WO2012113268A1 - 生产乙二醇的方法 - Google Patents

生产乙二醇的方法 Download PDF

Info

Publication number
WO2012113268A1
WO2012113268A1 PCT/CN2012/000237 CN2012000237W WO2012113268A1 WO 2012113268 A1 WO2012113268 A1 WO 2012113268A1 CN 2012000237 W CN2012000237 W CN 2012000237W WO 2012113268 A1 WO2012113268 A1 WO 2012113268A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
catalyst
ethylene glycol
reactor
partition
Prior art date
Application number
PCT/CN2012/000237
Other languages
English (en)
French (fr)
Inventor
刘俊涛
杨为民
李蕾
王万民
张琳娜
宋海峰
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110045625.6A external-priority patent/CN102649695B/zh
Priority claimed from CN201110046339.1A external-priority patent/CN102649697B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US14/001,120 priority Critical patent/US8962895B2/en
Priority to RU2013143310/04A priority patent/RU2570573C2/ru
Priority to AU2012220219A priority patent/AU2012220219B2/en
Publication of WO2012113268A1 publication Critical patent/WO2012113268A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a method for efficiently producing ethylene glycol, in particular to the use of a zoned heat exchange tube reactor and a casing structure heat exchange using an inner tube and an outer tube to realize the hydrogenation of dinonyl oxalate or diethyl oxalate.
  • Ethylene glycol (EG) is an important organic chemical raw material, mainly used in the production of polyester fiber, antifreeze, unsaturated polyester resin, lubricant, plasticizer, nonionic surfactant and explosives. It can be used in industries such as paints, photographic developers, brake fluids and inks. It is used as a solvent and medium for ammonium perborate. It is used in the production of special solvent glycol ethers. It is widely used.
  • the water content is high, the subsequent equipment (evaporator) process is long, the equipment is large, the energy consumption is high, and the total process yield is only about 70%, which directly affects the production cost of EG.
  • Direct water law significantly reduces the water ratio compared to catalytic water law, while achieving higher feedstock conversion and EG selectivity. If the catalyst stability and related engineering problems are well solved, it is an irresistible trend to replace the non-catalytic hydration process with EC-catalyzed hydrated EG.
  • the technology for preparing EG by ethylene carbonate (EC) method has greater advantages than EC direct water treatment in terms of raw material conversion rate, EG selectivity, raw material and energy consumption. a leading method.
  • the EG and DMC co-production technology can make full use of the CO 2 resource of ethylene oxidation by-product. In the existing EC production equipment, it is very attractive to produce two very valuable products by simply increasing the reaction step of producing EC.
  • Document CN200710061390.3 discloses a catalyst for hydrogenation of oxalate to ethylene glycol and a preparation method thereof, and the conversion of oxalate of the catalyst and the process thereof is low, generally about 96%, selectivity of ethylene glycol. About 92%.
  • the technical problem to be solved by the present invention is the problem of low selectivity of ethylene glycol existing in the prior art.
  • a new and highly efficient method of producing ethylene glycol is provided. This method has the advantage of high ethylene glycol selectivity.
  • the present invention relates to a method for producing ethylene glycol, using oxalate as a raw material, using copper or an oxide thereof as a catalyst, at a reaction temperature of about 170 to 270 ° C, oxalate weight space velocity For about 0.2 to 7 hours, the hydrogen/ester molar ratio is about 20 to 200: about 1, and the reaction pressure is about 1.5 to 10 MPa, and the raw material is contacted with the catalyst in the reactor to form An effluent containing ethylene glycol, wherein the reactor is a zoned heat exchanger and a tubular reactor having an outer tube and an inner tube with a sleeve structure for heat exchange of the catalyst.
  • the zone heat exchange means that the heat exchange zone of the reactor is composed of at least two, and the temperature of each heat exchange zone can be separately controlled, thereby achieving fine control of the temperature of the heat exchange zone and realizing the temperature of the bed. evenly distributed.
  • the sleeve structure using the inner tube and the outer tube means that the reaction tube is composed of an inner tube and an outer tube, and a solid catalyst is filled in the annulus between the inner tube and the outer tube, and the inner tube is preheated by the raw material gas.
  • the heat exchange channel, outside the outer tube is the heat exchange medium circulation channel, the temperature difference in the catalyst bed can be made smaller by the inner and outer tube sleeve structure, which approximates the isothermal reaction, which provides favorable protection for the optimal reaction performance of the catalyst. condition.
  • the reaction conditions of the reactor in the above technical solution are preferably: the reaction temperature is about 180 to 260 ° C, the oxalate weight space velocity is about 0.3 to 3 hours - ] , and the hydrogen / ester molar ratio is about 50 to 150: 1,
  • the reaction pressure is about 2.0 to 6.0 MPa.
  • Catalyst preferred embodiment is based on the total weight of the catalyst, and the catalyst comprises about 5 to 80 parts of copper and an oxide thereof as an active component, about 10 to 90 parts of at least one of silica, molecular sieve or alumina as a carrier, and About 0.01 to 30 parts of a metal element selected from the group consisting of ruthenium, osmium, iridium and tungsten or an oxide thereof is an auxiliary.
  • the catalyst comprises, in terms of total parts by weight of the catalyst, the catalyst comprising about 10 to 60 parts of copper and an oxide thereof as an active component, and at least one of about 15 to 90 parts of silicon oxide or aluminum oxide as a carrier, and about 0.05 to 20 parts of a metal element selected from the group consisting of ruthenium, osmium, iridium, tungsten, iridium, silver, and manganese or an oxide thereof is used as an auxiliary agent.
  • the pore volume of the catalyst of the present invention is about
  • 0.1 to 1 ml/g preferably about 0.15 to 0.8 ml/g, and an average pore diameter of about 2 to 12 nm, preferably about 3 to 12 nm.
  • the catalyst of the present invention has a specific surface area of about 100 to 400 m 2 /g, preferably a range of about 150 to 380 m 2 /g.
  • the catalyst of the present invention has a crush strength of from about 40 to about 180 Newtons/cm, preferably from about 40 to about 120 Newtons/cm.
  • the reactor involved in the present invention comprises one or more 'sleeve and outer tubes of a sleeve structure, and the number of reaction tubes of the outer tube and the inner tube with a sleeve structure accounts for the total number of reaction tubes of the reactor.
  • the oxalate hydrogenation reaction is an exothermic reaction, there is usually a reaction hot spot, which can be further controlled by the heat exchange zone partition control of the present invention.
  • the hotspots are "flattened", which in turn increases selectivity and yield.
  • the reactor of the present invention mainly comprises a raw material inlet, a raw material inlet, a gas primary distribution chamber, a gas primary distribution chamber, a gas secondary distribution chamber, and one or more sets of reaction tube bundle outer tubes ( That is, the outer tube) and the inner tube of the reaction tube bundle (ie, the inner tube), the catalyst bed, the gas collection chamber, the porous gas collection plate, and the product outlet, wherein the catalyst bed is sequentially divided into the first heat exchange block according to the flow direction of the reaction gas, a second heat exchange block and a third heat exchange block; the first heat exchange block is connected to the first zone heat exchange medium outlet and the first zone heat exchange medium inlet, and the second heat exchange block and the second zone heat exchange The medium inlet is connected to the second zone heat exchange medium outlet, and the third heat exchange block is connected to the third zone heat exchange medium inlet and the third zone heat exchange medium outlet.
  • a reaction tube bundle inner tube is disposed in the catalyst bed, and the reaction tube bundle inner tube is connected to the gas primary distribution chamber and the gas primary distribution chamber in the gas collection chamber through the inlet gas connection hose.
  • the porous gas collecting plate is located in the gas collecting chamber and is connected to the product outlet.
  • the first heat exchange block and the second heat exchange block are separated by a first partition partition, and the second heat exchange block and the third heat exchange block are separated by a second partition partition.
  • the radial temperature along the catalyst bed during the reaction is usually lower than the inlet temperature, and the temperature gradually increases after a distance along the bed, and reaches a higher hot spot temperature.
  • the temperature of the reactor gradually decreases.
  • the reaction is relatively intense, the temperature is high, the ethylene glycol selectivity is low, and the side reaction is high.
  • the heat exchange (heat removal) of the individual block is performed, so that the temperature of the hot spot falls into the optimal reaction zone, thereby reducing the reactor.
  • the temperature difference of the bed layer increases the occupancy of the catalyst in the optimum reaction temperature range, thereby improving the selectivity and yield of ethylene glycol and improving the utilization rate of the raw materials.
  • the first partitioned baffle is about 1/12 to 1/3, preferably about 1/10 to 1/3 of the length of the reactor below the reactor cover.
  • the second partitioning partition is located below the first partitioned partition ; the length of the reactor is about 1/12 to 1/3, preferably about 1/10 to 1/3.
  • the first partition partition is about 1/10 ⁇ 1/3 of the length of the reactor under the cover of the reactor, or even about 1/8 - 1/3; one cent
  • the area under the partition is about 1/10 to 1/3 of the length of the reactor, or even about 1/8 to 1/3.
  • the front part of the reactor Since the catalytic reaction does not proceed at the same speed on the catalyst, the front part of the reactor is far from equilibrium, the reaction speed is fast, the reaction heat is released, the reaction is close to equilibrium, the reaction speed is slowed, and the reaction heat is released. If the temperature of the coolant is the same before and after, if the temperature of the coolant is lowered, the heat transfer temperature difference and heat transfer are increased, and the upper or front high reaction degree and the heat of reaction of the strong reaction heat are reached, the lower part or the rear part of the reactor The heat of reaction is reduced, the heat transfer is greater than the heat of reaction, and the reaction temperature is lowered, so that the reaction rate is further slowed down until the catalyst activity is below the catalyst activity, so that it is difficult to achieve the best of both worlds at the optimum reaction temperature.
  • the invention aims at this fundamental contradiction, breaks through the existing coolant with the same temperature, and uses different temperature coolants in different sections of the reactor to solve the problem, so that the heat transfer in the reaction needs to be designed according to the size of the reaction heat removal, specifically according to the reaction.
  • the flow direction of the gas in the catalyst layer is sequentially divided into a plurality of block regions before and after, and the heat is indirectly exchanged by the coolant through the heat exchange tubes.
  • the present invention also adopts an inner tube in the catalyst bed and flows the raw material gas countercurrently, thereby preheating the raw material gas to save energy consumption and optimizing the temperature distribution of the catalyst bed. Achieve a balanced distribution of the full bed temperature, which maximizes the efficiency of the catalyst, minimizes the loss of oxalate, increases the selectivity of the glycol, and provides beneficial results.
  • the apparatus shown in FIG. 1 is used, and the partition heat exchange is used to accurately control the temperature, and the catalyst structure is used for heat exchange of the inner tube and the outer tube, and the copper oxide catalyst is used to
  • the acid ester is used as a raw material at a reaction temperature of about 160 to 260 ° C, a reaction pressure of about 1.0 to 8.0 MPa, a hydrogen ester molar ratio of about 20 to 200:1, and a reaction space velocity of about 0.1 to 7 hours _ 1 .
  • the raw material is contacted with the catalyst to form an effluent containing ethylene glycol, wherein the conversion rate of the oxalate can be 100%, and the selectivity of the ethylene glycol can be greater than 95%, and a good technical effect is obtained.
  • Figure 1 is a schematic view of a reactor in the process for producing ethylene glycol of the present invention.
  • Fig. 1 and 2 are raw material inlets
  • 3 is the upper head of the reactor
  • 4 is the upper tube sheet
  • 6 is the first partition partition
  • 7 is the catalyst bed
  • 8 Is the reactor tank
  • 9 is the second partition partition
  • 10 is the lower tube sheet
  • 1 1 is the porous gas collecting plate
  • 12 is the product outlet
  • 13 is the gas collecting chamber
  • 14 is the lower head of the reactor
  • 15 is the first
  • 16 is the third heat exchange block
  • 17 is the third zone heat exchange medium outlet
  • I 8 is the second zone heat exchange Medium inlet
  • 19 is the second heat exchange block
  • 20 is the second zone heat exchange medium outlet
  • 21 is the first zone heat exchange medium inlet
  • 22 is the first heat exchange block
  • 23 is the first zone heat exchange medium outlet
  • 24 is a gas secondary distribution chamber
  • 25 is a reactor cover plate
  • 26 and 27 are gas primary distribution chambers
  • the raw materials in Fig. 1 are introduced from the raw material inlets 1 and 2, respectively, through the gas primary distribution chambers 26 and 27, and introduced into the reaction tube bundle inner tube 28 through the inlet gas connecting hose 29, and exchange heat with the reaction heat in the catalyst bed 7 to enter the gas two.
  • the catalyst contacts the reaction, and the reacted product enters the gas collection chamber 13, and passes through the porous gas collection plate 1
  • the product exit 12 is passed through the product outlet.
  • the reaction heat in the reaction process with the catalyst is sequentially passed through the first heat exchange block 22 and the second heat exchange block.
  • the temperature of each heat exchange block can be separately controlled by the temperature and flow rate of the heat exchange medium entering each heat exchange block, and the raw material gas from the reaction tube bundle inner tube 28 and the reaction gas During the countercurrent contact process, the heat balance of the catalyst bed 7 is also promoted, thereby achieving the uniform temperature distribution of the entire reactor catalyst bed.
  • the catalyst was prepared by using silica (specific surface area: 150 m 2 /g) as a carrier and 20 parts of Cu, 5 parts of Bi and 2 parts of W according to the total weight of the catalyst.
  • the catalyst A was obtained, and the catalyst had a pore volume of 0.3 ml/g, an average pore diameter of 5 nm, a catalyst specific surface area of 120 m 2 /g, and a crush strength of 60 N/cm.
  • the second and third heat exchange mediums are all made of saturated water vapor, but the difference in pressure is used to achieve the difference in temperature, thereby realizing the temperature control of the reactor catalyst bed.
  • the casing structure of the inner tube and the outer tube is adopted, and the first partition is separated.
  • the plate is 1/8 of the length of the reactor from the reactor cover; the second partition is 1/4 of the length of the reactor below the first partition, and the third partition is separated from the second partition.
  • the length of the reactor is 1/4, and the number of reaction tubes of the outer tube and the inner tube with the sleeve structure accounts for 100% of the total number of reaction tubes of the reactor.
  • the catalyst was heat-exchanged, and then pure dioxalate oxalate (purchased from Shanghai Sinopharm Group, purity 99.9 %, the same below) was used as raw material, the reaction temperature was 220 ° C, the weight space velocity was 0.5 hour, and the hydrogen/ester molar ratio was 80. : 1, under the condition of a reaction pressure of 2.8 MPa, the raw material is contacted with the catalyst A to form an effluent containing ethylene glycol, and the reaction result is as follows: the conversion rate of dimethyl oxalate is 100%, the selectivity of ethylene glycol It is 96%.
  • the carrier silica has an average specific surface area of 280 m 2 /g
  • the catalyst B thus obtained comprises 30 parts of Cu, 10 parts of Bi and 1 part of ⁇ .
  • the catalyst had a pore volume of 0.4 ml/g, an average pore diameter of 6 nm, a catalyst specific surface area of 260 m 2 /g, and a crush strength of 120 N/cm.
  • the first, second and third heat exchange mediums are all saturated with water vapor, but the difference in pressure is used to achieve the difference in temperature.
  • the temperature of the reactor catalyst bed is controlled, and the catalyst is heat exchanged by the casing structure of the inner tube and the evening tube, wherein the first partition partition is 1/5 of the length of the reactor below the reactor cover;
  • the second partition partition is 1/6 of the length of the reactor below the first partition partition, and the third partition partition is 1/5 of the length of the reactor under the second partition partition, the outer tube and the inner tube with the casing structure
  • the number of reaction tubes of the tube accounts for 70% of the total number of reaction tubes in the reactor.
  • the catalyst prepared comprises 30 parts of Cu, 3 parts of Bi and 15 parts of W, which is counted as catalyst C.
  • the catalyst had a pore volume of 0.5 ml/g, an average pore diameter of 8 nm, a catalyst specific surface area of 230 m 2 /g, and a crush strength of 100 N/cm.
  • the first, second and third heat exchange mediums are all saturated with water vapor, but the difference in pressure is used to achieve the difference in temperature.
  • the temperature of the reactor catalyst bed is controlled, and the catalyst structure is further exchanged by the casing structure of the inner tube and the outer tube, wherein the first partition partition is 1/7 of the length of the reactor below the reactor cover;
  • the partition partition is 1/5 of the length of the reactor under the first partition partition, and the third partition partition is 1/3 of the length of the reactor under the second partition partition, the outer tube and the inner tube with the casing structure
  • the number of reaction tubes is 20% of the total number of reaction tubes in the reactor.
  • the reaction temperature is 200 ° C
  • the weight space velocity is 0.5 hour
  • the hydrogen/ester molar ratio is 100:1
  • the reaction pressure is 2.8 MPa.
  • the conversion of diethyl oxalate was 99%, and the selectivity of ethylene glycol was 94%.
  • the catalyst prepared included 30 parts of Cu, 2 parts of Bi and 8 parts of W, which was counted as catalyst D.
  • the catalyst had a pore volume of 0.6 ml/g, an average pore diameter of 8 nm, a catalyst specific surface area of 300 m 2 /g, and a crush strength of 150 N/cm.
  • the first, second and third heat exchange mediums are all saturated with water vapor, but the difference in pressure is used to achieve the difference in temperature. Controlling the temperature of the reactor catalyst bed, and additionally using the casing structure of the inner tube and the outer tube to heat exchange the catalyst, wherein the first partition partition is 1/4 of the length of the reactor below the reactor cover; the second partition The partition is 1/6 of the length of the reactor under the first partition partition, and the third partition partition is 1/3 of the length of the reactor under the second partition partition, the outer tube and the inner tube with the casing structure
  • the number of reaction tubes accounts for 60% of the total number of reaction tubes in the reactor.
  • the carrier was a ZSM-5 molecular sieve
  • the obtained catalyst composition included 45 parts of Cu, 7 parts of Bi and 2 parts of W, which were counted as catalyst E.
  • the catalyst had a pore volume of 0.4 ml/g, an average pore diameter of 5 nm, a catalyst specific surface area of 230 m 2 /g, and a crush strength of 80 N/cm.
  • the first, second and third heat exchange mediums all use saturated water vapor, but the difference in pressure is used to achieve the difference in thirst.
  • the first partition partition is 1/4 of the length of the reactor below the reactor cover;
  • the second partition partition is 1/8 of the length of the reactor below the first partition partition, and the third partition partition is 1/5 of the length of the reactor under the second partition partition, the outer tube and the inner tube with the casing structure
  • the number of reaction tubes of the tube accounts for 30% of the total number of reaction tubes in the reactor.
  • the conversion rate of dinonyl oxalate was carried out under the conditions of a reaction temperature of 230 ° C, a weight space velocity of 0.3 hours, a hydrogen/ester molar ratio of 70:1 and a reaction pressure of 2.2 MPa. 100%, the selectivity of ethylene glycol is 95%.
  • the carrier is silica
  • the obtained tempering agent composition comprises 20 parts of Cu and 2 parts of Ba, which is calculated as catalyst F.
  • the catalyst had a pore volume of 0.6 ml/g, an average pore diameter of 6 nm, a catalyst specific surface area of 280 m 2 /g, and a crush strength of 120 N/cm.
  • the first, second and third heat exchange mediums are all made of saturated water vapor, but the difference in the degree of realization is achieved by using different pressures.
  • the temperature of the reactor catalyst bed is controlled, and the catalyst is heat exchanged by the casing structure of the inner tube and the outer tube, wherein the first partition partition is 1/5 of the length of the reactor below the reactor cover;
  • the partition partition is 1/10 of the length of the reactor under the first partition partition, and the third partition partition is 1/6 of the length of the reactor under the second partition partition, the outer tube and the inner tube with the casing structure
  • the number of reaction tubes is 90% of the total number of reaction tubes in the reactor.
  • the reaction temperature is 230 ° C
  • the weight space velocity is 0. hours
  • the argon/ester molar ratio is 100:1
  • the reaction pressure is 2.8 MPa
  • the dimethyl oxalate quality Under the conditions of a percentage by weight of 14.5% (the balance of methanol), the conversion of dinonyl oxalate was 100%, and the selectivity of ethylene glycol was 98%.
  • the heat exchange section is divided into 8 sections and 8 sections are equally divided.
  • the heat exchange medium is saturated steam, but only pressure. Differently, the temperature of the reactor catalyst bed is controlled, and the number of reaction tubes of the outer tube and the inner tube with the casing structure accounts for 80% of the total number of reaction tubes of the reactor.
  • the reaction temperature is 230 ° C
  • the weight space velocity is 0.2 hours
  • the hydrogen/ester molar ratio is 100:1
  • the reaction pressure is 2.8 MPa
  • the mass percentage of dinonyl oxalate is 14.5.
  • the conversion of dinonyl oxalate was 100%
  • the selectivity of ethylene glycol was 99%.
  • the heat exchange section is divided into 15 sections and 8 sections are equally divided.
  • the heat exchange medium is saturated steam, only the pressure is used. Differently, the temperature of the reactor catalyst bed is controlled, and the number of reaction tubes of the outer tube and the inner tube with the sleeve knot accounts for 60% of the total number of reaction tubes of the reactor.
  • the reaction temperature is 230 ° C
  • the weight space velocity is 0.4 hours
  • the hydrogen / ester molar ratio is 100: 1
  • the reaction pressure is 3.0 MPa
  • the mass percentage of dimethyl oxalate Under the conditions of 14.5% (the balance of sterol), the conversion of dimethyl oxalate was 100%, and the selectivity of ethylene glycol was 97%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及生产乙二醇的方法,通过采用以草酸酯为原料,以含铜或其氧化物为催化剂,在反应温度为约170~270°C,草酸酯重量空速为约0.2~5小时-1,氢/酯摩尔比为约40~200:约1,反应压力为约1.5~10MPa条件下,原料与反应器中催化剂接触,生成含有乙二醇的流出物,其中所述反应器为分区换热和采用套管结构的外管和内管对催化剂进行换热的列管反应器。

Description

生产乙二醇的方法 技术领域
本发明涉及一种高效率生产乙二醇的方法, 特别是关于采用分区 换热列管反应器和采用内管和外管的套管结构换热实现草酸二曱酯或 草酸二乙酯加氢生成乙二醇的方法。 背景技术
乙二醇 (EG)是一种重要的有机化工原料, 主要用于生产聚醋纤维、 防冻剂、 不饱和聚酯树脂、 润滑剂、 增塑剂、 非离子表面活性剂以及 炸药等, 此外还可用于涂料、 照相显影液、 刹车液以及油墨等行业, 用 作过硼酸铵的溶剂和介质,用于生产特种溶剂乙二醇醚等, 用途十分广 泛。
目前, 我国已超过美国成为世界第一大乙二醇消费大国, 2001 ~ 2006年国内表观消费量年均增速达 17.4%。 虽然我国乙二醇生产能力 和产量增长较快, 但由于聚酯等工业的强劲发展, 仍不能满足日益增 长的市场需求, 每年都需要大量进口, 且进口量呈逐年增长态势。
当前, 国内外大型乙二醇的工业化生产都采用环氧乙烷直接水合, 即加压水合法的工艺路线, 生产技术基本上由英荷 Shell、 美国 Halcon- SD以及美国 UCC三家公司所垄断。 另外, 乙二醇新合成技术的研究 和开发工作也一直在取得进展。 如 Shell公司、 UCC公司、 莫斯科门捷 列夫化工学院、 上海石化院等相继开发了环氧乙烷催化水合法制乙二 醇生产技术; Halcon- SD、 UCC、 Dow化学、 日本触媒化学以及三菱 化学等公司相继开发了碳酸乙烯酯法制乙二醇生产技术; Dow化学等 公司开发了 EG和碳酸二曱酯 (DMC)联产制乙二醇生产技术等。
对于直接水合法的反应产物含水量高、 后续设备 (蒸发器)流程长、 设备大、能耗高、过程总收率只有 70%左右, 直接影响 EG的生产成本。 直接水合法与催化水合法相比大幅度降低了水比, 同时获得了较高的 原料转化率和 EG选择性。如果催化剂稳定性及相关工程技术问题很好 地解决、 那么 EC催化水合制 EG代替非催化水合工艺是大势所趋。 碳 酸乙烯酯(EC )法制备 EG 的技术无论在原料转化率、 EG选择性方面, 还是在原料、 能量消耗方面均比 EC直接水合法具有较大的优势, 是一 种处于领先地位的方法。 EG和 DMC联产技术可充分利用乙烯氧化副 产的 C02资源, 在现有 EC生产装置内, 只需增加生产 EC的反应步骤 就可生产两种非常有价值的产品, 非常具有吸引力。
但上述方法的共同缺点是需要消耗乙烯资源, 而对于目前乙烯主 要靠传统的石油资源炼制, 且未来一段时期全球石油价格将长期高位 运行的情况下, 以资源丰富、 价格便宜的天然气或煤代替石油生产乙 二醇 (非石油路线, 又叫 CO路线), 可具备与传统的乙烯路线相竟争的 优势。 其中, 合成气合成 EG 新技术, 可能会对 EG生产工艺的革新产 生重大的影响。 以一氧化碳为原料制备草酸二甲酯, 然后将草酸二甲 酯加氢制备乙二醇是一条非常具有吸引力的煤化工路线。 现在国内外 对以一氧化碳为原料制备草酸二曱酯的研究取得了良好的效果, 工业 生产已经成熟。 而将草酸二甲酯加氢制备乙二醇, 仍有较多工作需要 深入研究, 尤其在如何有效提高乙二醇的选择性及提高催化剂稳定性 上还没有很好的突破。
文献 《 光谱实验室 》 2010年 27卷 2期第 616-619页公开了一 篇草酸二甲酯加氢制乙二醇催化剂的研究, 其通过化学还原沉积法制 备了 Cu— Β / γ-Α1203、 Cu— B / Si02非晶态合金催化剂, 其评价结果 表明, 但该催化剂草酸酯转化率较低, 乙二醇选择性低于 90 %。
文献 CN200710061390.3 公开了一种草酸酯加氢合成乙二醇的催 化剂及其制备方法, 该催化剂及其工艺的草酸酯转化率较低, 一般在 96 %左右, 乙二醇的选择性约为 92 %左右。
上述文献存在的主要问题是乙二醇选择性较低, 有待进一步提高 和改进。 发明内容
本发明所要解决的技术问题是以往技术中存在的乙二醇选择性低 的问题。 提供一种新的高效率生产乙二醇的方法。 该方法具有乙二醇 选择性高的优点。
为了解决上述技术问题, 本发明涉及生产乙二醇的方法, 以草酸 酯为原料, 以含铜或其氧化物为催化剂, 在反应温度为约 170 ~ 270°C , 草酸酯重量空速为约 0.2 ~ 7小时 , 氢 /酯摩尔比为约 20 ~ 200: 约 1 , 反应压力为约 1.5 ~ lOMPa条件下, 原料与反应器中催化剂接触, 生成 含有乙二醇的流出物, 其中所述反应器为分区换热和具用套管结构的 外管和内管对催化剂进行换热的列管反应器。
在本发明中, 分区换热是指反应器的换热区是由至少两个构成, 每个换热区的温度可单独控制, 从而实现被换热区温度的精细控制, 实现床层的温度分布均匀。
在本发明中, 采用内管和外管的套管结构是指反应管由内管和外 管构成, 在内管和外管之间的环隙内装填固体催化剂, 内管是原料气 预热及换热通道, 外管外是换热介质流通通道, 通过内外管套管结构 可使催化剂床层内的温差较小, 近似等温反应, 这对催化剂最佳反应 性能的发挥提供有利的保障和条件。 上述技术方案中反应器的反应条 件优选为: 反应温度为约 180~260°C, 草酸酯重量空速为约 0.3 ~3小 时— ], 氢 /酯摩尔比为约 50~ 150: 1, 反应压力为约 2.0~6.0MPa。 催 化剂优选方案以催化剂总重量份数计, 催化剂包括约 5 ~ 80 份的铜及 其氧化物为活性組分、 约 10~90份的氧化硅、 分子筛或氧化铝中至少 一种为载体, 以及约 0.01 ~30份的具有选自铌、 铈、 铋和钨的金属元 素或其氧化物为助剂。 催化剂更优选方案以催化剂总重量份数计, 催 化剂包括约 10 ~ 60份的铜及其氧化物为活性组分、 约 15 ~ 90份的氧 化硅或氧化铝中至少一种为载体, 以及约 0.05~20份的具有选自铌、 铈、 铋、 钨、 钡、 银和锰的金属元素或其氧化物为助剂。
根据本发明一种实施方式, 本发明所涉及的催化剂的孔体积为约
0.1 ~ 1毫升/克, 优选约 0.15 ~ 0.8毫升 /克, 平均孔径为约 2 ~ 12纳米, 优选约 3 ~ 12纳米。
根据本发明一种实施方式, 本发明所涉及的催化剂的比表面积为 为约 100~400平方米 /克, 优选范围为约 150~ 380平方米 /克。
根据本发明一种实施方式, 本发明所涉及的催化剂的压碎强度为 约 40~约 180牛顿 /厘米, 优选范围为约 40~约 120牛顿 /厘米。
本发明所涉及的反应器包括一套或多'套套管结构的外管和内管, 带套管结构的外管和内管的反应管的数量占反应器总反应管数量的约
5% - 100% , 优选约 30% ~ 100% , 更优选约 50% ~ 100%; 和至少 2 个换热区块, 例如约 2-40个, 优选约 3 ~ 10个。
套管数量占反应器内反应管数越多, 催化剂内轴向温度的分布越 均匀, 由于草酸酯加氢反应是温度视窗很窄的反应, 温度分布越均匀, 反应副产物越少, 乙二醇的选择性越高。
换热区块数量越多, 对反应器内催化剂的温度控制越精细, 考虑 到草酸酯加氢反应是放热反应, 通常情况下存在反应热点, 通过本发 明的换热区分区控制可以进一步使热点 "扁平" 化, 进而更有效提高 选择性和收率。
根据本发明一种实施方式, 本发明所涉及的反应器主要由原料入 口、 原料入口、 气体一次分布室、 气体一次分布室、 气体二次分布室、 一套或多套的反应管束外管 (即外管) 和反应管束内管 (即内管) 、 催化剂床、 集气室、 多孔集气板、 和产物出口组成, 其中催化剂床依 反应气流动方向顺序分为第一换热区块、 第二换热区块和第三换热区 块; 第一换热区块与第一区换热介质出口和第一区换热介质入口相连, 第二换热区块与第二区换热介质入口和第二区换热介质出口相连, 和 第三换热区块与第三区换热介质入口和第三区换热介质出口相连。
根据本发明一种实施方式, 催化剂床内设置反应管束内管, 反应 管束内管通过入口气体连接软管与集气室内的气体一次分布室和气体 一次分布室相连。 多孔集气板位于集气室内, 并与产物出口相连接。 ; 第一换热区块与第二换热区块之间通过第一分区隔板分隔, 第二换热 区块和第三换热区块之间通过第二分区隔板分隔。
由于草酸酯反应的特点为, 在反应过程中沿催化剂床层的径向温 度通常是入口温度较低, 沿床层一段距离后温度逐渐升高, 并达到较 高的热点温度后, 再沿反应器温度逐渐降低, 热点温度区域, 由于反 应相对剧烈, 温度又偏高, 乙二醇选择性低, 副反应多。 依据上述反 应特征, 通过对换热区段分段位置的优选, 尤其是热点分布区域进行 单独区块换热 (撤热) , 从而是热点区域的温度落入最佳反应区内 从而缩小反应器床层温差, 提高最佳反应温度区间催化剂的占有量, 从而提高乙二醇的选择性和收率, 提高原料的利用率。
根据本发明一种实施方式, 第一分区隔板距离反应器盖板下为反 应器长度的约 1/12 ~ 1/3 , 优选为约 1/10 ~ 1/3。
根据本发明一种实施方式, 第二分区隔板距离第一分区隔板下为 ; 反应器长度的约 1/12 ~ 1/3 , 优选为约 1/10 ~ 1/3。
根据本发明一种实施方式, 第一分区隔板距离反应器盖板下为反 应器长度的约 1/10 ~ 1/3 , 甚至约 1/8 - 1/3 ; 第二分区隔板距离第一分 区隔板下为反应器长度的约 1/10 ~ 1/3, 甚至约 1/8 ~ 1/3。
由于催化反应在催化剂上并不按前后相等速度进行, 一般反应器 前部离平衡远, 反应速度快, 放出反应热也多, 后部随反应接近平衡, 反应速度减慢, 放出反应热也少, 若冷却剂的温度前后一样, 这样如 果降低冷却剂温度, 加大传热温差和移热, 达到上部或前部高反应 i 度和强反应热的移热要求, 则反应器下部或后部反应热减小, 移热大 于反应热造成反应温度下降, 使反应速度进一步减慢直到催化剂活性 以下就停止反应, 因此难以做到前后部反应都在最佳反应温度下进行 的两全其美的办法。 本发明针对这一根本矛盾, 突破现有用同一温度 的冷却剂, 而采用反应器不同区段采用不同温度冷却剂来解决, 使反 应中换热按反应热移出的大小需要设计, 具体可按反应气在催化剂层 中流动方向顺序划分为前后多个块区, 由冷却剂通过换热管来间接换 热。 另一方面, 本发明对于催化剂的反应热, 还采用催化剂床内设置 内管, 并逆流流动原料气, 一方面对原料气进行预热节约了能耗, 同 时优化了催化剂床层温度分布, 从而实现全床层温度的均衡分布, 这 对于最大化的发挥催化剂的效率, 最大程度地降低草酸酯的损失, 提 高乙二醇的选择性, 提供有益的效果。
根据本发明一种实施方式, 采用图 1 所示装置, 采用分区换热, 精确控制温度, 同时采用内管和外管的套管结构对催化剂进行换热, 采用含铜氧化物催化剂, 以草酸酯为原料, 在反应温度为约 160 ~ 260 °C , 反应压力为约 1.0 ~ 8.0MPa, 氢酯摩尔比为约 20 ~ 200: 1 , 反 应空速为约 0.1 ~ 7小时 _ 1的条件下, 原料与催化剂接触, 反应生成含 乙二醇的流出物, 其中, 草酸酯的转化率可达到为 100% , 乙二醇的选 择性可大于 95%, 取得了较好的技术效果。 附图说明
图 1为本发明生产乙二醇的方法中反应器示意图。
图 1 中 1和 2是原料入口, 3是反应器上封头, 4是上管板, 5 ^ 反应管束外管 (即外管) , 6是第一分区隔板, 7是催化剂床, 8是反 应器罐体, 9是第二分区隔板, 10是下管板, 1 1是多孔集气板, 12是 产物出口, 13是集气室, 14是反应器下封头, 15是第三区换热介质入 口, 16是第三换热区块, 17是第三区换热介质出口, I 8是第二区换热 介质入口, 19是第二换热区块, 20是第二区换热介质出口, 21是第一 区换热介质入口, 22是第一换热区块, 23是第一区换热介质出口, 24 是气体二次分布室, 25是反应器盖板, 26和 27是气体一次分布室, 28是反应管束内管 (即内管) , 29是入口气体连接软管。
图 1 中原料由原料入口 1和 2引入,分别经气体一次分布室 26和 27 , 经入口气体连接软管 29引入反应管束内管 28 , 与催化剂床 7内的 反应热换热后进入气体二次分布室 24内, 之后进入反应管束外管 5与 反应管束内管 28之间的催化剂床 7内, 与催化剂接触反应, 反应后的 产物进入集气室 13后, 经多孔集气板 1 1通过产物出口 12进入后续系 统。 在反应原料气体进入反应管束外管 5与反应管束内管 28之间的催 化剂床 7 内, 与催化剂接触反应过程中的反应热, 依次经过第一换热 区块 22、 第二换热区块 19和第三换热区块 16 , 各换热区块的温度可 通过进入各换热区块的换热介质的温度及流量等分别控制, 另外, 原 料气体从反应管束内管 28与反应气体逆流接触过程中, 也对催化剂床 7热量均衡起到较好促进作用,从而达到整个反应器催化剂床温度均布 的效果。
下面通过实施例对本发明作进一步的阐述,但不仅限于本实施例。 具体实施方式
【实施例 1】
以氧化硅 (比表面积 150平方米 /克) 为载体, 按照催化剂总重量 份数计, 以 20份 Cu, 5份 Bi和 2份 W的含量配制催化剂, 其步骤如 下: (a)配置所需浓度的铜、 铋和钨的混合硝酸盐(购自上海国药集团, 纯度 99.9 % , 以下同) 溶液及碳酸钠 (购自上海国药集团, 纯度 99.9 %, 以下同) 溶液; (b)上述溶液在 70°C下共沉淀, 沉淀过程中不断 拌, 沉淀终止时 PH=6; (c)将上述沉淀浆液用去离子水反复洗涤, 直 无 Na+后加入氧化硅载体和浓度为 10 %的硅溶胶粘结剂打浆; (d)用双 螺杆挤条机成型, 催化剂呈三叶草型; (e) 12CTC干燥 6小时, 450°C下 焙烧 4小时。 即制得催化剂 A, 催化剂的孔体积为 0.3 毫升 /克, 平均 孔径 5纳米, 催化剂的比表面积为 120平方米 /克, 压碎强度为 60牛頓 /厘米。
称取所需量制得的催化剂 A, 装入附图所示反应器中, 第一、 第 二及第三换热介质均采用饱和水蒸汽, 只是采用压力的不同, 实现温 度的差异, 从而实现反应器催化剂床温度的控制, 另外采用内管和外 管的套管结构, 第一分区隔板距离反应器盖板下为反应器长度的 1/8; 第二分区隔板距离第一分区隔板下为反应器长度的 1/4 , 第三分区隔板 距离第二分区隔板下为反应器长度的 1/4 , 带套管结构的外管和内管的 反应管的数量占反应器总反应管数量的 100 % 。
对催化剂进行换热, 然后以纯草酸二曱酯 (购自上海国药集团, 纯度 99.9 % , 以下同) 为原料, 在反应温度为 220°C , 重量空速为 0.5 小时 氢 /酯摩尔比为 80: 1, 反应压力为 2.8MPa的条件下, 原料与 催化剂 A接触, 反应生成含乙二醇的流出物, 其反应结果为: 草酸二 甲酯的转化率为 100%, 乙二醇的选择性为 96%。
【实施例 21
按照【实施例 1】的各个步骤与条件, 只是其载体氧化硅平均比表 面积为 280平方米 /克, 由此制得的催化剂 B 包括 30份 Cu, 10份 Bi 和 1份^。 催化剂的孔体积为 0.4毫升 /克, 平均孔径 6纳米, 催化剂 的比表面积为 260平方米 /克, 压碎强度为 120牛顿 /厘米。
称取所需量制得的催化剂 B , 装入附图所示反应器中, 第一、 第 二及第三换热介质均釆用饱和水蒸汽, 只是采用压力的不同, 实现温 度的差异, 从而实现反应器催化剂床温度的控制, 另外采用内管和夕 管的套管结构对催化剂进行换热, 其中, 第一分区隔板距离反应器盖 板下为反应器长度的 1/5; 第二分区隔板距离第一分区隔板下为反应器 长度的 1/6, 第三分区隔板距离第二分区隔板下为反应器长度的 1/5 , 带套管结构的外管和内管的反应管的数量占反应器总反应管数量的 70 % 。
然后以草酸二甲酯为原料, 在反应温度为 25CTC , 重量空速为 6 小时 氢 /酯摩尔比为 100: 1 , 反应压力为 3. OMPa的 35%的条件下,: 草酸二甲酯的转化率为 100%, 乙二醇的选择性为 95%。 【实施例 31
按照【实施例 1】的各个步骤与条件, 只是其载体为氧化硅和氧化 铝, 制得的催化剂包括 30份 Cu, 3份 Bi和 15份 W, 计为催化剂 C 催化剂的孔体积为 0.5毫升 /克, 平均孔径 8纳米, 催化剂的比表面积 为 230平方米 /克, 压碎强度为 100牛顿 /厘米。
称取所需量制得的催化剂 C, 装入附图所示反应器中, 第一、 第 二及第三换热介质均采用饱和水蒸汽, 只是采用压力的不同, 实现温 度的差异, 从而实现反应器催化剂床温度的控制, 另外采用内管和外 管的套管结构对催化剂进行换热, 其中, 第一分区隔板距离反应器盖 板下为反应器长度的 1/7; 第二分区隔板距离第一分区隔板下为反应器 长度的 1/5 , 第三分区隔板距离第二分区隔板下为反应器长度的 1/3 , 带套管结构的外管和内管的反应管的数量占反应器总反应管数量的 20 %。
然后以草酸二乙酯 (购自上海国药集团, 分析纯) 为原料, 在反 应温度为 200°C , 重量空速为 0.5小时 氢 /酯摩尔比为 100: 1 , 反应 压力为 2.8MPa的条件下, 草酸二乙酯的转化率为 99%, 乙二醇的选择 性为 94%。
【实施例 41
按照【实施例 1】的各个步骤与条件, 只是其载体为氧化硅和氧化 铝, 制得的催化剂包括 30份 Cu, 2份 Bi和 8份 W, 计为催化剂 D。 催化剂的孔体积为 0.6毫升 /克, 平均孔径 8纳米, 催化剂的比表面积 为 300平方米 /克, 压碎强度为 150牛顿 /厘米。
称取所需量制得的催化剂 D, 装入附图所示反应器中, 第一、 二及第三换热介质均采用饱和水蒸汽, 只是采用压力的不同, 实现温 度的差异, 从而实现反应器催化剂床温度的控制, 另外采用内管和外 管的套管结构对催化剂进行换热, 其中, 第一分区隔板距离反应器盖 板下为反应器长度的 1/4; 第二分区隔板距离第一分区隔板下为反应器 长度的 1/6 , 第三分区隔板距离第二分区隔板下为反应器长度的 1/3 , 带套管结构的外管和内管的反应管的数量占反应器总反应管数量的 60
%。
然后以草酸二乙酯为原料, 在反应温度为 240°C , 重量空速为 4 小时 , 氢 /酯摩尔比为 60: 1 , 反应压力为 3.8MPa的条件下, 草酸二 乙酯的转化率为 99%, 乙二醇的选择性为 96%。 【实施例 51
按照 【实施例 1】 的各个步骤与条件, 只是其载体为 ZSM-5分子 筛, 制得的催化剂组成包括 45份 Cu, 7份 Bi和 2份 W, 计为催化剂 E。 催化剂的孔体积为 0.4毫升 /克, 平均孔径 5纳米, 催化剂的比表面 积为 230平方米 /克, 压碎强度为 80牛顿 /厘米。
称取所需量制得的催化剂 E, 装入附图所示反应器中, 第一、 第 二及第三换热介质均采用饱和水蒸汽, 只是采用压力的不同, 实现渴 度的差异, 从而实现反应器催化剂床温度的控制, 另外采用内管和外 管的套管结构对催化剂进行换热, 其中, 第一分区隔板距离反应器盖 板下为反应器长度的 1/4; 第二分区隔板距离第一分区隔板下为反应器 长度的 1/8 , 第三分区隔板距离第二分区隔板下为反应器长度的 1/5 , 带套管结构的外管和内管的反应管的数量占反应器总反应管数量的 30 %。
然后以草酸二曱酯为原料, 在反应温度为 230°C , 重量空速为 0.3 小时 氢 /酯摩尔比为 70: 1, 反应压力为 2.2MPa的条件下, 草酸二 曱酯的转化率为 100%, 乙二醇的选择性为 95%。
【实施例 61
按照【实施例 1】的各个步骤与条件, 其载体为氧化硅, 制得的镇 化剂组成包括 20份 Cu, 2份 Ba, 计为催化剂 F。 催化剂的孔体积为 0.6毫升 /克, 平均孔径 6纳米, 催化剂的比表面积为 280平方米 /克, 压碎强度为 120牛顿 /厘米。
称取所需量制得的催化剂 F , 装入附图所示反应器中, 第一、 第 二及第三换热介质均采用饱和水蒸汽, 只是采用压力的不同, 实现 度的差异, 从而实现反应器催化剂床温度的控制, 另外采用内管和外 管的套管结构对催化剂进行换热, 其中, 第一分区隔板距离反应器盖 板下为反应器长度的 1/5 ; 第二分区隔板距离第一分区隔板下为反应器 长度的 1/10 , 第三分区隔板距离第二分区隔板下为反应器长度的 1/6 , 带套管结构的外管和内管的反应管的数量占反应器总反应管数量的 90 %。
然后以草酸二甲酯为原料, 在反应温度为 230°C, 重量空速为 0. 小时 , 氬 /酯摩尔比为 100: 1 , 反应压力为 2.8MPa, 草酸二甲酯的质 量百分含量为 14.5% (余量的甲醇)的条件下, 草酸二曱酯的转化率为 100%, 乙二醇的选择性为 98%。
【实施例 7 J
采用实施例 6相同的催化剂。
称取所需量制得的催化剂 F , 装入附图所示反应器中, 其中换热 区段分为 8段, 且 8段等分, 换热介质均采用饱和水蒸汽, 只是采用 压力的不同, 从而实现反应器催化剂床温度的控制, 另外带套管结构 的外管和内管的反应管的数量占反应器总反应管数量的 80%。
然后以草酸二甲酯为原料, 在反应温度为 230°C , 重量空速为 0.2 小时 氢 /酯摩尔比为 100: 1 , 反应压力为 2.8MPa, 草酸二曱酯的质 量百分含量为 14.5% (余量的甲醇)的条件下, 草酸二曱酯的转化率为 100% , 乙二醇的选择性为 99%。 【实施例 8】
采用实施例 6相同的催化剂。
称取所需量制得的催化剂 F , 装入附图所示反应器中, 其中换热 区段分为 15段, 且 8段等分, 换热介质均采用饱和水蒸汽, 只是采用 压力的不同, 从而实现反应器催化剂床温度的控制, 另外带套管结 的外管和内管的反应管的数量占反应器总反应管数量的 60%.。 ; 然后以草酸二甲酯为原料, 在反应温度为 230°C, 重量空速为 0.4 小时 , 氢 /酯摩尔比为 100: 1 , 反应压力为 3.0MPa, 草酸二甲酯的质 量百分含量为 14.5% (余量的曱醇)的条件下, 草酸二甲酯的转化率为 100% , 乙二醇的选择性为 97%。 Ί
【比较例 1】
依据 【实施例 2】 的条件及催化剂, 只是采用绝热固定床反应器, 其反应结果为:草酸二甲酯的转化率为 100% , 乙二醇的选择性为 88%。

Claims

权 利 要 求
1. 生产乙二醇的方法, 以草酸酯为原料, 以含铜或其氧化物为催 化剂, 在反应温度为约 170~270°C, 草酸酯重量空速为约 0.2~7小时 Λ 氢 / 摩尔比为约 20 ~ 200: 1, 反应压力为约 1.5 ~ lOMPa条件下, 原料与反应器中催化剂接触, 生成含有乙二醇的流出物, 其中所述反 应器为分区换热和采用套管结构的外管和内管对催化剂进行换热的列 管反应器。
2. 根据前述权利要求 1所述生产乙二醇的方法, 其中反应器反应 温度为约 180~260°C, 草酸酯重量空速为约 0.3 ~3小时 , 氢 /酯摩尔 比为约 50~ 150: 1, 反应压力为约 2.0~6.0MPa。
3. 根据前述权利要求任一项所述生产乙二醇的方法, 其中以催化 剂总重量份数计, 催化剂包括约 5 ~ 80份的铜及其氧化物为活性组分、 约 10~90 份的氧化硅、 分子筛或氧化铝中至少一种为载体, 以及约 0.01 ~ 30份的具有选自铌、 铈、 铋和钨的金属元素或其氧化物为助剂。
4. 根据前述权利要求任一项所迷生产乙二醇的方法, 其中所述催 化剂的孔体积为约 0.1 - 1毫升 /克, 平均孔径约 2 ~ 12纳米。
5. 根据前述权利要求任一项所述生产乙二醇的方法, 其中所述催 化剂的比表面积为约 100 ~ 400平方米 /克。
6. 根据前述权利要求任一项所迷生产乙二醇的方法, 其中所述催 化剂的压碎强度为约 40 ~ 180牛顿 /厘米。
7. 根据前述权利要求任一项所述生产乙二醇的方法, 其中以催化 剂总重量份数计,催化剂包括约 10 ~ 60份的铜及其氧化物为活性组分、 约 15 ~ 90份的氧化硅或氧化铝中至少一种为载体,以及约 0.05 ~ 20份 的铋和钨金属元素或其氧化物为助剂。
8. 根据前述权利要求任一项所述生产乙二醇的方法, 其中反应 H 包括一套或多套套管结构的外管和内管; 和至少 2个换热区块。
9. 根据前述权利要求任一项所述生产乙二醇的方法, 其中反应器 主要由原料入口 ( 1 ) 、 原料入口 (2 ) 、 气体一次分布室 (26) 、 气 体一次分布室 (27) 、 气体二次分布室 (24) 、 一套或多套的外管 (5) 和内管 (28) 、 催化剂床 (7) 、 集气室 ( 13 ) 、 多孔集气板 ( 11 ) 、 和产物出口 ( 12) 组成, 其特征是催化剂床(7)依反应气流动方向顺 序分为第一换热区块(22)、第二换热区块( 19)和第三换热区块( 16); 第一换热区块 (22) 与第一区换热介质出口 (23 ) 和第一区换热介 入口 (21 ) 相连, 第二换热区块 ( 19) 与第二区换热介质入口 ( 18)' 和第二区换热介质出口 (20) 相连, 和第三换热区块 ( 16) 与第三区 换热介质入口 ( 15 ) 和第三区换热介质出口 ( 17) 相连。
10. 根据权利要求 8或 9所迷生产乙二醇的方法, 其中催化剂床 (7) 内设置内管 (28) , 内管 (28) 通过入口气体连接软管 (29) 与 集气室 ( 13) 内的气体一次分布室 (26) 和气体一次分布室 (27) 相 连。
11. 根据权利要求 8-10任一项所述生产乙二醇的方法, 其中多孔 集气板 (11 )位于集气室 (13 ) 内, 并与产物出口 ( 12)相连接。
12. 根据权利要求 8-11任一项所述生产乙二醇的方法, 其中第一 换热区块 (22) 与第二换热区块 ( 19)之间通过第一分区隔板 (6)分 隔, 第二换热区块 ( 19) 和第三换热区块 ( 16) 之间通过第二分区隔 板 (9) 分隔。
13. 根据权利要求 8-12任一项所述生产乙二醇的方法, 其中第一 分区隔板 (6)距离反应器盖板 (25) 下为反应器长度的约 1/12- 1/3, 例如约 1/10~ 1/3, 甚至约 1/8- 1/3。
14. 根据权利要求 8-12任一项所述生产乙二醇的方法, 其中第二 分区隔板(9)距离第一分区隔板(6)下为反应器长度的约 1/12 ~ 1/3, 例如约 1/10 ~ 1/3, 甚至约 1/8 ~ 1/3。
15. 根据权利要求 8-12任一项所述生产乙二醇的方法, 其特征在 于第一分区隔板(6)距离反应器盖板(25)下为反应器长度的约 1/】0~ 1/3, 甚至约 1/8- 1/3; 第二分区隔板(9) 距离第一分区隔板(6) 下 为反应器长度的约 1/10~ 1/3, 甚至约 1/8~ 1/3。
PCT/CN2012/000237 2011-02-25 2012-02-24 生产乙二醇的方法 WO2012113268A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/001,120 US8962895B2 (en) 2011-02-25 2012-02-24 Method for the production of ethylene glycol
RU2013143310/04A RU2570573C2 (ru) 2011-02-25 2012-02-24 Способ получения этиленгликоля
AU2012220219A AU2012220219B2 (en) 2011-02-25 2012-02-24 Ethylene glycol preparation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110046339.1 2011-02-25
CN201110045625.6 2011-02-25
CN201110045625.6A CN102649695B (zh) 2011-02-25 2011-02-25 高效率生产乙二醇的方法
CN201110046339.1A CN102649697B (zh) 2011-02-25 2011-02-25 通过草酸酯气相加氢制乙二醇的方法

Publications (1)

Publication Number Publication Date
WO2012113268A1 true WO2012113268A1 (zh) 2012-08-30

Family

ID=46720110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000237 WO2012113268A1 (zh) 2011-02-25 2012-02-24 生产乙二醇的方法

Country Status (5)

Country Link
US (1) US8962895B2 (zh)
AU (1) AU2012220219B2 (zh)
MY (1) MY162972A (zh)
RU (1) RU2570573C2 (zh)
WO (1) WO2012113268A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130331617A1 (en) * 2011-02-25 2013-12-12 Shanghai Research Institute Of Petrochemical Technology, Sinopec Method for producing ethylene glycol from oxalate through the fluidized bed catalytic reaction
CN108722408A (zh) * 2017-12-26 2018-11-02 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种草酸二甲酯气相加氢合成乙二醇的催化剂及其制备方法
CN111905657A (zh) * 2019-05-07 2020-11-10 上海浦景化工技术股份有限公司 一种大型化合成气制乙二醇反应器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094894B2 (ja) 2016-06-03 2022-07-04 アイオワ・コーン・プロモーション・ボード アルドヘキソースを生じる炭水化物のエチレングリコールへの高度に選択的な変換のための連続プロセス
US10472310B2 (en) 2016-06-03 2019-11-12 Iowa Corn Promotion Board Continuous processes for the highly selective conversion of sugars to propylene glycol or mixtures of propylene glycol and ethylene glycol
RU2719441C1 (ru) * 2018-10-22 2020-04-17 Пуцзин Кемикал Индастри Ко., Лтд Реактор для крупномасштабного синтеза этиленгликоля
RU2706684C1 (ru) * 2018-10-22 2019-11-20 Пуцзин Кемикал Индастри Ко., Лтд Гидрирующий катализатор, а также его получение и его применения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2123950A1 (de) * 1971-05-14 1972-11-30 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Herstellung von Methanol in Röhrenofen
US4649226A (en) * 1986-03-27 1987-03-10 Union Carbide Corporation Hydrogenation of alkyl oxalates
CN101475441A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 草酸酯生产乙二醇的方法
CN101475442A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 由草酸酯生产乙二醇的方法
CN101934210A (zh) * 2010-09-13 2011-01-05 安徽淮化股份有限公司 适用于乙二醇工业生产的羰化反应器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2058285C1 (ru) * 1993-06-25 1996-04-20 Чебоксарское производственное объединение "Химпром" Способ получения алкан( c2-c3 )диолов
CN101138725B (zh) 2007-10-10 2010-08-18 天津大学 草酸酯加氢合成乙二醇的催化剂及其制备方法
US8178734B2 (en) 2008-12-18 2012-05-15 China Petroleum & Chemical Corporation Processes for producing ethylene glycol from oxalate(s)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2123950A1 (de) * 1971-05-14 1972-11-30 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Herstellung von Methanol in Röhrenofen
US4649226A (en) * 1986-03-27 1987-03-10 Union Carbide Corporation Hydrogenation of alkyl oxalates
CN101475441A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 草酸酯生产乙二醇的方法
CN101475442A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 由草酸酯生产乙二醇的方法
CN101934210A (zh) * 2010-09-13 2011-01-05 安徽淮化股份有限公司 适用于乙二醇工业生产的羰化反应器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130331617A1 (en) * 2011-02-25 2013-12-12 Shanghai Research Institute Of Petrochemical Technology, Sinopec Method for producing ethylene glycol from oxalate through the fluidized bed catalytic reaction
US9102583B2 (en) * 2011-02-25 2015-08-11 China Petroleum & Chemical Corporation Method for producing ethylene glycol from oxalate through the fluidized bed catalytic reaction
CN108722408A (zh) * 2017-12-26 2018-11-02 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种草酸二甲酯气相加氢合成乙二醇的催化剂及其制备方法
CN111905657A (zh) * 2019-05-07 2020-11-10 上海浦景化工技术股份有限公司 一种大型化合成气制乙二醇反应器

Also Published As

Publication number Publication date
US20130338406A1 (en) 2013-12-19
US8962895B2 (en) 2015-02-24
MY162972A (en) 2017-07-31
AU2012220219A1 (en) 2013-09-05
RU2570573C2 (ru) 2015-12-10
AU2012220219B2 (en) 2016-06-30
RU2013143310A (ru) 2015-03-27

Similar Documents

Publication Publication Date Title
WO2012113268A1 (zh) 生产乙二醇的方法
WO2016045585A1 (zh) 一种大型反应器及其装置和工艺
WO2009052764A1 (fr) Appareillage de réaction composite et procédé chimique de production utilisant celui-ci
CN102649698B (zh) 乙二醇的高效率生产方法
CN102649081B (zh) 草酸酯加氢制备乙二醇催化剂还原的方法
CN101993350B (zh) 乙二醇的生产方法
CN102649697B (zh) 通过草酸酯气相加氢制乙二醇的方法
CN100386138C (zh) 内部换热催化反应方法及设备
CN102649695B (zh) 高效率生产乙二醇的方法
US9102583B2 (en) Method for producing ethylene glycol from oxalate through the fluidized bed catalytic reaction
CN205295183U (zh) 一种生产不同等级蒸汽的节能型超大规模甲醇合成装置
WO2010130214A1 (zh) 两段式二甲醚生产方法
CN102649699B (zh) 草酸酯通过催化加氢反应制乙二醇的方法
CN106861751B (zh) 含Hβ分子筛的核壳催化剂的制备方法及产品和应用
CN102649685B (zh) 草酸酯高效率生产乙二醇的方法
CN103773410B (zh) 一种提高液态烃收率的方法
CN101993369B (zh) Co气相法偶联生产草酸酯的方法
CN104557394A (zh) 一种乙烯的生产方法
CN215540708U (zh) 亚硝酸酯和co氧化耦联生产乙二酸酯的反应装置
CN102649696B (zh) 通过草酸酯气相催化加氢制乙二醇的方法
CN102649734A (zh) 通过一氧化碳气体催化偶联反应制草酸酯的方法
CN104109094B (zh) 通过草酸酯生产乙醇酸酯的方法
CN103965939B (zh) 一种由多级反应单元合成烃类的方法
CN102649708B (zh) 草酸酯高效率催化反应生产乙二醇的方法
CN102441352B (zh) 一种浆态床费托合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14001120

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012220219

Country of ref document: AU

Date of ref document: 20120224

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013143310

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12749445

Country of ref document: EP

Kind code of ref document: A1