal foil such as aluminum.
  • Patent Documents 2 and 3 describe positive electrode plates obtained by coating the surface of a current collector made of the above and forming a coating film layer.
  • the negative electrode plate of the battery and the polarizable electrode plate of the capacitor are prepared by mixing a paste-like coating liquid obtained by mixing an active material such as a carbonaceous material and a binder dissolved in an appropriate solvent. It is obtained by applying to a current collector and forming a coating film layer.
  • the binder used in the preparation of the coating solution is electrochemically stable with respect to the non-aqueous electrolyte, does not elute into the battery or capacitor electrolyte, does not swell significantly with the electrolyte, and can be used in any solvent. It must be dissolved.
  • the formed protective film has excellent adhesion to the metal surface, but has a problem of insufficient durability against organic solvents.
  • the coating film layer of the electrode plate of the battery or capacitor obtained by applying the paste-like coating liquid to the current collector has a problem that the adhesion and flexibility to the current collector are insufficient. There is. Moreover, the contact resistance with respect to a collector is large, and when a battery or a capacitor is assembled or charged and discharged, the coating film layer may be peeled off, dropped or cracked.
  • JP 2009-238720 A JP 63-10456 A JP-A-3-285262
  • the object of the present invention includes an inexpensive material with a low environmental load, maintains an appropriate viscosity even after long-term storage, and has excellent adhesion, durability, solvent resistance, and water resistance to a substrate. Another object is to provide an aqueous liquid composition capable of forming a functional coating film capable of exhibiting various functions including conductivity and hydrophilicity, and an aqueous coating liquid.
  • the purpose of the present invention is to provide a functional coating that has excellent adhesion to a substrate, durability, solvent resistance, and water resistance, and can exhibit various functions including conductivity and hydrophilicity. It is in providing a film
  • the object of the present invention is a composite in which a functional coating film having durability, solvent resistance, and water resistance, and capable of exhibiting various functions including conductivity and hydrophilicity is in close contact with the substrate. To provide materials.
  • Another object of the present invention is to provide an electrode plate member and an electrode plate in which a conductive coating film having excellent durability and solvent resistance is in close contact with a current collector, and the electrode plate. It is an object of the present invention to provide a power storage device having characteristics such as a large discharge capacity or a low internal resistance.
  • an aqueous liquid composition containing an aqueous medium containing water, chitosan and / or a chitosan derivative, and a polymer acid and having a pH of 4.5 or less is provided.
  • polyvinyl alcohol is composed of carboxyl group-modified polyvinyl alcohol, carbonyl group-modified polyvinyl alcohol, silanol group-modified polyvinyl alcohol, amino group-modified polyvinyl alcohol, cation-modified polyvinyl alcohol, sulfonic acid group-modified polyvinyl alcohol, and acetoacetyl group-modified polyvinyl alcohol It is preferable that it is at least one kind selected.
  • chitosan derivative is preferably at least one selected from the group consisting of hydroxyalkyl chitosan, carboxyalkyl chitosan, and carboxyacyl chitosan.
  • the polymer acid is preferably a homopolymer of a carboxyl group-containing vinyl monomer and / or a copolymer of a carboxyl group-containing vinyl monomer and a carboxyl group-free vinyl monomer; the polymer acid is polyacrylic acid, polyitacon It is preferably at least one selected from the group consisting of acids and polymaleic acid.
  • the conductive material is selected from the group consisting of acetylene black, ketjen black, graphite, furnace black, single-walled or multi-walled carbon nanofibers, and single-walled or multi-walled carbon nanotubes It is preferable that it is at least one kind.
  • an aqueous coating liquid containing the above aqueous liquid composition is provided. Furthermore, according to this invention, the functional coating film formed with the said aqueous coating liquid is provided. It is preferable that the surface resistivity of the functional coating film measured by JIS K7194 is 3,000 ⁇ / ⁇ or less.
  • a method for forming a functional coating film including a step of heating the aqueous coating solution to 80 ° C. or higher.
  • positioned integrally on the said base material is provided.
  • the substrate is preferably at least one selected from the group consisting of metal, glass, natural resin, synthetic resin, ceramics, wood, paper, fiber, nonwoven fabric, woven fabric, and leather; the substrate is aluminum, It is preferably at least one selected from the group consisting of copper, nickel, and stainless steel.
  • a current collector and a conductive coating film disposed on the surface of the current collector are provided, and the conductive coating film is applied to the surface of the current collector.
  • An electrode plate member is provided which is formed by heat-treating the aqueous liquid composition described above.
  • the current collector is preferably a current collector for a non-aqueous electrolyte secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
  • an electrode plate comprising the above-mentioned electrode plate member and an active material layer disposed on the surface of the conductive coating film. Furthermore, according to this invention, an electrical storage apparatus provided with the said electrode plate is provided.
  • This power storage device is suitable as a non-aqueous electrolyte secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
  • the aqueous liquid composition and the aqueous coating liquid of the present invention contain an inexpensive material with a low environmental load, and maintain an appropriate viscosity even when stored for a long period of time. In addition, it has excellent adhesion to substrates, durability, solvent resistance, and water resistance, as well as functions such as conductivity, hydrophilicity, stain resistance, antifungal / antibacterial properties, deodorant properties, and processability. A functional coating film that can be exhibited can be formed.
  • the aqueous liquid composition and the aqueous coating liquid of the present invention are well-dispersed even when a filler such as a conductive material is contained, and sedimentation separation hardly occurs. Furthermore, the aqueous liquid composition and aqueous coating liquid of the present invention are expected to be used in various fields such as batteries, electronic material paints, inks, toners, rubber / plastics, ceramics, magnetic materials, adhesives, and liquid crystal color filters. it can.
  • the functional coating film of the present invention has excellent adhesion, durability, solvent resistance, and water resistance to the base material, as well as conductivity, hydrophilicity, stain resistance, antifungal / antibacterial properties, and deodorant properties. And can exhibit functions such as workability.
  • the functional coating film of the present invention is a conductive coating film that has high adhesion to the current collector and the electrode layer, is excellent in electrolyte resistance, and has improved contact resistance with the current collector. Can do.
  • the electrode plate member and the electrode plate of the present invention are excellent in durability and solvent resistance, and a conductive coating film having good conductivity is in close contact with the current collector.
  • the electrode plate member and the electrode plate of the present invention are used, the discharge capacity is large or the internal resistance is low, such as a non-aqueous electrolyte secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
  • a high-performance power storage device can be provided.
  • the aqueous liquid composition of the present invention contains an aqueous medium containing water, chitosan and / or a chitosan derivative (hereinafter also referred to as “chitosans”), and a polymer acid, and has a pH of 4.5 or less. While containing these components and having a predetermined pH, it is possible to suppress sedimentation and separation of fillers such as conductive materials that may be further contained, and to ensure high hydrophilicity. is there.
  • the aqueous liquid composition of the present invention contains a chitosan having a binding ability and dispersion ability for a filler such as a conductive material, a hydrophilic function, and the like, and a polymer acid, so that the binding property and dispersion to the filler are reduced.
  • the environmental performance is excellent while maintaining the functionality such as the property and the hydrophilicity.
  • an aqueous medium containing an appropriate amount of water, preferably water and an organic solvent such as water-soluble alcohols is contained as a solvent or dispersion medium, precipitation of chitosans and polymer acids is suppressed, and an appropriate viscosity is obtained. Maintained. For this reason, the aqueous liquid composition of the present invention ensures pot life during coating, suppresses sedimentation and separation of the filler, and realizes coating properties and dispersion stability.
  • the “aqueous liquid composition” refers to a composition in which fine solid particles such as a filler are dispersed in a high concentration in an aqueous medium to form a slurry or a paste.
  • the aqueous liquid composition of the present invention contains an aqueous medium.
  • This aqueous medium is a component that functions as a solvent or a dispersion medium.
  • the aqueous solvent may be water alone or a mixed solvent of water and an organic solvent.
  • the water is preferably distilled water, but may be ordinary tap water depending on the application.
  • the organic solvent is preferably a solvent miscible with water.
  • organic solvents include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (IPA), n-butyl alcohol, s-butyl alcohol, isobutyl alcohol, t-butyl alcohol; Esters such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, methyl lactate, ethyl lactate, butyl lactate; acetone, methyl ethyl ketone, methyl Ketones such as isobutyl ketone, diisobutyl ketone and cyclohexanone; amides such as N-methyl-2-pyrrolidone, N, N,
  • the ratio of the organic solvent contained in the mixed solvent is preferably 1 to 70% by mass, and more preferably 5 to 60% by mass.
  • the proportion of IPA contained in the mixed solvent is preferably 1 to 40% by mass, and more preferably 5 to 40% by mass.
  • the aqueous liquid composition of the present invention contains chitosans.
  • chitosans those obtained from the market can be used as they are.
  • chitosans chitosan derivatives are preferable from the viewpoint of solubility in water and an organic solvent added as necessary.
  • examples of chitosan derivatives include hydroxyalkyl chitosan, carboxyalkyl chitosan, carboxyacyl chitosan, succinyl chitosan, and cationized chitosan.
  • at least one selected from the group consisting of hydroxyalkyl chitosan, carboxyalkyl chitosan, and carboxyacyl chitosan is preferable.
  • Hydroxyalkyl chitosan is a natural polymer derived from living organisms and has a low environmental impact.
  • hydroxyalkyl chitosans hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, hydroxybutylhydroxypropyl chitosan, glycerylated chitosan and the like are preferable.
  • Hydroxyalkyl chitosan has a structure in which alkylene oxide or oxirane methanol is added to the amino group of chitosan.
  • alkylene oxide or oxirane methanol is added to the amino group of chitosan.
  • those produced by reacting chitosan and alkylene oxide or those produced by reacting chitosan and oxirane methanol are preferred.
  • hydroxybutylchitosan can be obtained by adding sodium hydroxide and butylene oxide to water-containing isopropyl alcohol in which chitosan is stirred and dispersed, followed by heating and stirring.
  • glycerylated chitosan can be obtained by adding oxirane methanol to water-containing isopropyl alcohol in which chitosan is stirred and dispersed, and then heating and stirring.
  • hydroxyalkyl chitosan having a hydroxyalkylation degree of 0.5 or more and 4 or less is preferably used from the viewpoint of dispersibility of the conductive material.
  • the “degree of hydroxyalkylation (no unit)” refers to the rate of addition of alkylene oxide or oxirane methanol to chitosan. That is, it is preferable that 0.5 to 4 mol of alkylene oxide or oxirane methanol is added per 1 mol of the pyranose ring constituting the chitosan.
  • hydroxyalkylation degree 0.6 mol or more and 10 mol or less of alkylene oxide or oxirane methanol may be added per 1 mol of the pyranose ring constituting chitosan and reacted.
  • the hydroxyalkylation degree of hydroxyalkyl chitosan is less than 0.5, the dispersibility of the filler and the slurry stability after dispersion may be insufficient.
  • the hydroxyalkylation degree exceeds 4, the dispersibility of the filler does not change, but it may be economically disadvantageous.
  • the weight average molecular weight of the hydroxyalkyl chitosan is preferably 2,000 or more and 350,000 or less, and more preferably 5,000 or more and 250,000 or less.
  • the weight average molecular weight of the hydroxyalkyl chitosan is less than 2,000, the dispersibility of the conductive filler may be insufficient.
  • the weight average molecular weight of the hydroxyalkyl chitosan exceeds 350,000, the viscosity of the slurry is likely to increase, and it may be difficult to increase the solid content concentration of the conductive material.
  • the ratio of chitosans contained in the aqueous liquid composition of the present invention is preferably 0.1 to 40 parts by mass, more preferably 0.5 to 20 parts by mass, per 100 parts by mass of the aqueous liquid composition. preferable.
  • the aqueous liquid composition of the present invention contains a polymer acid.
  • the “polymer acid” in the present invention refers to a polymer having a plurality of acidic groups such as a carboxyl group and a phosphate group, and a polymer obtained by polymerizing a plurality of carboxylic acid compounds and / or a plurality of phosphate compounds.
  • the polymer acid may be a homopolymer or a copolymer.
  • the acidic group may form a salt even with a free acid.
  • Polymeric acids include phthalocyanine polycarboxylic acid, phytic acid, hexametaphosphoric acid, polyphosphoric acid, polyacrylic acid, polymethacrylic acid, polyitaconic acid, polymaleic acid and copolymers thereof, styrene / maleic acid copolymer, isobutylene / malein Examples include acid copolymers, vinyl ether / maleic acid copolymers, pectinic acid, polyglutamic acid, polymalic acid, polyaspartic acid, and acrylic acid / maleic acid / vinyl alcohol copolymers. Of these, polyacrylic acid, polyitaconic acid, and polymaleic acid are preferably used.
  • the ratio of the polymer acid contained in the aqueous liquid composition of the present invention is preferably 1 to 40 parts by mass, more preferably 1 to 20 parts by mass, per 100 parts by mass of the aqueous liquid composition.
  • the pH of the aqueous liquid composition of the present invention needs to be 4.5 or less, preferably pH 3.0 or less.
  • chitosans and polymer acids which are essential components, can be dissolved, and a uniform composition is provided.
  • the pH of the aqueous liquid composition exceeds 4.5, a polyion complex of chitosans and a polymer acid is precipitated, and a uniform composition cannot be obtained.
  • the pH of the aqueous liquid composition can be adjusted, for example, by adding an organic acid described later or adding an appropriate inorganic acid.
  • the aqueous liquid composition of the present invention preferably further contains polyvinyl alcohol (PVA) and / or ethylene vinyl alcohol copolymer (EVOH).
  • PVA and EVOH may be unmodified or modified.
  • PVA and EVOH (hereinafter also referred to as “PVA-based resin”) may be used alone or in combination of two or more.
  • the present inventor has found that a coating liquid obtained by adding a PVA-based resin to an aqueous medium together with a polymer acid can form a coating film having excellent adhesion and solvent resistance on the surface of a metal material. Further, the present inventor has found that when a coating film made of this coating solution is dried by heating, the polymer acid acts as a crosslinking agent for the PVA resin. For this reason, it discovered that the solubility and swelling property with respect to the organic solvent and electrolyte solution of the coating film to be formed were suppressed, and the outstanding adhesiveness and solvent resistance with respect to the metal material surface or an electrical power collector were exhibited.
  • Unmodified PVA is a known resin obtained by saponifying polyvinyl acetate.
  • the saponification degree of the unmodified PVA is preferably 40% or more, and more preferably 70 to 100%.
  • Such unmodified PVA includes Kuraray Poval (manufactured by Kuraray Co., Ltd.), Gohsenol (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd.), Denka Poval (manufactured by Denki Kagaku Kogyo Co., Ltd.), J-Poval (manufactured by Nihon Vinegar & Poval) It can be obtained from the market under the trade name.
  • Modified PVA is obtained by introducing a functional group other than a hydroxyl group and an acetate group into unmodified PVA.
  • the modified PVA include carboxyl group-modified PVA, carbonyl group-modified PVA, silanol group-modified PVA, amino group-modified PVA, cation-modified PVA, sulfonic acid group-modified PVA, and acetoacetyl group-modified PVA.
  • Such modified PVAs include gooselan (sulfonic acid group-modified PVA), goosephimer K (cation-modified PVA), goosephimer Z (acetoacetyl group-modified PVA), goosenal (carboxyl group-modified PVA) Chemical Industry Co., Ltd.); D polymer (carbonyl group-modified PVA), A series (carboxyl group-modified PVA) (above, manufactured by Nihon Ventures &Poval); Kuraray C polymer (cation modified PVA) (manufactured by Kuraray) It can be obtained from the market under the trade name.
  • Unmodified EVOH is a known resin obtained by saponifying a copolymer of ethylene and vinyl acetate.
  • the degree of saponification of unmodified EVOH is preferably 40% or more, and more preferably 70 to 100%. Among them, it is preferable to use unmodified EVOH having an ethylene copolymerization rate of 60 mol% or less.
  • the ethylene copolymerization rate of unmodified EVOH is preferably 50 mol% or less, and more preferably 40 mol% or less. If the degree of saponification of the unmodified EVOH is less than 40%, the adhesion to the current collector may decrease.
  • the degree of polymerization of the unmodified EVOH is preferably 300 to 5,000.
  • Such unmodified EVOH can be obtained from the market under a trade name such as EVAL (registered trademark: manufactured by Kuraray Co., Ltd.).
  • Modified EVOH can be produced, for example, according to the method described in JP-A-9-227633. It can also be obtained directly from the market.
  • the proportion of the PVA resin contained in the aqueous liquid composition of the present invention is preferably 1 to 40 parts by mass, more preferably 1 to 20 parts by mass, per 100 parts by mass of the aqueous liquid composition.
  • the aqueous liquid composition of the present invention preferably further contains an organic acid.
  • organic acid in the present invention does not include “phosphonobutanetricarboxylic acid”.
  • the organic acid can lower the pH of the aqueous liquid composition and improve the solubility of components contained in the aqueous liquid composition in water.
  • the organic acid acts as a crosslinking agent for chitosans and optionally added resin components. For this reason, the formed coating film exhibits excellent adhesion and solvent resistance to the surface of a metal material such as aluminum.
  • Organic acids include formic acid, propionic acid, butyric acid, taurine, pyrrolidone carboxylic acid, citric acid, malic acid, tartaric acid, hydroxymalonic acid, malonic acid, succinic acid, adipic acid, sulfamic acid, maleic acid, benzoic acid, salicylic acid, Examples include aminobenzoic acid, phthalic acid, and vitamin C. Of these, natural organic acids such as tartaric acid, malic acid and citric acid are preferred. In view of the function as a crosslinking agent, polybasic acids having a valence of 2 or more are preferably used as the organic acid.
  • polybasic acids conventionally known acids can be used. Specifically, polybasic acid; acid anhydride of polybasic acid; part or all of carboxyl group salt (ammonium salt or amine salt) of polybasic acid; part or all of carboxyl group of polybasic acid An alkyl ester, an amide, an imide, or an amide imide; a derivative obtained by modifying one or more of the carboxyl groups of these compounds with N-hydroxysuccinimide, N-hydroxysulfosuccinimide, or a derivative thereof can be used.
  • the derivative of the polybasic acid is preferably a compound that generates a polybasic acid when heated.
  • Tribasic acid Citric acid, 1,2,3-propanetricarboxylic acid, 1,2,4-butanetricarboxylic acid, 2-phosphono-1,2,4-butanetricarboxylic acid, trimellitic acid, 1,2, 4-cyclohexanetricarboxylic acid
  • ⁇ 4 basic acids > ethylenediaminetetraacetic acid, 1,2,3,4-butanetetracarboxylic acid, pyromellitic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid
  • tribasic acids such as isocitric acid, aconitic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, carboxyethylthiosuccinic acid, trimesic acid; ethylenediamine N, N′-succinic acid, 1,4,5,8-naphthalene Tetracarboxylic acid, pentenetetracarboxylic acid, hexenetetracarboxylic acid, glutamic acid diacetic acid, maleated methylcyclohexenetetracarboxylic acid, furantetracarboxylic acid, benzophenonetetracarboxylic acid, phthalocyaninetetracarboxylic acid, 1,2,3,4-cyclobutane Monocyclic tetracarboxylic acids such as tetracarboxylic acid and cyclopentanetetracarboxylic acid; bicyclo
  • the proportion of the organic acid contained in the aqueous liquid composition of the present invention is preferably 0.01 to 40 parts by mass, more preferably 0.01 to 20 parts by mass, per 100 parts by mass of the aqueous liquid composition. preferable.
  • the aqueous liquid composition of the present invention preferably contains polyalkylene glycol and / or polyalkylene oxide.
  • Polyalkylene glycol is a nonionic compound obtained by ring-opening polymerization of alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide.
  • Polyalkylene oxide is a high molecular weight type nonionic compound having a higher degree of polymerization among polyalkylene glycols.
  • Polyalkylene glycol is preferably polyethylene glycol, polypropylene glycol, or polybutylene glycol.
  • the polyalkylene oxide is preferably polyethylene oxide, polypropylene oxide, polytetramethylene oxide, random or block copolymer of polyethylene oxide and polypropylene oxide, and the like. These can be obtained from the market under trade names such as Peo (manufactured by Sumitomo Seika Co., Ltd.) and Alcox (manufactured by Meisei Chemical Industry Co., Ltd.).
  • the total content of the polyalkylene glycol and the polyalkylene oxide contained in the aqueous liquid composition of the present invention is preferably 0.1 to 40 parts by mass per 100 parts by mass of the aqueous liquid composition, and 0.5 to 20 More preferably, it is part by mass.
  • the aqueous liquid composition of the present invention preferably contains a conductive material.
  • a coating film with improved electrical contact can be formed.
  • the coating film thus formed is suitable as a coating film for a current collector used in a power storage device such as a lithium secondary battery or a capacitor. That is, since a coating film having good conductivity can be formed, the internal resistance of the electrode layer can be reduced and the capacity density can be increased.
  • the conductive material is preferably at least one selected from the group consisting of acetylene black, ketjen black, graphite, furnace black, single-layer or multilayer carbon nanofibers, and single-layer or multilayer carbon nanotubes.
  • the proportion of the conductive material contained in the aqueous liquid composition of the present invention is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, per 100 parts by mass of the aqueous liquid composition.
  • the aqueous liquid composition of the present invention can be used as an aqueous coating liquid having less environmental impact and excellent functionality by selecting and containing appropriate chitosans and polymer acids.
  • the aqueous liquid composition of the present invention is expected to be used in various fields such as paints, inks, magnetic materials, ceramics, power storage devices, adhesives, electronic materials, liquid crystal color filters, pharmaceuticals, cosmetics, and fragrances. it can.
  • the aqueous coating liquid of the present invention contains the aforementioned aqueous liquid composition.
  • aqueous liquid composition can also be used as a coating liquid as it is.
  • it can also be diluted with an aqueous medium so that it may become a suitable dilution rate according to a use.
  • the coating film formed by applying the aqueous coating solution of the present invention to the surface of a base material such as a metal material is heated and dried, the polymer acid acts as a cross-linking agent for chitosans and is extremely superior to the base material surface.
  • a coating film having good adhesion and solvent resistance and water resistance is formed.
  • the ratio of each component contained in the aqueous coating liquid is as follows when the entire aqueous coating liquid is 100 parts by mass.
  • Chitosans are preferably 0.1 to 40 parts by mass, and more preferably 0.5 to 20 parts by mass.
  • the polymer acid is preferably 1 to 40 parts by mass, and more preferably 1 to 20 parts by mass.
  • the PVA resin is preferably 1 to 40 parts by mass, and more preferably 1 to 20 parts by mass.
  • the organic acid is preferably 0.01 to 40 parts by mass, and more preferably 0.01 to 20 parts by mass.
  • the total of the polyalkylene glycol and the polyalkylene oxide is preferably 0.02 to 40 parts by mass, and more preferably 0.1 to 20 parts by mass.
  • the conductive material is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass.
  • the solid content ratio of the aqueous coating solution is preferably 1 to 40% by mass.
  • the ratio of chitosans When the ratio of chitosans is less than 0.1 parts by mass, the strength and adhesion of the formed coating film may be insufficient, and the components constituting the coating film tend to fall off. On the other hand, when the ratio of chitosans exceeds 40 parts by mass, it tends to be difficult to obtain a uniform solution.
  • the ratio of the polymer acid is less than 1 part by mass, the degree of crosslinking may be insufficient, the crosslinking density of the formed coating film is low, the adhesion to the substrate, the insolubility to organic solvents, It tends to be insufficient in terms of non-swellability.
  • the ratio of the polymer acid exceeds 40 parts by mass, the flexibility of the formed coating film tends to be lowered, and it may be disadvantageous in terms of cost.
  • the proportion of the conductive material is less than 0.1 part by mass, the conductivity of the formed coating film may be insufficient.
  • the proportion of the conductive material exceeds 30 parts by mass, other components may be insufficient, and the performance of the formed coating film may be deteriorated.
  • aqueous coating solution when the total amount of the aqueous coating solution is 100 parts by mass, 1 to 10 parts by mass of chitosans, 1 to 20 parts by mass of polymer acid, and 1 to 10 parts by mass of PVA resin are used. It is preferable to contain 1 to 15 parts by mass of an organic acid, 0.1 to 10 parts by mass in total of polyalkylene glycol and polyalkylene oxide, and 1 to 15 parts by mass of a conductive material.
  • the aqueous coating liquid of the present invention preferably further contains a resin (other resin) that can function as a binder other than chitosans and PVA-based resins.
  • a resin other resin
  • other resins include polyvinyl acetal, fluorine-containing polymer, cellulose polymer, starch polymer, styrene polymer, polyamide, polyimide, and polyamideimide.
  • those obtained from the market may be used as they are, but in view of solubility in a solvent or a dispersion medium, it is preferable to use a derivative.
  • the proportion of other resins contained in the aqueous coating solution of the present invention is preferably 10 to 2,000 parts by mass, more preferably 100 to 1,000 parts by mass per 100 parts by mass of chitosans. .
  • the content of other resin components is preferably 1 to 40% by mass, more preferably 5 to 20% by mass in terms of solid content.
  • the other resin content is less than 1% by mass, the strength of the coating film to be formed and the adhesion to the substrate tend to be insufficient, and the constituent components may fall off from the coating film.
  • it exceeds 40 mass% it may become difficult to obtain a uniform coating liquid.
  • the content exceeds 40% by mass the conductive material is covered with another resin when the conductive material is contained, and the function of the conductive material tends not to be sufficiently exhibited.
  • the proportion of the polymer acid contained in the aqueous coating solution is preferably 1 to 150 parts by mass per 100 parts by mass of the other resins, and 2 to 100 parts by mass. Is more preferable.
  • the content ratio of the polymer acid is less than 1 part by mass, the adhesion of the formed coating film to the substrate may be insufficient.
  • the solubility with respect to the electrolyte solution of crosslinked resin, swelling property, electrochemical stability, etc. may become inadequate.
  • the content ratio of the polymer acid exceeds 150 parts by mass, the flexibility of the formed coating film may be lowered and economically disadvantageous.
  • polyvinylpyrrolidone As other resins, it is also preferable to use a homopolymer (polyvinylpyrrolidone) composed of a structural unit derived from vinylpyrrolidone and a copolymer (polyvinylpyrrolidone copolymer) including a structural unit derived from vinylpyrrolidone.
  • a homopolymer polyvinylpyrrolidone
  • copolymer polyvinylpyrrolidone copolymer
  • the dispersibility of the conductive material is further improved, and the coating film in a better state Can be formed.
  • Polyvinylpyrrolidone is a highly safe nonionic polymer.
  • Polyvinylpyrrolidone can be obtained from the market under the trade name of polyvinylpyrrolidone K-30, polyvinylpyrrolidone K-85, polyvinylpyrrolidone K-90 (manufactured by Nippon Shokubai Co., Ltd.); Can do.
  • the polyvinylpyrrolidone copolymer may be a copolymer of vinylpyrrolidone and a monomer having a vinyl group.
  • the monomer having a vinyl group include acrylic acid, methacrylic acid, alkyl esters of acrylic acid such as methyl acrylate and ethyl acrylate, alkyl esters of methacrylic acid such as methyl methacrylate and ethyl methacrylate, and diethylaminoethyl acrylate.
  • Aminoalkyl ester of acrylic acid such as, aminoalkyl ester of methacrylic acid such as diethylaminoethyl methacrylate, monoester of acrylic acid and glycol such as hydroxyethyl acrylate, monoester of methacrylic acid and glycol such as hydroxyethyl methacrylate, acrylic Alkali metal salt of acid, alkali metal salt of methacrylic acid, ammonium salt of acrylic acid, ammonium salt of methacrylic acid, aminoalkyl ester of acrylic acid Quaternary ammonium derivatives, quaternary ammonium derivatives of aminoalkyl esters of methacrylic acid, vinyl methyl ether, vinyl ethyl ether, vinyl acetate, N-vinylimidazole, N-vinylacetamide, N-vinylformamide, N-vinylcaprolactam N-vinyl carbazole, acrylamide, methacrylamide, N-alkyl acrylamide, N
  • Polyvinyl pyrrolidone copolymer includes vinyl pyrrolidone / vinyl acetate / vinyl propionate copolymer (rubiscol VAP, manufactured by BASF), vinyl acetate / crotonic acid / vinyl pyrrolidone copolymer (ruby set CAP, manufactured by BASF), Vinylpyrrolidone / acrylate copolymer (Rubiflex, manufactured by BASF), quaternized vinylpyrrolidone / dimethylaminoethyl methacrylate (GAFQUAT, manufactured by ISP), methylvinylimidazolium chloride / vinylpyrrolidone copolymer (Rubicoat, BASF) ), Vinyl pyrrolidone / vinyl acetate copolymer (rubiscol VA, manufactured by BASF), vinyl pyrrolidone / dimethylaminoethyl methacrylate copolymer (copolymer 937, manufactured by ISP), vinyl caprolactor
  • the proportion of the vinylpyrrolidone-based polymer contained in the aqueous coating solution is preferably 0.1 to 20 parts by mass when the aqueous coating solution is 100 parts by mass.
  • the content ratio of the vinylpyrrolidone-based polymer is less than 0.1 parts by mass, it is too small, and it is difficult to obtain the effect of addition.
  • the content ratio of the vinylpyrrolidone-based polymer exceeds 20 parts by mass, the oxidation resistance of the formed coating film tends to decrease.
  • the coating liquid of the present invention contains a crosslinking agent (excluding the aforementioned organic acid).
  • a crosslinking agent include epoxy compounds such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerol polyglycidyl ether; toluylene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, phenyl diisocyanate, and the like.
  • Isocyanate compounds are phenols, alcohols, active methylenes, mercaptans, acid amides, imides, amines, imidazoles, ureas, carbamic acids, imines, oximes, sulfites.
  • Block isocyanate compounds blocked with blocking agents such as: Glyoxal, glutaraldehyde, aldehyde compounds such as dialdehyde starch; Polyethylene glycol diacrylate (Meth) acrylate compounds such as polyethylene glycol dimethacrylate and hexanediol diacrylate; methylol compounds such as methylolmelamine and dimethylolurea; organic acid metal salts such as zirconyl acetate, zirconyl carbonate and titanium lactate; aluminum trimethoxide, aluminum trimethoxide Metal alkoxide compounds such as butoxide, titanium tetraethoxide, titanium tetrabutoxide, zirconium tetrabutoxide, aluminum dipropoxide acetylacetonate, titanium dimethoxide bis (acetylacetonate), titanium dibutoxide bis (ethylacetoacetate); vinyl methoxy Silane, vinylethoxysilane, 3-glycidoxyprop
  • the aqueous coating solution is a solution that does not contain fillers, add chitosans, polymer acid, PVA resin, organic acid, polyalkylene glycol (polyalkylene oxide), vinylpyrrolidone polymer, etc. to the aqueous medium, By adjusting the pH to 4.5 or less, an aqueous coating solution can be prepared.
  • the order in which each component is added to the aqueous medium (solvent) is not particularly limited. Stirring may be performed at room temperature, but may be heated as necessary.
  • an aqueous coating liquid in which a conductive material is dispersed, chitosans, polymer acid, conductive material, PVA resin, organic acid, polyalkylene glycol (polyalkylene oxide), vinylpyrrolidone polymer, etc.
  • An aqueous coating solution can be prepared by adding to an aqueous medium (dispersion medium) so as to have a ratio of, adjusting the pH to 4.5 or less, and then mixing and dispersing using a conventionally known mixer.
  • a ball mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, Hobart mixer, or the like can be used.
  • the functional coating film of the present invention is formed by heating and drying a coating film formed by applying the above-mentioned aqueous coating liquid onto the surface of an object to be coated (base material).
  • the coating amount of the aqueous coating solution is not particularly limited, but the thickness of the functional coating film to be formed is usually 0.05 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, The amount is particularly preferably 0.1 to 2 ⁇ m.
  • the base material include metals such as aluminum and copper, glass, natural resin, synthetic resin, ceramics, wood, paper, fiber, woven fabric, non-woven fabric, and leather.
  • the electrical power collector for electrical storage apparatuses such as aluminum foil and copper foil, is preferable.
  • Heat drying is preferably performed at 80 ° C. or higher for 1 second or longer, more preferably 80 ° C. or higher and 250 ° C. or lower for 1 second or longer and 60 minutes or shorter. Under these conditions, polymers such as chitosans in the coating solution can be sufficiently crosslinked to form a functional coating film with improved adhesion to the substrate and electrochemical stability. When the heat treatment condition is less than 80 ° C. or less than 1 second, the adhesion and electrochemical stability of the formed functional coating film may be lowered.
  • the aqueous liquid composition and aqueous coating liquid of the present invention when containing a conductive material, are suitable as a material for forming a conductive coating film constituting an electrode plate for a power storage device such as a secondary battery or a capacitor. is there.
  • positions in the surface of the collector 10 as shown in FIG. 1, and this collector 10 by heat-drying the aqueous liquid composition or aqueous coating liquid apply
  • An electrode plate member 14 provided with the conductive coating film 12 thus obtained can be obtained.
  • the thickness of the conductive coating film 12 is usually 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, and more preferably 0.1 to 2 ⁇ m.
  • an active material layer 16 such as a battery positive electrode layer, a battery negative electrode layer, a capacitor positive electrode layer, a capacitor negative electrode layer, or a polarizable electrode layer is formed.
  • an electrode plate 20 for a power storage device having a low resistance between the electrode layer and the current collector and a low environmental load can be manufactured.
  • a power storage device such as a non-aqueous electrolyte secondary battery, an electric double layer capacitor, and a lithium ion capacitor can be obtained. Since this power storage device includes a member for an electrode plate in which a conductive coating film is disposed on the surface of a current collector, this power storage device has excellent characteristics such as a large discharge capacity or a low internal resistance. It is what has.
  • the surface resistivity of the conductive coating film is preferably 3,000 ⁇ / ⁇ or less, and more preferably 2,000 ⁇ / ⁇ or less. If the surface resistivity exceeds 3,000 ⁇ / ⁇ , the internal resistance increases, making it difficult to obtain a battery or capacitor with high efficiency and long life.
  • the surface resistivity of the conductive coating film is measured by the following method.
  • An aqueous coating solution is applied onto a glass plate and then dried at 200 ° C. for 1 minute to form a conductive coating film having a dry film thickness of 4 ⁇ m.
  • the surface resistivity is measured by the four probe method.
  • the surface resistivity measurement by the four-point probe method can be carried out under the conditions of 25 ° C. and 60% relative humidity using Lorester GP and MCP-T610 manufactured by Mitsubishi Chemical Analytech.
  • the aqueous liquid composition and aqueous coating liquid of the present invention are suitable as a material for forming a hydrophilic coating film provided on the surface of a substrate such as glass. By forming the hydrophilic coating film, antifogging properties are imparted.
  • the thickness of the hydrophilic coating film is usually 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m.
  • the contact angle ( ⁇ ) of the hydrophilic coating film with water is preferably 40 ° or less.
  • the contact angle ( ⁇ ) of the hydrophilic coating film with water is measured by the following method.
  • the aqueous coating solution is applied onto the substrate and then dried at 200 ° C. for 10 seconds to form a hydrophilic coating film having a dry film thickness of 0.7 ⁇ m.
  • the contact angle of water with respect to the hydrophilic coating film is measured by a droplet method.
  • the contact angle can be measured by a droplet method using a contact angle meter Drop Master 100 manufactured by Kyowa Interface Science Co., Ltd. under conditions of 25 ° C. and a relative humidity of 60%.
  • the composite material of the present invention includes a base material and the above-described functional coating film integrally disposed on the base material.
  • the composite material of the present invention is a material excellent in hydrophilicity, conductivity, antibacterial / deodorant properties, texture, antifogging properties, paper strength, dyeability, water resistance, antifouling properties and the like.
  • the composite material of this invention can be manufactured by heat-drying the coating film formed by apply
  • the base material examples include metal, glass, natural resin, synthetic resin, ceramics, wood, paper, non-woven fabric, woven fabric, and leather. Further, when a metal such as aluminum, copper, nickel, and stainless steel is used as a base material, a composite material useful as a power storage device current collector is provided.
  • part or “%” is based on mass.
  • Example 1-1 After 2 parts of chitosan (degree of deacetylation 85%, weight average molecular weight 70,000) and 20 parts of 50% aqueous polymaleic acid solution (Daiquest P9000, manufactured by Thermophos) were added to 78 parts of ion-exchanged water, the mixture was stirred at room temperature for 4 hours. Dissolve to prepare 100 parts of an aqueous liquid composition.
  • Examples 1-2 to 1-16 An aqueous liquid composition was prepared in the same manner as in Example 1-1 except that the compositions shown in Tables 1-1 and 1-2 were used.
  • “A component” means “chitosans”
  • “B component” means “polymer acid”
  • “C component” means “PVA resin”.
  • Example 1-17 After 5 parts of chitosan (degree of deacetylation 85%, weight average molecular weight 70,000) was dispersed in 88.5 parts of ion-exchanged water, 1.5 parts of acetic acid was added and stirred at room temperature for 4 hours. Under stirring, 5 parts of a polyacrylic acid aqueous solution (manufactured by Toagosei Co., Ltd., Jurimer AC-10H (solid content 20%, Mw 150,000)) was mixed. A liquid composition could not be obtained.
  • a polyacrylic acid aqueous solution manufactured by Toagosei Co., Ltd., Jurimer AC-10H (solid content 20%, Mw 150,000
  • Example 1-18 To 75 parts of ion-exchanged water, 25 parts of a polyacrylic acid aqueous solution (manufactured by Toagosei Co., Ltd., Jurimer AC-10L (solid content 40%, Mw 25,000)) was added and stirred at room temperature to prepare a 10% polyacrylic acid aqueous solution.
  • a polyacrylic acid aqueous solution manufactured by Toagosei Co., Ltd., Jurimer AC-10L (solid content 40%, Mw 25,000)
  • Example 1 ⁇ Preparation and Evaluation of Conductive Coating Liquid and Conductive Coating Film>
  • Conductive coating solution 10 parts of acetylene black and 90 parts of the aqueous liquid composition of Example 1-1 were blended and mixed using a planetary mixer for 120 minutes with stirring at a rotational speed of 60 rpm. A liquid was prepared.
  • Examples 2 to 16, Comparative Examples 1 and 2 A conductive coating solution was prepared in the same manner as in Example 1 except that the aqueous liquid composition shown in Table 2 was used instead of the aqueous liquid composition of Example 1-1. Further, in the same manner as in Example 1, evaluation of dissolution / swellability and measurement of surface resistivity were performed. The results are shown in Table 2. In Comparative Example 2, a 5% NMP solution (PVDF solution) of polyvinylidene fluoride was used.
  • Example 17 (1) Positive electrode plate The conductive coating liquid of Example 1 was applied to one side of a current collector made of an aluminum foil having a thickness of 20 ⁇ m using a comma roll coater. Heat-dried in an oven at 110 ° C. for 2 minutes, and further heat-dried in an oven at 180 ° C. for 2 minutes to form a conductive coating film having a thickness of 1 ⁇ m on one side of the current collector.
  • Example 2 Negative electrode plate
  • the conductive coating liquid of Example 1 was applied to one side of a copper foil current collector using a comma roll coater. Heat-dried in an oven at 110 ° C. for 2 minutes, and further heat-dried in an oven at 180 ° C. for 2 minutes to form a conductive coating film having a thickness of 1 ⁇ m on one side of the current collector.
  • a negative electrode solution containing a slurry-like negative electrode active material was obtained by stirring and mixing at 60 rpm for 120 minutes.
  • the obtained negative electrode solution is applied to the surface of the conductive coating film with a comma roll coater, dried in an oven at 110 ° C. for 2 minutes, and further dried in an oven at 180 ° C. for 2 minutes to remove the solvent,
  • a negative electrode active material layer having a dry film thickness of 100 ⁇ m was formed on the conductive coating film. After pressing at 5,000 kgf / cm 2 to make the film thickness uniform, the film is aged in a vacuum oven at 80 ° C. for 48 hours to sufficiently remove volatile components (water, solvent, etc.), and the negative electrode plate Got.
  • the positive electrode plate and the negative electrode plate are made of a polyolefin film (polypropylene, polyethylene, or a copolymer thereof) wider than the positive electrode plate having a three-dimensional pore structure (sponge-like).
  • An electrode body was produced by winding in a spiral shape through a separator. The produced electrode body was inserted into a bottomed cylindrical stainless steel container also serving as a negative electrode terminal, and a battery with an AA size and a rated capacity of 500 mAh was assembled.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DME diimethoxyethane
  • the charging / discharging characteristic of the battery was measured on the temperature conditions of 25 degreeC using the charging / discharging measuring apparatus. Charge 20 cells at a current value of charge current of 0.2CA until the battery voltage reaches 4.1V from the charging direction, and after 10 minutes of rest, discharge to 2.75V at the same current, for 10 minutes After the rest, charging and discharging characteristics were measured by repeating 100 cycles of charging and discharging under the same conditions.
  • the charge / discharge capacity value at the first cycle is 100
  • the charge / discharge capacity value at the 100th time charge / discharge capacity retention ratio
  • Example 18 to 21, Comparative Example 3 A battery was fabricated in the same manner as in Example 17 except that the conductive coating liquid shown in Table 3 was used instead of the conductive coating liquid of Example 1. Further, the charge / discharge capacity retention ratio was measured in the same manner as in Example 17. The results are shown in Table 3.
  • Example 22 The conductive coating liquid of Example 1 was applied to one side of a current collector made of an aluminum foil having a thickness of 20 ⁇ m using a comma roll coater. The film was dried by heating in an oven at 110 ° C. for 2 minutes and further dried by heating in an oven at 180 ° C. for 2 minutes to form a conductive coating film having a thickness of 0.5 ⁇ m on one side of the current collector.
  • Two pieces of the obtained polarizable electrode plate for a capacitor cut into a circle having a diameter of 15 mm were prepared and dried at 200 ° C. for 20 hours.
  • a stainless steel coin-type outer container (diameter 20 mm, height 1...) With two electrode plates facing each other, a circular cellulose separator 18 mm in diameter and 40 ⁇ m in thickness sandwiched between them and a polypropylene packing installed. 8 mm, stainless steel thickness 0.25 mm). Inject the electrolyte so that no air remains in the coin-type outer container, fix the outer container with a 0.2 mm thick stainless steel cap through a polypropylene packing, seal the container, A capacitor having a diameter of 20 mm and a thickness of about 2 mm was manufactured.
  • Example 23 A capacitor was obtained in the same manner as in Example 22 except that the conductive coating solution shown in Table 4 was used instead of the conductive coating solution of Example 1. Moreover, the electrostatic capacitance and internal resistance of the obtained capacitor were measured. Table 4 shows the measurement results.
  • Example 4 A capacitor was obtained in the same manner as in Example 22 except that the conductive coating solution shown in Table 4 was used instead of the conductive coating solution of Example 1. The capacitance and internal resistance of the obtained capacitor were measured and used as a reference for evaluating the capacitors of Examples 22 to 26.
  • the capacitance and internal resistance of the capacitor were measured at a current density of 20 mA / cm 2 . Based on the capacitance and internal resistance of the capacitor of Comparative Example 4, the capacitors of Examples 22 to 26 were evaluated according to the following criteria. The larger the capacitance and the smaller the internal resistance, the better the performance as a capacitor.
  • Capacitance evaluation criteria A: The capacitance is 20% or more larger than that of Comparative Example 4.
  • hydrophilic coating solution The compositions of various hydrophilic coating solutions are shown in Tables 5-1 and 5-2.
  • Hydroxypropyl chitosan is “HPC”
  • hydroxybutyl chitosan is “HBC”
  • glycerylated chitosan is “GLYC”
  • carboxymethylated chitosan is “CMC”
  • succinylated chitosan is "SUC”
  • polyacrylic acid PAA
  • Polymaleic acid was abbreviated as “PMA”, polyvinyl alcohol as “PVA”, 1,2,3,4-butanetetracarboxylic acid as “BTC”, polyethylene glycol as “PEG”, and polyethylene oxide as “PEO”.
  • Example 27 A dispersion was obtained by dispersing 5 parts of chitosan (deacetylation degree 85%, weight average molecular weight 70,000) in 63.75 parts of ion-exchanged water. 31.25 parts of a 48% PMA aqueous solution (manufactured by Thermophos, Dequest 9000) was added to the resulting dispersion, followed by stirring at room temperature for 4 hours to prepare 100 parts of a hydrophilic coating solution.
  • chitosan deacetylation degree 85%, weight average molecular weight 70,000
  • Example 28 to 41 A hydrophilic coating solution was prepared in the same manner as in Example 27 except that the compositions shown in Tables 5-1 and 5-2 were used.
  • hydrophilic coating film Formation of hydrophilic coating film
  • the hydrophilic coatings of Examples 27 to 41 and Comparative Examples 5 to 7 were formed on the surface of a glass plate (100 ⁇ 100 mm) having a thickness of 1 mm using a bar coater (No. 3). The liquid was applied to a dry film amount of 1 g / m 2 . Subsequently, the glass plate which apply
  • test material was washed with running tap water for 1 hour (flow rate: 1 L / min) and then blown and dried at 80 ° C for 1 hour. This running water washing and 80 degreeC drying process was made into 1 cycle, and the washing
  • the aqueous liquid composition of the present invention When used, it has excellent adhesion to the substrate, durability, solvent resistance, and water resistance, as well as conductivity, hydrophilicity, stain resistance, antifungal / antibacterial properties, and deodorization. It is possible to form a functional coating film that can exhibit functions such as property and workability. A composite material provided with such a functional coating film is useful as a current collector for a power storage device.

Abstract

 本発明は、水を含む水系媒体と、キトサン及び/又はキトサン誘導体と、ポリマー酸とを含有し、pHが4.5以下である水性液状組成物である。 上記本発明によれば、環境に対する負荷が少ない安価な材料を含み、長期間保存しても適度な粘度が維持され、基材に対する優れた密着性、耐久性、耐溶剤性、及び耐水性を有するとともに、導電性や親水性をはじめとする種々の機能を発揮しうる機能性塗工膜を形成可能な水性液状組成物を提供することができる。

Description

水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
 本発明は、環境負荷の少ない水性液状組成物に関する。さらに詳しくは、種々の産業分野において有用な機能性塗工膜を形成しうる水性液状組成物及び水性塗工液、この水性塗工液により形成される機能性塗工膜、並びにこの機能性塗工膜と基材とが一体化された複合材料に関する。
 近年、様々な機能を具備した溶液、スラリー又はペースト(以下、まとめて「スラリー」とも記す)等の液状組成物を機能性塗工液とし、この機能性塗工液を塗布することにより形成した塗工膜の各種機能を利用する試みがなされている。このような試みは、塗料、インク、コート剤、磁性体、セラミックス、建材、接着剤、液晶カラーフィルター、医薬品、電子材料、及び蓄電装置などの様々な分野で行われている。
 例えば、導電性材料、バインダー樹脂、硬化剤、及び溶媒などからなるペースト状の導電性塗工液は、導電性接着剤、導電性塗料、導電性インキなどとして用いられている(非特許文献1)。また、オーディオテープ、ビデオテープ、フレキシブルディスクなどの塗布型の磁気記録媒体は、サブミクロンサイズの磁性粒子を高分子溶液中に均一に分散させた磁性塗料を、ポリエステルなどのベースフィルムに塗布することにより作製されている。また、リチウムイオン二次電池の電極は、活物質、導電材料、及びバインダー(結着材)を混合して調製したスラリーを集電体箔に塗布し、乾燥して作製される(非特許文献2)。
 上記のような各種の機能性塗工液がその機能性を十分発揮するためには、形成される塗工膜が、堅牢性と基材に対する高い密着性とを具備する必要がある。換言すれば、塗工液の状態が機能性発現に適正であるとともに、基材に対する密着性が高く、耐久性を有する塗工膜を形成できることが必須条件である。このため、塗工液の溶媒(分散媒)としては、基材に対する高い親和性を示すとともに、乾燥が容易な非水系(有機溶媒系)の溶媒が圧倒的に有利であり、実際に広く用いられてきた。
 しかしながら、一般的に有機溶剤は揮発性が高い。このため、環境への負荷が大きいばかりでなく、遺伝毒性も考慮しなければならず、安全性や作業性においても課題を残している。近年、多くの産業分野において環境保護や健康被害防止に対する意識が高まってきている。このため、上記のような課題を有する有機溶剤の使用に対して、VOC低減や無溶剤化などへの要求が高まりつつあり、環境や人に優しい製品への転換が求められている。
 環境や人に優しい製品として、水系製品や生物由来の原料からなる製品が注目されている。これらの製品は、無溶剤化又は脱石油製品の一翼を担うものとして期待されている。しかしながら、有機溶媒の代わりに水を溶媒として用いる場合、様々な問題点が生じてくる。例えば、水系塗工液は、塗膜形成能が有機溶剤系の塗工液に比べて劣るという問題点がある。また、フィラーを含むスラリー状の水系塗工液は、フィラーが荷電状態にあるとスラリー中で凝集しやすいという問題がある。さらに、溶媒とフィラーとの比重差が大きいため、フィラーが沈降しやすく、均一に分散し難しいという問題もある。さらに、従来の石油由来の原料に代わりうる塗膜形成能や分散能を発揮する生物由来の原料を見出すことは容易ではない。
 水系スラリーにおけるフィラーの分散及び安定化を試みる場合、分散剤の使用、フィラーの表面処理、マイクロカプセル化、超音波処理、ポリマーへの極性基の導入などの各手法が考えられる。これらの手法のうち、製造プロセスや塗工系の簡素化、さらにはコストの点を考慮すると、分散剤の使用が有利である。水系スラリーに用いられる分散剤としては、塗料分野で使用されるポリカルボン酸塩やリン酸系アミン塩(非特許文献3)、高分子分散剤としてのポリアクリル酸アミド(非特許文献4)などが考えられる。ただし、環境負荷低減化を考慮すると、分散剤は、環境に優しい天然物系の物質であることが好ましい。非水電解質二次電池の電極の製造時に、カルボキシメチルセルロースを水系分散剤として用いることについての提案(特許文献1)がなされている。しかしながら、カルボキシメチルセルロースは、その分散効果において改良の余地を残している。また、強固な塗工膜を形成するためには、石油系のバインダー樹脂を用いる必要がある。このため、生物由来の物質である天然系ポリマーでありながら、石油系のバインダー樹脂を使用した場合と遜色のない密着性を発現しうる天然系ポリマーの利用技術が望まれる。
 期待されている水系スラリーの用途としては、近年、特にその成長が著しい、二次電池やキャパシタなどの蓄電装置電極板用塗工液が考えられる。電極板は、電極層や集電体などの単位部材を一体化した、蓄電装置の性能に大きく影響を及ぼす電極部材である。このため、蓄電装置の充放電サイクル寿命を延長させるとともに、高エネルギー密度化すべく、電極板を薄膜大面積化することが提案されている。例えば、金属酸化物、硫化物、ハロゲン化物などの正極活物質粉末、導電性材料、及びバインダーを適当な溶媒に分散又は溶解させて得られたペースト状の塗工液を、アルミニウムなどの金属箔からなる集電体の表面に塗布し、塗工膜層を形成して得られる正極電極板が特許文献2及び3に記載されている。
 また、電池の負極電極板やキャパシタの分極性電極板は、炭素質材料などの活物質と、バインダーを適当な溶媒に溶解させたものとを混合して得られたペースト状の塗工液を集電体に塗布し、塗工膜層を形成して得られる。塗工液の調製に用いられるバインダーは、非水電解液に対して電気化学的に安定であること、電池やキャパシタの電解液へ溶出しないこと、電解液によって大きく膨潤しないこと、何らかの溶媒に可溶であること、などが必要である。
 一方、集電体の素材金属であるアルミニウムなどの金属材料表面の保護皮膜を、各種樹脂溶液を塗布して形成することが行われている。しかし、形成される保護皮膜は、金属表面に対する密着性は優れているが、有機溶剤に対する耐久性が不十分であるという問題がある。
 さらに、上記のペースト状の塗工液を集電体に塗布して得られる電池やキャパシタの電極板の塗工膜層は、集電体に対する密着性や可撓性が不十分であるという問題がある。また、集電体に対する接触抵抗が大きく、電池やキャパシタの組立時や充放電時に、塗工膜層の剥離、脱落、ひび割れなどが生じる場合があった。
 従来の電池やキャパシタにおいては、上記のように電極層と集電体(基板)との密着性が低く、電極層と集電体との間の抵抗が高いという問題があった。これらの問題を解決するために種々の塗工液が提案されている。提案されている種々の塗工液によって形成された塗工膜層により、密着性不良の問題は改善されつつある。しかしながら、電極層と集電体との間の抵抗がより一層高くなるので、問題の解決には至っていない。また、近年、前述の蓄電装置、及びそれらの関連製品に対しても、環境に配慮した製造工程が要求されている。このため、環境に対して負荷の少ない成分を用いた塗工液が求められている。
特開2009-238720号公報 特開昭63-10456号公報 特開平3-285262号公報
藤山光美:「第一章、導電性フィラーの混練・分散不良要因とその対策」、「導電性フィラーの新しい混練・分散技術とその不良対策」技術情報協会、第20頁、2004年 立花和宏:「リチウムイオン二次電池用正極スラリーの調整と塗布・乾燥と電極動作の理解」、Material stage、技術情報協会、第8巻、第12号、第72頁~第75頁、2009年 城清和:「水系塗料用分散剤の技術開発」、JETI、第44巻、第10号、第110頁~第112頁、1996年 神谷秀博:「水系における微粒子凝集・分散挙動の評価と制御」、Material stage、第2巻、第1号、第54頁~第60頁、2002年
 本発明の目的は、環境に対する負荷が少ない安価な材料を含み、長期間保存しても適度な粘度が維持され、基材に対する優れた密着性、耐久性、耐溶剤性、及び耐水性を有するとともに、導電性や親水性をはじめとする種々の機能を発揮しうる機能性塗工膜を形成可能な水性液状組成物、並びに水性塗工液を提供することにある。
 また、本発明の目的は、基材に対する優れた密着性、耐久性、耐溶剤性、及び耐水性を有するとともに、導電性や親水性をはじめとする種々の機能を発揮しうる機能性塗工膜、並びにその形成方法を提供することにある。
 さらに、本発明の目的は、耐久性、耐溶剤性、及び耐水性を有するとともに、導電性や親水性をはじめとする種々の機能を発揮しうる機能性塗工膜が基材に密着した複合材料を提供することにある。
 また、本発明の目的は、耐久性及び耐溶剤性に優れているとともに、導電性の良好な導電性塗工膜が集電体に密着した電極板用部材及び電極板、並びにこの電極板を備えた、放電容量が大きい、或いは内部抵抗が低いなどの特性を有する蓄電装置を提供することにある。
 上記の目的は、以下に示す本発明によって達成される。すなわち、本発明によれば、水を含む水系媒体と、キトサン及び/又はキトサン誘導体と、ポリマー酸とを含有し、pHが4.5以下である水性液状組成物が提供される。
 本発明においては、未変性ポリビニルアルコール、変性ポリビニルアルコール、未変性エチレンビニルアルコール共重合体、及び変性エチレンビニルアルコール共重合体からなる群より選択される少なくとも一種をさらに含有することが好ましく;前記変性ポリビニルアルコールが、カルボキシル基変性ポリビニルアルコール、カルボニル基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、アミノ基変性ポリビニルアルコール、カチオン変性ポリビニルアルコール、スルホン酸基変性ポリビニルアルコール、及びアセトアセチル基変性ポリビニルアルコールからなる群より選択される少なくとも一種であることが好ましい。
 有機酸(但し、ホスホノブタントリカルボン酸を除く)をさらに含有することが好ましく;ポリアルキレングリコール及び/又はポリアルキレンオキサイドをさらに含有することが好ましい。前記キトサン誘導体が、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、及びカルボキシアシルキトサンからなる群より選択される少なくとも一種であることが好ましい。前記ポリマー酸が、カルボキシル基含有ビニルモノマーの単独重合体及び/又はカルボキシル基含有ビニルモノマーとカルボキシル基非含有ビニルモノマーとの共重合体であることが好ましく;前記ポリマー酸が、ポリアクリル酸、ポリイタコン酸、及びポリマレイン酸からなる群より選択される少なくとも一種であることが好ましい。
 導電性材料をさらに含有することが好ましく;前記導電性材料が、アセチレンブラック、ケッチェンブラック、黒鉛、ファーネスブラック、単層又は多層カーボンナノファイバー、及び単層又は多層カーボンナノチューブからなる群より選択される少なくとも一種であることが好ましい。
 また、本発明によれば、上記の水性液状組成物を含む水性塗工液が提供される。さらに、本発明によれば、前記水性塗工液により形成される機能性塗工膜が提供される。機能性塗工膜の、JIS K7194で測定した表面抵抗率が3,000Ω/□以下であることが好ましい。
 本発明によれば、上記の水性塗工液を80℃以上に加熱する工程を含む機能性塗工膜の形成方法が提供される。また、本発明によれば、基材と、前記基材上に一体的に配設された上記の機能性塗工膜と、を備えた複合材料が提供される。基材が、金属、ガラス、天然樹脂、合成樹脂、セラミックス、木材、紙、繊維、不織布、織布、及び皮革からなる群より選択される少なくとも一種であることが好ましく;基材が、アルミニウム、銅、ニッケル、及びステンレスからなる群より選択される少なくとも一種であることが好ましい。
 さらに、本発明によれば、集電体と、前記集電体の表面に配設された導電性塗工膜と、を備え、前記導電性塗工膜が、前記集電体の表面に塗布された前述の水性液状組成物が加熱処理されて形成されたものである電極板用部材が提供される。なお、集電体が、非水電解液二次電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の集電体であることが好ましい。
 また、本発明によれば、前述の電極板用部材と、前記導電性塗工膜の表面に配設された活物質層と、を備える電極板が提供される。さらに、本発明によれば、前記の電極板を備える蓄電装置が提供される。この蓄電装置は、非水電解液二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタとして好適である。
 本発明の水性液状組成物及び水性塗工液は、環境に対する負荷が少ない安価な材料を含み、長期間保存しても適度な粘度が維持される。また、基材に対する優れた密着性、耐久性、耐溶剤性、及び耐水性を有するとともに、導電性、親水性、耐汚染性、防かび・抗菌性、防臭性、及び加工性などの機能を発揮しうる機能性塗工膜を形成することができる。
 また、本発明の水性液状組成物及び水性塗工液は、導電性材料などのフィラーを含有する場合においても、フィラーが良好に分散し、沈降分離が起こりにくい。さらに、本発明の水性液状組成物及び水性塗工液は、電池、電子材料塗料、インキ、トナー、ゴム・プラスチック、セラミック、磁性体、接着剤、液晶カラーフィルターなど、多方面での利用が期待できる。
 本発明の機能性塗工膜は、基材に対する優れた密着性、耐久性、耐溶剤性、及び耐水性を有するとともに、導電性、親水性、耐汚染性、防かび・抗菌性、防臭性、及び加工性などの機能を発揮しうるものである。また、本発明の機能性塗工膜は、集電体と電極層に対する密着性が高く、耐電解液性に優れ、集電体との接触抵抗も改良された導電性塗工膜とすることができる。さらに、本発明の電極板用部材及び電極板は、耐久性及び耐溶剤性に優れているとともに、導電性の良好な導電性塗工膜が集電体に密着しているものである。このため、本発明の電極板用部材及び電極板を用いれば、非水電解液二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタなどの、放電容量が大きい、或いは内部抵抗が低いといった特性を有する高性能な蓄電装置を提供することができる。
本発明の電極板用部材及び電極板の一実施形態の層構成を説明する断面図である。
 次に、本発明を実施するための形態を挙げて、本発明をさらに詳しく説明する。本発明の水性液状組成物は、水を含む水系媒体と、キトサン及び/又はキトサン誘導体(以下、「キトサン類」とも記す)と、ポリマー酸とを含有し、pHが4.5以下である。これらの成分を含有するとともに、所定のpHであることにより、さらに含有されることのある導電性材料などのフィラーの沈降分離を抑制することができるとともに、高い親水性を確保することが可能である。
 本発明の水性液状組成物は、導電性材料などのフィラーに対する結着能や分散能、及び親水機能等を具備するキトサン類と、ポリマー酸とを含有することで、フィラーに対する結着性や分散性、及び親水性などの機能性を維持しつつ、環境性能にも優れている。また、適量の水、好ましくは水と水溶性アルコール類等の有機溶媒とを含む水系媒体を溶媒又は分散媒として含有するので、キトサン類やポリマー酸の析出が抑制されるとともに、適度な粘性が維持される。このため、本発明の水性液状組成物は、塗工の際のポットライフが確保されるとともに、フィラーの沈降分離が抑制され、かつ、塗工性や分散安定性が実現される。
 本発明における「水性液状組成物」とは、フィラーなどの微小な固体粒子が水系媒体中に高濃度に分散されてスラリー状又はペースト状になっているものをいう。
(水系媒体)
 本発明の水性液状組成物には水系媒体が含有される。この水系媒体は、溶媒又は分散媒として機能する成分である。水系溶媒は、水のみであっても、水と有機溶媒との混合溶媒であってもよい。水は蒸留水が好ましいが、用途によっては通常の水道水であってもよい。
 有機溶媒は、水と混和可能な溶媒であることが好ましい。このような有機溶媒の具体例としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール(IPA)、n-ブチルアルコール、s-ブチルアルコール、イソブチルアルコール、t-ブチルアルコールなどのアルコール類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン類;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類を挙げることができる。なかでも、アルコール類が好ましく、IPAがさらに好ましい。これらの有機溶媒は、単独で用いても二種以上を組み合わせて用いてもよい。
 水系媒体として水と有機溶媒との混合溶媒を用いる場合、混合溶媒に含まれる有機溶媒の割合は1~70質量%であることが好ましく、5~60質量%であることがさらに好ましい。例えば、IPAと水との混合溶媒を用いる場合、混合溶媒に含まれるIPAの割合は1~40質量%であることが好ましく、5~40質量%であることがさらに好ましい。
(キトサン類)
 本発明の水性液状組成物にはキトサン類が含有される。キトサン類は、市場から入手したものをそのまま使用することができる。キトサン類のなかでも、水、及び必要に応じて添加される有機溶媒に対する溶解性の点から、キトサン誘導体が好ましい。キトサン誘導体としては、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、カルボキシアシルキトサン、サクシニルキトサン、カチオン化キトサンなどが挙げられる。なかでも、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、及びカルボキシアシルキトサンからなる群より選択される少なくとも一種が好ましい。
 以下、ヒドロキシアルキルキトサンについて説明する。ヒドロキシアルキルキトサンは、生物由来の天然系ポリマーであり、環境に対する負荷の少ないものである。ヒドロキシアルキルキトサンのなかでも、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、ヒドロキシブチルヒドロキシプロピルキトサン、及びグリセリル化キトサンなどが好適である。
 ヒドロキシアルキルキトサンは、キトサンのアミノ基にアルキレンオキサイドやオキシランメタノールが付加した構造を有する。なかでも、キトサンとアルキレンオキサイドとを反応させて製造したもの、又はキトサンとオキシランメタノールとを反応させて製造したものが好ましい。例えば、キトサンを撹拌分散させた含水イソプロピルアルコールに対して、水酸化ナトリウムとブチレンオキサイドを添加し、加熱撹拌することによってヒドロキシブチルキトサンを得ることができる。また、キトサンを撹拌分散させた含水イソプロピルアルコールに対して、オキシランメタノールを添加し、加熱撹拌することによってグリセリル化キトサンを得ることができる。
 本発明の水性液状組成物に導電性材料がフィラーとして含有される場合において、導電性材料の分散性の点から、ヒドロキシアルキル化度が0.5以上4以下のヒドロキシアルキルキトサンが好適に用いられる。なお、「ヒドロキシアルキル化度(単位なし)」とは、アルキレンオキサイド又はオキシランメタノールのキトサンへの付加率をいう。すなわち、キトサンを構成しているピラノース環1モル当たり、0.5モル以上4モル以下のアルキレンオキサイド又はオキシランメタノールが付加したものであることが好ましい。このようなヒドロキシアルキル化度とするためには、キトサンを構成するピラノース環1モル当たり、0.6モル以上10モル以下のアルキレンオキサイド又はオキシランメタノールを加えて反応させればよい。ヒドロキシアルキルキトサンのヒドロキシアルキル化度が0.5未満であると、フィラーの分散性、及び分散後のスラリー安定性が不十分となる場合がある。一方、ヒドロキシアルキル化度が4を超えてもフィラーの分散性は変わらないが、経済的に不利になる場合がある。
 ヒドロキシアルキルキトサンの重量平均分子量は2,000以上350,000以下であることが好ましく、5,000以上250,000以下であることがさらに好ましい。ヒドロキシアルキルキトサンの重量平均分子量が2,000未満であると、導電性フィラーの分散性が不十分となる場合がある。一方、ヒドロキシアルキルキトサンの重量平均分子量が350,000を超えると、スラリーの粘度が上昇しやすく、導電性材料の固形分濃度を上げにくくなる場合がある。
 本発明の水性液状組成物に含有されるキトサン類の割合は、水性液状組成物100質量部当たり0.1~40質量部であることが好ましく、0.5~20質量部であることがさらに好ましい。
(ポリマー酸)
 本発明の水性液状組成物にはポリマー酸が含有される。ポリマー酸が含有されることで、形成される塗工膜の基材に対する密着性が向上するとともに、形成される塗工膜の親水機能も向上する。なお、本発明における「ポリマー酸」とは、カルボキシル基やリン酸基などの酸性基を複数個有するポリマーや、複数のカルボン酸化合物及び/又は複数のリン酸化合物が重合したポリマーをいう。ポリマー酸は、単独重合体でもよいし、共重合体でもよい。また、酸性基はフリーの酸でも塩を形成していてもよい。ポリマー酸としては、フタロシアニンポリカルボン酸、フィチン酸、ヘキサメタリン酸、ポリリン酸、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリマレイン酸及びそれらの共重合体、スチレン・マレイン酸共重合体、イソブチレン・マレイン酸共重合体、ビニルエーテル・マレイン酸共重合体、ペクチン酸、ポリグルタミン酸、ポリリンゴ酸、ポリアスパラギン酸、アクリル酸・マレイン酸・ビニルアルコール共重合体などが挙げられる。なかでも、ポリアクリル酸、ポリイタコン酸、ポリマレイン酸が好適に用いられる。
 本発明の水性液状組成物に含有されるポリマー酸の割合は、水性液状組成物100質量部当たり1~40質量部であることが好ましく、1~20質量部であることがさらに好ましい。
(水性液状組成物のpH)
 本発明の水性液状組成物のpHは、4.5以下であることが必要であり、pH3.0以下であることが好ましい。水性液状組成物のpHが4.5以下であることで、必須成分であるキトサン類及びポリマー酸を溶解させることができ、均一な組成物が提供される。水性液状組成物のpHが4.5を超えると、キトサン類とポリマー酸とのポリイオンコンプレックスが析出してしまい、均一な組成物が得られなくなる。なお、水性液状組成物のpHは、例えば、後述する有機酸を添加したり、適当な無機酸を添加したりすることにより、調整することができる。
(ポリビニルアルコール、エチレンビニルアルコール共重合体)
 本発明の水性液状組成物には、ポリビニルアルコール(PVA)及び/又はエチレンビニルアルコール共重合体(EVOH)がさらに含有されることが好ましい。PVAとEVOHは、未変性のものであっても、変性されたものであってもよい。また、PVAとEVOH(以下、「PVA系樹脂」とも記す)は、単独で又は二種以上を組み合わせて用いてもよい。
 本発明者は、PVA系樹脂をポリマー酸とともに水系媒体に加えて得られる塗工液は、優れた密着性と耐溶剤性を有する塗工膜を金属材料表面に形成しうることを見出した。また、本発明者は、この塗工液からなる塗布膜を加熱乾燥して塗工膜を形成すると、ポリマー酸がPVA系樹脂の架橋剤として作用することを見出した。このため、形成される塗工膜の有機溶剤や電解液に対する溶解性や膨潤性が抑制され、金属材料表面や集電体に対する優れた密着性及び耐溶剤性が発揮されることを見出した。
 未変性PVAは、ポリ酢酸ビニルを鹸化することによって得られる公知の樹脂である。本発明においては、未変性PVAの鹸化度が40%以上であることが好ましく、70~100%であることがさらに好ましい。特に、重合度300~5,000であるとともに、鹸化度が70~100%の未変性PVAを用いることが好ましい。このような未変性PVAは、クラレポバール(クラレ社製)、ゴーセノール(日本合成化学工業社製)、デンカポバール(電気化学工業社製)、J-ポバール(日本酢ビ・ポバール社製)などの商品名で市場から入手することができる。
 変性PVAは、未変性PVAに水酸基及び酢酸基以外の官能基を導入したものである。変性PVAとしては、カルボキシル基変性PVA、カルボニル基変性PVA、シラノール基変性PVA、アミノ基変性PVA、カチオン変性PVA、スルホン酸基変性PVA、及びアセトアセチル基変性PVAなどが挙げられる。このような変性PVAは、ゴーセラン(スルホン酸基変性PVA)、ゴーセファイマーK(カチオン変性PVA)、ゴーセファイマーZ(アセトアセチル基変性PVA)、ゴーセナール(カルボキシル基変性PVA)(以上、日本合成化学工業社製);Dポリマー(カルボニル基変性PVA)、Aシリーズ(カルボキシル基変性PVA)(以上、日本酢ビ・ポバール社製);クラレCポリマー(カチオン変性PVA)(クラレ社製)などの商品名で市場から入手することができる。
 未変性EVOHは、エチレンと酢酸ビニルとの共重合体を鹸化することによって得られる公知の樹脂である。本発明においては、未変性EVOHの鹸化度が40%以上であることが好ましく、70~100%であることがさらに好ましい。なかでも、エチレン共重合率が60モル%以下の未変性EVOHを用いることが好ましい。なお、未変性EVOHのエチレン共重合率は、50モル%以下であることが好ましく、40モル%以下であることがさらに好ましい。未変性EVOHの鹸化度が40%未満であると、集電体に対する密着性が低下する場合がある。なお、未変性EVOHの重合度は300~5,000であることが好ましい。このような未変性EVOHは、エバール(登録商標:クラレ社製)などの商品名で市場から入手することができる。
 変性EVOHは、例えば、特開平9-227633号公報に記載の方法に従って製造することができる。なお、市場から直接入手することも可能である。
 本発明の水性液状組成物に含有されるPVA系樹脂の割合は、水性液状組成物100質量部当たり1~40質量部であることが好ましく、1~20質量部であることがさらに好ましい。
(有機酸)
 本発明の水性液状組成物には、有機酸がさらに含有されることが好ましい。なお、本発明における「有機酸」の概念には「ホスホノブタントリカルボン酸」は包含されない。有機酸は、水性液状組成物のpHを下げ、水性液状組成物に含まれる成分の水に対する溶解性を改善することができる。さらには、有機酸を含有する水性液状組成物を用いて塗工膜を形成すると、キトサン類や任意に添加される樹脂成分の架橋剤として有機酸が作用する。このため、形成される塗工膜がアルミニウムなどの金属材料表面に対する優れた密着性と耐溶剤性を発揮する。
 有機酸は、カルボキシル基などの酸性基を有するとともに、水系媒体にある程度溶解しうるものであればよい。有機酸としては、ギ酸、プロピオン酸、酪酸、タウリン、ピロリドンカルボン酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシマロン酸、マロン酸、コハク酸、アジピン酸、スルファミン酸、マレイン酸、安息香酸、サリチル酸、アミノ安息香酸、フタル酸、ビタミンCなどを挙げることができる。なかでも、酒石酸、リンゴ酸、クエン酸などの天然の有機酸が好ましい。また、架橋剤としての機能に着目すると、2価以上の多塩基酸類を有機酸として用いることが好ましい。
 多塩基酸類としては、従来公知のものが使用できる。具体的には、多塩基酸;多塩基酸の酸無水物;多塩基酸の一部又は全部のカルボキシル基の塩(アンモニウム塩やアミン塩);多塩基酸の一部又は全部のカルボキシル基のアルキルエステル、アミド、イミド、又はアミドイミド;これらの化合物のカルボキシル基をN-ヒドロキシスクシンイミド、N-ヒドロキシスルホスクシンイミド、又はこれらの誘導体によって1つ以上修飾した誘導体などを用いることができる。多塩基酸の誘導体としては、加熱されると多塩基酸が生成する化合物であることが好ましい。
 より具体的には、以下に示す多塩基酸やその誘導体(例えば酸無水物)を用いることが好ましい。
 <2塩基酸>シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、メチルグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、メチルマレイン酸、フマル酸、メチルフマル酸、イタコン酸、ムコン酸、シトラコン酸、グルタコン酸、アセチレンジカルボン酸、酒石酸、リンゴ酸、スピクリスポール酸、グルタミン酸、グルタチオン、アスパラギン酸、シスチン、アセチルシスチン、ジグリコール酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、チオジグリコール酸、チオニルジグリコール酸、スルホニルジグリコール酸、ポリエチレンオキシドジグリコール酸(PEG酸)、ピリジンジカルボン酸、ピラジンジカルボン酸、エポキシコハク酸、フタル酸、イソフタル酸、テレフタル酸、テトラクロルフタル酸、ナフタレンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、シクロヘキサンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルメタンジカルボン酸
 <3塩基酸>クエン酸、1,2,3-プロパントリカルボン酸、1,2,4-ブタントリカルボン酸、2-ホスホノ-1,2,4-ブタントリカルボン酸、トリメリット酸、1,2,4-シクロヘキサントリカルボン酸
 <4塩基酸>エチレンジアミンテトラ酢酸、1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸
 <6塩基酸>1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸
 なお、以下に示すその他の多塩基酸を併用してもよい。例えば、イソクエン酸、アコニット酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、カルボキシエチルチオコハク酸、トリメシン酸等の3塩基酸;エチレンジアミンN,N’-コハク酸、1,4,5,8-ナフタレンテトラカルボン酸、ペンテンテトラカルボン酸、ヘキセンテトラカルボン酸、グルタミン酸二酢酸、マレイン化メチルシクロヘキセンテトラカルボン酸、フランテトラカルボン酸、ベンゾフェノンテトラカルボン酸、フタロシアニンテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、シクロペンタンテトラカルボン酸などの単環式テトラカルボン酸類;ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸などの多環式テトラカルボン酸類の4塩基酸;ジエチレントリアミン五酢酸等の5塩基酸などが挙げられる。
 本発明の水性液状組成物に含有される有機酸の割合は、水性液状組成物100質量部当たり0.01~40質量部であることが好ましく、0.01~20質量部であることがさらに好ましい。
(ポリアルキレングリコール、ポリアルキレンオキサイド)
 本発明の水性液状組成物には、ポリアルキレングリコール及び/又はポリアルキレンオキサイドが含有されることが好ましい。ポリアルキレングリコールは、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなどのアルキレンオキサイドを開環重合することによって得られるノニオン性化合物である。また、ポリアルキレンオキサイドは、ポリアルキレングリコールうち、より重合度の高い高分子量タイプのノニオン性化合物である。ポリアルキレングリコール及び/又はポリアルキレンオキサイドが含有されることで、形成される塗工膜により高い可撓性や親水性が付与される。
 ポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールが好ましい。また、ポリアルキレンオキサイドとしては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリテトラメチレンオキサイド、ポリエチレンオキサイドとポリプロピレンオキサイドとのランダム又はブロック共重合物などが好ましい。これらは、ペオ(住友精化社製)、アルコックス(明成化学工業社製)などの商品名で市場から入手することができる。
 本発明の水性液状組成物に含まれるポリアルキレングリコールとポリアルキレンオキサイドの合計の含有割合は、水性液状組成物100質量部当たり0.1~40質量部であることが好ましく、0.5~20質量部であることがさらに好ましい。
(導電性材料)
 本発明の水性液状組成物には、導電性材料が含有されることが好ましい。導電性材料を含有させることにより、電気的な接触性が向上した塗工膜を形成することができる。このようにして形成された塗工膜は、リチウム二次電池やキャパシタなどの蓄電装置に用いられる集電体の塗工膜として好適である。すなわち、良好な導電性を有する塗工膜を形成することができるので、電極層の内部抵抗を低減することができるとともに、容量密度を高くすることができる。
 導電性材料は、アセチレンブラック、ケッチェンブラック、黒鉛、ファーネスブラック、単層又は多層カーボンナノファイバー、及び単層又は多層カーボンナノチューブからなる群より選択される少なくとも一種であることが好ましい。
 本発明の水性液状組成物に含まれる導電性材料の割合は、水性液状組成物100質量部当たり0.1~30質量部であることが好ましく、1~20質量部であることがさらに好ましい。
(水性液状組成物の用途)
 本発明の水性液状組成物は、適切なキトサン類及びポリマー酸を選択して含有させることで、環境負荷が少なく、優れた機能性を有する水性塗工液として用いることができる。具体的には、本発明の水性液状組成物は、塗料、インク、磁性体、セラミックス、蓄電装置、接着剤、電子材料、液晶カラーフィルター、医薬品、化粧品、香料など様々な分野での利用が期待できる。例えば、カーボンブラックなどの導電性材料を含有させることで、リチウムイオン二次電池やキャパシタなどの蓄電装置の集電体の表面に形成される導電性塗工膜を形成するための導電性塗工液として使用することができる。
(水性塗工液)
 本発明の水性塗工液は、前述の水性液状組成物を含有するものである。なお、前述の水性液状組成物のみをそのまま塗工液として用いることもできる。また、用途に応じて適切な希釈倍率となるように水系媒体で希釈して用いることもできる。
 本発明の水性塗工液を金属材料等の基材の表面に塗布して形成した塗布膜を加熱乾燥すると、ポリマー酸がキトサン類の架橋剤として作用し、基材表面に対して非常に優れた密着性を有するとともに、耐溶剤性及び耐水性を有する塗工膜が形成される。
 水性塗工液に含有される各成分の割合は、水性塗工液の全体を100質量部とした場合、それぞれ以下の通りである。キトサン類は0.1~40質量部であることが好ましく、0.5~20質量部であることがさらに好ましい。ポリマー酸は1~40質量部であることが好ましく、1~20質量部であることがさらに好ましい。PVA系樹脂は1~40質量部であることが好ましく、1~20質量部であることがさらに好ましい。有機酸は0.01~40質量部であることが好ましく、0.01~20質量部であることがさらに好ましい。ポリアルキレングリコールとポリアルキレンオキサイドの合計は0.02~40質量部であることが好ましく、0.1~20質量部であることがさらに好ましい。導電性材料は0.1~30質量部であることが好ましく、1~20質量部であることがさらに好ましい。なお、水性塗工液の固形分割合は1~40質量%であることが好ましい。
 キトサン類の割合が0.1質量部未満であると、形成される塗工膜の強度や密着性が不足する場合があり、塗工膜を構成する成分が脱落しやすくなる傾向にある。一方、キトサン類の割合が40質量部を超えると、均一な溶液を得にくくなる傾向にある。ポリマー酸の割合が1質量部未満であると、架橋の程度が不十分になる場合があり、形成される塗工膜の架橋密度が低く、基材に対する密着性、有機溶媒に対する不溶解性、非膨潤性の点で不十分になる傾向にある。一方、ポリマー酸の割合が40質量部を超えると、形成される塗工膜の可撓性が低下する傾向にあるとともに、コスト面で不利になる場合がある。導電性材料の割合が0.1質量部未満であると、形成される塗工膜の導電性が不足する場合がある。一方、導電性材料の割合が30質量部を超えると、他の成分が不足してしまい、形成される塗工膜の性能が低下する場合がある。
 導電性塗工膜を形成する場合には、水性塗工液の全体を100質量部とした場合、キトサン類1~10質量部、ポリマー酸1~20質量部、PVA系樹脂1~10質量部、有機酸1~15質量部、ポリアルキレングリコールとポリアルキレンオキサイドの合計0.1~10質量部、及び導電性材料1~15質量部を含有することが好ましい。
 本発明の水性塗工液には、キトサン類やPVA系樹脂以外のバインダーとして機能しうる樹脂(その他の樹脂)をさらに含有することが好ましい。その他の樹脂を含有させることで、物理的強度に優れ、耐久性、耐摩耗性、及び基材に対するさらなる密着性の向上した塗工膜を形成することができる。その他の樹脂としては、ポリビニルアセタール、含フッ素高分子、セルロース系高分子、澱粉系高分子、スチレン系重合体、ポリアミド、ポリイミド、及びポリアミドイミドなどを挙げることができる。なお、その他の樹脂は、市場から入手したものをそのまま使用してもよいが、溶媒又は分散媒に対する溶解性などを考慮すると、誘導体としたものを用いることが好ましい。
 本発明の水性塗工液に含有されるその他の樹脂の割合は、キトサン類100質量部当たり10~2,000質量部であることが好ましく、100~1,000質量部であることがさらに好ましい。また、その他の樹脂成分の含有割合は、固形分量で1~40質量%であることが好ましく、5~20質量%であることがさらに好ましい。その他の樹脂含有割合が1質量%未満であると、形成される塗工膜の強度や基材に対する密着性が不足しやすくなり、塗工膜から構成成分が脱落する場合がある。一方、40質量%を超えると、均一な塗工液を得にくくなる場合がある。また、40質量%を超えると、導電性材料を含有する場合において、導電性材料がその他の樹脂に覆い隠されてしまい、導電性材料の機能が十分発揮されなくなる傾向にある。
 その他の樹脂が含有される場合において、水性塗工液に含有されるポリマー酸の割合は、その他の樹脂100質量部当たり1~150質量部であることが好ましく、2~100質量部であることがさらに好ましい。ポリマー酸の含有割合が1質量部未満であると、形成される塗工膜の基材に対する密着性が不足する場合がある。また、電池に用いる場合、ポリマー酸の含有割合が1質量部未満であると、架橋した樹脂の電解液に対する溶解性、膨潤性、及び電気化学的安定性などが不十分となる場合がある。一方、ポリマー酸の含有割合が150質量部を超えると、形成される塗工膜の可撓性が低下するとともに、経済的に不利になる場合がある。
 その他の樹脂として、ビニルピロリドンに由来する構成単位からなるホモポリマー(ポリビニルピロリドン)、及びビニルピロリドンに由来する構成単位を含む共重合体(ポリビニルピロリドン共重合体)を用いることも好ましい。水性塗工液にポリビニルピロリドンやポリビニルピロリドン共重合体(以下、「ビニルピロリドン系ポリマー」とも記す)を含有させることで、導電性材料の分散性がさらに向上し、より良好な状態の塗工膜を形成することができる。
 ポリビニルピロリドンは、安全性の高い非イオン性ポリマーである。ポリビニルピロリドンは、ポリビニルピロリドンK-30、ポリビニルピロリドンK-85、ポリビニルピロリドンK-90(以上、日本触媒社製);ピッツコール(第一工業製薬社製)などの商品名で市場から入手することができる。
 ポリビニルピロリドン共重合体は、ビニルピロリドンと、ビニル基を有するモノマーとの共重合体であればよい。ビニル基を有するモノマーの具体例としては、アクリル酸、メタクリル酸、アクリル酸メチルやアクリル酸エチルなどのアクリル酸のアルキルエステル、メタクリル酸メチルやメタクリル酸エチルなどのメタクリル酸のアルキルエステル、ジエチルアミノエチルアクリレートなどのアクリル酸のアミノアルキルエステル、ジエチルアミノエチルメタクリレートなどのメタクリル酸のアミノアルキルエステル、ヒドロキシエチルアクリレートなどのアクリル酸とグリコールとのモノエステル、ヒドロキシエチルメタクリレートなどのメタクリル酸とグリコールとのモノエステル、アクリル酸のアルカリ金属塩、メタクリル酸のアルカリ金属塩、アクリル酸のアンモニウム塩、メタクリル酸のアンモニウム塩、アクリル酸のアミノアルキルエステルの第4級アンモニウム誘導体、メタクリル酸のアミノアルキルエステルの第4級アンモニウム誘導体、ビニルメチルエーテル、ビニルエチルエーテル、酢酸ビニル、N-ビニルイミダゾール、N-ビニルアセトアミド、N-ビニルホルムアミド、N-ビニルカプロラクタム、N-ビニルカルバゾール、アクリルアミド、メタクリルアミド、N-アルキルアクリルアミド、N-メチロールアクリルアミドなどを挙げることができる。
 ポリビニルピロリドン共重合体は、ビニルピロリドン/ビニルアセテート/ビニルプロピオネート共重合体(ルビスコールVAP、BASF社製)、ビニルアセテート/クロトン酸/ビニルピロリドン共重合体(ルビセットCAP、BASF社製)、ビニルピロリドン/アクリレート共重合体(ルビフレックス、BASF社製)、ビニルピロリドン/ジメチルアミノエチルメタクリレートの4級化物(GAFQUAT、ISP社製)、メチルビニルイミダゾリウムクロリド/ビニルピロリドン共重合体(ルビコート、BASF社製)、ビニルピロリドン/酢酸ビニル共重合体(ルビスコールVA、BASF社製)、ビニルピロリドン/ジメチルアミノエチルメタクリレート共重合体(コポリマー937、ISP社製)、ビニルカプロラクタム/ビニルピロリドン/ジメチルアミノエチルメタクリレート共重合体(コポリマーVC713、ISP社製)などの商品名で市場から入手することができる。
 水性塗工液に含有されるビニルピロリドン系ポリマーの割合は、水性塗工液を100質量部とした場合、0.1~20質量部であることが好ましい。ビニルピロリドン系ポリマーの含有割合が0.1質量部未満であると、少な過ぎるため、添加による効果を得にくくなる。一方、ビニルピロリドン系ポリマーの含有割合が20質量部を超えると、形成される塗工膜の耐酸化性が低下する傾向にある。
 本発明の塗工液には、架橋剤(前述の有機酸を除く)が含有されることも好ましい。架橋剤としては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテルなどのエポキシ化合物;トルイレンジイソシアナート、キシリレンジイソシアナート、ヘキサメチレンジイソシアナート、フェニルジイソシアナートなどのイソシアナート化合物;これらのイソシアナート化合物をフェノール類、アルコール類、活性メチレン類、メルカプタン類、酸アミド類、イミド類、アミン類、イミダゾール類、尿素類、カルバミン酸類、イミン類、オキシム類、亜硫酸類などのブロック剤でブロックしたブロックイソシアナート化合物;グリオキサール、グルタルアルデヒド、ジアルデヒド澱粉などのアルデヒド化合物;ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ヘキサンジオールジアクリレートなどの(メタ)アクリレート化合物;メチロールメラミン、ジメチロール尿素などのメチロール化合物;酢酸ジルコニル、炭酸ジルコニル、乳酸チタンなどの有機酸金属塩;アルミニウムトリメトキシド、アルミニウムトリブトキシド、チタニウムテトラエトキシド、チタニウムテトラブトキシド、ジルコニウムテトラブトキシド、アルミニウムジプロポキシドアセチルアセトネート、チタニウムジメトキシドビス(アセチルアセトネート)、チタニウムジブトキシドビス(エチルアセトアセテート)などの金属アルコキシド化合物;ビニルメトキシシラン、ビニルエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、イミダゾールシランなどのシランカップリング剤;メチルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシランなどのシラン化合物;カルボジイミド化合物などが挙げられる。これらの架橋剤の含有割合は、キトサン類とキトサン類以外の樹脂成分との合計の0.01~200質量%とすることが好ましい。
 水性塗工液がフィラーなどを含まない溶液の場合は、キトサン類、ポリマー酸、PVA系樹脂、有機酸、ポリアルキレングリコール(ポリアルキレンオキサイド)、及びビニルピロリドン系ポリマーなどを水系媒体に添加し、pH4.5以下に調整することにより、水性塗工液を調製することができる。各成分を水系媒体(溶媒)に添加する順番は特に限定されない。撹拌は室温で行ってもよいが、必要に応じて加熱してもよい。
 一方、導電性材料が分散した水性塗工液の場合は、キトサン類、ポリマー酸、導電性材料、PVA系樹脂、有機酸、ポリアルキレングリコール(ポリアルキレンオキサイド)、及びビニルピロリドン系ポリマーなどを前記の割合となるように水系媒体(分散媒)に添加し、pH4.5以下に調整した後、従来公知の混合機を用いて混合分散することによって水性塗工液を調製することができる。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができる。なお、混合機を用いて導電性材料を先ず混合しておき、次いでキトサン類、ポリマー酸、及びその他の任意成分を添加して均一に混合する方法も好ましい。これらの方法を採ることにより、均一な水性塗工液を容易に調製することができる。
(機能性塗工膜)
 本発明の機能性塗工膜は、前述の水性塗工液を被塗工物(基材)の表面に塗布して形成した塗布膜を加熱乾燥することにより形成される。水性塗工液の塗布量は特に制限されないが、形成される機能性塗工膜の厚さが、通常0.05~100μm、好ましくは0.1~10μm、さらに好ましくは0.1~5μm、特に好ましくは0.1~2μmとなる量であればよい。基材としては、アルミニウムや銅などの金属、ガラス、天然樹脂、合成樹脂、セラミックス、木材、紙、繊維、織布、不織布、皮革などが挙げられる。なかでも、アルミニウム箔や銅箔などの蓄電装置用集電体が好ましい。
 水性塗工液を基材の表面に、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマコート、スロットダイコート、スライドダイコート、ディップコート、エクストルージョンコート、スプレーコート、ハケ塗りなどの各種塗工方法により塗布する。その後、加熱乾燥することで機能性塗工膜が形成される。機能性塗工膜の膜厚が0.1μm未満では、水性塗工液を均一に塗布するのが困難な場合がある。一方、10μmを超えると、機能性塗工膜の可撓性が低下する場合がある。
 加熱乾燥は、80℃以上で1秒間以上、より好ましくは80℃以上250℃以下で、1秒以上60分間以下、行うことが好ましい。これらの条件であれば、塗工液中のキトサン類などのポリマー類を十分に架橋させ、基材に対する密着性及び電気化学的安定性が向上した機能性塗工膜を形成することができる。加熱処理条件が80℃未満又は1秒未満では、形成される機能性塗工膜の密着性及び電気化学的安定性が低下する場合がある。
(導電性塗工膜、電極板用部材、電極板、及び蓄電装置)
 本発明の水性液状組成物及び水性塗工液は、導電性材料を含む場合においては、二次電池やキャパシタなどの蓄電装置用の電極板を構成する導電性塗工膜の形成材料として好適である。なお、集電体10の表面に塗布した水性液状組成物又は水性塗工液を加熱乾燥することで、図1に示すような、集電体10と、この集電体10の表面に配設された導電性塗工膜12とを備えた電極板用部材14を得ることができる。導電性塗工膜12の厚さは、通常0.1~10μm、好ましくは0.1~5μm、さらに好ましくは0.1~2μmである。形成した導電性塗工膜12の上に、電池用正極電極層、電池用負極電極層、キャパシタ用正極電極層、キャパシタ用負極電極層、又は分極性電極層などの活物質層16を形成することによって、図1に示すような、電極層-集電体間の抵抗が小さく、環境負荷の少ない蓄電装置用の電極板20を製造することができる。
 また、上記のようにして製造された電極板を用いることで、非水電解液二次電池、電気二重層キャパシタ、及びリチウムイオンキャパシタ等の蓄電装置を得ることができる。この蓄電装置は、集電体の表面に導電性塗工膜が配設された電極板用部材を備えるものであるため、この蓄電装置は、放電容量が大きい或いは内部抵抗が低いといった優れた特性を有するものである。
 導電性塗工膜の表面抵抗率は、3,000Ω/□以下であることが好ましく、2,000Ω/□以下であることがさらに好ましい。表面抵抗率が3,000Ω/□を超えると、内部抵抗が高くなるため、高効率かつ長寿命の電池やキャパシタを得ることが困難となる。
 導電性塗工膜の表面抵抗率は、以下に示す方法によって測定される。水性塗工液を硝子板上に塗布した後、200℃で1分間乾燥し、乾燥膜厚4μmの導電性塗工膜を形成する。そして、JIS K 7194に従い、四探針法により表面抵抗率を測定する。なお、四探針法による表面抵抗率測定は、三菱化学アナリテック社製のロレスターGP、MCP-T610を使用し、25℃、相対湿度60%の条件下で実施することができる。
(親水性塗工膜)
 本発明の水性液状組成物及び水性塗工液は、ガラスなどの基材の表面に設ける親水性塗工膜の形成材料として好適である。親水性塗工膜を形成することで、防曇性が付与される。親水性塗工膜の厚さは、通常0.1~10μm、好ましくは0.1~5μm、さらに好ましくは0.1~2μmである。
 親水性塗工膜の水との接触角(θ)は40°以下であることが好ましい。親水性塗工膜の水との接触角(θ)は、以下に示す方法によって測定される。水性塗工液を基材上に塗布した後、200℃で10秒間乾燥し、乾燥膜厚0.7μmの親水性塗工膜を形成する。そして、JIS K 2396に従い、親水性塗工膜に対する水の接触角を液滴法により測定する。なお、液滴法による接触角の測定は、協和界面科学社製の接触角計Drop Master 100を使用し、25℃、相対湿度60%の条件下で実施することができる。
(複合材料)
 本発明の複合材料は、基材と、この基材上に一体的に配設された前述の機能性塗工膜とを備える。本発明の複合材料は、親水性、導電性、抗菌・防臭性、風合い、防曇性、紙力、染色性、耐水性、防汚染性などに優れた材料である。なお、本発明の複合材料は、基材上に前述の水性液状組成物又は水性塗工液を塗布して形成された塗布膜を加熱乾燥することなどにより製造することができる。
 基材としては、金属、ガラス、天然樹脂、合成樹脂、セラミックス、木材、紙、不織布、織布、及び皮革などを挙げることができる。また、基材としてアルミニウム、銅、ニッケル、及びステンレスなどの金属を用いれば、蓄電装置集電体として有用な複合材料が提供される。
 次に、実施例を挙げて本発明をさらに具体的に説明する。なお、以降「部」又は「%」とあるのは質量基準である。
<各種水性液状組成物の調製>
 各種水性液状組成物の組成を表1-1及び1-2に示す。なお、ヒドロキシプロピルキトサンを「HPC」、ヒドロキシブチルキトサンを「HBC」、グリセリル化キトサンを「GLYC」、1,2,3,4-ブタンテトラカルボン酸を「BTC」、イソプロピルアルコールを「IPA」、N-メチル-2-ピロリドンを「NMP」と略した。
(例1-1)
 イオン交換水78部にキトサン(脱アセチル化度85%、重量平均分子量7万)2部と50%ポリマレイン酸水溶液(サーモフォス社製、デイクエストP9000)20部を加えた後、室温で4時間撹拌溶解し、100部の水性液状組成物を調製した。
(例1-2~1-16)
 表1-1及び1-2に示す組成としたこと以外は、前述の例1-1と同様にして水性液状組成物を調製した。なお、表1-1及び1-2中の「A成分」は「キトサン類」、「B成分」は「ポリマー酸」、「C成分」は「PVA系樹脂」を意味する。
(例1-17)
 イオン交換水88.5部にキトサン(脱アセチル化度85%、重量平均分子量7万)5部を分散させた後、酢酸1.5部を加え、室温で4時間撹拌した。撹拌下、ポリアクリル酸水溶液(東亞合成社製、ジュリマーAC-10H(固形分20%、Mw150,000)を5部混合したところ、ポリマー成分が析出して沈殿してしまい、塗工可能な水性液状組成物を得ることができなかった。
(例1-18)
 イオン交換水75部にポリアクリル酸水溶液(東亞合成社製、ジュリマーAC-10L(固形分40%、Mw25,000)25部を加え、室温撹拌することにより10%ポリアクリル酸水溶液を調製した。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
<導電性塗工液、導電性塗工膜の作製及び評価>
(実施例1)
(1)導電性塗工液
 アセチレンブラック10部と例1-1の水性液状組成物90部を配合し、プラネタリーミキサーを使用して、回転数60rpmで120分間撹拌混合させて導電性塗工液を調製した。
(2)導電性塗工膜
 調製した導電性塗工液を、厚さ20μmのアルミニウム箔からなる集電体の片面に、コンマロールコーターを用いて塗布した。110℃のオーブンで2分間加熱乾燥し、さらに180℃のオーブンで2分間加熱乾燥して、膜厚1μmの導電性塗工膜を集電体の片面上に形成した。
(3)溶解・膨潤性
 EC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)=1:1:2(体積比)で配合した混合溶媒に、支持塩として1モルのLiPF6を溶解した溶液を調製した。導電性塗工膜を70℃の溶液に72時間浸漬した後、状態を観察した。導電性塗工膜に変化のないものを溶解・膨潤性「良」と評価した。また、導電性塗工膜層が剥離又は膨潤したものを溶解・膨潤性「不良」と評価した。結果を表2に示す。
(4)表面抵抗率
 コンマロールコーターを用いて導電性塗工液をPETフィルム上に塗布した後、180℃のオーブンで5分間乾燥処理し、導電性塗工膜(乾燥膜厚4μm)を形成した。JIS K 7194に従い、形成した導電性塗工膜の表面抵抗率を四探針法により測定した。結果を表2に示す。なお、四探針法による測定には、三菱化学アナリテック社製のロレスターGP、MCP-T610を使用し、25℃、相対湿度60%の条件下で実施した。
(実施例2~16、比較例1~2)
 例1-1の水性液状組成物に代えて、表2に示す水性液状組成物を使用したこと以外は、前述の実施例1と同様にして導電性塗工液を調製した。また、実施例1と同様にして溶解・膨潤性の評価及び表面抵抗率の測定を行った。結果を表2に示す。なお、比較例2ではポリビニリデンフルオライドの5%NMP溶液(PVDF溶液)を用いた。
Figure JPOXMLDOC01-appb-I000003
<電池への応用>
(実施例17)
(1)正極電極板
 実施例1の導電性塗工液を、厚さ20μmのアルミニウム箔からなる集電体の片面に、コンマロールコーターを用いて塗布した。110℃のオーブンで2分間加熱乾燥し、さらに180℃のオーブンで2分間加熱乾燥して、膜厚が1μmの導電性塗工膜を集電体の片面上に形成した。
 LiCoO2粉末(粒径1~100μm)90部、アセチレンブラック5部、及びポリビニリデンフルオライドの5%NMP溶液(PVDF溶液)50部を混合し、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合することにより、スラリー状の正極活物質を含む正極液を得た。得られた正極液を導電性塗工膜の表面にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、さらに、180℃のオーブンで2分間乾燥して溶媒を除去し、導電性塗工膜上に乾燥膜厚が100μmの正極活物質層を形成した。5,000kgf/cm2の条件でプレスを行って膜厚を均一にした後、80℃の真空オーブン中で48時間エージングして揮発分(水や溶剤など)を十分に除去して正極電極板を得た。
(2)負極電極板
 実施例1の導電性塗工液を、銅箔集電体の片面に、コンマロールコーターを用いて塗布した。110℃のオーブンで2分間加熱乾燥し、さらに180℃のオーブンで2分間加熱乾燥して、膜厚が1μmの導電性塗工膜を集電体の片面上に形成した。
 石炭コークスを1200℃で熱分解して得られたカーボン粉末90部、アセチレンブラック5部、及びポリビニリデンフルオライドの5%NMP溶液(PVDF溶液)50部を混合し、プラネタリーミキサーにて回転数60rpmで120分間撹拌混合することにより、スラリー状の負極活物質を含む負極液を得た。得られた負極液を導電性塗工膜の表面にコンマロールコーターにて塗布後、110℃のオーブンで2分間乾燥処理し、さらに180℃のオーブンで2分間乾燥して溶媒を除去し、導電性塗工膜上に乾燥膜厚が100μmの負極活物質層を形成した。5,000kgf/cm2の条件でプレスを行って膜厚を均一にした後、80℃の真空オーブン中で48時間エージングして揮発分(水や溶剤など)を十分に除去して負極電極板を得た。
(3)電池
 正極電極板と負極電極板を、三次元空孔構造(海綿状)を有する正極電極板より幅広のポリオレフィン系(ポリプロピレン、ポリエチレン、又はこれらの共重合体)の多孔性フィルムからなるセパレータを介して渦巻き状に捲回して電極体を作製した。作製した電極体を、負極端子を兼ねた有底円筒状のステンレス容器内に挿入し、AAサイズで定格容量500mAhの電池を組み立てた。この電池にEC(エチレンカーボネート):PC(プロピレンカーボネート):DME(ジメトキシエタン)=1:1:2(体積比)で全量1リットルになるように調製した混合溶媒に、支持塩として1モルのLiPF6を溶解したものを電解液として注液した。
(4)充放電容量維持率
 充放電測定装置を使用し、25℃の温度条件で電池の充放電特性を測定した。20セルずつ、充電電流0.2CAの電流値で、充電方向から電池電圧4.1Vになるまで充電し、10分間の休止の後、同一電流で2.75Vになるまで放電し、10分間の休止の後、以下同一条件で100サイクルの充放電を繰り返して充放電特性を測定した。1サイクル目の充放電容量値を100とした場合における、100回目の充放電容量値(充放電容量維持率)は98%であった。
(実施例18~21、比較例3)
 実施例1の導電性塗工液に代えて、表3に示す導電性塗工液を使用したこと以外は、前述の実施例17と同様にして電池を作製した。また、実施例17と同様にして充放電容量維持率を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-I000004
<キャパシタへの応用>
(実施例22)
 実施例1の導電性塗工液を、厚さ20μmのアルミニウム箔からなる集電体の片面に、コンマロールコーターを用いて塗布した。110℃のオーブンで2分加熱乾燥し、さらに180℃のオーブンで2分間加熱乾燥して、膜厚が0.5μmの導電性塗工膜を集電体の片面上に形成した。
 比表面積1,500m2/g、平均粒径10μmの高純度活性炭粉末100部、及びアセチレンブラック8部をプラネタリーミキサーに仕込み、全固形分濃度が45%となるように、ポリビニリデンフルオライドの5%NMP溶液(PVDF溶液)を加えて60分間混合した。その後、固形分濃度が42%になるようにNMPで希釈してさらに10分間混合し、電極液を得た。得られた電極液を導電性塗工膜上にドクターブレードを用いて塗布し、80℃で30分、送風乾燥機で乾燥した。その後、ロールプレス機を用いてプレスし、厚さ80μm、密度0.6g/cm3のキャパシタ用分極性電極板を得た。
 得られたキャパシタ用分極性電極板を直径15mmの円形に切り抜いたものを2枚作製し、200℃で20時間乾燥させた。2枚の電極板の電極層面を対向させ、その間に直径18mm、厚さ40μmの円形セルロース製セパレータを挟み、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。コイン型外装容器中に空気が残らないように電解液を注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、容器を封止して、直径20mm、厚さ約2mmのキャパシタを製造した。なお、電解液としては、テトラエチルアンモニウムテトラフルオロボレートをプロピレンカーボネートに1モル/リットルの濃度で溶解させた溶液を用いた。得られたキャパシタの静電容量及び内部抵抗の測定結果を表4に示す。
(実施例23~26)
 実施例1の導電性塗工液に代えて、表4に示す導電性塗工液を用いたこと以外は、前述の実施例22と同様にしてキャパシタを得た。また、得られたキャパシタの静電容量及び内部抵抗を測定した。測定結果を表4に示す。
(比較例4)
 実施例1の導電性塗工液に代えて、表4に示す導電性塗工液を用いたこと以外は、前述の実施例22と同様にしてキャパシタを得た。得られたキャパシタの静電容量及び内部抵抗を測定し、実施例22~26のキャパシタを評価する基準とした。
 電流密度20mA/cm2でキャパシタの静電容量及び内部抵抗を測定した。比較例4のキャパシタの静電容量及び内部抵抗を基準とし、実施例22~26のキャパシタを以下の基準で評価した。静電容量が大きいほど、また、内部抵抗が小さいほど、キャパシタとしての性能が良好であることを示す。
(静電容量の評価基準)
  A:比較例4よりも静電容量が20%以上大きい。
  B:比較例4よりも静電容量が10%以上20%未満大きい。
  C:比較例4と静電容量が同等以下である。
(内部抵抗の評価基準)
  A:比較例4よりも内部抵抗が20%以上小さい。
  B:比較例4よりも内部抵抗が10%以上20%未満小さい。
  C:比較例4と内部抵抗が同等以下である。
Figure JPOXMLDOC01-appb-I000005
<親水性塗工液の調製>
 各種親水性塗工液の組成を表5-1及び5-2に示す。なお、ヒドロキシプロピルキトサンを「HPC」、ヒドロキシブチルキトサンを「HBC」、グリセリル化キトサンを「GLYC」、カルボキシメチル化キトサンを「CMC」、サクシニル化キトサンを「SUC」、ポリアクリル酸を「PAA」、ポリマレイン酸を「PMA」、ポリビニルアルコールを「PVA」、1,2,3,4-ブタンテトラカルボン酸を「BTC」、ポリエチレングリコールを「PEG」、ポリエチレンオキサイドを「PEO」と略した。
(実施例27)
 イオン交換水63.75部にキトサン(脱アセチル化度85%、重量平均分子量7万)5部を分散させて分散液を得た。得られた分散液に48%PMA水溶液(サーモフォス社製、デイクエスト9000)31.25部を加えた後、室温で4時間撹拌して100部の親水性塗工液を調製した。
(実施例28~41)
 表5-1及び5-2に示す組成としたこと以外は、前述の実施例27と同様にして親水性塗工液を調製した。
(比較例5)
 イオン交換水85部とキトサン(脱アセチル化度85%、重量平均分子量7万)10部とを混合して得られた分散液に、スルファミン酸5部を加えた後、室温で4時間撹拌して100部の親水性塗工液を調製した。
(比較例6)
 イオン交換水37.5部に、10%PVA水溶液(クラレ社製、クラレポバールPVA117)50部を添加した後、撹拌下、ポリアクリル酸水溶液(東亞合成社製、ジュリマーAC-10L(固形分40%、Mw25,000))12.5部を添加した。室温で2時間撹拌して、100部の親水性塗工液を調製した。
(比較例7)
 イオン交換水87.9部に、キトサン(脱アセチル化度85%、重量平均分子量7万)5部を添加して得られた分散液に、50%乳酸水溶液4.6部を加え、室温で4時間撹拌した。撹拌下、ポリアクリル酸水溶液(東亞合成社製、ジュリマーAC-10L(固形分40%、MW25,000))2.5部を添加したところ、キトサンとポリアクリル酸とのポリイオンコンプレックスが析出してしまい、塗工可能な均一な親水性塗工液を得ることができなかった。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
<ガラス表面の親水化処理への応用>
(1)親水性塗工膜の形成
 板厚1mmのガラス板(100×100mm)表面に、バーコーター(No.3)を用いて実施例27~41及び比較例5~7の親水性塗工液を、1g/m2の乾燥膜量となるように塗布した。次いで、親水性塗工液を塗布したガラス板を表6に示す条件で加熱乾燥し、約0.7μmの親水性塗工膜がガラス板上に形成された供試材を得た。
(2)供試材の洗浄
 供試材を水道水で1時間流水洗浄(流量1L/分)した後、80℃で1時間送風乾燥した。この流水洗浄と80℃乾燥の処理を1サイクルとし、合計10サイクルの繰り返し洗浄を行った。
(3)接触角の測定
 水平状態にした供試材の表面に2μlの純水を滴下した。JIS K2396に準拠し、接触角計(協和界面科学社製、DropMaster100)を使用して水滴の接触角を測定した。なお、接触角の測定は、供試材の洗浄前と、10サイクルの繰り返し洗浄後の両方で行った。
(4)親水性評価基準
 測定した接触角から、以下の基準に従って親水性塗工膜の洗浄前後の親水性を評価した。結果を表6に示す。
  5:接触角が10°未満。
  4:接触角が10°以上20°未満。
  3:接触角が20°以上30°未満。
  2:接触角が30°以上40°未満。
  1:接触角が40°以上50°未満。
  0:接触角が50°以上。
Figure JPOXMLDOC01-appb-I000008
 本発明の水性液状組成物を用いれば、基材に対する優れた密着性、耐久性、耐溶剤性、及び耐水性を有するとともに、導電性、親水性、耐汚染性、防かび・抗菌性、防臭性、及び加工性などの機能を発揮しうる機能性塗工膜を形成することができる。このような機能性塗工膜を備えた複合材料は、蓄電装置用の集電体などとして有用である。
10:集電体
12:導電性塗工膜
14:電極板用部材
16:活物質層
20:電極板

Claims (22)

  1.  水を含む水系媒体と、キトサン及び/又はキトサン誘導体と、ポリマー酸とを含有し、pHが4.5以下である水性液状組成物。
  2.  未変性ポリビニルアルコール、変性ポリビニルアルコール、未変性エチレンビニルアルコール共重合体、及び変性エチレンビニルアルコール共重合体からなる群より選択される少なくとも一種をさらに含有する請求項1に記載の水性液状組成物。
  3.  前記変性ポリビニルアルコールが、カルボキシル基変性ポリビニルアルコール、カルボニル基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、アミノ基変性ポリビニルアルコール、カチオン変性ポリビニルアルコール、スルホン酸基変性ポリビニルアルコール、及びアセトアセチル基変性ポリビニルアルコールからなる群より選択される少なくとも一種である請求項2に記載の水性液状組成物。
  4.  有機酸(但し、ホスホノブタントリカルボン酸を除く)をさらに含有する請求項1~3のいずれか一項に記載の水性液状組成物。
  5.  ポリアルキレングリコール及び/又はポリアルキレンオキサイドをさらに含有する請求項1~4のいずれか一項に記載の水性液状組成物。
  6.  前記キトサン誘導体が、ヒドロキシアルキルキトサン、カルボキシアルキルキトサン、及びカルボキシアシルキトサンからなる群より選択される少なくとも一種である請求項1~5のいずれか一項に記載の水性液状組成物。
  7.  前記ポリマー酸が、カルボキシル基含有ビニルモノマーの単独重合体及び/又はカルボキシル基含有ビニルモノマーとカルボキシル基非含有ビニルモノマーとの共重合体である請求項1~6のいずれか一項に記載の水性液状組成物。
  8.  前記ポリマー酸が、ポリアクリル酸、ポリイタコン酸、及びポリマレイン酸からなる群より選択される少なくとも一種である請求項7に記載の水性液状組成物。
  9.  導電性材料をさらに含有する請求項1~8のいずれか一項に記載の水性液状組成物。
  10.  前記導電性材料が、アセチレンブラック、ケッチェンブラック、黒鉛、ファーネスブラック、単層又は多層カーボンナノファイバー、及び単層又は多層カーボンナノチューブからなる群より選択される少なくとも一種である請求項9に記載の水性液状組成物。
  11.  請求項1~10のいずれか一項に記載の水性液状組成物を含む水性塗工液。
  12.  請求項11に記載の水性塗工液により形成される機能性塗工膜。
  13.  JIS K7194で測定した表面抵抗率が3,000Ω/□以下である請求項12に記載の機能性塗工膜。
  14.  請求項11に記載の水性塗工液を80℃以上に加熱する工程を含む機能性塗工膜の形成方法。
  15.  基材と、前記基材上に一体的に配設された請求項12又は13に記載の機能性塗工膜と、を備えた複合材料。
  16.  前記基材が、金属、ガラス、天然樹脂、合成樹脂、セラミックス、木材、紙、繊維、不織布、織布、及び皮革からなる群より選択される少なくとも一種である請求項15に記載の複合材料。
  17.  前記基材が、アルミニウム、銅、ニッケル、及びステンレスからなる群より選択される少なくとも一種である請求項15に記載の複合材料。
  18.  集電体と、前記集電体の表面に配設された導電性塗工膜と、を備え、
     前記導電性塗工膜が、前記集電体の表面に塗布された請求項9又は10に記載の水性液状組成物が加熱処理されて形成されたものである電極板用部材。
  19.  前記集電体が、非水電解液二次電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の集電体である請求項18に記載の電極板用部材。
  20.  請求項18又は19に記載の電極板用部材と、前記導電性塗工膜の表面に配設された活物質層と、を備える電極板。
  21.  請求項20に記載の電極板を備える蓄電装置。
  22.  非水電解液二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタである請求項21に記載の蓄電装置。
PCT/JP2012/052139 2011-02-23 2012-01-31 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料 WO2012114835A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2012800103365A CN103384697A (zh) 2011-02-23 2012-01-31 水性液态组合物、水性涂布液、功能性涂布膜、及复合材料
EP12749610.7A EP2679625B1 (en) 2011-02-23 2012-01-31 Aqueous liquid composition, aqueous coating, functional coating film, and composite material
JP2013500932A JP5642869B2 (ja) 2011-02-23 2012-01-31 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
KR1020137024472A KR101593767B1 (ko) 2011-02-23 2012-01-31 수성 액상 조성물, 수성 도공액, 기능성 도공막 및 복합재료
US13/956,894 US9725606B2 (en) 2011-02-23 2013-08-01 Aqueous liquid composition, aqueous coating, functional coating film, and composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-037627 2011-02-23
JP2011037627 2011-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/956,894 Continuation US9725606B2 (en) 2011-02-23 2013-08-01 Aqueous liquid composition, aqueous coating, functional coating film, and composite material

Publications (1)

Publication Number Publication Date
WO2012114835A1 true WO2012114835A1 (ja) 2012-08-30

Family

ID=46720623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052139 WO2012114835A1 (ja) 2011-02-23 2012-01-31 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料

Country Status (7)

Country Link
US (1) US9725606B2 (ja)
EP (1) EP2679625B1 (ja)
JP (1) JP5642869B2 (ja)
KR (1) KR101593767B1 (ja)
CN (1) CN103384697A (ja)
TW (1) TWI550012B (ja)
WO (1) WO2012114835A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088332A (zh) * 2012-12-13 2013-05-08 苏州新区化工节能设备厂 水电解极板表面涂覆液
CN103866618A (zh) * 2012-12-13 2014-06-18 金东纸业(江苏)股份有限公司 表面施胶剂及其制备方法,施胶液及施胶纸
JP2016055254A (ja) * 2014-09-10 2016-04-21 株式会社ジェイテクト 塗工方法及び塗工装置
JP2016176109A (ja) * 2015-03-20 2016-10-06 アイテック株式会社 炭素ナノ繊維材料を分散させた複合めっき処理用分散液及びそれを含む複合めっき液、複合めっき液を用いた複合めっき処理方法並びに複合めっき処理を用いて表面めっき被膜を形成する切削工具の表面めっき処理方法
US9659716B2 (en) 2011-07-29 2017-05-23 Uacj Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electrical storage device using same
JP2017126530A (ja) * 2016-01-15 2017-07-20 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9841327B2 (en) * 2014-08-14 2017-12-12 Purdue Research Foundation Method of producing conductive patterns of nanoparticles and devices made thereof
CN104371128B (zh) * 2014-10-30 2017-09-26 东华大学 高强度机械性能碱性阴离子交换复合膜、制备及应用
CN104371041B (zh) * 2014-11-14 2017-06-09 东华大学 高效壳聚糖基碱性阴离子交换复合膜及其制备和应用
CN106626509B (zh) * 2016-12-19 2018-03-20 重庆渝金源食品有限公司 豆品压榨设备
WO2019139165A1 (ja) * 2018-01-15 2019-07-18 Nok株式会社 生体電極
WO2019150878A1 (ja) * 2018-02-05 2019-08-08 富士フイルム株式会社 被記録媒体の製造方法、及び、画像記録方法
US11018344B2 (en) 2018-09-10 2021-05-25 Showa Denko K.K. Current collector for electrical storage device, method for producing the same, and coating liquid used in said production method
FR3089356B1 (fr) * 2018-11-29 2021-04-02 Armor Cathode pour accumulateur électrochimique, accumulateur, dispositif de stockage d’énergie et procédé de fabrication associés
KR102273521B1 (ko) * 2019-11-29 2021-07-06 한국제이씨씨(주) 집전체용 언더코팅 잉크 제조 방법
CN111115782B (zh) * 2020-01-09 2022-05-20 江西省地质环境监测总站(鄱阳湖生态环境研究所) 一种污水处理絮凝剂及其制备方法
CN113214714A (zh) * 2021-05-31 2021-08-06 金赛花 一种阻隔生物膜医疗器械高分子涂层及其制备方法
CN113417137A (zh) * 2021-06-11 2021-09-21 东华大学 一种水性高导电涂层的制备方法
CN114606561B (zh) * 2022-03-24 2024-02-20 瑞晟通金属(广东)有限公司 一种抗老化铝合金及其制备方法
CN115403881B (zh) * 2022-09-06 2024-03-08 五邑大学 一种导电水凝胶及制备方法与应用
CN115784321B (zh) * 2022-11-23 2024-02-09 广东邦普循环科技有限公司 一种改性镍钴锰酸锂正极材料及其制备方法
CN117261303B (zh) * 2023-11-21 2024-02-23 扬州纳力新材料科技有限公司 聚丙烯膜及其制备方法、复合集流体、电极极片和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204085A (ja) * 1993-01-07 1994-07-22 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JPH0794374A (ja) * 1993-05-19 1995-04-07 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
JP2002035141A (ja) * 2000-07-31 2002-02-05 Yasutake Hichi 生体用電極、生体用電極の製造方法、生体用電極付き着衣、心電図測定器、低周波治療器又は高周波治療器
JP2002105241A (ja) * 2000-07-12 2002-04-10 Dainichiseika Color & Chem Mfg Co Ltd 水性溶液組成物および物品の表面改質方法
JP2005317902A (ja) * 2004-03-29 2005-11-10 Kuraray Co Ltd 電気二重層キャパシタ用電解質組成物及びそれを用いた電気二重層キャパシタ
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
JP2009277660A (ja) * 2009-07-13 2009-11-26 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池用電極、及びリチウム非水電解質電池用正極集電体及びその製造方法
WO2009147989A1 (ja) * 2008-06-02 2009-12-10 大日精化工業株式会社 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
JP2010028007A (ja) * 2008-07-24 2010-02-04 Nippon Zeon Co Ltd 電気二重層キャパシタ用電極および電気二重層キャパシタ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310456A (ja) 1986-07-02 1988-01-18 Mitsubishi Electric Corp メタルハライドランプ
JPH03285262A (ja) 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池の正極の製造法
US5450279A (en) 1993-05-19 1995-09-12 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor
JP4026356B2 (ja) * 2001-11-07 2007-12-26 松下電器産業株式会社 負極集電体およびこの集電体を用いた負極板と非水電解液二次電池
US7332065B2 (en) * 2003-06-19 2008-02-19 Akzo Nobel N.V. Electrode
CN101160635B (zh) * 2005-04-26 2010-12-15 日本瑞翁株式会社 电化学元件电极用复合粒子
JP4876468B2 (ja) * 2005-07-27 2012-02-15 パナソニック株式会社 非水電解質二次電池
JPWO2008029502A1 (ja) * 2006-08-29 2010-01-21 ユニチカ株式会社 電極形成用バインダー、そのバインダーを用いた電極形成用スラリー、そのスラリーを用いた電極、その電極を用いた二次電池、その電極を用いたキャパシタ
JP2009238720A (ja) 2008-01-10 2009-10-15 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
CN101685862A (zh) * 2008-09-26 2010-03-31 深圳市比克电池有限公司 锂离子电池正极浆料、其制备方法及其制成的极片和电池
CN101601986B (zh) * 2009-07-09 2012-07-25 南京大学 一种壳聚糖-二氧化硅复合空心微球的制法及应用
CN101609686B (zh) 2009-07-28 2011-09-14 南京大学 基于语音增强算法主观评估的客观评估方法
WO2011024800A1 (ja) * 2009-08-27 2011-03-03 大日精化工業株式会社 炭素フィラー用分散剤

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204085A (ja) * 1993-01-07 1994-07-22 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JPH0794374A (ja) * 1993-05-19 1995-04-07 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
JP2002105241A (ja) * 2000-07-12 2002-04-10 Dainichiseika Color & Chem Mfg Co Ltd 水性溶液組成物および物品の表面改質方法
JP2002035141A (ja) * 2000-07-31 2002-02-05 Yasutake Hichi 生体用電極、生体用電極の製造方法、生体用電極付き着衣、心電図測定器、低周波治療器又は高周波治療器
JP2005317902A (ja) * 2004-03-29 2005-11-10 Kuraray Co Ltd 電気二重層キャパシタ用電解質組成物及びそれを用いた電気二重層キャパシタ
JP2008060060A (ja) * 2006-08-04 2008-03-13 Kyoritsu Kagaku Sangyo Kk 電極板製造用塗工液、アンダーコート剤およびその使用
WO2009147989A1 (ja) * 2008-06-02 2009-12-10 大日精化工業株式会社 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
JP2010028007A (ja) * 2008-07-24 2010-02-04 Nippon Zeon Co Ltd 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2009277660A (ja) * 2009-07-13 2009-11-26 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池用電極、及びリチウム非水電解質電池用正極集電体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2679625A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659716B2 (en) 2011-07-29 2017-05-23 Uacj Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electrical storage device using same
CN103088332A (zh) * 2012-12-13 2013-05-08 苏州新区化工节能设备厂 水电解极板表面涂覆液
CN103866618A (zh) * 2012-12-13 2014-06-18 金东纸业(江苏)股份有限公司 表面施胶剂及其制备方法,施胶液及施胶纸
JP2016055254A (ja) * 2014-09-10 2016-04-21 株式会社ジェイテクト 塗工方法及び塗工装置
JP2016176109A (ja) * 2015-03-20 2016-10-06 アイテック株式会社 炭素ナノ繊維材料を分散させた複合めっき処理用分散液及びそれを含む複合めっき液、複合めっき液を用いた複合めっき処理方法並びに複合めっき処理を用いて表面めっき被膜を形成する切削工具の表面めっき処理方法
JP2017126530A (ja) * 2016-01-15 2017-07-20 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト

Also Published As

Publication number Publication date
KR101593767B1 (ko) 2016-02-12
KR20130130050A (ko) 2013-11-29
EP2679625B1 (en) 2017-01-25
EP2679625A4 (en) 2015-01-14
CN103384697A (zh) 2013-11-06
JPWO2012114835A1 (ja) 2014-07-07
US20130316232A1 (en) 2013-11-28
EP2679625A1 (en) 2014-01-01
JP5642869B2 (ja) 2014-12-17
TW201241078A (en) 2012-10-16
US9725606B2 (en) 2017-08-08
TWI550012B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5642869B2 (ja) 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
JP5134739B2 (ja) 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
JP5870195B2 (ja) 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
JP6166235B2 (ja) 塗工液、塗工膜、及び複合材料
JP5318215B2 (ja) 水系の炭素フィラー分散塗工液、導電性付与材料、蓄電装置用電極板、蓄電装置用電極板の製造方法及び蓄電装置
TWI519614B (zh) Aqueous liquid compositions, aqueous coating liquids, functional coating films and composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500932

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012749610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012749610

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024472

Country of ref document: KR

Kind code of ref document: A