WO2012111927A9 - 화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법 - Google Patents

화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법 Download PDF

Info

Publication number
WO2012111927A9
WO2012111927A9 PCT/KR2012/000808 KR2012000808W WO2012111927A9 WO 2012111927 A9 WO2012111927 A9 WO 2012111927A9 KR 2012000808 W KR2012000808 W KR 2012000808W WO 2012111927 A9 WO2012111927 A9 WO 2012111927A9
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
group
sub
compound
synthesis
Prior art date
Application number
PCT/KR2012/000808
Other languages
English (en)
French (fr)
Other versions
WO2012111927A2 (ko
WO2012111927A3 (ko
Inventor
박용욱
이범성
문성윤
박정환
박정철
김기원
박정근
정화순
지희선
최대혁
김동하
주진욱
김은경
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Priority to US13/982,333 priority Critical patent/US20130334518A1/en
Priority to JP2013552463A priority patent/JP2014506881A/ja
Publication of WO2012111927A2 publication Critical patent/WO2012111927A2/ko
Publication of WO2012111927A3 publication Critical patent/WO2012111927A3/ko
Publication of WO2012111927A9 publication Critical patent/WO2012111927A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/60Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton containing a ring other than a six-membered aromatic ring forming part of at least one of the condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound and an organic electric device using the same, an electronic device thereof, and a method for measuring heat resistance.
  • the flat panel display plays a very important role in supporting a highly visual information society which is rapidly growing in recent years.
  • the organic electroluminescent device capable of low-voltage driving with self-luminous type has better viewing angle and contrast ratio than liquid crystal display devices, which are mainstream flat panel display devices.
  • organic electroluminescent devices are notable for backlighting and can be manufactured in a light weight and thin form. In addition, they have advantages in terms of power consumption, and are attracting attention as next generation display devices due to their fast response speed and wide color reproduction range.
  • an organic electronic device is formed on a glass substrate in the order of an anode, an organic thin film including a light emitting region, and a cathode.
  • the organic thin film may include a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), or an electron injection layer in addition to the emitting layer (EML).
  • EIL electron injection layer
  • EBL electron blocking layer
  • HBL hole blocking layer
  • the light emitting excitation thus formed emits light while transitioning to ground states.
  • the light emitting layer (guest) may be doped into the light emitting layer (host) to increase the efficiency and stability of the light emitting state.
  • the life of the device is important, and various studies are being conducted to increase the life of the organic electronic device.
  • An object of the present invention is to improve the electrical stability, luminous efficiency, device life and manufacturing efficiency of the organic electric device.
  • the present invention is to provide a hole injection layer and a transport layer material having a low driving voltage characteristics, high heat resistance and long life, and an organic electric element comprising the same.
  • the present invention provides a compound which is represented by one of the following formulas or comprises at least one of the following formulas.
  • the present invention provides an organic electronic device and an electronic device including the organic material layer containing the above compound.
  • the present invention can improve the electrical stability, luminous efficiency, device life and manufacturing efficiency of the organic electric device.
  • the present invention can provide a hole injection layer and a transport layer material having low driving voltage characteristics, high heat resistance and long life, an organic electric element including the same, and an electronic device thereof.
  • 1 to 6 show examples of the organic light emitting display device to which the compound of the present invention can be applied.
  • the present invention relates to a hole injection layer and a hole transport layer material having low driving voltage characteristics, an organic electroluminescent device comprising the same, and an electronic device thereof.
  • the flat panel display plays a very important role in supporting a highly visual information society, centered on the internet which is rapidly growing in recent years.
  • the organic light emitting device organic EL device
  • the organic light emitting device capable of low voltage driving with a self-emission type has an excellent viewing angle and contrast ratio, and requires no backlight, compared to a liquid crystal display (LCD), which is a mainstream of flat panel display devices.
  • LCD liquid crystal display
  • Light weight and thinness are possible, and it has an advantage in terms of power consumption.
  • the fast response speed and wide color reproduction range have attracted attention as a next generation display device.
  • an organic light emitting display device is formed on a glass substrate in order of an anode made of a transparent electrode, an organic thin film including a light emitting region, and a metal electrode.
  • the organic thin film may include a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), or an electron injection layer in addition to the emitting layer (EML).
  • EIL may further include an electron blocking layer (EBL) or a hole blocking layer (HBL) due to light emission characteristics of the light emitting layer.
  • the light emitting excitation emits light as it transitions to ground states, in which a light emitting layer (guest) is doped into the light emitting layer (host) to increase the efficiency and stability of the light emitting state.
  • a light emitting layer guest
  • the life of the device is important, and various studies are currently being conducted to increase the life of the organic electroluminescent device.
  • ITO anode electrode
  • the low glass transition temperature of the hole transport layer material has been reported to have a significant effect on the device life, depending on the characteristics of the uniformity of the surface of the thin film when the device is driven.
  • the deposition method is the mainstream in the formation of the OLED device, a situation that requires a material that can withstand a long time, that is, a material having a strong heat resistance characteristics.
  • the first method is to increase the manufacturing efficiency by simplifying the device structure by using a material having a function of a hole injection layer and a hole transport layer at the same time.
  • a material having a function of a hole injection layer and a hole transport layer As the stack thickness increases, such a structure must have a high hole movement property and a high deposition rate, that is, high heat resistance, is required to increase manufacturing time, that is, manufacturing efficiency.
  • Fluorene structure on the other hand, has a major problem of rapid thermal mobility but serious thermal stability. The reason is explained in the following mechanism.
  • the present invention provides a method for evaluating thermal stability using various fluorene derivatives as shown in the following table.
  • the heat resistance measurement method or the evaluation method according to an embodiment of the present invention is for thermal stability evaluation, measuring the initial purity of the compound or derivative, leaving the compound or derivative for a time longer than the reference time at a temperature above the reference temperature, leaving And then measuring the purity of the compound or derivative and measuring the decrease between the area of the particular peak observed after the initial purity measurement and the area of the particular peak observed after the purity measurement after the neglect.
  • the heat resistance measurement method or the evaluation method according to an embodiment of the present invention is for thermal stability evaluation, the step of measuring the initial purity of the fluorene derivative by HPLC (High Performance Liquid Chromatography), the time of more than the reference time at a temperature above the reference temperature Leaving the fluorene derivative during the step, measuring the purity of the fluorene derivative after standing by HPLC and the area of a specific peak observed after the initial purity measurement, and the specific particle observed after the purity measurement after the standing Measuring the reduction between the areas of the peaks.
  • HPLC High Performance Liquid Chromatography
  • the leaving temperature and the leaving time may be 350 °C and 12 hours.
  • thermosafety measurement or evaluation method is not only the fluorene compound described above, but also the compounds described with reference to Chemical Formulas 1 to 4 and Tables 1 to 4 described below, and compounds not shown herein. Can be used comprehensively.
  • the compound of the present invention may be an arylamine compound having a modification rate of less than 9% as a compound having a late purity of 90% or more in the thermal stability evaluation of the arylamine compound including the fluorene derivative.
  • fluorene for increasing hole mobility may have a structure of F-6 to F-7 without hydrogen in adjacent carbons of the linking group.
  • F-6 to F-7 without hydrogen in adjacent carbons of the linking group.
  • Korean Patent 10-2010-0106626 introduces asymmetric diphenyl diamine.
  • all of the fluorene structures exemplified in the asymmetric structure shown in the above patents have been confirmed that it is difficult to actually use in the organic electroluminescent device due to the poor heat resistance test results of the heat resistance evaluation method according to an embodiment of the present invention.
  • the present invention provides a biphenyl diamine structure and a ring-linking group of fluorenes such as F-6 and F-7 having a high heat resistance structure according to a heat resistance evaluation method according to an embodiment of the present invention in order to secure high hole mobility.
  • Invented is a compound of the structure as shown in formula (1) to formula (4) without hydrogen in the adjacent carbon.
  • the inventors completed the invention with remarkable hole mobility, high heat resistance, low driving voltage and high lifespan.
  • the present invention may provide a compound represented by one of the following Chemical Formulas 1 to 4 or at least one of the following Chemical Formulas 1 to 4.
  • R 1 , R 2 , R 3 are each independently
  • substituents in Chemical Formulas 1 to 4 may be substituted or unsubstituted even if not mentioned above, so that the substituents may be substituted with other substituents or substituents.
  • R 1 and R 2 may combine with each other to form a substituted or unsubstituted saturated or unsaturated ring or ring, for example, an aliphatic, aromatic, or heteroaromatic monocyclic or polycyclic ring.
  • Formula 4 may include two or more formulas by combining the same formula or different formulas.
  • including two or more structures of the formula means that the compounds having the structure of the formula are present in a directly connected structure without a linking group.
  • alkanes having a divalent or more linking group comprising two or more of the structure of the formula, alkanes having a divalent or more linking group, a cycloalkane having a bivalent or more linking group; Aryl compounds having a divalent or higher linking group; A pentagonal or hexagonal heteroaryl compound containing at least one nitrogen, sulfur, or oxygen atom and having a bivalent or more linking group; It means that two or more structures of Formula 1 may be linked to an oxygen atom, a sulfur atom, a substituted or unsubstituted nitrogen atom, or a substituted or unsubstituted person atom. Even in such a case, the same formula or different formulas in Formula 1, Formula 2, Formula 3, and Formula 4 may be combined to include two or more of the above formula structures. I think it was there, so I added it. Please check the contents.)
  • the heterocyclic group is a heterocyclic group containing O, N or S as a hetero atom, and the carbon number is not particularly limited, but is preferably 2-60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, triazine group, acridil group, pyridazine group , Quinolinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzimidazole group, benzthiazole group, benzcarbazole group, benzthiophene group, dibenzothiophene group, benzfuranyl group, dibenzofura Although there exist a nil group etc., it is not limited to these.
  • the compound having the structural formula may be used in a solution process.
  • the compound may form an organic material layer of an organic electric device, which will be described later, by a soluble process.
  • the organic material layer may be formed by using various polymer materials, rather than a solution process or a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be produced in fewer layers by the method.
  • R 1 , R 2 , R 3 may be each independently one or more selected from the group consisting of the following, but is not limited thereto.
  • the compound represented by Formula 1 may be specifically represented by one of the compounds as shown in Table 1 below, but is not limited thereto.
  • Table 1 Compound 1-1-1-1 is R One , R 2 , R 3 Is A-1 (phenyl) and compound 1-1-1-2 is R One , R 2 Is A-1 (phenyl) and R 3 Is A-2 (naphthyl group) and compound 1-2-4-8 is R One Is A-2 and R 2 Is A-4 and R 3 May be A-8.
  • R in compounds One , R 2 , R 3 are each independently hydrogen, halogen, amino, nitrile, nitro, C One ⁇ C 20 Alkyl group, C One ⁇ C 20 Alkoxy group, C One ⁇ C 20 Alkylamine groups, C One ⁇ C 20 Alkylthiophene groups, C 6 ⁇ C 20 Aryl thiophene group, C 2 ⁇ C 20 Alkenyl, C 2 ⁇ C 20 Alkynyl, C 3 ⁇ C 20 Cycloalkyl group of C, substituted with deuterium 6 ⁇ C 20 Aryl group, C 6 ⁇ C 20 Aryl group, C 8 ⁇ C 20 Aryl alkenyl group, silane group, boron group, germanium group, C 5 ⁇ C 20 It may be substituted with one or more than one selected from the group consisting of a heterocyclic group of.
  • the compound represented by Chemical Formula 2 may be specifically represented by one of the compounds as shown in Table 2 below, but is not limited thereto.
  • R 1 , R 2 , R 3 are each independently hydrogen, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, C as described above 1 ⁇ C 20 alkyl amine group, C 1 ⁇ C 20 alkyl thiophene group, C 6 ⁇ C 20 aryl thiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl group, C of 3 to C 20 cycloalkyl group, C 6 to C 20 aryl group substituted with deuterium, C 6 to C 20 aryl group, C 8 to C 20 aryl alkenyl group, silane group, boron group, germanium group, C It may be substituted with one or more than one selected from the group consisting of 5 ⁇ C 20 heterocyclic group.
  • the compound represented by Formula 3 may be specifically represented by one of the compounds as shown in Table 3 below, but is not limited thereto.
  • R 1 , R 2 , R 3 are each independently hydrogen, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, C as described above 1 ⁇ C 20 alkyl amine group, C 1 ⁇ C 20 alkyl thiophene group, C 6 ⁇ C 20 aryl thiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl group, C of 3 to C 20 cycloalkyl group, C 6 to C 20 aryl group substituted with deuterium, C 6 to C 20 aryl group, C 8 to C 20 aryl alkenyl group, silane group, boron group, germanium group, C It may be substituted with one or more than one selected from the group consisting of 5 ⁇ C 20 heterocyclic group.
  • the compound represented by Chemical Formula 4 may be specifically represented by one of the compounds as shown in Table 4 below, but is not limited thereto.
  • R 1 , R 2 , R 3 are each independently hydrogen, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, C as described above 1 ⁇ C 20 alkyl amine group, C 1 ⁇ C 20 alkyl thiophene group, C 6 ⁇ C 20 aryl thiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl group, C of 3 to C 20 cycloalkyl group, C 6 to C 20 aryl group substituted with deuterium, C 6 to C 20 aryl group, C 8 to C 20 aryl alkenyl group, silane group, boron group, germanium group, C It may be substituted with one or more than one selected from the group consisting of 5 ⁇ C 20 heterocyclic group.
  • substituents in Tables 1 to 4 may be substituted or unsubstituted again even if not mentioned above, so that the substituents may be substituted with other substituents or substituents.
  • Examples of the organic electroluminescent device in which the compounds described with reference to Chemical Formulas 1 to 4 and Tables 1 to 4 may be used include, for example, an organic light emitting diode (OLED), an organic solar cell, an organic photoconductor (OPC) drum, and an organic transistor (organic). TFT).
  • OLED organic light emitting diode
  • OPC organic photoconductor
  • TFT organic transistor
  • the present invention is not limited thereto, and the present invention is not limited thereto.
  • Compounds can be applied.
  • Another embodiment of the present invention is an organic electric device comprising a first electrode, a second electrode and an organic material layer disposed between these electrodes, wherein at least one layer of the organic material layer is a compound of formula 1 to 4 and Tables 1 to 4 It provides an organic electroluminescent device comprising.
  • the compound according to the present invention can be used for various purposes in the organic light emitting electronic device according to the type and nature of the substituent.
  • the compounds of the present invention can act as various layers other than the host of the phosphorescent or fluorescent light emitting layer because they are freely controlled by the core and the substituents.
  • the organic light emitting diode may be an organic light emitting diode having a reverse structure in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • the organic material layer of the organic light emitting device may include a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection and / or transport layer.
  • the organic material layer of the organic light emitting diode device may include a light emitting layer, and the light emitting layer may include a compound represented by one of Chemical Formulas 1 to 4.
  • the compound represented by one of Formulas 1 to 4 may serve as a host of the light emitting layer.
  • the organic material layer of the organic light emitting device may include an electron transport and / or injection layer, the layer may include a compound represented by one of the formulas (1) to (4).
  • the organic material layer of the organic light emitting diode may include a layer for simultaneously transporting holes and emitting light, and the layer may include a compound represented by one of Chemical Formulas 1 to 4.
  • the organic material layer of the organic light emitting device may include a layer for simultaneously emitting light and electron transport, the layer may include a compound represented by one of the formulas (1) to (4).
  • the organic material layer including the compound represented by one of Formulas 1 to 4 according to the present invention may include a compound represented by one of Formulas 1 to 4 as a host, and may include other organic compounds, metals, or metal compounds as dopants. .
  • the organic electroluminescent device may include a hole injection layer or a hole transport layer including a compound including an arylamino group, a carbazole group, or a benzcarbazole group in addition to an organic material layer including a compound represented by one of Formulas 1 to 4 above. Can be.
  • the organic electronic device of the present invention may be manufactured by a conventional method and material for manufacturing an organic electronic device, except that at least one organic material layer is formed using the above-described compounds.
  • 1 to 6 show examples of the organic light emitting display device to which the compound of the present invention can be applied.
  • the organic light emitting device according to another embodiment of the present invention, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer And one or more layers of the organic material layer including the electron injection layer to include the compounds of Formulas 1 to 4 and Tables 1 to 4, using conventional manufacturing methods and materials in the art. It can be produced in a structure known to.
  • FIGS. 1 to 6 The structure of the organic light emitting display device according to another embodiment of the present invention is illustrated in FIGS. 1 to 6, but is not limited thereto.
  • reference numeral 101 denotes a substrate, 102 an anode, 103 a hole injection layer (HIL), 104 a hole transport layer (HTL), 105 a light emitting layer (EML), 106 an electron injection layer (EIL), 107 an electron transport layer ( ETL), 108 represents a negative electrode.
  • the organic light emitting diode further includes a hole blocking layer (HBL) that blocks hole movement, an electron blocking layer (EBL) that blocks electrons from moving, a light emitting auxiliary layer that helps or assists light emission, and a protective layer. It may be located.
  • the protective layer may be formed to protect the organic material layer or the cathode at the uppermost layer.
  • the compounds described with reference to Chemical Formulas 1 to 4 and Tables 1 to 4 may be included in one or more of an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the compound described with reference to Formulas 1 to 4 and Tables 1 to 4 is one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a hole blocking layer, an electron blocking layer, a light emitting auxiliary layer and a protective layer It may be used instead of the above or may be used by forming a layer with them.
  • the organic layer may be used not only in one layer but also in two or more layers.
  • it can be used as a hole injection material, a hole transport material, an electron injection material, an electron transport material, a light emitting material and a passivation (kepping) material according to the compounds described with reference to Formulas 1 to 4 and Tables 1 to 4, in particular alone It can be used as a host or a dopant in the light emitting material and the host / dopant, it can be used as a hole injection, hole transport layer.
  • the organic light emitting device is a metal having a metal or conductivity on a substrate by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation
  • PVD physical vapor deposition
  • An oxide or an alloy thereof is deposited to form an anode, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer is formed thereon, and then a material that can be used as a cathode is deposited thereon.
  • PVD physical vapor deposition
  • an organic electronic device may be fabricated by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, but is not limited thereto and may have a single layer structure.
  • the organic layer may be formed using a variety of polymer materials, but not by a deposition process or a solvent process, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be made with a small number of layers.
  • the organic light emitting device according to another embodiment of the present invention may be used in a solution process such as spin coating or ink jet process.
  • the substrate is a support of the organic light emitting device, and a silicon wafer, quartz or glass plate, metal plate, plastic film or sheet, or the like can be used.
  • An anode is positioned over the substrate. This anode injects holes into the hole injection layer located thereon.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the hole injection layer is located on the anode.
  • the conditions required for the material of the hole injection layer are high hole injection efficiency from the anode, it should be able to transport the injected holes efficiently. This requires a small ionization potential, high transparency to visible light, and excellent hole stability.
  • the hole injection material is a material capable of well injecting holes from the anode at low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection materials include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene, quinacridone-based organics, perylene-based organics, Anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is positioned on the hole injection layer.
  • the hole transport layer receives holes from the hole injection layer and transports the holes to the organic light emitting layer located thereon, and serves to prevent high hole mobility, hole stability, and electrons.
  • Tg glass transition temperature
  • Materials satisfying these conditions include NPD (or NPB), spiro-arylamine compounds, perylene-arylamine compounds, azacycloheptatriene compounds, bis (diphenylvinylphenyl) anthracene and silicon germanium oxide.
  • NPD or NPB
  • spiro-arylamine compounds perylene-arylamine compounds
  • azacycloheptatriene compounds bis (diphenylvinylphenyl) anthracene
  • silicon germanium oxide silicon germanium oxide
  • the organic light emitting layer is positioned on the hole transport layer.
  • the organic light emitting layer is a layer for emitting light by recombination of holes and electrons injected from the anode and the cathode, respectively, and is made of a material having high quantum efficiency.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Substances or compounds that satisfy these conditions include Alq3 for green, Balq (8-hydroxyquinoline beryllium salt) for blue, DPVBi (4,4'-bis (2,2-diphenylethenyl) -1,1'- biphenyl) series, Spiro material, Spiro-DPVBi (Spiro-4,4'-bis (2,2-diphenylethenyl) -1,1'-biphenyl), LiPBO (2- (2-benzoxazoyl) -phenol lithium salt), bis (diphenylvinylphenylvinyl) benzene, aluminum-quinoline metal complex, metal complexes of imidazole, thiazole and oxazole, and the like, perylene, and BczVBi (3,3 ') to increase blue light emission efficiency.
  • an organic light emitting layer is formed of a polymer of polyphenylene vinylene (PPV) or a polymer such as poly fluorene.
  • PPV polyphenylene vinylene
  • a polymer such as poly fluorene can be used for
  • the electron transport layer is positioned on the organic light emitting layer.
  • Such an electron transport layer requires a material having high electron injection efficiency and efficiently transporting injected electrons from a cathode positioned thereon. To this end, it must be made of a material having high electron affinity and electron transfer speed and excellent stability to electrons. Examples of the electron transport material that satisfies such conditions include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron injection layer is stacked on the electron transport layer.
  • the electron injection layer is a metal complex compound such as Balq, Alq3, Be (bq) 2, Zn (BTZ) 2, Zn (phq) 2, PBD, spiro-PBD, TPBI, Tf-6P, aromatic compound with imidazole ring, It can be produced using a low molecular weight material containing boron compounds and the like.
  • the electron injection layer may be formed in a thickness range of 100 ⁇ 300 ⁇ .
  • the cathode is positioned on the electron injection layer. This cathode serves to inject electrons.
  • the material used as the cathode it is possible to use the material used for the anode, and a metal having a low work function is more preferable for efficient electron injection.
  • a suitable metal such as tin, magnesium, indium, calcium, sodium, lithium, aluminum, silver, or a suitable alloy thereof can be used.
  • electrodes having a two-layer structure such as lithium fluoride and aluminum, lithium oxide and aluminum, strontium oxide and aluminum having a thickness of 100 ⁇ m or less may also be used.
  • the organic light emitting device may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.
  • the present invention includes a display device including the organic electric element described above, and a terminal including a control unit for driving the display device.
  • This terminal means a current or future wired or wireless communication terminal.
  • the terminal according to the present invention described above may be a mobile communication terminal such as a mobile phone, and includes all terminals such as a PDA, an electronic dictionary, a PMP, a remote control, a navigation device, a game machine, various TVs, various computers, and the like.
  • the compounds were synthesized according to the synthesis method described above, and the examples in which the compounds were applied to an organic material layer of an organic electroluminescent device, for example, an organic electroluminescent device, were compared with those of commonly used compounds.
  • intermediate 1 (Sub1) and intermediate 2 (Sub2) are reacted with dibromo diphenyl in order, and then the intermediate 1 (Sub 1) and the intermediate (Sub2) are subjected to a linkage reaction to generally produce a compound of Formula 1 Can be synthesized.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • R 1 , R 2 , and R 3 are each independently hydrogen, halogen, or amino group.
  • A-3N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours.
  • A-4N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed in toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added and then stirred at reflux for 24 hours.
  • A-5N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed in toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-8N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed in toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-8N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-1N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-8N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-1N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-1N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • Amino compound (A-2N, amino compound) (200 mmol) and bromo compound ( A-3B , 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t- Bu) 3 (1.4 g, 7 mol) and NaOtBu (29.6 g, 300 mmol) were added and then stirred at reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-1N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-8N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • Amino compound (A-2N, amino compound) (200 mmol) and bromo compound ( A-4B , 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t- Bu) 3 (1.4 g, 7 mol) and NaOtBu (29.6 g, 300 mmol) were added and then stirred at reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-1N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-8N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • Amino compound (A-3N, amino compound) (200 mmol) and bromo compound ( A-3B , 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t- Bu) 3 (1.4 g, 7 mol) and NaOtBu (29.6 g, 300 mmol) were added and then stirred at reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-1N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.
  • A-6N (200 mmol) and bromodiphenylfluorene (DPF-Br) (79.4 g 200 mmol) were mixed with toluene (1000 mL), followed by Pd (dba) 2 (6 g, 14 mmol), P (t-Bu) 3 (1.4 g, 7 mol), NaOtBu (29.6 g, 300 mmol) were added followed by stirring under reflux for 24 hours. After the reaction was completed, the mixture was extracted with ether and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting organic substance was purified by silicagel column and recrystallized to obtain a product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 질소 원자에 디페닐플루오레닐기 또는 스파이로바이플루오레닐기가 결합된 디페닐디아민 유도체, 이를 이용한 유기전기소자, 및 상기 유기전기소자를 이용한 디스플레이 장치를 제공한다.

Description

화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법
본 발명은 화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법에 관한 것이다.
평판 표시소자는 최근 들어 급성장세를 보이고 있는 고도의 영상 정보화 사회를 지탱하는 매우 중요한 역할을 수행하고 있다. 특히, 자체 발광형으로 저전압 구동이 가능한 유기전기소자는 평판 표시소자의 주류인 액정디스플레이소자에 비해 시야각 및 명암비 등이 우수하다. 또한 유기전기소자는 백라이트가 불필요하여 경량 및 박형 제조가 가능하며, 소비전력 측면에서도 유리한 장점을 가질 뿐만 아니라 응답속도가 빠르고 색 재현 범위가 넓어 차세대 표시소자로서 주목을 받고 있다.
일반적으로 유기전기소자는 양극(anode), 발광영역을 포함하는 유기박막 및 음극(cathode)의 순으로 유리기판 위에 형성된다. 이때, 유기박막은 발광층(emitting layer, EML) 외에 정공 주입층(hole injection layer,HIL), 정공 수송층(hole transport layer, HTL), 전자 수송층(electron transport layer, ETL) 또는 전자 주입층(electroninjection layer, EIL)을 포함할 수 있으며, 발광층의 발광특성상 전자 차단층(electron blocking layer, EBL) 또는 정공차단층(hole blocking layer, HBL)을 추가로 포함할 수 있다.
이러한 구조의 유기전기소자에 전기장이 가해지면 양극으로부터 정공이 주입되고 음극으로부터 전자가 주입되며, 주입된 정공과 전자는 각각 정공 수송층과 전자 수송층을 거쳐 발광층에서 재조합(recombination)하여 발광 여기자(exitons)를 형성한다.
이와 같이 형성된 발광여기자는 바닥상태(ground states)로 전이하면서 빛을 방출하는데, 이때, 발광 상태의 효율과 안정성을 증가시키기 위해 발광 색소(게스트)를 발광층(호스트)에 도핑하기도 한다.
이러한 유기전기소자를 다양한 디스플레이 매체에 활용하기 위해서는 무엇보다 소자의 수명이 중요하며, 현재 유기전기소자의 수명을 증가시키기 위한 여러 연구들이 진행되고 있다.
본 발명은 유기전기소자의 전기적 안정성, 발광효율, 소자 수명 및 제조 효율성을 향상시키는 것을 목적으로 한다.
본 발명은 낮은 구동전압 특성, 고내열성 및 장수명을 갖는 정공 주입층 및 수송층 재료 및 이를 포함하는 유기전기소자를 제공하기 위한 것이다.
본 발명은 다음의 화학식들 중 하나로 표시되거나 다음 화학식들 중 적어도 하나를 2이상 포함하는 화합물을 제공한다.
Figure PCTKR2012000808-appb-I000001
또한 본 발명은 위 화합물을 포함하는 유기물층을 포함하는 유기전기장치 및 그 전자장치를 제공한다.
본 발명은 본 발명은 유기전기소자의 전기적 안정성, 발광효율, 소자 수명 및 제조 효율성을 향상시킬 수 있다.
본 발명은 낮은 구동전압 특성, 고내열성 및 장수명을 갖는 정공 주입층 및 수송층 재료 및 이를 포함하는 유기전기소자 및 그 전자장치를 제공할 수 있다.
도 1 내지 도 6은 본 발명의 화합물을 적용할 수 있는 유기전계발광소자의 예를 도시한 것이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 발명은 낮은 구동전압 특성을 갖는 정공 주입층 및 정공수송층 재료 및 이를 포함하는 유기전기발광소자, 그 전자장치에 관한 것이다.
평판 표시소자는 최근 들어 급성장세를 보이고 있는 인터넷을 중심으로 고도의 영상 정보화 사회를 지탱하는 매우 중요한 역할을 수행하고 있다. 특히, 자체 발광형으로 저전압 구동이 가능한 유기전계발광소자(유기EL소자)는, 평판 표시소자의 주류인 액정디스플레이(liquid crystal display, LCD)에 비해 시야각 및 명암비 등이 우수하고, 백라이트가 불필요하여 경량 및 박형이 가능하며, 소비전력 측면에서도 유리한 장점을 가진다. 또한, 응답속도가 빠르며, 색 재현 범위가 넓어 차세대 표시소자로서 주목을 받고 있다. 일반적으로, 유기전계발광소자는 투명전극으로 이루어진 양극(anode), 발광영역을 포함하는 유기박막 및 금속전극(cathode)의 순으로 유리기판 위에 형성된다. 이때, 유기박막은 발광층(emitting layer, EML) 외에 정공 주입층(hole injection layer,HIL), 정공 수송층(hole transport layer, HTL), 전자 수송층(electron transport layer, ETL) 또는 전자 주입층(electroninjection layer, EIL)을 포함할 수 있으며, 발광층의 발광특성상 전자 차단층(electron blocking layer, EBL) 또는 정공차단층(hole blocking layer, HBL)을 추가로 포함할 수 있다.
이러한 구조의 유기전계발광소자에 전기장이 가해지면 양극으로부터 정공이 주입되고 음극으로부터 전자가 주입되며, 주입된 정공과 전자는 각각 정공 수송층과 전자 수송층을 거쳐 발광층에서 재조합(recombination)하여 발광 여기자(exitons)를 형성한다. 형성된 발광여기자는 바닥상태(ground states)로 전이하면서 빛을 방출하는데, 이때, 발광 상태의 효율과 안정성을 증가시키기 위해 발광 색소(게스트)를 발광층(호스트)에 도핑하기도 한다. 이러한 유기전기발광소자를 다양한 디스플레이 매체에 활용하기 위해서는 무엇보다 소자의 수명이 중요하며, 현재 유기전기발광소자의 수명을 증가시키기 위한 여러 연구들이 진행되고 있다. 특히, 유기전계발광소자의 우수한 수명 특성을 위해 정공 수송층 또는 완충층(buffer layer)으로 삽입되는 유기물질에 관해 여러 연구가 진행되고 있으며 이를 위해 양극으로부터 유기층으로의 높은 정공 이동 특성을 부여하면서 증착 후 박막 형성시 균일도가 높고 결정화도가 낮은 정공 주입층 재료가 요구되고 있다.
유기전기발광소자의 수명단축의 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투 확산되는것을 지연시키며, 소자 구동시 발생되는 주울열(Joule heating)에 대해 서도 안정된 특성, 즉 높은 유리 전이 온도를 갖는 정공 주입층 재료에 대한 개발이 필요하다.
또한 정공 수송층 재료의 낮은 유리전이 온도는 소자 구동시에 박막 표면의 균일도가 무너지는 특성에 따라 소자수명에 큰 영향을 미치는 것으로 보고 되고 있다. 또한, OLED 소자의 형성에 있어서 증착방법이 주류를 이루고 있으며, 이러한 증착방법에 오랫동안 견딜 수 있는 재료 즉 내열성 특성이 강한 재료가 필요한 실정이다.
특히 현재의 유기전기발광소자는 제조의 효율성을 증대시키기 위하여 두 가지의 재료 요구특성이 중요시 되고 있다. 첫번째는 정공주입층과 정공수송층을 기능을 동시에 갖는 재료를 이용함으로써, 소자구조를 단순화시켜 제조 효율성을 증가시키는 방법이다. 이러한 구조는 적층 두께가 증가함에 따라, 높은 정공이동 특성을 가져야 하며 또한 제조시간 즉 제조 효율성을 높이기 위하여 높은 증착속도 즉 고내열성이 요구된다.
높은 정공 이동 특성을 보이는 물질은 분자 구조 중에 플루오렌을 포함하는 삼차아민을 갖는 물질이 높은 정공 이동 특성을 보이는 것으로 알려져 있다. 그 이유는 플루오레은 페닐기 2기를 고리화시켜서 페닐기와 페닐기를 분자구조상 평면상에 위치 시켜 전자 비편재화에 용이한 구조임으로, 전공이동도가 높은 특성을 나타낸다.
반면 플루오렌 구조는 전공이동도가 빠르지만 열안정성에 심각한 문제를 보인다. 그 이유는 하기 메커니즘에 설명되어 있다.
Figure PCTKR2012000808-appb-I000002
상기와 같이 고온에서 플루오렌 연결기의 인접한 곳의 메틸기에 수소가 탈수소화 반응이 발생하면서 양이온을 형성하면서 열역학적으로 보다 안정한 육각 방향족으로 되려는 특성에 따라 플르오렌 구조에 변성을 발생시킨다. 이러한 특성을 보완하기 위하여, 본 발명은 하기 표와 같은 다양한 플루오렌 유도체를 이용하여 열안정성 평가방법을 제공한다.
본 발명의 실시예에 따른 내열성 측정법 또는 평가방법은 열안정성 평가를 위한 것으로, 화합물 또는 유도체의 초기 순도를측정하는 단계, 기준 온도 이상의 온도에서 기준 시간 이상의 시간 동안 화합물 또는 유도체를 방치하는 단계, 방치 이후의 화합물 또는 유도체의 순도를 측정하는 단계 및 상기 초기 순도 측정 후 관측되었던 특정 피크의 면적과, 상기 방치 이후의 순도 측정 후 관측되었던 상기 특정 피크의 면적 사이의 감소를 측정하는 단계를 포함한다.
구체적으로 본 발명의 실시예에 따른 내열성 측정법 또는 평가방법은 열안정성 평가를 위한 것으로, 플루오렌 유도체의 초기 순도를 HPLC(High Performance Liquid Chromatography)로 측정하는 단계, 기준 온도 이상의 온도에서 기준 시간 이상의 시간 동안 상기 플루오렌 유도체를 방치하는 단계, 방치 이후의 상기 플로오렌 유도체의 순도를 HPLC로 측정하는 단계 및 상기 초기 순도 측정 후 관측되었던 특정 피크의 면적과, 상기 방치 이후의 순도 측정 후 관측되었던 상기 특정 피크의 면적 사이의 감소를 측정하는 단계를 포함한다.
이 때 방치 온도 및 방치 시간은 350 ℃ 및 12 시간일 수 있다.
구체적으로 F-1 내지 F-7 의 화합물을 HPLC로 초기 순도를 측정한 후에 동일한 온도 350℃에서 12시간 동안 방치한 후 HPLC 측정을 한 후 초기 순도 측정 후 관측되었던 주요 피크의 면적 감소를 측정하였다.
본 발명의 일실시예에 따른 이 열안전성 측정법 또는 평가방법은 전술한 플루오렌 화합물뿐만 아니라 아래에서 설명한 화학식 1 내지 4 및 표 1 내지 4를 참조하여 설명한 화합물들, 본 명세서에서 표시하지 않은 화합물들에도 포괄적으로 사용될 수 있다.
Figure PCTKR2012000808-appb-I000003
Figure PCTKR2012000808-appb-I000004
이와 같은 내열성 측정법으로 F-1 내지 F-6를 측정한 결과, 플루오렌 연결기의 인접한 곳에 수소가 있는 경우(F-1 내지 F4) 모두 심한 순도 저하를 보였다. 특히 F-2, F-3, F-4 는 보다 극심한 순도 변화를 보였다. 이는 연결기의 인접한 수소가 2차 카본이어서 양이온 생성이 보다 용이하기 때문이다.
본 발명의 화합물은 플루오렌 유도체를 포함하는 아릴아민 화합물 중 열 안정성 평가 시 90% 이상의 후기 순도를 가지는 화합물로서 변성률이 9% 미만인 아릴아민 화합물일 수 있다.
따라서, 정공이동도를 높이기 위한 플루오렌은 연결기의 인접한 탄소에 수소가 없는 F-6 내지 F-7 구조를 지닐 수 있다. 이와 같은 특성을 이용하여 높은 정공 이동도를 갖는 정공 수송층 물질을 개발하기 위해 정공 이동도가 비교적 뛰어난 바이페닐다이아민 형태의 구조에 적용하였다.
특히 최근에 공개된 한국특허 10-2010-0106626에서는 비대칭형의 다이페닐 다이아민을 소개하고 있다. 하지만 상기 특허에서 제시된 비대칭 형태의 구조중 예시된 모든 플루오렌 구조는 본 발명의 일실시예에 따른 내열성 평가방법의 실험결과 내열성이 취약하여 실제로 유기전계발광소자에 제조에 이용되기는 어렵다는 것을 확인하였다. 특히 최근에 요구되는 제조효율성 즉 고내열성 측면에서 더욱이 적용하기 어려운 화합물임을 밝혀냈다.
따라서 본 발명은 높은 정공이동도를 확보하기 위해 바이페닐 다이아민 구조와 본 발명의 일실시예에 따른 내열성 평가방법에 따라 고내열성 구조의 F-6, 내지 F-7 과 같은 플루오렌의 고리 연결기의 인접한 탄소에 수소가 없는 화학식 1내지 화학식 4와 같은 구조의 화합물을 발명하게 되었다.
그 후 유기전계발광소자를 제조 후 측정 결과 현저한 정공 이동도, 고내열성, 낮은 구동전압 및 고수명 소자를 발명을 완성하였다.
본 발명은 하기 화학식 1 내지 4 중 하나로 표현되거나 하기 화학식 1 내지 4 중 적어도 하나를 2이상 포함하는 화합물을 제공할 수 있다.
[화학식 1]
Figure PCTKR2012000808-appb-I000005
[화학식 2]
Figure PCTKR2012000808-appb-I000006
[화학식 3]
Figure PCTKR2012000808-appb-I000007
[화학식 4]
Figure PCTKR2012000808-appb-I000008
이때 화학식들에서 R1, R2, R3은 각각 독립적으로
수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 이상의 기로 치환 또는 비치환된 C6~C20의 아릴기; 및
수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 이상의 기로 치환 또는 비치환된 C6~C20의 아릴 티오펜기이다.
아울러 화학식 1 내지 4에서 치환체들은 위에서 언급하지 않은 경우라도 다시 치환되거나 비치환될 수도 있어, 치환체가 다시 다른 치환기 또는 치환체로 치환될 수도 있다.
이때 R1 과 R2는 이웃한 치환기끼리 서로 결합하여 치환 또는 비치환된 포화 또는 불포화 고리 또는 환, 예를 들어 지방족, 방향족, 또는 헤테로방향족의 단환식 또는 다환식 고리를 형성할 수 있다.
상기 화학식 1, 화학식 2, 화학식 3 화학식 4 중에서 각각 동일한 화학식이나 서로 다른 화학식이 결합하여 화학식 구조를 2이상 포함할 수 있다. 이때 화학식의 구조를 2이상 포함한다 함은, 상기 화학식의 구조를 갖는 화합물들이 연결기 없이 직접 연결된 구조로 존재함을 의미한다. 이와 같은 경우에 있어서, 화학식 1, 화학식 2, 화학식 3 화학식 4 중에서 각각 동일한 화학식이나 서로 다른 화학식이 직접 결합하여 상기 화학식 구조를 2 이상 포함할 수 있음을 의미한다.
본 발명의 또 하나의 실시상태에 따르면, 상기 화학식의 구조를 2이상 포함한다 함은, 2가 이상의 연결기를 갖는 알칸, 2가 이상의 연결기를 갖는 시클로알칸; 2가 이상의 연결기를 갖는 아릴화합물; 질소, 황, 산소원자를 적어도 1개 이상 포함하며 2가 이상의 연결기를 갖는 오각형 또는 육각형의 헤테로아릴화합물; 산소원자, 황원자, 치환 또는 비치환된 질소원자, 또는 치환 또는 비치환된 인원자에 상기 화학식 1의 구조가 2개 이상 연결될 수 있음을 의미한다. 이와 같은 경우에 있어서도 상기 화학식 1, 화학식 2, 화학식 3, 화학식 4 중에서 각각 동일한 화학식이나 서로 다른 화학식이 결합하여 상기 화학식 구조를 2이상 포함할 수 있음을 의미한다.(화학식들이 2 이상 포함할 수도 있을 것 같아서 추가했습니다. 내용을 확인해 주세요.)
상기 화학식 1 내지 4에 있어서, 헤테로 고리기는 이종원자로 O, N 또는 S를 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2-60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 트리아진기, 아크리딜기, 피리다진기, 퀴놀리닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤즈티아졸기, 벤즈카바졸기, 벤즈티오펜기, 디벤조티오펜기, 벤즈퓨라닐기, 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
한편 상기 구조식을 가지는 화합물은 용액 공정(soluble process)에 사용될 수 있다. 다시말해 상기 화합물을 용액 공정(soluble process)에 의해 후술할 유기전기소자의 유기물층을 형성할 수 있다. 즉 상기 화합물을 유기물층으로 사용할 때 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조될 수 있다.
이때 R1, R2, R3은 각각 독립적으로 다음과 같이 구성된 그룹으로부터 선택된 하나 또는 하나 이상일 수 있으나 이에 제한되지 않는다.
Figure PCTKR2012000808-appb-I000009
이때 구체적으로 화학식 1로 표시되는 화합물은 구체적으로 아래 표1과 같이 화합물들 중 하나로 표시될 수 있으나 이에 한정되는 것은 아니다. 예를 들어 표 1에서 화합물 1-1-1-1은 R1, R2, R3가 A-1(페닐기)인 화합물이고 화합물 1-1-1-2는 R1, R2가 A-1(페닐기)이고 R3가 A-2(나프틸기)인 화합물이고.....화합물 1-2-4-8은 R1가 A-2이고 R2가 A-4이고 R3가 A-8인 화합물일 수 있다. 이때 화합물들에서 R1, R2, R3은 전술한 바와 같이 각각 독립적으로 수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 치환될 수 있다.
[표 1]
Figure PCTKR2012000808-appb-I000010
Figure PCTKR2012000808-appb-I000011
화학식 2로 표시되는 화합물은 구체적으로 아래 표2와 같이 화합물들 중 하나로 표시될 수 있으나 이에 한정되는 것은 아니다.
이때 화합물들에서 R1, R2, R3은 전술한 바와 같이 각각 독립적으로 수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 치환될 수 있다.
[표 2]
Figure PCTKR2012000808-appb-I000012
Figure PCTKR2012000808-appb-I000013
화학식 3으로 표시되는 화합물은 구체적으로 아래 표3와 같이 화합물들 중 하나로 표시될 수 있으나 이에 한정되는 것은 아니다.
이때 화합물들에서 R1, R2, R3은 전술한 바와 같이 각각 독립적으로 수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 치환될 수 있다.
[표 3]
Figure PCTKR2012000808-appb-I000014
Figure PCTKR2012000808-appb-I000015
화학식 4로 표시되는 화합물은 구체적으로 아래 표 4와 같이 화합물들 중 하나로 표시될 수 있으나 이에 한정되는 것은 아니다.
이때 화합물들에서 R1, R2, R3은 전술한 바와 같이 각각 독립적으로 수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 치환될 수 있다.
[표 4]
Figure PCTKR2012000808-appb-I000017
아울러 표 1 내지 4에서 치환체들은 위에서 언급하지 않은 경우라도 다시 치환되거나 비치환될 수도 있어, 치환체가 다시 다른 치환기 또는 치환체로 치환될 수도 있다.
화학식 1 내지 4 및 표 1 내지 4를 참조하여 설명한 화합물들이 사용될 수 있는 유기전기소자는 예를 들어, 유기전계발광소자(OLED), 유기태양전지, 유기감광체(OPC) 드럼, 유기트랜지스트(유기 TFT) 등이 있다.
화학식 1 내지 4 및 표 1 내지 4를 참조하여 설명한 화합물들이 적용될 수 있는 유기전기소자 중 일예로 유기전계발광소자(OLED)에 대하여 설명하나, 본 발명은 이에 제한되지 않고 다양한 유기전기소자에 위에서 설명한 화합물들이 적용될 수 있다.
본 발명의 다른 실시예는 제1 전극, 제2 전극 및 이들 전극 사이에 배치된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층 중 1층 이상이 화학식 1 내지 4 및 표 1 내지 4의 화합물들을 포함하는 유기전계발광소자를 제공한다. 또한, 본 발명에 따른 화합물은 치환기의 종류 및 성질에 따라 유기전계발광전자소자에서 다양한 용도로 사용될 수 있다.
본 발명의 화합물은 코어와 치환체에 의해 조절이 자유롭기 때문에 인광 또는 형광 발광층의 호스트 이외의 다양한 층으로 작용할 수 있다.
또한, 상기 유기전계발광소자는 기판상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조의 유기전계발광소자일 수 있다.
또한, 상기 유기전계발광소자의 유기물층은 정공주입층, 정공수송층, 발광층, 및 전자주입 및/또는 수송층를 포함할 수 있다.
또한, 상기 유기발광전계소자의 유기물층은 발광층을 포함하고, 이 발광층이 상기 화학식 1 내지 4 중 하나로 표시되는 화합물을 포함할 수 있다. 이 때, 상기 화학식 1 내지 4 중 하나로 표시되는 화합물은 발광층의 호스트로서 역할을 할 수 있다.
또한, 상기 유기전계발광소자의 유기물층은 전자수송 및/또는 주입층을 포함하고, 이 층이 상기 화학식 1 내지 4 중 하나로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기전계발광소자의 유기물층은 정공수송과 발광을 동시에 하는 층을 포함하고, 이 층이 상기 화학식 1 내지 4 중 하나로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기전계발광소자의 유기물층은 발광과 전자수송을 동시에 하는 층을 포함하고, 이 층이 상기 화학식 1 내지 4 중 하나로 표시되는 화합물을 포함할 수 있다.
본 발명에 따른 상기 화학식 1 내지 4 중 하나로 표시되는 화합물을 포함하는 유기물층은 상기 화학식 1 내지 4 중 하나로 표시되는 화합물을 호스트로 포함하고, 다른 유기화합물, 금속 또는 금속화합물을 도판트로 포함할 수 있다.
본 발명에 따른 유기전계발광소자는 상기 화학식 1 내지 4 중 하나로 표시되는 화합물을 포함하는 유기물층 이외에 아릴아미노기, 카바졸기, 또는 벤즈카바졸기를 포함하는 화합물을 포함하는 정공주입층 또는 정공수송층을 포함할 수 있다.
본 발명의 유기전자소자는 전술한 화합물들을 이용하여 한층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기전자소자의 제조방법 및 재료에 의하여 제조될 수 있다.
도 1 내지 도 6은 본 발명의 화합물을 적용할 수 있는 유기전계발광소자의 예를 도시한 것이다.
본 발명의 다른 실시예에 따른 유기전계발광소자는, 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층을 포함하는 유기물층 중 1층 이상을 화학식 1 내지 4 및 표 1 내지 4의 화합물들을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 통상의 제조 방법 및 재료를 이용하여 당 기술 분야에 알려져 있는 구조로 제조될 수 있다.
본 발명에 다른 실시예에 따른 유기전계발광소자의 구조는 도 1 내지 6에 예시되어 있으나, 이들 구조에만 한정된 것은 아니다. 이때, 도면번호 101은 기판, 102는 양극, 103는 정공주입층(HIL), 104는 정공수송층(HTL), 105는 발광층(EML), 106은 전자주입층(EIL), 107은 전자수송층(ETL), 108은 음극을 나타낸다. 미도시하였지만, 이러한 유기전계발광소자는 정공의 이동을 저지하는 정공저지층(HBL), 전자의 이동을 저지하는 전자저지층(EBL), 발광을 돕거나 보조하는 발광보조층 및 보호층이 더 위치할 수도 있다. 보호층의 경우 최상위층에서 유기물층을 보호하거나 음극을 보호하도록 형성될 수 있다.
이때, 화학식 1 내지 4 및 표 1 내지 4를 참조하여 설명한 화합물은 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물층 중 하나 이상에 포함될 수 있다. 구체적으로, 화학식 1 내지 4 및 표 1 내지 4를 참조하여 설명한 화합물은 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 정공저지층, 전자저지층, 발광보조층 및 보호층 중 하나 이상을 대신하여 사용되거나 이들과 함께 층을 형성하여 사용될 수도 있다. 물론 유기물층 중 한층에만 사용되는 것이 아니라 두층 이상에 사용될 수 있다.
특히,화학식 1 내지 4 및 표 1 내지 4를 참조하여 설명한 화합물에 따라서 정공주입 재료, 정공수송 재료, 전자주입 재료, 전자수송 재료, 발광 재료 및 패시베이션(케핑) 재료로 사용될 수 있고, 특히 단독으로 발광물질 및 호스트/도판트에서 호스트 또는 도판트로 사용될 수 있으며, 정공 주입, 정공수송층으로 사용될 수 있다.
예컨대, 본 발명의 다른 실시예에 따른 유기전계발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기전기소자를 만들 수도 있다. 상기 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
본 발명의 다른 실시예에 따른 유기전계발광소자는 위에서 설명한 화합물을 스핀 코팅(spin coating)이나 잉크젯(ink jet) 공정과 같은 용액 공정(soluble process)에 사용될 수도 있다.
기판은 유기전계발광소자의 지지체이며, 실리콘 웨이퍼, 석영 또는 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.
기판 위에는 양극이 위치된다. 이러한 양극은 그 위에 위치되는 정공주입층으로 정공을 주입한다. 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
양극 위에는 정공주입층이 위치된다. 이러한 정공주입층의 물질로 요구되는 조건은 양극으로부터의 정공주입 효율이 높으며, 주입된 정공을 효율적으로 수송할 수 있어야 한다. 이를 위해서는 이온화 포텐셜이 작고 가시광선에 대한 투명성이 높으며, 정공에 대한 안정성이 우수해야 한다.
정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층 위에는 정공수송층이 위치된다. 이러한 정공수송층은 정공주입층으로부터 정공을 전달받아 그 위에 위치되는 유기발광층으로 수송하는 역할을 하며, 높은 정공 이동도와 정공에 대한 안정성 및 전자를 막아주는 역할를 한다. 이러한 일반적 요구 이외에 차체 표시용으로 응용할 경우 소자에 대한 내열성이 요구되며, 유리 전이 온도(Tg)가 70 ℃ 이상의 값을 갖는 재료가 바람직하다. 이와 같은 조건을 만족하는 물질들로는 NPD(혹은 NPB라 함), 스피로-아릴아민계화합물, 페릴렌-아릴아민계화합물, 아자시클로헵타트리엔화합물, 비스(디페닐비닐페닐)안트라센, 실리콘게르마늄옥사이드화합물, 실리콘계아릴아민화합물 등이 될 수 있다.
정공수송층 위에는 유기발광층이 위치된다. 이러한 유기발광층는 양극과 음극으로부터 각각 주입된 정공과 전자가 재결합하여 발광을 하는 층이며, 양자효율이 높은 물질로 이루어져 있다. 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다.
이와 같은 조건을 만족하는 물질 또는 화합물로는 녹색의 경우 Alq3가, 청색의 경우 Balq(8-hydroxyquinoline beryllium salt), DPVBi(4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl) 계열, 스피로(Spiro) 물질, 스피로-DPVBi(Spiro-4,4'-bis(2,2-diphenylethenyl)-1,1'-biphenyl), LiPBO(2-(2-benzoxazoyl)-phenol lithium salt), 비스(디페닐비닐페닐비닐)벤젠, 알루미늄-퀴놀린 금속착체, 이미다졸, 티아졸 및 옥사졸의 금속착체 등이 있으며, 청색 발광 효율을 높이기 위해 페릴렌, 및 BczVBi(3,3'[(1,1'-biphenyl)-4,4'-diyldi-2,1-ethenediyl]bis(9-ethyl)-9H-carbazole; DSA(distrylamine)류)를 소량 도핑하여 사용할 수 있다. 적색의 경우는 녹색 발광 물질에 DCJTB([2-(1,1-dimethylethyl)-6-[2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo(ij)quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]-propanedinitrile)와 같은 물질을 소량 도핑하여 사용할 수 있다. 잉크젯프린팅, 롤코팅, 스핀코팅 등의 공정을 사용하여 발광층을 형성할 경우에, 폴리페닐렌비닐렌(PPV) 계통의 고분자나 폴리 플로렌(poly 플루오렌(fluorene)) 등의 고분자를 유기발광층에 사용할 수 있다.
유기발광층 위에는 전자수송층이 위치된다. 이러한 전자수송층은 그 위에 위치되는 음극으로부터 전자주입 효율이 높고 주입된 전자를 효율적으로 수송할 수 있는 물질이 필요하다. 이를 위해서는 전자 친화력과 전자 이동속도가 크고 전자에 대한 안정성이 우수한 물질로 이루어져야 한다. 이와 같은 조건을 충족시키는 전자수송 물질로는 구체적인 예로 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
전자수송층 위에는 전자주입층이 적층된다. 전자주입층은 Balq, Alq3, Be(bq)2, Zn(BTZ)2, Zn(phq)2, PBD, spiro-PBD, TPBI, Tf-6P 등과 같은 금속착제 화합물, imidazole ring 을 갖는 aromatic화합물이나 boron화합물 등을 포함하는 저분자 물질을 이용하여 제작할 수 있다. 이때, 전자주입층은 100Å ~ 300Å의 두께 범위에서 형성될 수 있다.
전자주입층 위에는 음극이 위치된다. 이러한 음극은 전자를 주입하는 역할을 한다. 음극으로 사용하는 재료는 양극에 사용된 재료를 이용하는 것이 가능하며, 효율적인 전자주입을 위해서는 일 함수가 낮은 금속이 보다 바람직하다. 특히 주석, 마그네슘, 인듐, 칼슘, 나트륨, 리튬, 알루미늄, 은 등의 적당한 금속, 또는 그들의 적절한 합금이 사용될 수 있다. 또한 100 ㎛ 이하 두께의 리튬플루오라이드와 알루미늄, 산화리튬과 알루미늄, 스트론튬산화물과 알루미늄 등의 2 층 구조의 전극도 사용될 수 있다.
전술하였듯이, 화학식 1 내지 4 및 표 1 내지 4를 참조하여 설명한 화합물에 따라서 적색, 녹색, 청색, 흰색 등의 모든 칼라의 형광과 인광소자에 적합한 정공주입 재료, 정공수송 재료, 발광 재료, 전자수송 재료 및 전자주입 재료로 사용할 수 있으며, 다양한 색의 호스트 또는 도판트 물질로 사용될 수 있다.
본 발명에 따른 유기전계발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
한편 본 발명은, 위에서 설명한 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 구동하는 제어부를 포함하는 단말을 포함한다. 이 단말은 현재 또는 장래의 유무선 통신단말을 의미한다. 이상에서 전술한 본 발명에 따른 단말은 휴대폰 등의 이동 통신 단말기일 수 있으며, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 단말을 포함한다.
실시예
이하, 제조예 및 실험예를 통하여 본 발명을 더욱 상세하게 설명한다.그러나, 이하의 제조예 및 실험예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예
이하, 화학식 1 내지 4 및 표 1 내지 4에 속하는 화합물들에 대한 제조예 또는 합성예를 설명한다.
다만, 화학식 1 내지 4 및 표 1 내지 4에 속하는 화합물들의 수가 많기 때문에 화학식 1 내지 4 및 표 1 내지 4에 속하는 화합물들 중 일부를 예시적으로 설명한다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자, 즉 당업자라면 하기에서 설명한 제조예들을 통해, 예시하지 않은 본 발명에 속하는 화합물을 제조할 수 있다.
이하 위에서 설명한 합성법에 따라 화합물들을 합성하고 그 화합물들을 유기전기소자, 예를 들어 유기전계발광소자의 유기물층에 적용한 예를 일반적으로 사용하는 화합물들과 비교하였다.
화학식 1 의 일반적 합성방법
중간체 1(Sub 1)의 일반적인 합성법은 아래 반응식 1과 같다.
[반응식 1]
Figure PCTKR2012000808-appb-I000018
중간체 2(Sub 2)의 일반적 합성법은 아래 반응식 2와 같다.
[반응식 2]
Figure PCTKR2012000808-appb-I000019
제조된 중간체 1(Sub1) 과 중간체 2(Sub2)을 다이브로모 다이페닐과 순차적으로 반응을 진행하여, 중간체 1(Sub 1)과 중간체 (Sub2)의 연결 반응을 진행하여 화학식1의 화합물을 일반적으로 합성할 수 있다.
[반응식 3]
Figure PCTKR2012000808-appb-I000020
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기발광소자를 비롯한 유기전자소자의 제조시 사용되는 정공주입층 물질, 정공수송층 물질, 발광층 물질, 및 전자 수송층 물질에 사용되는 치환기를 상기 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 제조할 수 있다.
이때 R1, R2, R3를 반응식 3에서 치환하는데 사용하는 초기 시약(아미노 화합물)은 아래 표 5와 같고 다른 초기 시약(브로모 화합물)은 아래 표 6과 같다.
[표 5]
Figure PCTKR2012000808-appb-I000021
[표 6]
Figure PCTKR2012000808-appb-I000022
이하에서 표 1 내지 4의 화합물 (1-1-1-1) 내지 (4-4-4-8) 화합물들의 상세한 합성방법을 설명한다.
이때 표 1 내지 4의 화합물 (1-1-1-1) 내지 (4-4-4-8) 화합물들에서 R1, R2, R3은 전술한 바와 같이 각각 독립적으로 수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 치환될 수 있는데, 표 5 및 표 6의 초기 시약으로 이들이 치환된 초기 시약을 사용하여 아래에 설명할 표 1 내지 4의 화합물 (1-1-1-1) 내지 (1-8-4-8) 화합물들의 합성방법을 그대로 사용할 수 있다. 이들에 대한 합성방법들을 초기 시약을 제외하고 표 1 내지 4의 화합물 (1-1-1-1) 내지 (4-4-4-8) 화합물들의 합성방법과 동일하므로 생략하나 이들에 대한 합성방법도 본 명세서의 일부를 구성한다. 예를 들어 표 5의 A-1N에서 페닐기 중 하나의 수소가 니트로기로 치환된 경우 아래 화합물 (1-1-1-1) 합성방법과 동일한 과정을 수행하되 니트로 A-1N을 초기 시약으로 사용할 수 있다.
화합물 (1-1-1-1) 합성방법.
Sub 1 합성법(A-1N + A-1B):
아닐린(A-1, 아미노 화합물) (18.6g, 200mmol)과 브로모벤젠(A-1, 브로모 화합물 (31.4 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
아닐린 (18.6g, 200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol) 과 다이브로모 다이페닐(156g, 50mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 sub 1(50 mmol)과 Sub 2(20.45g, 50mmol)와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다. 이후 얻어진 화합물을 질량분석법(HRMS : High-Resolution Mass Spectrometry) 측정결과 [m/z 730.94(M+) ]를 통하여 확인하였다.
화합물 (1-1-1-2) 합성방법.
Sub 1 합성법(A-1N + A-1B):
상기 화합물 (1-1-1-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol)을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol)과 다이브로모 다이페닐(156g, 50mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol)과 Sub 2(50mmol)와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
*반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다. 이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 781.05(M+) ]를 통하여 확인하였다.
화합물 (1-1-1-3) 합성방법.
Sub 1 합성법(A-1N + A-1B):
상기 화합물 (1-1-1-1)의 합성방법에서 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol)과 다이브로모 다이페닐(156g, 50mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 sub 1(50 mmol)과 Sub 2(50mmol)와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 781.25(M+) ]를 통하여 확인하였다.
화합물 (1-1-1-4) 합성방법.
Sub 1 합성법(A-1N + A-1B):
상기 화합물 (1-1-1-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol)과 다이브로모 다이페닐(156g, 50mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol)와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 807.09(M+) ]를 통하여 확인하였다.
화합물 (1-1-1-5) 합성방법.
Sub 1 합성법(A-1N + A-1B):
상기 화합물 (1-1-1-1)의 합성방법에 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol)과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol)와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol)을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 857.11(M+) ]를 통하여 확인하였다.
화합물 (1-1-1-6) 합성방법.
Sub 1 합성법(A-1N + A-1B):
상기 화합물 (1-1-1-1)의의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol)을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 857.21(M+) ]를 통하여 확인하였다.
화합물 (1-1-1-7) 합성방법.
Sub 1 합성법(A-1N + A-1B):
상기 화합물 (1-1-1-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 857.19(M+) ]를 통하여 확인하였다.
화합물 (1-1-1-8) 합성방법.
Sub 1 합성법(A-1N + A-1B):
상기 화합물 (1-1-1-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-8N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (16.9g, 100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 857.14(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-1) 합성방법.
Sub 1 합성법:
아닐린(A-1, 아미노 화합물) (18.6g, 200mmol)과 브로모화합물 (A-2B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법: A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 781.01(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-2) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-2-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 831.07(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-3) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-2-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법: A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 831.15(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-4) 합성방법.
Sub 1 합성법: 상기 화합물 (1-1-2-1) 과 동일하다.
Sub 2 합성법: A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 857.10(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-5) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-2-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 907.12(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-6) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-2-1)의 합성방법에서 사용된 Sub 1 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.12(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-7) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.72(M+) ]를 통하여 확인하였다.
화합물 (1-1-2-8) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-8N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다. 이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.91(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-1) 합성방법.
Sub 1 합성법:
아닐린(A-1, 아미노 화합물) (18.6g, 200mmol)과 브로모화합물 (A-3B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다. 이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 780.11(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-2) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 830.11(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-3) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 830.52(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-4) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 856.92(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-5) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 907.02(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-6) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.02(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-7) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.61(M+) ]를 통하여 확인하였다.
화합물 (1-1-3-8) 합성방법.
Sub 1 합성법:
상기 화합물 (1-1-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-8N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.75(M+) ]를 통하여 확인하였다.
화합물 (1-1-4-1) 합성방법.
Sub 1 합성법:
아닐린(A-1, 아미노 화합물) (18.6g, 200mmol)과 브로모화합물 (A-4B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 806.05(M+) ]를 통하여 확인하였다.
화합물 (1-1-4-2) 합성방법.
Sub 1 합성법:
화합물 (1-1-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 856.71M+) ]를 통하여 확인하였다.
화합물 (1-1-4-3) 합성방법.
Sub 1 합성법: 화합물 (1-1-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 856.82M+) ]를 통하여 확인하였다.
화합물 (1-1-4-4) 합성방법.
Sub 1 합성법: 화합물 (1-1-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 882.15M+) ]를 통하여 확인하였다.
화합물 (1-1-4-5) 합성방법.
Sub 1 합성법:
화합물 (1-1-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 932.21M+) ]를 통하여 확인하였다.
화합물 (1-1-4-6) 합성방법.
Sub 1 합성법:
화합물 (1-1-4-1)의 합성방법에 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 932.85M+) ]를 통하여 확인하였다.
화합물 (1-1-4-7) 합성방법.
Sub 1 합성법: 화합물 (1-1-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 932.16M+) ]를 통하여 확인하였다.
화합물 (1-1-4-8) 합성방법.
Sub 1 합성법: 화합물 (1-1-4-1)의 합성방법에서 사용된 Sub1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 932.91M+) ]를 통하여 확인하였다.
화합물 (1-2-2-1) 합성방법.
Sub 1 합성법:
아닐린(A-2, 아미노 화합물) (200mmol)과 브로모화합물 (A-2B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 830.07(M+) ]를 통하여 확인하였다.
화합물 (1-2-2-2) 합성방법.
Sub 1 합성법:
화합물 (1-2-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 880.07(M+) ]를 통하여 확인하였다.
화합물 (1-2-2-3) 합성방법.
Sub 1 합성법:
화합물 (1-2-2-1)의 합성방법에서 사용된 Sub1의 합성법 과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 880.77(M+) ]를 통하여 확인하였다.
화합물 (1-2-2-4) 합성방법.
Sub 1 합성법:
화합물 (1-2-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.77(M+) ]를 통하여 확인하였다.
화합물 (1-2-2-5) 합성방법.
Sub 1 합성법:
화합물 (1-2-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.22(M+) ]를 통하여 확인하였다.
화합물 (1-2-2-6) 합성방법.
Sub 1 합성법: 화합물 (1-2-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.71(M+) ]를 통하여 확인하였다.
화합물 (1-2-2-7) 합성방법.
Sub 1 합성법:
화합물 (1-2-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.44(M+) ]를 통하여 확인하였다.
화합물 (1-2-2-8) 합성방법.
Sub 1 합성법:
화합물 (1-2-2-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.65(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-1) 합성방법.
Sub 1 합성법:
아미노 화합물 (A-2N, 아미노 화합물) (200mmol)과 브로모화합물 (A-3B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 830.17(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-2) 합성방법.
Sub 1 합성법:
화합물 (1-2-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 880.17(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-3) 합성방법.
Sub 1 합성법:
화합물 (1-2-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 880.52(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-4) 합성방법.
Sub 1 합성법: 화합물 (1-2-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 907.05(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-5) 합성방법.
Sub 1 합성법:
화합물 (1-2-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.22(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-6) 합성방법.
Sub 1 합성법:
화합물 (1-2-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.76(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-7) 합성방법.
Sub 1 합성법:
화합물 (1-2-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.10(M+) ]를 통하여 확인하였다.
화합물 (1-2-3-8) 합성방법.
Sub 1 합성법:
화합물 (1-2-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-8N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.55(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-1) 합성방법.
Sub 1 합성법:
아미노 화합물 (A-2N, 아미노 화합물) (200mmol)과 브로모화합물 (A-4B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 856.01(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-2) 합성방법.
Sub 1 합성법:
화합물 (1-2-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.55(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-3) 합성방법.
Sub 1 합성법:
화합물 (1-2-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.71(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-4) 합성방법.
Sub 1 합성법:
화합물 (1-2-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 933.01(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-5) 합성방법.
Sub 1 합성법:
화합물 (1-2-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 983.01(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-6) 합성방법.
Sub 1 합성법:
화합물 (1-2-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 982.01(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-7) 합성방법.
Sub 1 합성법:
화합물 (1-2-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 982.91(M+) ]를 통하여 확인하였다.
화합물 (1-2-4-8) 합성방법.
Sub 1 합성법:
화합물 (1-2-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-8N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 982.91(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-1) 합성방법.
Sub 1 합성법:
아미노 화합물 (A-3N, 아미노 화합물) (200mmol)과 브로모화합물 (A-3B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 830.21(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-2) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 880.19(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-3) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 880.79(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-4) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 907.10(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-5) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 957.13(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-6) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.73(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-7) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.63(M+) ]를 통하여 확인하였다.
화합물 (1-3-3-8) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-3-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-8N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 956.42(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-1) 합성방법.
Sub 1 합성법:
아미노 화합물 (A-3N, 아미노 화합물) (200mmol)과 브로모화합물 (A-4B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 856.01(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-2) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.42(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-3) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 906.72(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-4) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 932.12(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-5) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 982.16(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-6) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 981.16(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-7) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 982.72(M+) ]를 통하여 확인하였다.
화합물 (1-3-4-8) 합성방법.
Sub 1 합성법:
상기 화합물 (1-3-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-8N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 982.56(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-1) 합성방법.
Sub 1 합성법:
아미노 화합물 (A-4N, 아미노 화합물) (200mmol)과 브로모화합물 (A-4B, 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub 2 합성법:
A-1N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 883.05(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-2) 합성방법.
Sub 1 합성법:
상기 화합물 (1-4-4-2)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-2N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 932.21(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-3) 합성방법.
Sub 1 합성법:
상기 화합물 (1-4-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-3N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 932.84(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-4) 합성방법.
Sub 1 합성법:
상기 화합물 (1-4-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-4N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 958.22(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-5) 합성방법.
Sub 1 합성법:
상기 화합물 (1-4-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-5N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 1009.32(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-6) 합성방법.
Sub 1 합성법:
상기 화합물 (1-4-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-6N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 1008.72(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-7) 합성방법.
Sub 1 합성법:
상기 화합물 (1-4-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 1008.99(M+) ]를 통하여 확인하였다.
화합물 (1-4-4-8) 합성방법.
Sub 1 합성법:
상기 화합물 (1-4-4-1)의 합성방법에서 사용된 Sub 1의 합성법과 동일하다.
Sub 2 합성법:
A-7N(200mmol)과 브로모다이페닐플루오렌(DPF-Br) (79.4g 200mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (6g, 14 mmol), P(t-Bu)3 (1.4g, 7mol), NaOtBu (29.6g, 300mmol) 을 첨가한 뒤 24시간 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
Sub1 + Sub2 합성법:
Sub 1 (100mmol) 과 다이브로모 다이페닐(156g, 50mmol) 을 톨루엔 (1000mL)에 혼합한 후, Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물 (50 mmol) 및 Sub 2(50mmol) 와 Pd(dba)2 (3g, 7 mmol), P(t-Bu)3 (0.7g, 3.5mol), NaOtBu (14.8g, 150mmol) 을 첨가한 뒤 24시간 교반 환류시킨다.
반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 얻었다.
이후 얻어진 화합물을 질량분석법(HRMS) 측정결과 [m/z 1007.92(M+) ]를 통하여 확인하였다.
화합물(2-1-1-1) 내지 화합물(2-4-4-8) 은 상기 화합물(1-1-1-1) 내지 화합물(1-4-4-8)과 동일한 조건으로 합성하였으며, 브로모다이페닐 플루오렌 대신해서, 브로모 다이페닐 스피로 플루오렌을 사용하였다.
화합물(3-1-1-1) 내지 화합물(3-4-4-8) 은 상기 화합물(1-1-1-1) 내지 화합물(1-4-4-8)과 동일한 조건으로 합성하였으며, 브로모다이페닐 플루오렌 대신해서, 브로모 다이페닐 벤조 플루오렌을 사용하였다.
화합물(4-1-1-1) 내지 화합물(4-4-4-8)은 상기 화합물(1-1-1-1) 내지 화합물(1-4-4-8)과 동일한 조건으로 합성하였으며, 브로모다이페닐 플루오렌 대신해서, 브로모 다이페닐 벤조 스피로 플루오렌을 사용하였다.
비교실험예
상기 합성된 화합물의 내열성 및 소자 특성을 비교하기 위하여 다이페닐 아민 비교예(비교예 1, 2)와 플루오렌 비교예(비교예 3, 4, 5)를 공지된 방식 (Solid state Comm. 144, 343, 2007.)으로 합성하여 합성된 화합물을 발광층의 발광 호스트 물질이나 정공 수송층으로 사용하여 통상적인 방법에 따라 유기전계발광소자를 제작하였다.
Figure PCTKR2012000808-appb-I000023
비교예 1
Figure PCTKR2012000808-appb-I000024
비교예 2
Figure PCTKR2012000808-appb-I000025
비교예 3
비교예 4
Figure PCTKR2012000808-appb-I000027
비교예 5
Figure PCTKR2012000808-appb-I000028
비교예 6
먼저, 유기 기판에 형성된 ITO층(양극)위에 우선 정공주입층으로서 구리프탈로사이아닌 (이하 CuPc로 약기함)막을 진공증착하여 10nm 두께로 형성하였다. 이어서 상기 실시예들에 따른 화합물 및 비교예를 정공 수송층으로 20nm 두께로 진공 증착하였다. 진공 증착하여 비교 실험을 진행하였다.
이후, BD-052X(Idemitsu사)를 발광 도펀트로 사용하고 호스트 물질은 9, 10-다이-(나프탈렌-2-안트라센)=AND]을 사용하였으며, 도핑 농도는 4%로 고정하여 비교 실험을 진행하였다. 이어서 전자주입층으로 트리스(8-퀴놀리놀)알루미늄을 40 nm의 두께로 성막하였다. 이 후, 할로겐화 알킬리 금속인 LiF를 0.2 nm의 두께로 증착하고, 이어서 Al을 150 nm의 두께로 증착하여 이 Al/LiF를 음극으로 사용함으로서 유기전계발광소자를 제조하였다.
이와 같이 제조된 실시예 및 비교예 유기전기소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 1000cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다.
본 발명의 일실시예에 따른 내열성 측정법은 대상 화합물, 예를 들어 화학식 1 내지 4 또는 표 1 내지 4의 화합물들 중 하나의 초기 순도를 측정하는 단계; 기준 온도 이상의 온도에서 기준 시간 이상의 시간 동안 상기 대상 화합물을 방치하는 단계; 방치 이후의 상기 대상 화합물을 측정하는 단계; 및 상기 초기 순도 측정 후 관측되었던 특정 피크의 면적과, 상기 방치 이후의 순도 측정 후 관측되었던 상기 특정 피크의 면적 사이의 감소를 측정하는 단계를 포함할 수 있다.
또한 재료의 내열성을 측정하기 위하여 4*1 cm 크기의 앰플(삼우 과학)에 재료 0.15g을 넣은 후에 감압하여 공기를 제거한 후, 마개부분을 실링한 후 400℃ 도가니에(엠티아이, 컴팩트 머플 퍼니스) 24시간 방치 후, 방치전후의 순도변화를 HPLC 장비를 통해 측정하였다.
[표 7]
표 7의 비교예들에서, 플루오렌 유도체의 구동전압 하강 특성이 보이나, 내열성 평가시 상기의 변성 실험처럼 플루오렌 연결기의 인접한 부분에 수소가 있는 비교예 4 내지 비교예 6은 내열성이 상당히 취약한 특성을 보인다.
반면 하기 표 8에서 예상된 것처럼 본 발명의 실시예들에 따른 화합물들은 내열성 및 구동특성이 현저히 우수함을 확인할 수 있다.
[표 8]
Figure PCTKR2012000808-appb-I000030
Figure PCTKR2012000808-appb-I000031
Figure PCTKR2012000808-appb-I000032
Figure PCTKR2012000808-appb-I000033
Figure PCTKR2012000808-appb-I000034
Figure PCTKR2012000808-appb-I000035
Figure PCTKR2012000808-appb-I000036
Figure PCTKR2012000808-appb-I000037
표 8에 표 1 내지 4의 (1-1-1-1) 내지 (4-4-4-8) 화합물들의 내열성 및 구동특성이 현저히 우수함을 확인하였으나 표 1 내지 4의 (1-1-1-1) 내지 (4-4-4-8) 화합물들에서 R1, R2, R3은 전술한 바와 같이 각각 독립적으로 수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 치환된 화합물들도 표 6과 실질적으로 동일한 효과가 있음을 확인하였습니다. 따라서, 이 치환된 화합물들의 표 8의 실험결과도 본 명세서의 일부를 구성한다. 예를 들어 표 5의 A-1N에서 페닐기 중 하나의 수소가 니트로기로 치환된 화합물 (1-1-1-1)도 화합물 (1-1-1-1)과 동일한 효과를 나타내었다.
즉 플루오렌 치환기를 갖는 경우 플루오렌 인접 탄소에 수소를 제거한 화학식 1 내지 화학식 4의 다양한 화합물들에서 모두 우수한 내열성 특성을 나타내기 때문에 표 1 내지 4의 (1-1-1-1) 내지 (4-4-4-8) 화합물들에서 R1, R2, R3이 할로겐, 아미노기 등으로 치환된 화합물들도 표 6과 실질적으로 동일한 효과가 나타낸 것으로 확인하였다.
상기 실시예와 비교예를 비교하면, 플루오렌 치환기를 갖는 경우 구동전압이 2~3 V 하강 특성을 보이며, 또한 내열성도 플루오렌 인접 탄소에 수소를 제거한 화학식 1 내지 화학식 4의 경우의 다양한 화합물 모두 우수한 내열성 특성을 보인다. 또한 수명 특성도 두 배 이상의 현격한 증가를 보인다.
이러한 특성을 볼 때 실시예들에 따른 화합물은 유기전기소자의 수명, 구동특성 및 제조효율성을 현저히 증가 시킬 수 있는 것을 알 수 있다.
이상에서 설명된 화합물은 유기전기소자의 유기물층으로서 사용될 수 있다. 즉, 유기전기소자는 제1 전극, 앞서 설명된 화합물로 이루어진 1층 이상의 유기물층 및 제2 전극을 순차적으로 적층될 수 있다. 이 때 본 발명의 화합물들은 유기전기소자의 유기물층들, 예를 들어 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 적어도 하나에 사용될 수 있다. 상기 발광층은 상기 화합물을 발광호스트 물질로 포함할 수 있다. 또한 정공주입층 및/또는 정공수송층은 상기 화합물들을 포함할 수도 있다.
한편 본 발명은, 위에서 설명한 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 구동하는 제어부를 포함하는 단말을 포함한다. 이 단말은 현재 또는 장래의 유무선 통신단말을 의미한다. 이상에서 전술한 본 발명에 따른 단말은 휴대폰 등의 이동 통신 단말기일 수 있으며, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 단말을 포함한다.
이와 같은 유기전기소자는 예를 들어, 유기전계발광소자(OLED), 유기태양전지, 유기감광체(OPC) 드럼, 유기트랜지스트(유기 TFT) 등이 있다.
앞서 설명된 화학식 1 내지 화학식 4로 표시되는 화합물을 포함하는 유기전기소자를 측정한 결과 현저한 정공 이동도, 고내열성, 낮은 구동전압 및 고수명성이 확인되었다.
한편 본 발명의 화합물은 용액 공정(soluble process)에 사용될 수 있다. 다시 말해 본 발명의 화합물을 용액 공정(soluble process)에 의해 후술할 유기전기소자의 유기물층을 형성할 수 있다. 즉 상기 화합물을 유기물층으로 사용할 때 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조될 수 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2011년 02월 16일 한국에 출원한 특허출원번호 제 10-2011-0013876 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (11)

  1. 다음의 화학식들 중 하나로 표시되는 화합물.
    Figure PCTKR2012000808-appb-I000038
    상기 R1, R2, R3은 각각 독립적으로
    수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 이상의 기로 치환 또는 비치환된 C6~C20의 아릴기; 및
    수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, 중수소로 치환된 C6~C20의 아릴기, C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, C5~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 하나 이상의 기로 치환 또는 비치환된 C6~C20의 아릴 티오펜기이다.
  2. 제1항에 있어서,
    상기 R1 과 상기 R2는 이웃한 치환기끼리 서로 결합하여 포화 또는 불포화 고리를 형성하는 것을 특징으로 하는 화합물.
  3. 제1항에 있어서,
    상기 R1, R2, R3 각각은 다음의 A-1 내지 A-8으로 구성된 그룹으로부터 선택되는 하나 또는 하나 이상인 것을 특징으로 하는 화합물.
    Figure PCTKR2012000808-appb-I000039
  4. 제3항에 있어서,
    상기 화학식 1 내지 4 중 하나로 표시되는 화합물 각각은 상기 R1, R2, R3이 아래의 표에 기재된 물질들 중 하나인 것을 특징으로 하는 화합물.
    Figure PCTKR2012000808-appb-I000041
    Figure PCTKR2012000808-appb-I000042
    Figure PCTKR2012000808-appb-I000043
    Figure PCTKR2012000808-appb-I000044
    Figure PCTKR2012000808-appb-I000045
    Figure PCTKR2012000808-appb-I000046
    Figure PCTKR2012000808-appb-I000047
  5. 제1항 내지 제4항 중 어느 한 항의 화합물을 포함하는 1층 이상의 유기물층을 포함하는 유기전기소자.
  6. 제5항에 있어서,
    상기 유기전기소자는 제1 전극, 상기 1층 이상의 유기물층 및 제2 전극을 순차적으로 적층된 형태로 포함하는 유기전기발광소자인 것을 특징으로 하는 유기전기소자.
  7. 제5항에 있어서,
    상기 화합물을 용액 공정(soluble process)에 의해 상기 유기물층을 형성하는 것을 특징으로 하는 유기전기소자.
  8. 제5항에 있어서,
    상기 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 어느 하나인 것을 특징으로 하는 유기전기소자.
  9. 제8항에 있어서,
    상기 발광층은 상기 화합물을 발광호스트 물질로 포함하거나 상기 정공주입층 또는 정공수층 중 하나 또는 둘다는 상기 화합물을 포함하는 것을 특징으로 하는 유기전기소자.
  10. 제9항의 유기전기소자를 포함하는 디스플레이장치와;
    상기 디스플레이장치를 구동하는 제어부를 포함하는 전자장치.
  11. 제10항에 있어서,
    상기 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC) 드럼, 유기트랜지스트(유기 TFT) 중 하나인 것을 특징으로 하는 전자장치.
PCT/KR2012/000808 2011-02-16 2012-02-02 화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법 WO2012111927A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/982,333 US20130334518A1 (en) 2011-02-16 2012-02-02 Compound and organic electrical element using same, and electronic device and heat-resistance measuring method therewith
JP2013552463A JP2014506881A (ja) 2011-02-16 2012-02-02 化合物及びこれを利用した有機電気素子、その電子装置、耐熱性測定法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0013876 2011-02-16
KR1020110013876A KR101053466B1 (ko) 2011-02-16 2011-02-16 화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법

Publications (3)

Publication Number Publication Date
WO2012111927A2 WO2012111927A2 (ko) 2012-08-23
WO2012111927A3 WO2012111927A3 (ko) 2012-10-11
WO2012111927A9 true WO2012111927A9 (ko) 2012-12-13

Family

ID=44932733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000808 WO2012111927A2 (ko) 2011-02-16 2012-02-02 화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법

Country Status (5)

Country Link
US (1) US20130334518A1 (ko)
JP (1) JP2014506881A (ko)
KR (1) KR101053466B1 (ko)
TW (1) TWI600637B (ko)
WO (1) WO2012111927A2 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111413B1 (ko) * 2011-06-29 2012-02-15 덕산하이메탈(주) 다이아릴아민 유도체를 이용하는 유기전기소자, 유기전기소자용 신규 화합물 및 조성물
KR102163320B1 (ko) * 2014-04-10 2020-10-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102287012B1 (ko) 2014-05-28 2021-08-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102277659B1 (ko) 2014-07-03 2021-07-15 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102242791B1 (ko) 2014-08-29 2021-04-21 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US10032989B2 (en) 2015-02-16 2018-07-24 Merck Patent Gmbh Spirobifluorene derivative-based materials for electronic devices
KR101745491B1 (ko) 2015-03-12 2017-06-13 덕산네오룩스 주식회사 유기발광소자 및 유기발광 표시장치
KR20180090931A (ko) 2017-02-03 2018-08-14 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
KR102048920B1 (ko) 2017-08-18 2019-11-27 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
KR102547688B1 (ko) * 2018-04-24 2023-06-27 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
CN109004102B (zh) * 2018-06-11 2020-10-27 吉林奥来德光电材料股份有限公司 一种化合物的应用
KR20190140549A (ko) 2018-06-11 2019-12-20 삼성디스플레이 주식회사 아민 화합물 및 이를 포함한 유기 발광 소자

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877419B2 (ja) 1998-02-03 2007-02-07 三井化学株式会社 有機電界発光素子
JP3884557B2 (ja) 1998-04-01 2007-02-21 三井化学株式会社 有機電界発光素子
JP4801429B2 (ja) * 2004-12-06 2011-10-26 株式会社半導体エネルギー研究所 発光素子、及び該発光素子を有する発光装置
EP2371810A1 (en) * 2005-01-05 2011-10-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
US20070003785A1 (en) * 2005-06-30 2007-01-04 Eastman Kodak Company Electroluminescent devices containing benzidine derivatives
KR101166809B1 (ko) * 2006-04-13 2012-07-26 토소가부시키가이샤 벤조플루오렌 화합물 및 그 용도
JP5145717B2 (ja) * 2006-04-13 2013-02-20 東ソー株式会社 ベンゾフルオレン化合物及びその用途
WO2008146838A1 (ja) * 2007-05-30 2008-12-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR101453873B1 (ko) * 2007-10-08 2014-10-24 삼성디스플레이 주식회사 사이클로펜타페난트렌계 화합물 및 이를 이용한 유기 발광소자
KR20100003632A (ko) * 2008-07-01 2010-01-11 덕산하이메탈(주) 신규의 바이페닐 유도체 및 이를 포함하는 유기 전계발광소자

Also Published As

Publication number Publication date
TW201235337A (en) 2012-09-01
WO2012111927A2 (ko) 2012-08-23
JP2014506881A (ja) 2014-03-20
TWI600637B (zh) 2017-10-01
US20130334518A1 (en) 2013-12-19
WO2012111927A3 (ko) 2012-10-11
KR101053466B1 (ko) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2020017931A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2012111927A9 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치, 내열성 측정법
WO2019083327A2 (ko) 헤테로고리 화합물을 이용한 유기 발광 소자
WO2017018795A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2010147318A2 (ko) 아미노 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
WO2020167001A1 (ko) 보론 함유 화합물 및 이를 포함하는 유기 발광 소자
WO2011055932A9 (ko) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021172664A1 (ko) 유기 발광 소자
WO2016126035A1 (ko) 유기전기소자 및 이를 포함하는 전자장치
WO2019103397A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012043996A2 (ko) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2022239962A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2023132490A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2013176402A1 (ko) 인돌 화합물 및 그 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019078692A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2022131547A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2010027181A2 (ko) 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
WO2021172905A1 (ko) 유기 발광 소자
WO2018169260A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023106625A1 (ko) 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016117861A1 (ko) 신규한 안트라센 유도체 및 및 이를 포함하는 유기 발광 소자
WO2023136508A1 (ko) 유기 화합물 및 이를 포함하는 유기전계발광소자
WO2021101112A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2023043300A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747656

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13982333

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013552463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747656

Country of ref document: EP

Kind code of ref document: A2