RU2706684C1 - Гидрирующий катализатор, а также его получение и его применения - Google Patents
Гидрирующий катализатор, а также его получение и его применения Download PDFInfo
- Publication number
- RU2706684C1 RU2706684C1 RU2018145250A RU2018145250A RU2706684C1 RU 2706684 C1 RU2706684 C1 RU 2706684C1 RU 2018145250 A RU2018145250 A RU 2018145250A RU 2018145250 A RU2018145250 A RU 2018145250A RU 2706684 C1 RU2706684 C1 RU 2706684C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- oxalate
- solution
- ethylene glycol
- copper
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 166
- 238000004519 manufacturing process Methods 0.000 title description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 177
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000006243 chemical reaction Methods 0.000 claims abstract description 42
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 38
- 239000000126 substance Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000004005 microsphere Substances 0.000 claims abstract description 25
- 239000002105 nanoparticle Substances 0.000 claims abstract description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 19
- 239000010949 copper Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 239000011701 zinc Substances 0.000 claims abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 7
- 239000010941 cobalt Substances 0.000 claims abstract description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 239000011733 molybdenum Substances 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 239000011574 phosphorus Substances 0.000 claims abstract description 6
- 239000002243 precursor Substances 0.000 claims description 43
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 34
- 229910052739 hydrogen Inorganic materials 0.000 claims description 33
- 239000001257 hydrogen Substances 0.000 claims description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- 239000002270 dispersing agent Substances 0.000 claims description 23
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- 239000000047 product Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 12
- 239000004793 Polystyrene Substances 0.000 claims description 12
- 229920002223 polystyrene Polymers 0.000 claims description 12
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 10
- 239000007795 chemical reaction product Substances 0.000 claims description 9
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 8
- 150000001879 copper Chemical class 0.000 claims description 8
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 7
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 6
- 239000005695 Ammonium acetate Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 6
- 229940043376 ammonium acetate Drugs 0.000 claims description 6
- 235000019257 ammonium acetate Nutrition 0.000 claims description 6
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 claims description 6
- 239000008103 glucose Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000011975 tartaric acid Substances 0.000 claims description 6
- 235000002906 tartaric acid Nutrition 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229910021426 porous silicon Inorganic materials 0.000 claims description 4
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 3
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 claims description 3
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 claims description 3
- VSOYJNRFGMJBAV-UHFFFAOYSA-N N.[Mo+4] Chemical compound N.[Mo+4] VSOYJNRFGMJBAV-UHFFFAOYSA-N 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 2
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 2
- LOMVENUNSWAXEN-NUQCWPJISA-N dimethyl oxalate Chemical group CO[14C](=O)[14C](=O)OC LOMVENUNSWAXEN-NUQCWPJISA-N 0.000 claims 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 8
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 abstract description 5
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 60
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 description 24
- 230000003197 catalytic effect Effects 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 235000015165 citric acid Nutrition 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 12
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 11
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 238000007873 sieving Methods 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 235000001727 glucose Nutrition 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- 229910052729 chemical element Inorganic materials 0.000 description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000006193 liquid solution Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 159000000021 acetate salts Chemical class 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical group [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical group [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- QYCVHILLJSYYBD-UHFFFAOYSA-L copper;oxalate Chemical compound [Cu+2].[O-]C(=O)C([O-])=O QYCVHILLJSYYBD-UHFFFAOYSA-L 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical group [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical group [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical group [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical group [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- UQXKXGWGFRWILX-UHFFFAOYSA-N ethylene glycol dinitrate Chemical compound O=N(=O)OCCON(=O)=O UQXKXGWGFRWILX-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical group [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical group [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/48—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/618—Surface area more than 1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/147—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
- C07C29/149—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/18—Polyhydroxylic acyclic alcohols
- C07C31/20—Dihydroxylic alcohols
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Изобретение относится к катализатору получения этиленгликоля путем гидрирования оксалата, при этом катализатор содержит (a) активный компонент в форме наночастиц, которые содержат медь, причем активный компонент присутствует в концентрации от 5 до 35 вес. %; (b) вспомогательное вещество в форме наночастиц, которые содержат элемент, выбранный из группы, состоящей из никеля, кобальта, марганца, цинка, алюминия, циркония, церия, лантана, молибдена, ванадия, висмута, бора и фосфора, причем вспомогательное вещество присутствует в концентрации от 0,01 до 20 вес. %; и (c) носитель в форме полых микросфер мезопористого диоксида кремния, на поверхностях которых диспергированы наночастицы активного компонента и наночастицы вспомогательного вещества, причем указанные микросферы имеют средний диаметр частиц от 50 до 5000 нм и среднюю толщину внешней оболочки от 5 до 500 нм, причем упомянутый катализатор обладает удельной площадью поверхности от 100 до 1200 м2/г. Изобретение также относится к способу получения заявленного катализатора и к способу получения этиленгликоля. Технический результат заключается в достижении высокого коэффициента конверсии оксалата и высокой селективности в отношении этиленгликоля. 3 н. и 8 з.п. ф-лы, 2 табл., 1 пр.
Description
ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Данное изобретение относится к катализатору, применяемому в области органического синтеза, в частности к катализатору, предназначенному для газофазного гидрирования оксалата до этиленгликоля, а также к способу его получения и его применениям.
ПРЕДПОСЫЛКИ К СОЗДАНИЮ ИЗОБРЕТЕНИЯ
Этиленгликоль является важным базовым органическим химическим материалом, способным вступать в реакцию с терефталевой кислотой (ОТК), в результате которой образуется полиэтилентерефталат (ПЭТ), также известный как полиэфирная смола, которая является сырьем для полиэфирного волокна и полиэфирного пластика. Это основная сфера применения этиленгликоля. Этиленгликоль можно также использовать непосредственно в качестве антифриза либо в качестве охлаждающей жидкости для подготовки двигателя. Динитрат этиленгликоля можно использовать в качестве взрывчатого вещества, а также неотъемлемой составляющей пластификаторов, красок, связывающих материалов, поверхностно-активных веществ, взрывчатых веществ и конденсаторных электролитов. Нынешний промышленный технологический маршрут получения этиленгликоля заключается в получении этиленоксида из нефтяного этилена путем газофазного окисления по нефтяному технологическому маршруту с последующим его гидрированием, в результате которого получается этиленгликолевый продукт.Однако, учитывая ресурсную базу Китая, характеризующуюся «некачественной нефтью, малыми объемами газа и богатыми источниками угля», крупномасштабное производство этиленгликолевых продуктов по нефтяному технологическому маршруту отражается на производстве этилена и других химических продуктов, а, соответственно, практическое значение и стратегическое потенциал на территории Китая имеет разработка способов получения этиленгликоля из синтез-газа.
Среди сообщений о различных способах синтеза этиленгликоля постепенно созрел технологический маршрут, включающий в себя синтез диэфира щавелевой кислоты с применением СО с последующим гидрированием диэфира щавелевой кислоты до этиленгликоля. На конец 2009 года в зоне разработки высоких технологий в городе Тунляо автономного региона Внутренняя Монголия была завершена промышленная демонстрационная установка мощностью 200000 тонн, которая осуществила успешный выпуск высококачественных этиленгликолевых продуктов, возвестив тем самым о том, что основанная на угле технология получения этиленгликоля официально перешла на уровень крупных промышленных масштабов.
Одной из ключевых технологий получения этиленгликоля из синтез-газа на основе угля является разработка катализатора гидрирования оксалата до этиленгликоля. Фудзянский институт физических наук, Академия наук КНР, Восточно-китайский университет науки и техники, Чжэцзянский Университет, Тяньцзиньский университет и другие соответствующие научно-исследовательские институты ведут исследования катализаторов гидрирования оксалата с 1980-х годов. С использованием катализатора Cu-Cr при температуре от 208 до 230°С и давлении от 2,5 до 3,0 МПа было проведено типовое испытание на предмет гидрирования диэтилоксалата. Результат реакции показал преобразование диэтилоксалата на уровне 99,8%. При среднем значении избирательности на уровне 95,3% рабочий цикл заявленного катализатора может составлять 1 134 час. В патенте, выданном на территории КНР под №101342489 А, представлен гидрирующий катализатор на основе меди и кремния, имеющий в своем составе вспомогательное вещество, которым на выбор может быть один или несколько из щелочноземельных металлов, химических элементов, являющихся переходными металлами, либо химических элементов, являющихся редкоземельными металлами, причем такой катализатор обеспечивает коэффициент преобразования сырья на уровне свыше 99% и избирательность в отношении этиленгликоля на уровне свыше 95% при давлении реакции 3,0 МПа и в условиях жидкого сложного эфира полиосновной кислоты с пространственно-временной скоростью на уровне 0,7 час-1. В патенте, выданном на территории КНР под №101138725 В, описаны катализатор гидрирования сложного эфира оксалата для синтеза этиленгликоля, а также способ получения такого катализатора, предусматривающий в качестве активного компонента медный элемент, а в качестве вспомогательного вещества цинковый элемент, причем получают такой катализатор способом импрегнирования, а сам катализатор обеспечивает коэффициент преобразования оксалата на уровне примерно 95% и избирательность в отношении этиленгликоля на уровне примерно 90%. В патенте, выданном на территории КНР под №102350348 В, описаны катализатор на основе меди, который предназначен для получения этиленгликоля путем гидрирования оксалата, а также способ получения такого катализатора. В этом катализаторе в качестве активного компонента используется медный элемент, а в качестве носителя используется мезопористая кремниевая оболочка, которая формируется путем компаундирования in situ. Его коэффициент преобразования сложного эфира щавелевой кислоты составляет не менее 99%, а избирательность в отношении этиленгликоля - не менее 94%.
В существующих катализаторах гидрирования оксалата до этиленгликоля наиболее активным компонентом являются медь, а содержание активной металлической меди в основном относительно высокое. Избыточное содержание в них меди, как правило, приводит к росту поверхностных кристаллов меди и их активности, а, следовательно, к снижению активности и срока службы катализатора и к невозможности длительной эксплуатации промышленных установок.
Поэтому сохраняется потребность в катализаторах, обладающих активностью и стабильностью в части производства этиленгликоля.
ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
В настоящем изобретении предлагаются гидрирующий катализатор, предназначенный для получения этиленгликоля путем гидрирования оксалата, а также способ получения и применения такого катализатора.
В нем предлагается катализатор получения этиленгликоля путем гидрирования оксалата. Данный катализатор содержит активный компонент в форме наночастиц, содержащих медь либо оксид меди; вспомогательное вещество в форме наночастиц, содержащих элемент, выбранный из группы, состоящей из никеля, кобальта, марганца, цинка, алюминия, циркония, церия, лантана, молибдена, бария, ванадия, титана, железа, иттрия, ниобия, вольфрама, олова, висмута, стронция, бора и фосфора; и носитель в форме полых микросфер диоксида кремния, на поверхностях которых диспергированы наночастицы активного компонента и наночастицы вспомогательного вещества.
Катализатор может обладать удельной площадью поверхности от 100 до 900 м2/г. Катализатор может включать в себя активный компонент, содержание которого составляет от 5 до 35 вес. %. Катализатор может включать в себя вспомогательное вещество, содержание которого составляет от 0,01 до 20 вес. %. Оксалат может представлять собой диметилоксалат, диэтилоксалат или их сочетание.
Способ получения катализатора получения этиленгликоля путем гидрирования оксалата. Данный способ включает: (а) добавление раствора меди в раствор прекурсора элемента/дисперсанта с получением раствора III; (b) добавление в раствор прекурсора носителя бромида цетилтриметиламмония (СТАВ), темплатного вещества, и, затем аммиачной воды с получением смеси IV; (с) добавление раствора III в смесь IV в присутствии газообразного азота и в условиях нагревания с получением продукта реакции; (d) дегидратацию продукта реакции с получением выпавших в осадок фаз; (е) промывание и сушку выпавших в осадок фаз с получением отвержденного продукта; и (f) прокаливание отвержденного продукта с получением таким образом катализатора, имеющего структуру полых микросфер диоксида кремния.
Указанный раствор прекурсора элемента/дисперсанта может иметь рН от 1,0 до 7,0. Указанный способ может дополнительно включать добавление в деионизированную воду прекурсора элемента с получением раствора прекурсора элемента, и добавление в раствор прекурсора элемента дисперсанта с получением раствора прекурсора элемента/дисперсанта. Упомянутый химический элемент может быть элементом, выбранным из группы, состоящей из никеля, кобальта, марганца, цинка, алюминия, циркония, церия, лантана, молибдена, бария, ванадия, титана, железа, иттрия, ниобия, вольфрама, олова, висмута, стронция, бора и фосфора. Дисперсант может быть выбран из группы, состоящей из лимонной кислоты, цитрата аммония, уксусной кислоты, ацетата аммония, малоновой кислоты, янтарной кислоты, винной кислоты, глюкозы и щавелевой кислоты.
Указанный способ может дополнительно включать растворение в деионизированной воде растворимой соли меди, в результате чего образуется раствор меди. Растворимая соль меди может быть выбрана из группы состоящей из нитрата меди, ацетата меди, хлорида меди и оксалата меди.
Данный способ может дополнительно включать растворение в смеси безводного этанола и деионизированной воды прекурсора носителя с получением раствора прекурсора носителя. Прекурсор носителя может быть выбран из группы, состоящей из золя диоксида кремния, метилортосиликата, тетраэтилортосиликата, пропилортосиликата и бутилортосиликата.
Темплатным веществом может быть твердое темплатное вещество, поддерживаемое ковалентной связью. Твердое темплатное вещество может быть выбрано из группы, состоящей из полистирола, фенолоальдегидной смолы, пористого кремния, активированного угля, полиметилметакрилата и эпоксидной смолы на основе бисфенола А.
При этом предлагается способ получения этиленгликоля. Данный способ включает гидрирование оксалата до этиленгликоля в присутствии водорода и представленного в настоящем изобретении катализатора. Оксалат можно превращать со средней степенью конверсии не менее 99,0% в течение по меньшей мере 2000 часов. Катализатор может обладать средней селективностью в отношении этиленгликоля не менее 95,0% в течение по меньшей мере 2000 часов. Этиленгликоль можно получать со средним выходом на уровне не менее 600,0 мг/г кат./час в течение по меньшей мере 2000 часов. Оксалатом может быть диметилоксалат.Катализатор может обладать средним размером частиц от 250 до 850 мкм.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем изобретении предлагается катализатор гидрирования оксалата до этиленгликоля, а также способ его получения и его применения. Указанный катализатор содержит активный компонент, вспомогательное вещество и носитель. Авторы изобретения неожиданно обнаружили, что для получения катализатора, имеющего структуру, основанную на полых микросферах диоксида кремния, с тем, чтобы такой катализатор обладал большой удельной площадью поверхности, можно задействовать твердое темплатное вещество. Металлические частицы активного компонента диспергируются на поверхности микросфер диоксида кремния, снижая тем самым нагрузку со стороны металла. Авторы изобретения неожиданно обнаружили, что для содействия миграции активных наночастиц между активным компонентом, вспомогательным веществом и носителем с тем, чтобы между активным металлом, вспомогательным веществом и носителем улучшилась сила сцепления, чтобы снизилась вероятность спекания и агрегации активного металла, а также чтобы усилилась стабильность самого катализатора, может быть использован дисперсант. Представленный в изобретении гидрирующий катализатор может быть использован для гидрирования оксалата до этиленгликоля, причем такой катализатор обеспечивает высокий коэффициент конверсии оксалата, высокую селективность в отношении этиленгликоля, а также сильную стабильность, а, следовательно, является пригодным для применения в промышленных масштабах.
В нем предлагается катализатор, предназначенный для получения этиленгликоля путем гидрирования оксалата. Указанный катализатор содержит активный компонент, вспомогательное вещество и носитель. Оксалат может представлять собой диметилоксалат, диэтилоксалат или их сочетание. В одном из вариантов осуществления катализатор состоит из активного компонента, вспомогательного вещества и носителя. Катализатор может обладать удельной площадью поверхности примерно от 100 до 1200 м2/г, предпочтительно примерно от 170 до 1070 м2/г, а более предпочтительно примерно от 210 до 980 м2/г.
Используемый в настоящем документе термин «активный компонент» относится к присутствующему в катализаторе веществу, которое катализирует гидрирование оксалата до этиленгликоля. Активный компонент может составлять примерно от 5 до 35 вес. %, предпочтительно примерно от 7,5 до 34 вес. %, а более предпочтительно примерно от 11 до 34% вес. % катализатора. Активный компонент может находиться в форме наночастиц. Для получения присутствующего в катализаторе активного компонента можно использовать растворимую соль меди. Такой растворимой солью меди может быть нитрат меди, ацетат меди, хлорид меди либо оксалат меди, предпочтительно нитрат меди, ацетат меди либо хлорид меди, а более предпочтительно нитрат меди либо хлорид меди. Медный раствор (раствор II) может быть получен путем растворения растворимой соли меди в деионизированной воде. Раствор II может содержать соль меди в концентрации примерно от 0,001 до 2,000 г/мл в расчете на общий вес раствора.
Используемый в настоящем документе термин «вспомогательное вещество» относится к присутствующему в катализаторе веществу, которое способствует взаимодействию между присутствующими в таком катализаторе активным компонентом и носителем. Упомянутым вспомогательным веществом может быть химический элемент, выбранный из группы, в состав которой входят никель, кобальт, марганец, цинк, алюминий, цирконий, церий, лантан, молибден, барий, ванадий, титан, железо, иттрий, ниобий, вольфрам, олово, висмут, стронций, бор и фосфор. Вспомогательное вещество может составлять примерно от 0,01 до 20 вес. %, предпочтительно примерно от 0,15 до 18 вес. %, а более предпочтительно примерно от 0,35 до 14% вес. % катализатора. Активный компонент может находиться в форме наночастиц.
Используемый в настоящем документе термин «прекурсор элемента» относится к веществу, представленному в виде определенного элемента, которое предназначено для обеспечения катализатора вспомогательным веществом. Упомянутый элемент может быть элемент, выбранный из группы, в состав которой входят никель, кобальт, марганец, цинк, алюминий, цирконий, церий, лантан, молибден, барий, ванадий, титан, железо, иттрий, ниобий, вольфрам, олово, висмут, стронций, бор и фосфор. Прекурсором элемента может быть оксокислота, хлорид, нитратная соль, ацетатная соль, оксалатная соль либо аммониевая соль, предпочтительно хлорид, нитратная соль, ацетатная соль либо аммониевая соль, а более предпочтительно хлорид, нитратная соль либо аммониевая соль. Смесь прекурсора элемента может быть получена путем добавления прекурсора элемента в деионизированную воду. Смесь прекурсора элемента может содержать прекурсор элемента в концентрации, находящейся в диапазоне примерно от 0,0001 до 1,000 г/мл в расчете на общий вес раствора.
Используемый в настоящем документ термин «носитель» относится к присутствующему в катализаторе веществу, которое обеспечивает основу для активного компонента и вспомогательного вещества. Носитель содержит одну или несколько полых микросфер диоксида кремния. Полые микросферы диоксида кремния образуются путем установления диоксидом кремния ковалентных связей. Сами микросферы могут иметь средний диаметр частиц примерно от 50 до 5000 нм, предпочтительно примерно от 100 до 2500 нм, а более предпочтительно примерно от 150 до 1050 нм. Микросферы могут иметь в своем составе оболочку, которая обволакивает собой полую структуру. Микросферы могут иметь среднюю толщину внешней оболочки примерно от 5 до 500 нм, предпочтительно примерно от 10 до 350 нм, а более предпочтительно примерно от 20 до 210 нм.
На поверхности таких микросфер диспергируются наночастицы активного компонента и наночастицы вспомогательного вещества. На поверхности таких микросфер, например, диспергируются наночастицы активного компонента и наночастицы вспомогательного вещества.
Используемый в настоящем документе термин «прекурсор носителя» относится к присутствующему в растворе прекурсора носителя веществу, которое используется для обеспечения катализатора носителем. Прекурсором носителя является по меньшей мере одно из таких веществ, как диоксид кремния, метилортосиликат, тетраэтилортосиликат, пропилортосиликат либо бутилортосиликат, предпочтительно таких веществ, как диоксид кремния, метилортосиликат либо тетраэтилортосиликат, а более предпочтительно таких веществ, как диоксид кремния либо тетраэтилортосиликат. Раствор прекурсора носителя может быть получен путем растворения прекурсора носителя в смеси безводного этанола и деионизированной воды. Раствор прекурсора носителя может содержать прекурсор носителя в концентрации, находящейся в диапазоне примерно от 0,001 до 1,000 г/мл в расчете на общий вес раствора. Раствор прекурсора носителя может иметь показатель рН, находящийся в диапазоне примерно от 1,0 до 7,0.
Используемый в настоящем документе термин «дисперсант» относится к веществу, которое способствует миграции активных наночастиц между активным компонентом, вспомогательным веществом и носителем. Дисперсант может быть выбран из группы, в которую входят лимонная кислота, цитрат аммония, уксусная кислота, ацетат аммония, малоновая кислота, янтарная кислота, винная кислоту, глюкоза либо щавелевая кислота, предпочтительно лимонная кислота и цитрат аммония, предпочтительно выбран из группы, в которую входят ацетат аммония, малоновая кислота, винная кислота и глюкоза, а более предпочтительно выбран из группы, в которую входит по меньшей мере одной из таких веществ, как лимонная кислота, ацетат аммония, винная кислота и глюкоза. Раствор прекурсора элемента/дисперсанта (раствор I) может быть получен путем добавления дисперсанта в смесь прекурсора элемента. Раствор I, имеющий рН, находящийся в диапазоне примерно от 1,0 до 7,0. Раствор I может содержать прекурсор элемента в концентрации, находящейся в диапазоне примерно от 0,0001 до 1,0000 г/мл, и/или дисперсант в концентрации, находящейся в диапазоне примерно от 0,0001 до 1,0000 г/мл.
Используемый в настоящем документе термин «темплатное вещество» относится к веществу, которое в синтезе катализатора выполняет функцию своеобразного копира для формирования структуры. Темплатным может быть твердое темплатное вещество, поддерживаемое ковалентной связью. Твердым темплатным веществом может быть полистирол, фенольная смола, пористый кремний, активированный уголь, полиметилметакрилат и эпоксидная смола на основе бисфенола А, предпочтительно полистирол, фенольная смола, активированный уголь либо полиметилметакрилат, а более предпочтительно полистирол, фенольная смола либо активированный уголь.
По каждому катализатору в рамках настоящего изобретения предлагается свой способ получения. Заявленный способ включает: (а) добавление раствора меди (раствор II) в раствор прекурсора элемента/дисперсанта (раствор I), в результате чего образуется раствор III; (b) добавление в раствор прекурсора носителя бромида цетилтриметиламмония (СТАВ), темплатного вещества и аммиачной воды, в результате чего образуется смесь IV; (с) добавление раствора III в смесь IV в присутствии газообразного азота и в условиях нагревания, в результате чего образуется продукт реакции; (d) дегидратацию продукта реакции, в результате которой формируются выпавшие в осадок фазы; (е) промывание и сушку выпавших в осадок фаз, в результате чего образуется отвержденный продукт; а также (f) прокаливание отвержденного продукта. В результате получается катализатор, имеющий структуру, основанную на полых микросферах диоксида кремния.
На этапе (1) раствор меди (раствор II) покапельно, с постоянной скоростью и при непрерывном интенсивном перемешивании может быть добавлен в раствор прекурсора элемента/дисперсанта (раствор I) в результате чего образуется раствор III.
На этапе (2) в раствор прекурсора носителя с перемешиванием и при температуре примерно от 30 до 50°С в течение примерно от 20 до 60 мин могут быть добавлены бромид цетилтриметиламмония (СТАВ) и темплатное вещество, а затем в него с интенсивным перемешивании при температуре примерно от 30 до 60°С в течение приблизительно от 1 до 6 час может быть добавлена аммиачная вода, в результате чего получается смесь IV. В смеси IV массовое соотношение прекурсора носителя: абсолютного этанола : деионизированной воды : бромида цетилтриметиламмония (СТАВ) : темплатного вещества: аммиачной воды может составлять примерно 1:(0,1-50):(0,1-50):(0,01-1,0):(0,01-5,0):(0,01-20,0).
На этапе (3) в смесь раствора III и смеси IV на протяжении примерно от 5 до 60 мин при непрерывном интенсивном перемешивании такой смеси может быть введен газообразный азот с дальнейшим ее нагреванием на протяжении примерно от 1 до 24 час до температуры примерно от 40 до 70°С, в результате чего образуется продукт реакции.
На этапе (4) продукт реакции может быть дегидратирован путем центрифугирования, в результате чего формируются выпавшие в осадок фазы.
На этапе (5) выпавшие в осадок фазы могут быть тщательно промыты деионизированной водой и на протяжении примерно от 2 до 24 час высушены при температуре примерно от 50 до 110°С и под давлением примерно от 80 до 90 кПа, в результате чего образуется отвержденный продукт.
На этапе (6) отвержденный продукт может на протяжении примерно от 2 до 8 час подвергаться прокаливанию в воздушной среде при температуре примерно от 350 до 700°С.
При этом предлагается способ получения этиленгликоля. Данный способ предусматривает гидрирование оксалата в присутствии водорода и представленного в настоящем изобретении катализатора. Оксалат может представлять собой диметилоксалат, диэтилоксалат или их соединение. Например, заявленный катализатор может быть использован для гидрирования диметилоксалата до этиленгликоля. Катализатор может подвергнуться сжатию, экструдированию, распылению и центрифугированию с целью образования частиц размером примерно от 1 до 6 мм, например, цилиндрический, сферический, эллипсоидальный, тороидальный, сотоподобной, зубчатой, клевероподобной и четырехлепестковой формы с дальнейшим измельчением и отсеиванием частиц размером примерно от 20 до 60 меш. Катализатор может обладать средним размером частиц от примерно 250 до примерно 850 мкм.
Отвержденный катализатор подвергается сжатию. Данная реакция может быть осуществлена в реакторной установке с неподвижным слоем в восстановительных условиях. К условиям восстановления можно отнести газовую смесь азота с водородом, содержание водорода в которой на уровне примерно 5% от общего объема газовой смеси, температуру примерно от 180 до 300°С, а также пространственно-временную скорость газа примерно от 500 до 1 500 час-1 на протяжении примерно от 6 до 30 час. К условиям восстановления можно отнести температуру примерно от 170 до 210°С, давление примерно от 1 до 3,5 МПа, а также мольное соотношение водорода к эфиру на уровне примерно от 30 до 120, раствор метанола с содержанием диметилоксалата на уровне примерно от 5 до 100% от общего веса раствора метанола при временно-пространственной скорости жидкости от 0,5 до 3,0 час-1.
Представленный в данном изобретении гидрирующий катализатор имеет структуру, основанную на полых микросферах диоксида кремния, и обеспечивает высокий коэффициент конверсии оксалата, высокую избирательность в отношении этиленгликоля, сильную стабильность и большой выход этиленгликоля.
Используемый в настоящем документе термин «коэффициент конверсии» относится к проценту превратившегося в продукт оксалата. Средний коэффициент конверсии, демонстрируемый катализатором в соответствии с настоящим изобретением, может составлять по меньшей мере примерно 98,0%, 98,5%, 99,0%, 99,5%, 99,9% либо 100% на протяжении периода времени, например, длительностью не менее 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000 либо 10000 часов. Средний коэффициент конверсии оксалата может составлять по меньшей мере примерно 1%, 2%, 3%, 4% либо 5% и выше на протяжении периода времени, например, длительностью по меньшей мере примерно 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000 либо 10000 часов при использовании катализатора, представленного в настоящем изобретении, по сравнению с катализатором, имеющим удельную площадь поверхности менее примерно 1, 10 или 100 м2/г, либо катализатором, полученным по способу, не предусматривающему использование дисперсанта, темплатного вещества либо их сочетания.
Используемый в настоящем документе термин «селективность» относится к проценту оксалата, превращенного в целевой продукт, от общего объема превращенного оксалата. Среднее значение селективности катализатора в отношении этиленгликоля в соответствии с настоящим изобретением может составлять по меньшей мере примерно 95,0%, 96,0%, 97,0%, 98,0%, 99,0%, 99,5%, 99,9% либо 100% на протяжении периода времени, например, длительностью не менее примерно 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000 либо 10000 часов. Средний коэффициент селективности катализатора в отношении этиленгликоля может составлять по меньшей мере примерно 1%, 2%, 3%, 4% либо 5% и выше на протяжении периода времени, например, длительностью по меньшей мере примерно 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000 либо 10000 часов при использовании катализатора, представленного в настоящем изобретении, по сравнению с катализатором, имеющим удельную площадь поверхности менее примерно 1, 10 или 100 м2/г, либо катализатором, полученным по способу, не предусматривающему использование дисперсанта, темплатного вещества либо их сочетания.
Используемый в настоящем документ термин «временно-пространственный выход этиленгликоля» относится к получаемому количеству этиленгликоля на единицу массы катализатора на единицу времени. Средний выход этиленгликоля в соответствии с настоящим изобретением может составлять по меньшей мере примерно 500, 600, 700, 800, 900 либо 1000 мг/г кат./час на протяжении периода времени, например, длительностью не менее примерно 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000 либо 10000 часов. Средний выход этиленгликоля может составлять по меньшей мере примерно 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 либо 1000 мг/г кат./час и выше на протяжении периода времени, например, длительностью по меньшей мере примерно 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000 либо 10000 часов при использовании катализатора, представленного в настоящем изобретении, по сравнению с катализатором, имеющим удельную площадь поверхности менее примерно 1, 10 или 100 м2/г, либо катализатором, полученным по способу, не предусматривающему использование дисперсанта, темплатного вещества либо их сочетания.
Термин «примерно», используемый в настоящем документе при упоминании измеряемого значения, например, количества, процента и тому подобного, предназначен для охвата отклонений в пределах ±20% либо ±10%, более предпочтительно - ±5%, еще более предпочтительно - ±1% и еще более предпочтительно - ±0,1% от указанного значения, поскольку такие отклонения соответствуют нормы.
Пример 1.
Были получены катализаторы 1-11, а также сравнительные образцы катализаторов 1-4. Методом МС ИСП было измерено содержание активного компонента по каждому катализатору (таблицы 1 и 2). С помощью измерителя физико-химической адсорбции была измерена удельная площадь поверхности каждого катализатора (таблица 1). Методом сканирующей электронной микроскопии были измерены размер частиц и толщина стенки оболочки полых микросфер диоксида кремния (таблица 1). По каждому катализатору была определена каталитическая активность (например, коэффициент конверсии диметилоксалата и селективность в отношении этиленгликоля) в реакции гидрирования диметилоксалата, в результате которой получается этиленгликоль (таблица 2). В реакции гидрирования для катализаторов 1-10 и сравнительных образцов катализаторов 1-3 в качестве исходного материала был использован содержащий диметилоксалат раствор метанола, а для катализатора 11 и сравнительного образца катализатора 4 в качестве исходного материала был использован диметилоксалат.
Катализатор 1
Катализатор 2 был получен в соответствии со способом получения, предусматривающим следующие этапы:
(1) растворение в 100 мл деионизированной воды 2,55 г нитрата кобальта, добавление 14,22 г лимонной кислоты с последующей корректировкой уровня рН до показателя 3,5, в результате чего получается раствор I;
(2) растворение в 200 мл деионизированной воды 9,81 г нитрата меди, в результате чего получается раствор II; а затем добавление раствора II в раствор I с постоянной скоростью и при интенсивном перемешивании, в результате чего образуется раствор III;
(3) растворение в 150 мл абсолютного этанола и 50 мл деионизированной воды 19,40 г этилортосиликата 32, добавление 6,44 г бромида цетилтриметиламмония (СТАВ), а также, в качестве темплатного вещества, 7,82 г микросфер полистирола с перемешиванием на протяжении 40 мин при температуре 40°С, а затем добавление при интенсивном перемешивании при температуре 50°С на протяжении 4 час 73,54 г аммиака, в результате чего получается смесь IV;
(4) добавление раствора III в смесь IV, введение газообразного азота на протяжении 30 мин при непрерывном интенсивном помешивании, нагревание на протяжении 12 час до температуры 65°С, дегидратация продукта реакции путем центрифугирования, а также тщательная промывка деионизированной водой при температуре 80°С и под давлением 85 кПа; сушка на протяжении 8 час, в результате которой получается отвержденный продукт, спекание отвержденного продукта в воздушной среде при температуре 500°С на протяжении 4 часов, в результате чего получается катализатор 1, имеющий структуру полых микросфер диоксида кремния.
Каталитическую активность катализатора 1 определяли в следующей реакции гидрирования: катализатор 1 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем на 24 часа был помещен в реактор с неподвижным слоем в восстановительные условия газовой смеси азота и водорода, содержащей 5% водорода при температуре 220°С и с объемной пространственно-временной скоростью на уровне 700 час-1; при этом температура реакции составляла 185°С; давление реакции - 2,0 МПа; молярное соотношение водорода к сложному эфиру -80; а временно-пространственная скорость находящегося в жидком состоянии раствора метанола, содержащего диметилоксалата на уровне 80% от общего веса самого раствора метанола, составляла 1,5 час-1.
Сравнительный образец катализатора 1
Сравнительный образец катализатора 1 был получен в соответствии со способом получения катализатора 1, за исключением того, что выполняющая функцию дисперсанта лимонная кислота на этапе (1) не добавлялась. Условия оценки каталитической активности были идентичными аналогичным условиям по катализатору 1.
Катализатор 2
Катализатор 2 был получен в соответствии со способом получения катализатора 1, за исключением того, что на этапе (3) микросферы полистирола были заменены на активированный уголь, а нитрат кобальта был заменен на нитрат никеля.
Каталитическую активность катализатора 2 определяли в следующей реакции гидрирования: катализатор 2 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем на 24 часа был помещен в реактор с неподвижным слоем в восстановительные условия газовой смеси азота и водорода, содержащей 5% водорода при температуре 240°С и с объемной пространственно-временной скоростью на уровне 1000 час-1; при этом температура реакции составляла 200°С; давление реакции - 1,5 МПа; молярное соотношение водорода к сложному эфиру - 100; а временно-пространственная скорость находящегося в жидком состоянии раствора метанола, содержащего диметилоксалата на уровне 50% от общего веса самого раствора метанола, составляла 2,0 час-1.
Сравнительный образец катализатора 2
Сравнительный образец катализатора 2 был получен в соответствии со способом получения катализатора 2, за исключением того, что активированный уголь на этапе (3) не добавлялся. Условия оценки каталитической активности были идентичными аналогичным условиям по образцу 2.
Катализатор 3
Катализатор 3 был получен в соответствии со способом получения катализатора 1, за исключением того, что на этапе (3) микросферы полистирола были заменены на фенолоальдегидную смолу, а нитрат кобальта был заменен на нитрат церия.
Каталитическую активность катализатора 3 определяли в следующей реакции гидрирования: катализатор 3 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем на 20 часа был помещен в реактор с неподвижным слоем в восстановительные условия газовой смеси азота и водорода, содержащей 5% водорода при температуре 200°С и с объемной пространственно-временной скоростью на уровне 1200 час-1; при этом температура реакции составляла 195°С; давление реакции - 2,5 МПа; молярное соотношение водорода к сложному эфиру - 120; а временно-пространственная скорость находящегося в жидком состоянии раствора метанола, содержащего диметилоксалата на уровне 75% от общего веса самого раствора метанола, составляла 1,0 час-1.
Сравнительный образец катализатора 3
Сравнительный образец катализатора 3 был получен в соответствии со способом получения катализатора 3, за исключением того, что выполняющая функцию дисперсанта лимонная кислота на этапе (1) и фенолоальдегидная смола на этапе (3) не добавлялись. Условия оценки каталитической активности были идентичными аналогичным условиям по образцу 3.
Катализатор 4
Катализатор 4 был получен в соответствии со способом получения катализатора 1, за исключением того, что на этапе (3) микросферы полистирола были заменены на пористый кремний, а нитрат кобальта был заменен на нитрат лантана.
Каталитическую активность катализатора 4 определяли в следующей реакции гидрирования: катализатор 4 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем на 22 часа был помещен в реактор с неподвижным слоем в восстановительные условия газовой смеси азота и водорода, содержащей 5% водорода при температуре 210°С и с объемной пространственно-временной скоростью на уровне 800 час-1; при этом температура реакции составляла 205°С; давление реакции - 2,0 МПа; молярное соотношение водорода к сложному эфиру - 60; а временно-пространственная скорость находящегося в жидком состоянии раствора метанола, содержащего диметилоксалата на уровне 95% от общего веса самого раствора метанола, составляла 1,2 час-1.
Катализатор 5
Катализатор 5 был получен в соответствии со способом получения катализатора 1, за исключением того, что на этапе (3) микросферы полистирола были заменены на полиметилметакрилат, а нитрат кобальта был заменен на аммониевую соль молибдена.
Каталитическую активность катализатора 5 определяли в следующей реакции гидрирования: катализатор 5 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем на 10 часа был помещен в реактор с неподвижным слоем в восстановительные условия газовой смеси азота и водорода, содержащей 5% водорода при температуре 220°С и с объемной пространственно-временной скоростью на уровне 1000 час-1; при этом температура реакции составляла 175°С; давление реакции - 3,5 МПа; молярное соотношение водорода к сложному эфиру - 120; а временно-пространственная скорость находящегося в жидком состоянии раствора метанола, содержащего диметилоксалата на уровне 100% от общего веса самого раствора метанола, составляла 0,8 час-1.
Катализатор 6
Катализатор 6 был получен в соответствии со способом получения катализатора 1, за исключением того, что на этапе (3) микросферы полистирола были заменены на эпоксидную смолу на основе бисфенола А, а нитрат кобальта был заменен на нитрат марганца.
Каталитическую активность катализатора 6 определяли в следующей реакции гидрирования: катализатор 6 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем на 20 часа был помещен в реактор с неподвижным слоем в восстановительные условия газовой смеси азота и водорода, содержащей 5% водорода при температуре 190°С и с объемной пространственно-временной скоростью на уровне 1 500 час-1; при этом температура реакции составляла 190°С; давление реакции - 2,5 МПа; молярное соотношение водорода к сложному эфиру - 100; а временно-пространственная скорость находящегося в жидком состоянии раствора метанола, содержащего диметилоксалата на уровне 25% от общего веса самого раствора метанола, составляла 2,0 час-1.
Катализатор 7
Катализатор 7 был получен в соответствии со способом получения катализатора 1, за исключением того, что на этапе (1) лимонная кислота была заменена на глюкозу, а нитрат кобальта был заменен на нитрат циркония.
Каталитическую активность катализатора 7 определяли в следующей реакции гидрирования: катализатор 7 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем на 24 часа был помещен в реактор с неподвижным слоем в восстановительные условия газовой смеси азота и водорода, содержащей 5% водорода при температуре 230°С и с объемной пространственно-временной скоростью на уровне 1200 час-1; при этом температура реакции составляла 195°С; давление реакции - 2,0 МПа; молярное соотношение водорода к сложному эфиру - 110; а временно-пространственная скорость находящегося в жидком состоянии раствора метанола, содержащего диметилоксалата на уровне 60% от общего веса самого раствора метанола, составляла 1,8 час-1.
Катализатор 8
Катализатор 8 был получен в соответствии со способом получения катализатора 1, за исключением того, что добавляемая на этапе (1) лимонная кислота была заменена на винную кислоту, а нитрат кобальта был заменен на нитрат цинка.
Каталитическую активность катализатора 8 определяли в следующей реакции гидрирования: катализатор 8 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем помещен в реактор с неподвижным слоем в восстановительные условия, предоставляющие собой температуру 240°С и объемно пространственно-временную скорость на уровне 1000 час-1, смеси азота и водорода, содержащей 5% водорода, причем такая газовая смесь подвергалась восстановлению в течение 22 час; при этом температура реакции составляла 180°С, давление реакции - 3,0 МПа, молярное соотношение водорода к сложному эфиру - 120, а временно-пространственная скорость находящегося в жидком состоянии раствора метанола с массовой концентрацией диметилоксалата на уровне 90% составляла 1,1 час-1.
Катализатор 9
Катализатор 9 был получен в соответствии со способом получения катализатора 1, за исключением того, что добавляемая на этапе (1) лимонная кислота была заменена на ацетат аммония, а нитрат кобальта был заменен на нитрат алюминия и борную кислоту.
Каталитическую активность катализатора 9 определяли в следующей реакции гидрирования: катализатор 9 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем помещен в реактор с неподвижным слоем в восстановительные условия, предоставляющие собой температуру 200°С и объемно пространственно-временную скорость на уровне 1 100 час-1, смеси азота и водорода, содержащей 5% водорода, причем такая газовая смесь подвергалась восстановлению в течение 16 час; при этом температура реакции составляла 210°С, давление реакции - 1,5 МПа, молярное соотношение водорода к сложному эфиру - 90, а временно-пространственная скорость находящегося в жидком состоянии раствора метанола с массовой концентрацией диметилоксалата на уровне 55% составляла 0,7 час-1.
Катализатор 10
Катализатор 10 был получен в соответствии со способом получения катализатора 1, за исключением того, что добавляемая на этапе (1) лимонная кислота была заменена на малоновую кислоту, а нитрат кобальта был заменен на нитрат бария и гидрофосфат аммония.
Каталитическую активность катализатора 10 определяли в следующей реакции гидрирования: катализатор 10 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем помещен в реактор с неподвижным слоем в восстановительные условия, предоставляющие собой температуру 280°С и объемно пространственно-временную скорость на уровне 900 час-1, смеси азота и водорода, содержащей 5% водорода, причем такая газовая смесь подвергалась восстановлению в течение 30 час; при этом температура реакции составляла 170°С, давление реакции - 1,0 МПа, молярное соотношение водорода к сложному эфиру - 30, а временно-пространственная скорость находящегося в жидком состоянии раствора метанола с массовой концентрацией диметилоксалата на уровне 55% составляла 0,7 час-1.
Катализатор 11
Катализатор 10 был получен в соответствии со способом получения катализатора 1, за исключением того, что нитрат кобальта был заменен на нитрат висмута и нитрат лантана.
Каталитическую активность катализатора 11 определяли в следующей реакции гидрирования: катализатор 11 был таблетирован и измельчен с последующим отсеиванием частиц размером от 20 до 60 меш, а затем помещен в реактор с неподвижным слоем в восстановительные условия, предоставляющие собой температуру 230°С и объемно пространственно-временную скорость на уровне 800 час-1, смеси азота и водорода, содержащей 5% водорода, причем такая газовая смесь подвергалась восстановлению в течение 24 час; при этом температура реакции составляла от 185 до 195°С, давление реакции - 2,5 МПа, молярное соотношение водорода к сложному эфиру - от 80 до 100, а временно-пространственная скорость находящегося в жидком состоянии диметилоксалата - от 1,0 до 2,0 час-1.
Каждый час брался жидкий образец с целью анализа состав продукта методом газовой хроматографии, а также производились расчеты коэффициента конверсии диметилоксалата и селективности в отношении этиленгликоля. Реакция была стабильной на протяжении 6000 час, а активность катализатора при этом была существенно снижена. Средний коэффициент конверсии диметилоксалата достигал 99,9%, средний уровень селективности в отношении этиленгликоля составлял более 96,5%, а средний выход этиленгликоля был не менее 759,8 мг/г кат./час. Катализатор продемонстрировал превосходную гидрирующую активность, селективность в отношении этиленгликоля и стабильность, а, следовательно, является, пригодным для применения в промышленных масштабах.
Сравнительный образец катализатора 4
Сравнительный образец катализатора 4 был получен в соответствии со способом получения катализатора 11, за исключением того, что выполняющая функцию дисперсанта лимонная кислота на этапе (1) и микросферы полистирола на этапе (3) не добавлялись. Условия оценки активности катализатора были идентичными аналогичным условиям по катализатору 11. После 2000 час реакции активность катализатора существенно снизилась. Коэффициент конверсии диметилоксалата снизилась с 97,8% до 93,9%, а уровень селективности в отношении этиленгликоля - с 94,6% до 88,7%. Средний выход этиленгликоля составлял всего 583,3 мг/г кат./час.
Хотя заявленное изобретение проиллюстрировано и описано в настоящем документе с упоминанием конкретных варианты осуществления, оно никак не ограничивается продемонстрированными характеристиками. Наоборот, в эти характеристики в пределах объема и диапазона эквивалентов формулы изобретения могут вноситься различные изменения без отступления от самого изобретения.
Claims (27)
1. Катализатор получения этиленгликоля путем гидрирования оксалата, содержащий:
(a) активный компонент в форме наночастиц, которые содержат медь, причем активный компонент присутствует в концентрации от 5 до 35 вес. %;
(b) вспомогательное вещество в форме наночастиц, которые содержат элемент, выбранный из группы, состоящей из никеля, кобальта, марганца, цинка, алюминия, циркония, церия, лантана, молибдена, ванадия, висмута, бора и фосфора, причем вспомогательное вещество присутствует в концентрации от 0,01 до 20 вес. %; и
(c) носитель в форме полых микросфер мезопористого диоксида кремния, на поверхностях которых диспергированы наночастицы активного компонента и наночастицы вспомогательного вещества, причем указанные микросферы имеют средний диаметр частиц от 50 до 5000 нм и среднюю толщину внешней оболочки от 5 до 500 нм,
причем упомянутый катализатор обладает удельной площадью поверхности от 100 до 1200 м2/г.
2. Катализатор по п. 1, где оксалат представляет собой диметилоксалат, диэтилоксалат или их сочетание.
3. Способ получения катализатора по п. 1, включающий:
(a) добавление раствора меди в раствор прекурсора элемента/дисперсанта с получением раствора III;
(b) добавление в раствор прекурсора носителя бромида цетилтриметиламмония (CTAB), темплатного вещества и затем аммиачной воды с получением смеси IV;
(c) добавление раствора III в смесь IV в присутствии газообразного азота и в условиях нагревания с получением продукта реакции;
(d) дегидратацию продукта реакции с получением выпавших в осадок фаз;
(e) промывание и сушку выпавших в осадок фаз с получением отвержденного продукта; и
(f) прокаливание отвержденного продукта с получением таким образом катализатора, имеющего структуру полых микросфер диоксида кремния;
причем упомянутый раствор меди представляет собой раствор нитрата меди в деионизированной воде,
причем упомянутый прекурсор элемента выбран из группы, состоящей из нитрата никеля, кобальта, марганца, цинка, алюминия, циркония, церия, лантана, ванадия или висмута, аммониевой соли молибдена, борной кислоты и гидрофосфата аммония,
причем упомянутый дисперсант выбран из группы, состоящей из лимонной кислоты, ацетата аммония, малоновой кислоты, винной кислоты и глюкозы;
причем раствор прекурсора элемента/дисперсанта имеет рН от 1,0 до 7,0;
причем твердое темплатное вещество выбрано из группы, состоящей из полистирола, фенолоальдегидной смолы, пористого кремния, активированного угля, полиметилметакрилата и эпоксидной смолы на основе бисфенола А; и
причем раствор прекурсора носителя выбран из группы, состоящей из метилортосиликата, тетраэтилортосиликата, пропилортосиликата и бутилортосиликата в смеси безводного этанола и деионизированной воды.
4. Способ по п. 3, дополнительно включающий добавление в деионизированную воду прекурсора элемента с получением раствора прекурсора элемента, и добавление в раствор прекурсора элемента дисперсанта с получением раствора прекурсора элемента/дисперсанта.
5. Способ по п. 3, дополнительно включающий растворение в деионизированной воде растворимой соли меди с получением раствора меди, причем растворимая соль меди представляет собой нитрат меди.
6. Способ по п. 3, дополнительно включающий растворение в смеси безводного этанола и деионизированной воды прекурсора носителя с получением раствора прекурсора носителя.
7. Способ получения этиленгликоля, включающий гидрирование оксалата до этиленгликоля в присутствии водорода и катализатора по п. 1.
8. Способ по п. 7, в котором оксалат превращают со средней степенью конверсии не менее 99,0% в течение по меньшей мере 2000 часов.
9. Способ по п. 7, в котором катализатор обладает средней селективностью в отношении этиленгликоля не менее 95,0% в течение по меньшей мере 2000 часов.
10. Способ по п. 7, в котором этиленгликоль получают со средним выходом не менее 600,0 мг/г кат./ч в течение по меньшей мере 2000 часов.
11. Способ по п. 7, в котором оксалат представляет собой диметилоксалат.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/111133 WO2020082196A1 (en) | 2018-10-22 | 2018-10-22 | Hydrogenation catalyst and preparation and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2706684C1 true RU2706684C1 (ru) | 2019-11-20 |
Family
ID=68580080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018145250A RU2706684C1 (ru) | 2018-10-22 | 2018-10-22 | Гидрирующий катализатор, а также его получение и его применения |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2018446680B2 (ru) |
RU (1) | RU2706684C1 (ru) |
WO (1) | WO2020082196A1 (ru) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111905734B (zh) * | 2020-07-06 | 2023-01-24 | 太原理工大学 | 草酸二甲酯加氢制乙二醇的高效铜基催化剂及其制备方法 |
CN112999364B (zh) * | 2021-03-15 | 2022-06-17 | 武汉理工大学 | 用于骨质疏松治疗的空心介孔二氧化硅双药物缓释微球的制备方法 |
CN116553999A (zh) * | 2022-01-28 | 2023-08-08 | 中国石油化工股份有限公司 | 一种加氢制备1,4-环己烷二甲醇的方法 |
CN115591551B (zh) * | 2022-09-29 | 2023-10-03 | 浙江师范大学 | 一种N-(β-氰基乙基)-ε-己内酰胺连续流加氢过程中的催化剂及其制备方法和应用 |
CN115845869B (zh) * | 2022-11-24 | 2024-04-26 | 西安凯立新材料股份有限公司 | 醋酸甲酯加氢制乙醇用催化剂及其制备方法和应用 |
CN116371409A (zh) * | 2023-03-24 | 2023-07-04 | 天津大学 | 一种用于低温加氢的铜-锌-铁三元催化剂及其制备方法与使用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725573A (en) * | 1983-12-31 | 1988-02-16 | Veg-Gasinstituut, N.V. | Copper-nickel catalyst and process for its production |
CN102151568A (zh) * | 2011-01-30 | 2011-08-17 | 山东华鲁恒升集团德化设计研究有限公司 | 草酸二甲酯加氢制备乙二醇的催化剂及制备和应用 |
CN102764656A (zh) * | 2012-08-06 | 2012-11-07 | 久泰能源科技有限公司 | 一种高效加氢催化剂及其制备方法 |
RU2565074C2 (ru) * | 2011-02-25 | 2015-10-20 | Чайна Петролеум Энд Кемикал Корпорейшн | Способ получения этиленгликоля каталитической реакцией оксалата в псевдоожиженном слое |
RU2570573C2 (ru) * | 2011-02-25 | 2015-12-10 | Чайна Петролеум Энд Кемикал Корпорейшн | Способ получения этиленгликоля |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102649073A (zh) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | 草酸酯加氢制乙二醇流化床催化剂的制备方法 |
WO2018102676A1 (en) * | 2016-12-02 | 2018-06-07 | Basf Corporation | Copper catalysts for the preparation of ethylene glycol |
CN108479798B (zh) * | 2018-04-18 | 2020-11-10 | 北京天正久兴科技有限公司 | 一种草酸二甲酯加氢制备乙二醇的催化剂以及其制备方法 |
-
2018
- 2018-10-22 WO PCT/CN2018/111133 patent/WO2020082196A1/en active Application Filing
- 2018-10-22 AU AU2018446680A patent/AU2018446680B2/en active Active
- 2018-10-22 RU RU2018145250A patent/RU2706684C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725573A (en) * | 1983-12-31 | 1988-02-16 | Veg-Gasinstituut, N.V. | Copper-nickel catalyst and process for its production |
CN102151568A (zh) * | 2011-01-30 | 2011-08-17 | 山东华鲁恒升集团德化设计研究有限公司 | 草酸二甲酯加氢制备乙二醇的催化剂及制备和应用 |
RU2565074C2 (ru) * | 2011-02-25 | 2015-10-20 | Чайна Петролеум Энд Кемикал Корпорейшн | Способ получения этиленгликоля каталитической реакцией оксалата в псевдоожиженном слое |
RU2570573C2 (ru) * | 2011-02-25 | 2015-12-10 | Чайна Петролеум Энд Кемикал Корпорейшн | Способ получения этиленгликоля |
CN102764656A (zh) * | 2012-08-06 | 2012-11-07 | 久泰能源科技有限公司 | 一种高效加氢催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2020082196A1 (en) | 2020-04-30 |
AU2018446680B2 (en) | 2023-07-06 |
AU2018446680A1 (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2706684C1 (ru) | Гидрирующий катализатор, а также его получение и его применения | |
CN108097316B (zh) | 一种负载纳米金属颗粒的MOFs纳米材料的制备方法 | |
EP2248793B1 (en) | Production method for a monohydric alcohol from a monocarboxylic acid or from a derivative thereof | |
CN106345514A (zh) | 一种合成气一步转化制低碳烯烃的催化剂及其制备方法 | |
EP3135372A1 (en) | Cobalt-based fischer-tropsch synthesis catalyst coated with mesoporous materials and preparation method therefor | |
WO2022247717A1 (zh) | 一种乙醇催化转化合成高级醇的方法 | |
CN114345319B (zh) | 一种改性纳米二氧化铈催化剂、其制备方法及其在碳酸二甲酯合成中的应用 | |
CN112007637B (zh) | 一种双金属合金-埃洛石复合催化剂及其制备方法和应用 | |
Samudrala et al. | One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: Mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst | |
CN109894140A (zh) | 一种固体碱水滑石负载贵金属催化剂的制备方法及其催化应用 | |
US11865513B2 (en) | Extruded titania-based materials comprising quaternary ammonium compounds and/or prepared using quaternary ammonium compounds | |
CN101450310A (zh) | 一种天然气-二氧化碳重整制合成气的催化剂 | |
CN105413676A (zh) | 一种三维有序大孔V-Mg氧化物材料的制备方法及材料的应用 | |
RU2675839C1 (ru) | Нанокатализатор из монодисперсного переходного металла для синтеза фишера-тропша, способ его приготовления и его применение | |
CN108855158B (zh) | 一种钴-钌双金属多相催化剂的制备方法及应用 | |
CN114602477B (zh) | 用于co2低温制甲醇的双壳空心铜锌基催化剂及其制备方法 | |
KR101468377B1 (ko) | 합성가스로부터 함산소탄소화합물 제조를 위한 규칙적인 메조다공성 탄소계 촉매 및 이를 이용한 함산소탄소화합물의 제조방법 | |
CN103586045B (zh) | 一种制低碳烯烃催化剂及其制备方法 | |
CN107335444B (zh) | 一种合成气制备低碳醇高效催化剂及其制备方法 | |
CN104549223B (zh) | 一种甲烷选择性氧化合成甲醇和甲醛催化剂及其制备方法和应用 | |
CN107876040B (zh) | 甲醇乙醇一步合成异丁醛的催化剂及其制备方法 | |
CN106423202A (zh) | 一种醋酸加氢制备乙醇的铑钌复合催化剂的制备方法 | |
CN108698018A (zh) | 包含一种或多种酸和/或使用一种或多种酸制备的挤出的二氧化钛基材料 | |
KR101402957B1 (ko) | 균일한 중형 기공을 갖는 복합 산화물 촉매, 그 제조 방법 및 상기 촉매를 이용하여 에스테르 화합물을 제조하는 방법 | |
CN113385175A (zh) | 加氢饱和催化剂及其制备方法和应用 |