WO2012111809A1 - Series of nozzles, and substrate treatment apparatus provided with series of nozzles - Google Patents
Series of nozzles, and substrate treatment apparatus provided with series of nozzles Download PDFInfo
- Publication number
- WO2012111809A1 WO2012111809A1 PCT/JP2012/053828 JP2012053828W WO2012111809A1 WO 2012111809 A1 WO2012111809 A1 WO 2012111809A1 JP 2012053828 W JP2012053828 W JP 2012053828W WO 2012111809 A1 WO2012111809 A1 WO 2012111809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- introduction hole
- liquid
- nozzle
- nozzles
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67051—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
Definitions
- the present invention relates to a nozzle and a processing apparatus used in a process of removing and cleaning substrate contamination and deposits.
- cleaning is repeated 50 to 100 times for one substrate.
- the object of the cleaning is an organic substance such as a resist film or a polymer film, particles, or the like that affects device reliability.
- This cleaning process usually uses a combination of an alkaline cleaning solution and an acid cleaning solution, and other chemicals such as sulfuric acid / hydrogen peroxide and organic solvents, and a large amount of pure water is used in the rinsing step to remove the residue.
- a plasma ashing apparatus is generally used for removing the resist, but another cleaning apparatus is used for the subsequent cleaning of residues and impurities.
- the chemicals used for cleaning and thin film removal according to the prior art described above are 1) expensive, 2) special environmental treatment is required due to high environmental load, and 3) safety and health of workers.
- the size of the equipment is increased to ensure the safety of the equipment, and a special equipment exhaust system is required.
- a large amount of pure water is required to wash away the chemical solution.
- One device cannot cover from thin film removal to cleaning. Have the disadvantages.
- Patent Document 1 a substrate processing method using water vapor and water has been proposed (Patent Document 1). According to this method, since a high physical impact force can be obtained only with water vapor and water, the resist and the polymer film can be peeled off. Therefore, it is possible to reduce the chemical solution in the manufacturing process of the electronic device.
- An advantage of some aspects of the invention is that it provides a nozzle and a substrate processing apparatus that can efficiently process a substrate having a large area by scanning.
- the present invention (1) includes a first gas introduction hole, a first liquid introduction hole provided downstream of the first gas introduction hole, a gas supplied from the first gas introduction hole, and the first gas introduction hole.
- the second gas introduction hole, the gas supplied from the second gas introduction hole is retained, and the gas is supplied to the plurality of acceleration nozzles via the first gas introduction hole. It is the double nozzle of the said invention (1) further equipped with the gas retention part provided with the gas retention space which supplies.
- the gas retention part further includes a shielding rod for diffusing the gas ejected from the second gas introduction hole in the vicinity of the second gas introduction hole in the gas retention space. It is the double nozzle of the said invention (2).
- the present invention (4) is the multiple nozzle of the invention (3), wherein the width of the shielding rod is larger than the inner diameter of the gas introduction hole.
- the present invention (5) is the multiple nozzle according to the invention (3) or (4), wherein the shielding rod has a square-shaped inclined portion facing the direction of the gas introduction hole.
- the present invention (6) is the double nozzle according to the invention (5), wherein an inclination angle of the angular inclined portion is 30 to 150 °.
- an object of the present invention (7) to (8) is to provide a multiple nozzle with high uniformity of impact force applied to an object.
- each of the plurality of acceleration nozzles has a series of outlets arranged in a lateral direction, Adjacent jets from the lateral ends of the outlets of the plurality of acceleration nozzles with respect to the lateral spread width W ([throttle portion lateral width] ⁇ [jet outlet lateral width]) / 2) of the plurality of acceleration nozzles.
- W [throttle portion lateral width] ⁇ [jet outlet lateral width]
- the ratio ([P] / [W]) of the distance P between the lateral ends of the outlet is 0.2 to 1.0. is there.
- the present invention (8) is the multiple nozzle according to the invention (7), wherein the ejection port is provided with a slit that connects adjacent ejection ports and opens in the ejection direction.
- an object is to provide means for uniformly adjusting the amount of liquid ejected from each nozzle even when multiple nozzles are used.
- the second liquid introduction hole, the liquid introduced from the second liquid introduction hole is retained, and the liquid is supplied to the plurality of acceleration nozzles via the first liquid introduction hole.
- the liquid retention part is provided on a side surface of the multiple nozzle,
- the liquid retention space has a horizontally long rectangular parallelepiped shape;
- the second liquid introduction hole is provided at an upper portion of one end of the liquid retention space;
- the present invention (11) includes any one of the multiple nozzles of the inventions (1) to (10), A steam generator for supplying steam to the multiple nozzles; A substrate processing apparatus comprising: a water supply unit that supplies a liquid to the multiple nozzles.
- the present invention (12) is the substrate processing apparatus according to the invention (11), further comprising a gas supply unit for supplying an inert gas or clean air to the double nozzle.
- the double nozzle according to the present invention there is an effect that a substrate having a large area can be processed efficiently by one scan.
- the gas introduced from the second gas introduction hole is temporarily retained and then supplied to each nozzle.
- the amount of ejected mixed phase fluid becomes uniform.
- the shielding rod in the gas retention space the flow of the gas introduced from the second gas introduction hole is shielded, and the effect of improving the uniformity by providing the gas retention portion becomes remarkable.
- the impact force distribution under each nozzle and between nozzle nozzles shows high uniformity.
- the uniformity of the impact force distribution is further enhanced by providing slits between the nozzle outlets.
- the amount of water supplied to each nozzle becomes constant, so that the mixed phase fluid to be ejected becomes uniform.
- FIG. 1 is a front view of a multiple nozzle according to the present invention.
- FIG. 2 is a side view of a multiple nozzle according to the present invention.
- FIG. 3 is a bottom view of the multiple nozzle according to the present invention.
- FIG. 4 is a plan view of a multiple nozzle according to the present invention.
- FIG. 5 is an explanatory diagram of the spreading width W ([throttle portion lateral width] ⁇ [jet outlet lateral width]) / 2) and the distance P.
- FIG. 6 is a photograph showing the structure of the slit of the double nozzle according to the present invention.
- FIG. 7 is a diagram showing the structure of the shielding rod.
- FIG. 8 is a schematic configuration diagram of a substrate processing apparatus according to the present invention.
- FIG. 8 is a schematic configuration diagram of a substrate processing apparatus according to the present invention.
- FIG. 9 is a photograph showing a state in which a multiphase fluid is ejected from the multiple nozzle according to the present invention.
- FIG. 10 is a graph showing the results of measuring the impact force of the fluid ejected from the multiple nozzle according to the present invention.
- FIG. 11 is a graph showing the results of measuring the impact force of the fluid ejected from the multiple nozzle according to the present invention.
- FIG. 12 is a graph showing the results of measuring the impact force of the fluid ejected from the multiple nozzle according to the present invention while changing the position in the lateral direction.
- FIG. 1 to 4 show the form of a double nozzle according to the present invention.
- 1 is a front view of a multiple nozzle according to the present invention
- FIG. 2 is a side view of the multiple nozzle according to the present invention
- FIG. 3 is a bottom view of the multiple nozzle according to the present invention.
- These are top views of the double nozzle concerning this invention.
- the part expressed with a broken line is a perspective line which shows the structure inside a double nozzle.
- the multiple nozzle 1 includes a plurality of acceleration nozzles 100 and a multiple acceleration nozzle portion 10 in which the acceleration nozzles are arranged in parallel.
- the plurality of acceleration nozzles 100 are arranged so that the ejection directions are parallel to each other.
- an example (100a to h) in which eight acceleration nozzles 100 are provided is shown, but the number of nozzles is not particularly limited.
- the acceleration nozzle 100 is provided upstream of the nozzle and has a first gas introduction hole 101 having a maximum cross-sectional area in the nozzle, and is downstream of the first gas introduction hole, and is provided on a side surface of the acceleration channel.
- a first liquid introduction hole 103, an acceleration channel 105 for accelerating the gas supplied from the first gas introduction hole and the liquid supplied from the first liquid introduction hole, and an accelerated mixed phase fluid And an ejection port 107 to be ejected.
- the accelerating flow path 105 is formed continuously with the introduction path 1051 that decreases in cross-sectional area toward the downstream side, the throttle section 1053 having the smallest cross-sectional area in the flow path formed at the end of the introduction section, and the throttle section.
- the acceleration path 1055 has a cross-sectional area that increases toward the downstream side. It is preferable that the cross-sectional area of the first gas introduction hole 101 is larger than the cross-sectional area of the first liquid introduction hole 103. By adopting such a configuration, it becomes easy to inject a mixed phase fluid composed of a continuous phase gas and dispersed phase droplets.
- the cross-sectional shape of the ejection port 107 may be circular, elliptical, or slit.
- the ejection ports 107a to 107h of the accelerating nozzle 100 are arranged in series in the lateral direction (FIG. 1).
- the ratio ([P] / [W]) of the distance P between the horizontal ends of the adjacent jet outlets from the part is preferably 0.01 to 2.0, and is preferably 0.2 to 1.0. More preferably. By setting the ratio in this range, there is no gap in the multiphase fluid ejected from the multiple nozzles, and the impact force applied to the object becomes uniform.
- the horizontal width of a jet nozzle means the horizontal width in the upper end part of a slit (FIG.5 (c)).
- the jet nozzle 107 of the double nozzle portion is provided with a slit 109 that connects adjacent jet ports and opens in the jet direction.
- the circled part in FIG. 6 is the slit 109.
- the slit 109 is provided between the ejection ports 107 (slits 109a to 109g).
- the slit width is preferably in the range of 0.3 to 1.0 in terms of the ratio to the vertical width of the jet port ([slit width] / [longitudinal width of the jet port]).
- the depth of the slit is preferably 1 to 10 mm from the jet nozzle.
- the multiple nozzle 1 includes a gas retention part 20 for uniformly introducing a gas into the first gas introduction part 101.
- the gas retention part 20 retains the gas supplied from the second gas introduction hole 201 and the second gas introduction hole, and provides gas to the plurality of acceleration nozzles via the first gas introduction hole.
- a gas retention space 203 is provided.
- the gas retention space 203 has a cross-sectional area wider than the cross-sectional area of the second gas introduction hole 201 in the vicinity of the entrance, and has a shape that becomes narrower as it goes downstream.
- the residence space outlet 2031 surrounds the plurality of first gas introduction holes 101 of the multiple nozzle unit 10. As the introduced gas stays in the stay space 203, the gas is supplied to the first gas introduction hole 101 of each acceleration nozzle with a uniform pressure. Therefore, the amount of gas ejected from each acceleration nozzle is uniform.
- the gas retention part 20 further includes a shielding rod 205 that diffuses the gas ejected from the second gas introduction hole 201 in the vicinity of the second gas introduction hole 201 in the retention space 203.
- 7A and 7B are views showing the structure of the shielding rod 205, FIG. 7A is a side view, FIG. 7B is a front view, and FIG. 7C is a cross-sectional view along aa.
- the shielding rod 205 is installed on the wall surface that forms the stay space 203. By arranging the shielding rod 205, the gas flow ejected from the second gas introduction hole 201 is shielded and exists in the downstream portion of the second gas introduction hole 201 without staying in the gas retention space 203. This prevents gas from being biased toward the multiple nozzles.
- the shielding rod 205 preferably has a square inclined portion 2051 facing the direction of the second gas introduction hole.
- the inclination angle ⁇ of the rectangular inclined portion 2051 is not particularly limited, but is preferably 30 ° to 150 °, more preferably 60 ° to 120 °, and particularly preferably 90 °. By setting the inclination angle in such a range, an appropriate shielding effect is obtained, and the uniformity of the gas supply amount to each acceleration nozzle is enhanced.
- a groove 2053 may be provided on the side surface of the shielding bar 205 so that the position of the square inclined portion can be rotated.
- the width d a of shield rod 205 it is preferable larger than the inner diameter d b of the second gas introducing hole 201.
- the width d a of shield rod 205 refers to the maximum width of the component perpendicular to the direction of the second gas introducing hole 201.
- the multiple nozzle 1 includes a liquid retention part 30 for uniformly introducing water into the first liquid introduction part 103.
- the liquid retention part 30 retains the liquid introduced from the second liquid introduction hole 301 and the second liquid introduction hole, and liquid is supplied to the plurality of acceleration nozzles via the first liquid introduction hole.
- a liquid retention space 302 is provided.
- the liquid retention part 30 is provided on the side surface of the double nozzle.
- the liquid retention space 302 has a horizontally long rectangular parallelepiped shape.
- a second liquid introduction hole 301 is provided on the upper surface of one end in the lateral direction of the liquid retention space 302, and the liquid supply hole 303 is a first liquid introduction portion 103 at the other end in the lateral direction of the liquid retention space. It is provided in the upper part adjacent to.
- FIG. 8 is an overall view of a substrate processing apparatus 500 according to the present invention.
- the apparatus 500 includes a water vapor supply unit (A), a gas supply unit (B), a water supply unit (C), a two-fluid adjustment unit (D), a mixed phase fluid injection unit (E), a substrate holding / rotation / up-and-down mechanism unit. (F).
- A water vapor supply unit
- B gas supply unit
- C water supply unit
- D two-fluid adjustment unit
- E mixed phase fluid injection unit
- F substrate holding / rotation / up-and-down mechanism unit.
- the water vapor supply unit (A) generates water vapor by heating to a water supply pipe 511 for supplying pure water and a predetermined temperature D1 (° C.) or higher, and controls the amount of water vapor generated.
- a steam generator 512 that pressurizes the steam to a predetermined value C1 (MPa), an openable / closable steam opening / closing valve 513 that controls supply and stop of steam, and a pressure of steam supplied downstream from the steam generator 512.
- the flow rate and pressure of water vapor can be controlled only by the water vapor pressure adjustment valve 515.
- the gas supply unit (B) includes a gas supply pipe 521 for supplying an inert gas or clean air, and a gas for adjusting the supply pressure of the inert gas or clean air to a desired value.
- a gas supply pipe 521 for supplying an inert gas or clean air
- a gas for adjusting the supply pressure of the inert gas or clean air to a desired value.
- the pressure adjustment valve 522, the gas opening / closing flow rate adjustment valve 523 for controlling the flow rate to a desired value, controlling the stop and restart of the inert gas or clean air
- Gas temperature control mechanism additional heat section 524 and a gas flow meter 525 for measuring the pressure of the gas supplied downstream.
- the source pressure can be kept constant (about 0.4 MPa) by the gas pressure adjustment valve 522, and the output flow rate can be controlled by the open / close flow rate adjustment valve 523.
- the water supply unit (C) confirms the flow rate of water, a water supply pipe 531 for supplying water, a water temperature control mechanism additional heat unit 532 for giving water thermal energy, and A water flow meter 533 for downstream operation, a downstream water opening / closing valve 534 for controlling the stop and restart of downstream water supply, and an orifice for adjusting the flow rate and for smoothly introducing water into the gas pipe ( A flow rate adjusting valve) 535.
- a water supply pipe 531 for supplying water
- a water temperature control mechanism additional heat unit 532 for giving water thermal energy
- a water flow meter 533 for downstream operation
- a downstream water opening / closing valve 534 for controlling the stop and restart of downstream water supply
- an orifice for adjusting the flow rate and for smoothly introducing water into the gas pipe ( A flow rate adjusting valve) 535.
- the said liquid here water
- it is suitable that it is not a mixture, such as the conventional nitrogen gas.
- a gas that dissolves in the liquid here, water
- a gas that dissolves in the liquid may be supplied to the nozzle in a liquid state in which CO 2 is dissolved.
- the flow rate of water is confirmed by a water flow meter 533 by adjusting the orifice (flow rate adjusting valve) 535 with a constant pressure (usually 0.4 MPa) applied to a pure water tank (not shown). Can be controlled.
- the 2 fluid adjustment part (D) has the 2 fluid temperature control mechanism additional heat part 541 for adjusting the temperature of the produced
- the multi-phase fluid ejecting unit (E) moves in the front-rear and left-right directions (X-axis nozzle scan range or Y-axis nozzle scan range in FIG. 8) for ejecting the multi-phase fluid to the object. It comprises a possible multiple nozzle 1, a flexible pipe 552 for smoothly moving the nozzle, and a pressure gauge 553 for measuring the pressure immediately before the fluid nozzle.
- the multiple nozzles 1 can efficiently process a substrate by scanning in the X-axis direction.
- the nozzle shown in FIG. 8 is a schematic configuration diagram of the side surface of the composite nozzle 1.
- the substrate holding / rotating unit (F) includes a stage 561 on which an object (substrate) can be mounted / held and a rotary motor 562 for rotating the stage 561.
- the mixed phase fluid generated by mixing the water vapor supplied from the water vapor supply unit and the water supplied from the water supply unit in the double nozzle 1 is injected.
- an inert gas or clean air By mixing an inert gas or clean air, a high pressure can be obtained while suppressing the injection amount of water vapor.
- the water vapor supplied from the water vapor supply unit or the gas from the gas supply unit is introduced into the second gas introduction hole 201 of the composite nozzle 1 according to the present invention.
- the gas introduced from the second gas introduction hole is once blocked by the shielding rod 205 and stays in the air retention space 203, and then uniformly into the first gas introduction hole 101 of each acceleration nozzle 100. Supplied.
- water is supplied from the water supply unit to the second liquid introduction hole 301 of the multiple nozzle 1.
- the water to be supplied may be a mixture obtained by adding a chemical solution.
- the water introduced from the second liquid introduction hole 301 flows to the bottom surface portion of the liquid retention space 302 and then stays in the retention space, and from the liquid supply hole 303 provided in the upper portion of the space.
- the liquid is uniformly supplied to the first liquid introduction hole 103 of each acceleration nozzle.
- each acceleration nozzle in the double acceleration nozzle section 10 the gas introduced from the first gas introduction hole 101 and the liquid supplied from the first liquid introduction hole 103 on the side surface of the acceleration flow path are in the acceleration flow. It is accelerated by the road and ejected from the ejection port 107. Since the supply amount of the gas and liquid from each nozzle is uniform, the amount of the multiphase fluid ejected from each nozzle is uniform.
- the substrate is efficiently scanned by scanning the substrate in the vertical direction (X axis) with respect to the lateral direction (Y axis) in which the jet nozzle 107 is connected while ejecting the multiphase fluid.
- the whole can be processed.
- the amount of the mixed phase fluid ejected from each acceleration nozzle is uniform, the substrate surface can be uniformly treated.
- the impact force can be made uniform by providing the slit 109 at the ejection port 107, the substrate can be processed uniformly by a single scanning process.
- Example 1 Under the following conditions, a multi-phase nozzle 1 according to the present invention having seven accelerating nozzle portions was used to inject a multiphase fluid and observe the state of the fluid ejected from each nozzle. The results are shown in FIG. Furthermore, unnecessary gold lift-off is performed by injecting a mixed phase fluid (gas: vapor + air, liquid: water) onto the substrate on which the gold thin film is formed on the resist surface on which the electrode wiring pattern is formed. was done.
- a mixed phase fluid gas: vapor + air, liquid: water
- Example 2 As a comparative experiment, the same conditions as in Example 1 were used except that a double nozzle having the same structure as Example 1 was used except that no shielding rod and jet slit were provided and the P / W ratio was 7.0. Then, the state of the mixed phase fluid ejected from each nozzle was observed by ejecting the mixed phase fluid. The results are shown in FIG. Furthermore, unnecessary gold lift-off is performed by injecting a mixed phase fluid (gas: vapor + air, liquid: water) onto the substrate on which the gold thin film is formed on the resist surface on which the electrode wiring pattern is formed under the above conditions. Was done.
- a mixed phase fluid gas: vapor + air, liquid: water
- the impact force was measured in detail using a double nozzle provided with a 180 ° shielding bar and no jet slit and the double nozzle used in Example 1. Under the above injection conditions, the impact force was measured while changing the lateral position of the nozzle from one end to the other end of the multiple nozzle. The results are shown in FIG.
- a slit having [slit width] / [longitudinal width of the outlet]: 0.4 and slit depth: 5 mm is provided between the outlets, and the inclination angle of the angled inclined portion of the shielding rod is 90 °.
- the nozzle and apparatus according to the present invention are electrodes for manufacturing processes for manufacturing semiconductor wafers, liquid crystal displays, hard disks and other recording media, printed circuit boards, solar cell substrates, etc. Used in the forming process.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Nozzles (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
[Objective] To provide nozzles and a substrate treatment apparatus, wherein a broad area of a substrate can be treated efficiently, by scanning. [Solution] This series of nozzles (1) comprises a section of multiple nozzles (10) provided with acceleration nozzles (100) comprising: first gas introduction holes (101); first liquid introduction holes (103) provided downstream of the first gas introduction holes (101); acceleration flow paths (105) for accelerating gas supplied from the first gas introduction holes (101) and liquid supplied from the first liquid introduction holes (103); and ejection nozzles (107) through which the accelerated multiphase fluids are ejected. In the section of multiple nozzles (10), the acceleration nozzles (100) are arranged in parallel.
Description
本発明は、基板の汚染、付着物を除去、洗浄する工程において用いられるノズル及び処理装置に関する。
The present invention relates to a nozzle and a processing apparatus used in a process of removing and cleaning substrate contamination and deposits.
電子デバイスの製造プロセスにおいては、1枚の基板に対して、50~100回もの洗浄が繰り返される。その洗浄の対象は、デバイス信頼性に影響を与えるレジスト膜やポリマー膜等の有機物やパーティクル等である。この洗浄工程では、通常、アルカリ洗浄液と酸洗浄液の組合せやその他硫酸過水や有機溶剤等の薬品を使用し、また、その残留物を除去するためのリンス工程では、大量の純水を使用する。その他、レジストの除去には、プラズマアッシング装置を用いるのが一般的であるが、その後の残留物や不純物の洗浄は別の洗浄装置が使用されている。ここで、上記に示した従来技術の洗浄や薄膜除去に使われる薬液は、1)高価である、2)環境負荷が大きいため特別な排水処理設備が必要である、3)作業者の安全衛生の確保のため装置が大型化し、特別な装置内排気設備が必要である、薬液を洗い流すために大量の純水が必要である、4)1台の装置では薄膜除去から洗浄までをカバーできない、といった欠点をもつ。
In the electronic device manufacturing process, cleaning is repeated 50 to 100 times for one substrate. The object of the cleaning is an organic substance such as a resist film or a polymer film, particles, or the like that affects device reliability. This cleaning process usually uses a combination of an alkaline cleaning solution and an acid cleaning solution, and other chemicals such as sulfuric acid / hydrogen peroxide and organic solvents, and a large amount of pure water is used in the rinsing step to remove the residue. . In addition, a plasma ashing apparatus is generally used for removing the resist, but another cleaning apparatus is used for the subsequent cleaning of residues and impurities. Here, the chemicals used for cleaning and thin film removal according to the prior art described above are 1) expensive, 2) special environmental treatment is required due to high environmental load, and 3) safety and health of workers. The size of the equipment is increased to ensure the safety of the equipment, and a special equipment exhaust system is required. A large amount of pure water is required to wash away the chemical solution. 4) One device cannot cover from thin film removal to cleaning. Have the disadvantages.
上記の技術課題の下で水蒸気及び水を用いる基板処理方法が提案されている(特許文献1)。当該方法によれば、水蒸気及び水のみで、高い物理的衝撃力を得ることが出来るため、レジストやポリマー膜を剥離することができる。したがって、電子デバイスの製造プロセスにおいて薬液を減らすことが可能となる。
Under the above technical problem, a substrate processing method using water vapor and water has been proposed (Patent Document 1). According to this method, since a high physical impact force can be obtained only with water vapor and water, the resist and the polymer film can be peeled off. Therefore, it is possible to reduce the chemical solution in the manufacturing process of the electronic device.
基板の処理効率の問題から、基板に対して水蒸気及び水の混相流体を噴射してスキャンする処理が求められる場合がある。しかし、上記の発明によれば、スキャンによる一回の処理で、広い面積を処理することが難しく、高い処理効率を得ることが出来なかった。そこで、本発明は、スキャンによって効率的に広い面積の基板を処理できるノズル及び基板処理装置を提供することを目的とする。
Due to the problem of the substrate processing efficiency, there is a case where a process of scanning by injecting a mixed phase fluid of water vapor and water onto the substrate is required. However, according to the above-described invention, it is difficult to process a large area by one processing by scanning, and high processing efficiency cannot be obtained. SUMMARY An advantage of some aspects of the invention is that it provides a nozzle and a substrate processing apparatus that can efficiently process a substrate having a large area by scanning.
本発明(1)は、第一の気体導入孔、前記第一の気体導入孔よりも下流に設けられた第一の液体導入孔、該第一の気体導入孔から供給された気体及び該第一の液体導入孔から供給された液体を加速する加速流路、及び加速された混相流体が噴射される噴出口を有する加速ノズルを複数備え、該加速ノズルが並列に配されている、複連加速ノズル部を具備する複連ノズルである。
The present invention (1) includes a first gas introduction hole, a first liquid introduction hole provided downstream of the first gas introduction hole, a gas supplied from the first gas introduction hole, and the first gas introduction hole. A plurality of accelerating passages for accelerating the liquid supplied from one liquid introduction hole and a plurality of accelerating nozzles having jet nozzles through which the accelerated multiphase fluid is jetted, wherein the accelerating nozzles are arranged in parallel; It is a double nozzle provided with an acceleration nozzle part.
複連ノズルを用いた場合、蒸気発生器等から気体を導入すると、各ノズルからの気体噴出量が均一にならないという問題を有していた。これに起因して、レジスト等の除去対象物が十分に除去されないといった問題が発生していた。
そこで、本発明(2)~(6)においては、複連ノズルを用いた場合であって、各ノズルからの気体噴出量が均一に調整されるような手段を提供することを目的とする。 When multiple nozzles are used, when gas is introduced from a steam generator or the like, there is a problem that the amount of gas ejected from each nozzle is not uniform. Due to this, there has been a problem that the removal target such as a resist is not sufficiently removed.
Therefore, in the present inventions (2) to (6), it is an object to provide means for uniformly adjusting the gas ejection amount from each nozzle even when multiple nozzles are used.
そこで、本発明(2)~(6)においては、複連ノズルを用いた場合であって、各ノズルからの気体噴出量が均一に調整されるような手段を提供することを目的とする。 When multiple nozzles are used, when gas is introduced from a steam generator or the like, there is a problem that the amount of gas ejected from each nozzle is not uniform. Due to this, there has been a problem that the removal target such as a resist is not sufficiently removed.
Therefore, in the present inventions (2) to (6), it is an object to provide means for uniformly adjusting the gas ejection amount from each nozzle even when multiple nozzles are used.
本発明(2)は、第二の気体導入孔、該第二の気体導入孔から供給された気体を滞留させて、前記第一の気体導入孔を介して前記複数の加速ノズルに対して気体を供給する気体滞留空間、を備える気体滞留部を更に具備する、前記発明(1)の複連ノズルである。
In the present invention (2), the second gas introduction hole, the gas supplied from the second gas introduction hole is retained, and the gas is supplied to the plurality of acceleration nozzles via the first gas introduction hole. It is the double nozzle of the said invention (1) further equipped with the gas retention part provided with the gas retention space which supplies.
本発明(3)は、前記気体滞留部は、前記気体滞留空間内の第二の気体導入孔の近傍に、当該第二の気体導入孔から噴出される気体を拡散する遮蔽棒を更に備える、前記発明(2)の複連ノズルである。
In the present invention (3), the gas retention part further includes a shielding rod for diffusing the gas ejected from the second gas introduction hole in the vicinity of the second gas introduction hole in the gas retention space. It is the double nozzle of the said invention (2).
本発明(4)は、前記遮蔽棒の幅が前記気体導入孔の内径よりも大きい、前記発明(3)の複連ノズルである。
The present invention (4) is the multiple nozzle of the invention (3), wherein the width of the shielding rod is larger than the inner diameter of the gas introduction hole.
本発明(5)は、前記遮蔽棒が、前記気体導入孔の方向に対向した角形状傾斜部位を有する、前記発明(3)又は(4)の複連ノズルである。
The present invention (5) is the multiple nozzle according to the invention (3) or (4), wherein the shielding rod has a square-shaped inclined portion facing the direction of the gas introduction hole.
本発明(6)は、前記角形状傾斜部位の傾斜角が、30~150°である、前記発明(5)の複連ノズルである。
The present invention (6) is the double nozzle according to the invention (5), wherein an inclination angle of the angular inclined portion is 30 to 150 °.
複連ノズルを用いて対象物に対して噴射する場合、ノズル噴出口とノズル噴出口の間における衝撃力が、ノズル噴出口の直下における衝撃力とは大きく異なるといった問題を有していた。すなわち、複連ノズルを単に用いて対象物に対して噴射した場合、対象物上に与えられる衝撃力が均一ではないことがわかった。そこで、本発明(7)~(8)においては、対象物に与える衝撃力均一性の高い複連ノズルを提供することを目的とする。
When jetting an object using a multiple nozzle, there is a problem that the impact force between the nozzle jet outlet and the nozzle jet outlet is significantly different from the impact force directly below the nozzle jet outlet. That is, it has been found that when a multiple nozzle is simply used to inject an object, the impact force applied to the object is not uniform. Accordingly, an object of the present invention (7) to (8) is to provide a multiple nozzle with high uniformity of impact force applied to an object.
本発明(7)は、前記複数の加速ノズルは、各々の噴出口が横方向に一連に配置されており、
前記複数の加速ノズルの噴出口の横方向の広がり幅W([絞り部横幅]-[噴出口横幅])/2)に対する、前記複数の加速ノズルの噴出口の横方向端部から隣接する噴出口の横方向端部の距離Pの比([P]/[W])が、0.2~1.0である、前記発明(1)~(6)のいずれか一つの複連ノズルである。 In the present invention (7), each of the plurality of acceleration nozzles has a series of outlets arranged in a lateral direction,
Adjacent jets from the lateral ends of the outlets of the plurality of acceleration nozzles with respect to the lateral spread width W ([throttle portion lateral width] − [jet outlet lateral width]) / 2) of the plurality of acceleration nozzles. In the multi-nozzle according to any one of the inventions (1) to (6), the ratio ([P] / [W]) of the distance P between the lateral ends of the outlet is 0.2 to 1.0. is there.
前記複数の加速ノズルの噴出口の横方向の広がり幅W([絞り部横幅]-[噴出口横幅])/2)に対する、前記複数の加速ノズルの噴出口の横方向端部から隣接する噴出口の横方向端部の距離Pの比([P]/[W])が、0.2~1.0である、前記発明(1)~(6)のいずれか一つの複連ノズルである。 In the present invention (7), each of the plurality of acceleration nozzles has a series of outlets arranged in a lateral direction,
Adjacent jets from the lateral ends of the outlets of the plurality of acceleration nozzles with respect to the lateral spread width W ([throttle portion lateral width] − [jet outlet lateral width]) / 2) of the plurality of acceleration nozzles. In the multi-nozzle according to any one of the inventions (1) to (6), the ratio ([P] / [W]) of the distance P between the lateral ends of the outlet is 0.2 to 1.0. is there.
本発明(8)は、前記噴出口は、隣接する噴出口をつなぎ、噴出方向に開放するスリットが設けられている、前記発明(7)の複連ノズルである。
The present invention (8) is the multiple nozzle according to the invention (7), wherein the ejection port is provided with a slit that connects adjacent ejection ports and opens in the ejection direction.
複連ノズルを用いて対象物に対して混相流体を噴射する場合、各ノズル噴出口より噴射される液体の量が均一ではないという問題を有していた。そこで、本発明(9)~(10)においては、複連ノズルを用いた場合であって、各ノズルからの液体噴出量が均一に調整されるような手段を提供することを目的とする。
When injecting a multiphase fluid onto an object using a multiple nozzle, there is a problem that the amount of liquid ejected from each nozzle ejection port is not uniform. Therefore, in the present inventions (9) to (10), an object is to provide means for uniformly adjusting the amount of liquid ejected from each nozzle even when multiple nozzles are used.
本発明(9)は、第二の液体導入孔、該第二の液体導入孔から導入された液体を滞留させて、前記第一の液体導入孔を介して前記複数の加速ノズルに対して液体を供給する液体滞留空間、を備える液体滞留部を更に具備する、前記発明(1)~(8)のいずれか一つの複連ノズルである。
In the present invention (9), the second liquid introduction hole, the liquid introduced from the second liquid introduction hole is retained, and the liquid is supplied to the plurality of acceleration nozzles via the first liquid introduction hole. The multi-nozzle according to any one of the inventions (1) to (8), further comprising a liquid staying section having a liquid staying space for supplying.
本発明(10)は、前記液体滞留部が、前記複連ノズルの側面に設けられており、
前記液体滞留空間が横長直方体形状を有しており、
前記第二の液体導入孔が、液体滞留空間の一端の上部に設けられており、
前記第一の液体導入孔が、前記液体滞留空間の他端の上部に設けられている、前記発明(8)の複連ノズルである。 In the present invention (10), the liquid retention part is provided on a side surface of the multiple nozzle,
The liquid retention space has a horizontally long rectangular parallelepiped shape;
The second liquid introduction hole is provided at an upper portion of one end of the liquid retention space;
The multiple nozzle according to the invention (8), wherein the first liquid introduction hole is provided at an upper portion of the other end of the liquid retention space.
前記液体滞留空間が横長直方体形状を有しており、
前記第二の液体導入孔が、液体滞留空間の一端の上部に設けられており、
前記第一の液体導入孔が、前記液体滞留空間の他端の上部に設けられている、前記発明(8)の複連ノズルである。 In the present invention (10), the liquid retention part is provided on a side surface of the multiple nozzle,
The liquid retention space has a horizontally long rectangular parallelepiped shape;
The second liquid introduction hole is provided at an upper portion of one end of the liquid retention space;
The multiple nozzle according to the invention (8), wherein the first liquid introduction hole is provided at an upper portion of the other end of the liquid retention space.
本発明(11)は、前記発明(1)~(10)のいずれか一つの複連ノズルと、
前記複連ノズルに対して水蒸気を供給する蒸気発生部と、
前記複連ノズルに対して液体を供給する水供給部と、を具備する基板処理装置である。 The present invention (11) includes any one of the multiple nozzles of the inventions (1) to (10),
A steam generator for supplying steam to the multiple nozzles;
A substrate processing apparatus comprising: a water supply unit that supplies a liquid to the multiple nozzles.
前記複連ノズルに対して水蒸気を供給する蒸気発生部と、
前記複連ノズルに対して液体を供給する水供給部と、を具備する基板処理装置である。 The present invention (11) includes any one of the multiple nozzles of the inventions (1) to (10),
A steam generator for supplying steam to the multiple nozzles;
A substrate processing apparatus comprising: a water supply unit that supplies a liquid to the multiple nozzles.
本発明(12)は、前記複連ノズルに対して不活性ガス又は清浄空気を供給するガス供給部を更に具備する、前記発明(11)の基板処理装置である。
The present invention (12) is the substrate processing apparatus according to the invention (11), further comprising a gas supply unit for supplying an inert gas or clean air to the double nozzle.
本発明に係る複連ノズルによれば、一回のスキャンによって効率的に広い面積の基板を処理できるという効果を奏する。
According to the double nozzle according to the present invention, there is an effect that a substrate having a large area can be processed efficiently by one scan.
また、本発明に係る気体滞留部を設けることによって、第二の気体導入孔から導入される気体が、一旦滞留した後に各ノズルへと供給されるため、複連ノズルを構成する各加速ノズルから噴出される混相流体の噴出量が均一になるという効果を奏する。特に気体滞留空間内に遮蔽棒を設けることによって、第二の気体導入孔から導入される気体の流れが遮蔽されて、気体滞留部を設けることによる均一性の向上効果が顕著となる。
Further, by providing the gas retention portion according to the present invention, the gas introduced from the second gas introduction hole is temporarily retained and then supplied to each nozzle. There is an effect that the amount of ejected mixed phase fluid becomes uniform. In particular, by providing the shielding rod in the gas retention space, the flow of the gas introduced from the second gas introduction hole is shielded, and the effect of improving the uniformity by providing the gas retention portion becomes remarkable.
複連ノズルの横方向の広がり幅Wと距離Pの比を上記に示すような範囲とすることによって、各ノズル下及びノズル噴出口間における衝撃力分布は高い均一性を示す。また、ノズル噴出口間にスリットを設けることによって衝撃力分布の均一性は更に高まる。
By making the ratio of the width W and the distance P in the lateral direction of the multiple nozzles in the range shown above, the impact force distribution under each nozzle and between nozzle nozzles shows high uniformity. Moreover, the uniformity of the impact force distribution is further enhanced by providing slits between the nozzle outlets.
液体滞留部を更に有することによって、各ノズルへと供給される水の量が一定となるため、噴射される混相流体も均一になるという効果を奏する。
By further having a liquid retention part, the amount of water supplied to each nozzle becomes constant, so that the mixed phase fluid to be ejected becomes uniform.
本発明の実施形態について図を用いて説明する。図1~4は、本発明に係る複連ノズルの形態を示す。図1は本発明に係る複連ノズルの正面図であり、図2は本発明に係る複連ノズルの側面図であり、図3は本発明に係る複連ノズルの底面図であり、図4は本発明に係る複連ノズルの平面図である。尚、破線で表現した部分は、複連ノズルの内部の構造を示す透視線である。
Embodiments of the present invention will be described with reference to the drawings. 1 to 4 show the form of a double nozzle according to the present invention. 1 is a front view of a multiple nozzle according to the present invention, FIG. 2 is a side view of the multiple nozzle according to the present invention, and FIG. 3 is a bottom view of the multiple nozzle according to the present invention. These are top views of the double nozzle concerning this invention. In addition, the part expressed with a broken line is a perspective line which shows the structure inside a double nozzle.
本発明に係る複連ノズル1は、加速ノズル100を複数備え、該加速ノズルが並列に配された複連加速ノズル部10を具備する。複数の加速ノズル100は、互いに噴出方向が並行になるように配列されている。ここでは、加速ノズル100が8本設けられた例(100a~h)を示しているが、ノズルの本数には特に限定されない。
The multiple nozzle 1 according to the present invention includes a plurality of acceleration nozzles 100 and a multiple acceleration nozzle portion 10 in which the acceleration nozzles are arranged in parallel. The plurality of acceleration nozzles 100 are arranged so that the ejection directions are parallel to each other. Here, an example (100a to h) in which eight acceleration nozzles 100 are provided is shown, but the number of nozzles is not particularly limited.
図2を用いて加速ノズル100の詳細を説明する。加速ノズル100は、該ノズルの上流に設けられノズル内で最大断面積を有する第一の気体導入孔101と、該第一の気体導入孔よりも下流であり、加速流路の側面に設けられた第一の液体導入孔103と、該第一の気体導入孔から供給された気体及び該第一の液体導入孔から供給された液体を加速する加速流路105と、加速された混相流体が噴射される噴出口107とを有する。加速流路105は断面積が下流に向かうにつれて小さくなる導入路1051、該導入部の終端に形成された流路内で最小断面積を有する絞り部1053、該絞り部と連続的に形成されており下流に向かうにつれて断面積が大きくなる加速路1055を有する。尚、第一の気体導入孔101の断面積のほうが、第一の液体導入孔103の断面積よりも大きいことが好適である。このような構成をとることによって、連続相の気体と、分散相の液滴からなる混相流体を噴射し易くなる。尚、噴出口107の断面形状は、円形であっても、楕円形であっても、スリット形であってもよい。
Details of the acceleration nozzle 100 will be described with reference to FIG. The acceleration nozzle 100 is provided upstream of the nozzle and has a first gas introduction hole 101 having a maximum cross-sectional area in the nozzle, and is downstream of the first gas introduction hole, and is provided on a side surface of the acceleration channel. A first liquid introduction hole 103, an acceleration channel 105 for accelerating the gas supplied from the first gas introduction hole and the liquid supplied from the first liquid introduction hole, and an accelerated mixed phase fluid And an ejection port 107 to be ejected. The accelerating flow path 105 is formed continuously with the introduction path 1051 that decreases in cross-sectional area toward the downstream side, the throttle section 1053 having the smallest cross-sectional area in the flow path formed at the end of the introduction section, and the throttle section. The acceleration path 1055 has a cross-sectional area that increases toward the downstream side. It is preferable that the cross-sectional area of the first gas introduction hole 101 is larger than the cross-sectional area of the first liquid introduction hole 103. By adopting such a configuration, it becomes easy to inject a mixed phase fluid composed of a continuous phase gas and dispersed phase droplets. The cross-sectional shape of the ejection port 107 may be circular, elliptical, or slit.
複連加速ノズル部10は、加速ノズル100の噴出口107a~hが横方向に一連に配置されている(図1)。
In the double accelerating nozzle portion 10, the ejection ports 107a to 107h of the accelerating nozzle 100 are arranged in series in the lateral direction (FIG. 1).
図5に示すように、加速ノズルの噴出口107の横方向の広がり幅W([絞り部横幅]-[噴出口横幅])/2)に対する、前記複数の加速ノズルの噴出口の横方向端部から隣接する噴出口の横方向端部の距離Pの比([P]/[W])が、0.01~2.0であることが好適であり、0.2~1.0であることがより好適である。当該範囲の比とすることによって、複連ノズルから噴射される混相流体に隙間がなくなり、対象物に与える衝撃力が均一となる。当該比よりも大きな値とすると、噴出口と噴出口の間が開きすぎて複連ノズルから噴射される混相流体に隙間が発生し、噴出口下と噴出口間で衝撃力に著しい差が発生する。尚、後述の加速ノズル噴出口間のスリット109を設けた場合(図5(b))、噴出口の横幅は、スリットの上端部における横幅を意味する(図5(c))。
As shown in FIG. 5, the lateral ends of the ejection nozzles of the plurality of acceleration nozzles with respect to the lateral spreading width W ([throttle portion lateral width] − [ejection outlet lateral width]) / 2) of the ejection nozzle 107 of the acceleration nozzle. The ratio ([P] / [W]) of the distance P between the horizontal ends of the adjacent jet outlets from the part is preferably 0.01 to 2.0, and is preferably 0.2 to 1.0. More preferably. By setting the ratio in this range, there is no gap in the multiphase fluid ejected from the multiple nozzles, and the impact force applied to the object becomes uniform. If the value is larger than this ratio, the gap between the jet outlets will open too much, creating a gap in the multiphase fluid ejected from the multiple nozzles, and there will be a significant difference in impact force between the jet outlet and the jet outlet. To do. In addition, when the slit 109 between the below-mentioned acceleration nozzle jet nozzles is provided (FIG.5 (b)), the horizontal width of a jet nozzle means the horizontal width in the upper end part of a slit (FIG.5 (c)).
更に、図3、図6に示すように、複連ノズル部の噴出口107は、隣合う噴出口をつなぎ噴出方向に開放するスリット109が設けられていることが好適である。尚、図6の丸で囲った部分がスリット109である。スリット109は、各噴出口107の間に設けられている(スリット109a~g)。当該スリットを設けることによって、複連ノズルのから噴出される混相流体の衝撃力を損なうことなく噴流の広がりが増すため、衝撃力の均一性が更に高まる。
Furthermore, as shown in FIG. 3 and FIG. 6, it is preferable that the jet nozzle 107 of the double nozzle portion is provided with a slit 109 that connects adjacent jet ports and opens in the jet direction. The circled part in FIG. 6 is the slit 109. The slit 109 is provided between the ejection ports 107 (slits 109a to 109g). By providing the slit, the spread of the jet flow is increased without impairing the impact force of the multiphase fluid ejected from the multiple nozzles, thereby further improving the uniformity of the impact force.
尚、本発明においてスリットの幅は、噴出口の縦方向の幅に対する比([スリット幅]/[噴出口の縦方向の幅])で、0.3~1.0の範囲が好適である。スリットの深さは、噴出口から1~10mmが好適である。このような幅及び深さを有することによって、衝撃力の均一性が高まる。
In the present invention, the slit width is preferably in the range of 0.3 to 1.0 in terms of the ratio to the vertical width of the jet port ([slit width] / [longitudinal width of the jet port]). . The depth of the slit is preferably 1 to 10 mm from the jet nozzle. By having such a width and depth, the uniformity of the impact force is increased.
本発明に係る複連ノズル1は、第一の気体導入部101へと均一に気体を導入するための気体滞留部20を具備する。気体滞留部20は、第二の気体導入孔201、該第二の気体導入孔から供給された気体を滞留させて、前記第一の気体導入孔を介して前記複数の加速ノズルに対して気体を供給する気体滞留空間203を備える。
The multiple nozzle 1 according to the present invention includes a gas retention part 20 for uniformly introducing a gas into the first gas introduction part 101. The gas retention part 20 retains the gas supplied from the second gas introduction hole 201 and the second gas introduction hole, and provides gas to the plurality of acceleration nozzles via the first gas introduction hole. A gas retention space 203 is provided.
気体滞留空間203は、その入り口付近において第二の気体導入孔201の断面積よりも広い断面積を有し、下流に向かうにしたがって狭い断面積となる形状を有する。滞留空間出口2031は、前記複連ノズル部10の複数の第一の気体導入孔101を囲い込む。導入された気体が滞留空間203で滞留することによって、気体が均一な圧力で各加速ノズルの第一の気体導入孔101に供給される。したがって、各加速ノズルから噴出される気体の量が均一となる。
The gas retention space 203 has a cross-sectional area wider than the cross-sectional area of the second gas introduction hole 201 in the vicinity of the entrance, and has a shape that becomes narrower as it goes downstream. The residence space outlet 2031 surrounds the plurality of first gas introduction holes 101 of the multiple nozzle unit 10. As the introduced gas stays in the stay space 203, the gas is supplied to the first gas introduction hole 101 of each acceleration nozzle with a uniform pressure. Therefore, the amount of gas ejected from each acceleration nozzle is uniform.
前記気体滞留部20は、滞留空間203内の第二の気体導入孔201の近傍に、当該第二の気体導入孔201から噴出される気体を拡散する遮蔽棒205を更に備える。図7は、遮蔽棒205の構造を示す図であり、図7(a)は側面図であり、図7(b)は正面図であり、図7(c)はaa断面図である。遮蔽棒205は、滞留空間203を形成する壁面に架設されている。遮蔽棒205を配することで、第二の気体導入孔201から噴出される気体流が遮蔽されて、気体滞留空間203を滞留せずに第二の気体導入孔201の直下流部に存在する複連ノズルに偏って気体が供給されることを防止する。
The gas retention part 20 further includes a shielding rod 205 that diffuses the gas ejected from the second gas introduction hole 201 in the vicinity of the second gas introduction hole 201 in the retention space 203. 7A and 7B are views showing the structure of the shielding rod 205, FIG. 7A is a side view, FIG. 7B is a front view, and FIG. 7C is a cross-sectional view along aa. The shielding rod 205 is installed on the wall surface that forms the stay space 203. By arranging the shielding rod 205, the gas flow ejected from the second gas introduction hole 201 is shielded and exists in the downstream portion of the second gas introduction hole 201 without staying in the gas retention space 203. This prevents gas from being biased toward the multiple nozzles.
遮蔽棒205は、図7に示すように、第二の気体導入孔の方向に対向した角形状傾斜部位2051を有することが好適である。尚、角形状傾斜部位2051の傾斜角度θは、特に限定されないが、30°~150°が好適であり、60°~120°がより好適であり、90°が特に好適である。このような範囲の傾斜角度とすることによって、適度な遮蔽効果が得られ、各加速ノズルへの気体の供給量の均一性が高まる。また、遮蔽棒205の側面に、溝2053を設けて角形状傾斜部位の位置を回動可能に構成してもよい。
As shown in FIG. 7, the shielding rod 205 preferably has a square inclined portion 2051 facing the direction of the second gas introduction hole. In addition, the inclination angle θ of the rectangular inclined portion 2051 is not particularly limited, but is preferably 30 ° to 150 °, more preferably 60 ° to 120 °, and particularly preferably 90 °. By setting the inclination angle in such a range, an appropriate shielding effect is obtained, and the uniformity of the gas supply amount to each acceleration nozzle is enhanced. Further, a groove 2053 may be provided on the side surface of the shielding bar 205 so that the position of the square inclined portion can be rotated.
図4に示されるように、遮蔽棒205の幅daは、第二の気体導入孔201の内径dbよりも大きいことが好適である。遮蔽棒205の幅daとは、第二の気体導入孔201の方向に対して垂直な成分の最大幅を意味する。当該構成により、気体流の遮蔽効果が顕著となり、各ノズルから噴出される気体の均一性が高まる。
As shown in FIG. 4, the width d a of shield rod 205, it is preferable larger than the inner diameter d b of the second gas introducing hole 201. The width d a of shield rod 205, refers to the maximum width of the component perpendicular to the direction of the second gas introducing hole 201. With this configuration, the shielding effect of the gas flow becomes remarkable, and the uniformity of the gas ejected from each nozzle is increased.
本発明に係る複連ノズル1は、第一の液体導入部103へと均一に水を導入するための液体滞留部30を具備する。液体滞留部30は、第二の液体導入孔301、該第二の液体導入孔から導入された液体を滞留させて、前記第一の液体導入孔を介して前記複数の加速ノズルに対して液体を供給する液体滞留空間302、を備える。液体滞留部30は、複連ノズルの側面に設けられている。液体滞留空間302は、横長直方体形状を有している。更に、第二の液体導入孔301が、液体滞留空間302の横方向一端の上面に設けられており、液体供給孔303が、前記液体滞留空間の横方向他端の第一の液体導入部103に隣接する上部に設けられている。当該液体滞留部30は、上記の気体滞留部20により各加速ノズルへの気体供給量が均一になる場合には、特に、液体供給量が均一となる。
The multiple nozzle 1 according to the present invention includes a liquid retention part 30 for uniformly introducing water into the first liquid introduction part 103. The liquid retention part 30 retains the liquid introduced from the second liquid introduction hole 301 and the second liquid introduction hole, and liquid is supplied to the plurality of acceleration nozzles via the first liquid introduction hole. A liquid retention space 302 is provided. The liquid retention part 30 is provided on the side surface of the double nozzle. The liquid retention space 302 has a horizontally long rectangular parallelepiped shape. Further, a second liquid introduction hole 301 is provided on the upper surface of one end in the lateral direction of the liquid retention space 302, and the liquid supply hole 303 is a first liquid introduction portion 103 at the other end in the lateral direction of the liquid retention space. It is provided in the upper part adjacent to. When the gas supply amount to each acceleration nozzle becomes uniform by the gas retention portion 20, the liquid retention portion 30 has a uniform liquid supply amount.
図8は、本発明に係る基板処理装置500の全体図である。本装置500は、水蒸気供給部(A)、ガス供給部(B)、水供給部(C)、2流体調整部(D)、混相流体噴射部(E)、基板保持・回転・上下機構部(F)を有する構成である。以下、各部を詳述する。
FIG. 8 is an overall view of a substrate processing apparatus 500 according to the present invention. The apparatus 500 includes a water vapor supply unit (A), a gas supply unit (B), a water supply unit (C), a two-fluid adjustment unit (D), a mixed phase fluid injection unit (E), a substrate holding / rotation / up-and-down mechanism unit. (F). Hereinafter, each part will be described in detail.
(A)水蒸気供給部
水蒸気供給部(A)は、純水を供給するための水供給管511と、所定温度D1(℃)以上に加温して水蒸気を発生させ、水蒸気の発生量を制御して水蒸気を所定値C1(MPa)に加圧する蒸気発生器512と、蒸気の供給及びその停止を司る開閉可能な水蒸気開閉バルブ513と、蒸気発生器512から下流に供給される水蒸気の圧力を計測するための圧力計514と、蒸気供給圧力を所望の値に調整するための水蒸気圧力調整バルブ515と、供給水蒸気内の微小液滴量を調整する温度制御機構付き加熱蒸気生成器兼飽和蒸気湿り度調整器516と、安全装置としての安全弁517と、から構成される。水蒸気の流量及び圧力は、水蒸気圧力調整バルブ515のみで制御することが可能である。 (A) Water vapor supply unit The water vapor supply unit (A) generates water vapor by heating to awater supply pipe 511 for supplying pure water and a predetermined temperature D1 (° C.) or higher, and controls the amount of water vapor generated. A steam generator 512 that pressurizes the steam to a predetermined value C1 (MPa), an openable / closable steam opening / closing valve 513 that controls supply and stop of steam, and a pressure of steam supplied downstream from the steam generator 512. A pressure gauge 514 for measuring, a steam pressure adjusting valve 515 for adjusting the steam supply pressure to a desired value, and a heating steam generator / saturated steam with a temperature control mechanism for adjusting the amount of fine droplets in the supplied steam It comprises a wetness adjuster 516 and a safety valve 517 as a safety device. The flow rate and pressure of water vapor can be controlled only by the water vapor pressure adjustment valve 515.
水蒸気供給部(A)は、純水を供給するための水供給管511と、所定温度D1(℃)以上に加温して水蒸気を発生させ、水蒸気の発生量を制御して水蒸気を所定値C1(MPa)に加圧する蒸気発生器512と、蒸気の供給及びその停止を司る開閉可能な水蒸気開閉バルブ513と、蒸気発生器512から下流に供給される水蒸気の圧力を計測するための圧力計514と、蒸気供給圧力を所望の値に調整するための水蒸気圧力調整バルブ515と、供給水蒸気内の微小液滴量を調整する温度制御機構付き加熱蒸気生成器兼飽和蒸気湿り度調整器516と、安全装置としての安全弁517と、から構成される。水蒸気の流量及び圧力は、水蒸気圧力調整バルブ515のみで制御することが可能である。 (A) Water vapor supply unit The water vapor supply unit (A) generates water vapor by heating to a
(B)ガス供給部
ガス供給部(B)は、不活性ガス又は清浄空気を供給するためのガス供給管521と、不活性ガス又は清浄空気の供給圧力を所望の値に調整するためのガス圧力調整弁522と、不活性ガス又は清浄空気の停止及び再開を司り、流量を所望の値に調整するためのガス開閉兼用流量調整バルブ523と、不活性ガス又は清浄空気の温度を調整するためのガス温度制御機構付加熱部524と、下流に供給される気体の圧力を計測するためのガス流量計525と、から構成される。元圧をガス圧力調整弁522で、一定(0.4MPa程度)とし、出力流量を開閉兼用流量調整バルブ523で制御することが可能である。 (B) Gas supply unit The gas supply unit (B) includes a gas supply pipe 521 for supplying an inert gas or clean air, and a gas for adjusting the supply pressure of the inert gas or clean air to a desired value. In order to adjust the temperature of the inert gas or clean air, thepressure adjustment valve 522, the gas opening / closing flow rate adjustment valve 523 for controlling the flow rate to a desired value, controlling the stop and restart of the inert gas or clean air Gas temperature control mechanism additional heat section 524 and a gas flow meter 525 for measuring the pressure of the gas supplied downstream. The source pressure can be kept constant (about 0.4 MPa) by the gas pressure adjustment valve 522, and the output flow rate can be controlled by the open / close flow rate adjustment valve 523.
ガス供給部(B)は、不活性ガス又は清浄空気を供給するためのガス供給管521と、不活性ガス又は清浄空気の供給圧力を所望の値に調整するためのガス圧力調整弁522と、不活性ガス又は清浄空気の停止及び再開を司り、流量を所望の値に調整するためのガス開閉兼用流量調整バルブ523と、不活性ガス又は清浄空気の温度を調整するためのガス温度制御機構付加熱部524と、下流に供給される気体の圧力を計測するためのガス流量計525と、から構成される。元圧をガス圧力調整弁522で、一定(0.4MPa程度)とし、出力流量を開閉兼用流量調整バルブ523で制御することが可能である。 (B) Gas supply unit The gas supply unit (B) includes a gas supply pipe 521 for supplying an inert gas or clean air, and a gas for adjusting the supply pressure of the inert gas or clean air to a desired value. In order to adjust the temperature of the inert gas or clean air, the
(C)水供給部
水供給部(C)は、水を供給するための水供給管531と、水に熱エネルギーを持たせるための水温度制御機構付加熱部532と、水の流量を確認するための水流量計533と、下流への水の供給の停止及び再開を司る下流供給用水開閉バルブ534と、流量を調整するため及び水が気体配管内に円滑に導入されるためのオリフィス(流量調整バルブ)535から構成される。尚、当該液体(ここでは水)をノズルに供給する場合、従来のような窒素ガス等の混合体でないことが好適である。液体に気体を均等に混ぜることはできず、前述の混合体とした場合、不連続に気泡が配管内に入ることが危惧されるからである。但し、当該液体(ここでは水)に溶けるガス、例えば水であればCO2を溶かした液体状態でノズルに供給してもよい。水の流量は、一定圧力(通常0.4MPa)を純水のタンク(図示せず)にかけた状態で、その出力をオリフィス(流量調整バルブ)535を調節して、水流量計533により確認しながら制御できる。 (C) Water supply unit The water supply unit (C) confirms the flow rate of water, awater supply pipe 531 for supplying water, a water temperature control mechanism additional heat unit 532 for giving water thermal energy, and A water flow meter 533 for downstream operation, a downstream water opening / closing valve 534 for controlling the stop and restart of downstream water supply, and an orifice for adjusting the flow rate and for smoothly introducing water into the gas pipe ( A flow rate adjusting valve) 535. In addition, when supplying the said liquid (here water) to a nozzle, it is suitable that it is not a mixture, such as the conventional nitrogen gas. This is because gas cannot be mixed uniformly into the liquid, and in the case of the above-described mixture, there is a concern that air bubbles may enter the pipe discontinuously. However, a gas that dissolves in the liquid (here, water), for example, water, may be supplied to the nozzle in a liquid state in which CO 2 is dissolved. The flow rate of water is confirmed by a water flow meter 533 by adjusting the orifice (flow rate adjusting valve) 535 with a constant pressure (usually 0.4 MPa) applied to a pure water tank (not shown). Can be controlled.
水供給部(C)は、水を供給するための水供給管531と、水に熱エネルギーを持たせるための水温度制御機構付加熱部532と、水の流量を確認するための水流量計533と、下流への水の供給の停止及び再開を司る下流供給用水開閉バルブ534と、流量を調整するため及び水が気体配管内に円滑に導入されるためのオリフィス(流量調整バルブ)535から構成される。尚、当該液体(ここでは水)をノズルに供給する場合、従来のような窒素ガス等の混合体でないことが好適である。液体に気体を均等に混ぜることはできず、前述の混合体とした場合、不連続に気泡が配管内に入ることが危惧されるからである。但し、当該液体(ここでは水)に溶けるガス、例えば水であればCO2を溶かした液体状態でノズルに供給してもよい。水の流量は、一定圧力(通常0.4MPa)を純水のタンク(図示せず)にかけた状態で、その出力をオリフィス(流量調整バルブ)535を調節して、水流量計533により確認しながら制御できる。 (C) Water supply unit The water supply unit (C) confirms the flow rate of water, a
(D)2流体調整部
2流体調整部(D)は、生成された2流体の温度や飽和水蒸気の湿り度を調整するための2流体温度制御機構付加熱部541を有している。 (D) 2 fluid adjustment part The 2 fluid adjustment part (D) has the 2 fluid temperature control mechanismadditional heat part 541 for adjusting the temperature of the produced | generated 2 fluid, and the wetness of saturated water vapor | steam.
2流体調整部(D)は、生成された2流体の温度や飽和水蒸気の湿り度を調整するための2流体温度制御機構付加熱部541を有している。 (D) 2 fluid adjustment part The 2 fluid adjustment part (D) has the 2 fluid temperature control mechanism
(E)混相流体噴射部
混相流体噴射部(E)は、対象物に対して混相流体を噴射するための、前後左右方向(図8のX軸ノズルスキャン範囲又はY軸ノズルスキャン範囲)に移動可能な複連ノズル1と、ノズルの移動を円滑に行うためのするためのフレキシブル配管552と、流体のノズル直前の圧力を計測するための圧力計553と、から構成される。複連ノズル1は、X軸方向にスキャンすることにより、効率的に基板を処理することができる。尚、図8に示すノズルは、複合ノズル1の側面の概略構成図である。 (E) Multi-phase fluid ejecting unit The multi-phase fluid ejecting unit (E) moves in the front-rear and left-right directions (X-axis nozzle scan range or Y-axis nozzle scan range in FIG. 8) for ejecting the multi-phase fluid to the object. It comprises a possiblemultiple nozzle 1, a flexible pipe 552 for smoothly moving the nozzle, and a pressure gauge 553 for measuring the pressure immediately before the fluid nozzle. The multiple nozzles 1 can efficiently process a substrate by scanning in the X-axis direction. The nozzle shown in FIG. 8 is a schematic configuration diagram of the side surface of the composite nozzle 1.
混相流体噴射部(E)は、対象物に対して混相流体を噴射するための、前後左右方向(図8のX軸ノズルスキャン範囲又はY軸ノズルスキャン範囲)に移動可能な複連ノズル1と、ノズルの移動を円滑に行うためのするためのフレキシブル配管552と、流体のノズル直前の圧力を計測するための圧力計553と、から構成される。複連ノズル1は、X軸方向にスキャンすることにより、効率的に基板を処理することができる。尚、図8に示すノズルは、複合ノズル1の側面の概略構成図である。 (E) Multi-phase fluid ejecting unit The multi-phase fluid ejecting unit (E) moves in the front-rear and left-right directions (X-axis nozzle scan range or Y-axis nozzle scan range in FIG. 8) for ejecting the multi-phase fluid to the object. It comprises a possible
(F)基板保持・回転部
基板保持・回転部(F)は、対象物(基板)を搭載・保持可能なステージ561と、ステージ561を回転させるための回転モーター562とから構成される。 (F) Substrate Holding / Rotating Unit The substrate holding / rotating unit (F) includes astage 561 on which an object (substrate) can be mounted / held and a rotary motor 562 for rotating the stage 561.
基板保持・回転部(F)は、対象物(基板)を搭載・保持可能なステージ561と、ステージ561を回転させるための回転モーター562とから構成される。 (F) Substrate Holding / Rotating Unit The substrate holding / rotating unit (F) includes a
以下、本発明に係る装置の作用を説明する。
本発明に係る装置においては、水蒸気供給部から供給される水蒸気と、水供給部から供給される水とを複連ノズル1内で混合して生成した混相流体を噴射する。尚、不活性ガス又は清浄空気を混合することで、水蒸気の噴射量を低く抑えながら、高い圧力を得ることができる。例えば、希少金属のリフトオフ工程にて、レジストを残留させつつ、希少金属のみを剥離回収することが可能となるため、水蒸気の中に、不活性ガス又は清浄空気を混合させてもよい。 The operation of the device according to the present invention will be described below.
In the apparatus according to the present invention, the mixed phase fluid generated by mixing the water vapor supplied from the water vapor supply unit and the water supplied from the water supply unit in thedouble nozzle 1 is injected. In addition, by mixing an inert gas or clean air, a high pressure can be obtained while suppressing the injection amount of water vapor. For example, in the rare metal lift-off process, it is possible to peel and collect only the rare metal while leaving the resist, so that an inert gas or clean air may be mixed in the water vapor.
本発明に係る装置においては、水蒸気供給部から供給される水蒸気と、水供給部から供給される水とを複連ノズル1内で混合して生成した混相流体を噴射する。尚、不活性ガス又は清浄空気を混合することで、水蒸気の噴射量を低く抑えながら、高い圧力を得ることができる。例えば、希少金属のリフトオフ工程にて、レジストを残留させつつ、希少金属のみを剥離回収することが可能となるため、水蒸気の中に、不活性ガス又は清浄空気を混合させてもよい。 The operation of the device according to the present invention will be described below.
In the apparatus according to the present invention, the mixed phase fluid generated by mixing the water vapor supplied from the water vapor supply unit and the water supplied from the water supply unit in the
本発明に係る複合ノズル1の第二の気体導入孔201には、水蒸気供給部から供給される水蒸気や、ガス供給部からの気体が導入される。当該第二の気体導入孔から導入された気体は、遮蔽棒205によって一旦流れが遮断され、空気滞留空間203内で滞留した後に、各加速ノズル100の第一の気体導入孔101へと均一に供給される。
The water vapor supplied from the water vapor supply unit or the gas from the gas supply unit is introduced into the second gas introduction hole 201 of the composite nozzle 1 according to the present invention. The gas introduced from the second gas introduction hole is once blocked by the shielding rod 205 and stays in the air retention space 203, and then uniformly into the first gas introduction hole 101 of each acceleration nozzle 100. Supplied.
一方、複連ノズル1の第二の液体導入孔301には、水供給部から水が供給される。この際、供給される水は、薬液を添加して混合したものを使用してもよい。第二の液体導入孔301から導入された水は、液体滞留空間302の底面部へと流れた後、当該滞留空間内で滞留して、当該空間内の上部に設けられた液体供給孔303から、各加速ノズルの第一の液体導入孔103へと均一に供給される。
On the other hand, water is supplied from the water supply unit to the second liquid introduction hole 301 of the multiple nozzle 1. At this time, the water to be supplied may be a mixture obtained by adding a chemical solution. The water introduced from the second liquid introduction hole 301 flows to the bottom surface portion of the liquid retention space 302 and then stays in the retention space, and from the liquid supply hole 303 provided in the upper portion of the space. The liquid is uniformly supplied to the first liquid introduction hole 103 of each acceleration nozzle.
複連加速ノズル部10内の各加速ノズル内では、第一の気体導入孔101から導入された気体と、加速流路側面の第一の液体導入孔103から供給された液体が、当該加速流路によって、加速され噴出口107から噴出される。各ノズルの気体と液体の供給量が均一であるため、各ノズルから噴射される混相流体の量は均一となる。
In each acceleration nozzle in the double acceleration nozzle section 10, the gas introduced from the first gas introduction hole 101 and the liquid supplied from the first liquid introduction hole 103 on the side surface of the acceleration flow path are in the acceleration flow. It is accelerated by the road and ejected from the ejection port 107. Since the supply amount of the gas and liquid from each nozzle is uniform, the amount of the multiphase fluid ejected from each nozzle is uniform.
上記のように、混相流体を噴射させながら、複連ノズル1を噴出口107が連なった横方向(Y軸)に対して垂直方向(X軸)に基板を走査することによって、効率的に基板全体を処理することができる。また、各加速ノズルから噴出される混相流体の量が均一であることによって、基板表面上を均一に処理することができる。更に、噴出口107にスリット109を設けることによって、衝撃力を均一にすることができるため、一度のスキャン処理で均一に基板を処理することができる。
As described above, the substrate is efficiently scanned by scanning the substrate in the vertical direction (X axis) with respect to the lateral direction (Y axis) in which the jet nozzle 107 is connected while ejecting the multiphase fluid. The whole can be processed. Further, since the amount of the mixed phase fluid ejected from each acceleration nozzle is uniform, the substrate surface can be uniformly treated. Furthermore, since the impact force can be made uniform by providing the slit 109 at the ejection port 107, the substrate can be processed uniformly by a single scanning process.
例1
以下の条件下、加速ノズル部を7本とした本発明に係る複連ノズル1用いて、混相流体を噴射して、各ノズルからの噴出される流体の状態を観察した。結果を図9に示す。更に、当該条件により、電極配線パターンが形成されたレジスト表面に金の薄膜が形成された基板に対して混相流体(気体:蒸気+空気、液体:水)を噴射して、不要な金のリフトオフを行なった。 Example 1
Under the following conditions, amulti-phase nozzle 1 according to the present invention having seven accelerating nozzle portions was used to inject a multiphase fluid and observe the state of the fluid ejected from each nozzle. The results are shown in FIG. Furthermore, unnecessary gold lift-off is performed by injecting a mixed phase fluid (gas: vapor + air, liquid: water) onto the substrate on which the gold thin film is formed on the resist surface on which the electrode wiring pattern is formed. Was done.
以下の条件下、加速ノズル部を7本とした本発明に係る複連ノズル1用いて、混相流体を噴射して、各ノズルからの噴出される流体の状態を観察した。結果を図9に示す。更に、当該条件により、電極配線パターンが形成されたレジスト表面に金の薄膜が形成された基板に対して混相流体(気体:蒸気+空気、液体:水)を噴射して、不要な金のリフトオフを行なった。 Example 1
Under the following conditions, a
気体全体の圧力:0.34MPa
蒸気の温度:68℃
蒸気の流量:15kg/Hr・本
空気の温度:25℃
空気の流量:150L/min・本
純水の流量:300cc/min・本
純水の温度:20℃
ノズルGAP:10mm
ノズルスキャン:15mm/s Total gas pressure: 0.34 MPa
Steam temperature: 68 ° C
Steam flow rate: 15kg / Hr ・ Main air temperature: 25 ℃
Air flow rate: 150 L / min · Pure water flow rate: 300 cc / min · Pure water temperature: 20 ° C.
Nozzle GAP: 10mm
Nozzle scan: 15mm / s
蒸気の温度:68℃
蒸気の流量:15kg/Hr・本
空気の温度:25℃
空気の流量:150L/min・本
純水の流量:300cc/min・本
純水の温度:20℃
ノズルGAP:10mm
ノズルスキャン:15mm/s Total gas pressure: 0.34 MPa
Steam temperature: 68 ° C
Steam flow rate: 15kg / Hr ・ Main air temperature: 25 ℃
Air flow rate: 150 L / min · Pure water flow rate: 300 cc / min · Pure water temperature: 20 ° C.
Nozzle GAP: 10mm
Nozzle scan: 15mm / s
例2
比較実験として、遮蔽棒、噴出口スリットを設けていない、P/W比:7.0であること以外は例1と同じ構造の複連ノズルを用いた以外は、例1と同様の条件にて、混相流体を噴射して、各ノズルからの噴出される混相流体の状態を観察した。結果を図9に示す。更に、当該条件により、電極配線パターンが形成されたレジスト表面に金の薄膜が形成された基板に対して混相流体(気体:蒸気+空気、液体:水)を噴射して、不要な金のリフトオフを行なった。 Example 2
As a comparative experiment, the same conditions as in Example 1 were used except that a double nozzle having the same structure as Example 1 was used except that no shielding rod and jet slit were provided and the P / W ratio was 7.0. Then, the state of the mixed phase fluid ejected from each nozzle was observed by ejecting the mixed phase fluid. The results are shown in FIG. Furthermore, unnecessary gold lift-off is performed by injecting a mixed phase fluid (gas: vapor + air, liquid: water) onto the substrate on which the gold thin film is formed on the resist surface on which the electrode wiring pattern is formed under the above conditions. Was done.
比較実験として、遮蔽棒、噴出口スリットを設けていない、P/W比:7.0であること以外は例1と同じ構造の複連ノズルを用いた以外は、例1と同様の条件にて、混相流体を噴射して、各ノズルからの噴出される混相流体の状態を観察した。結果を図9に示す。更に、当該条件により、電極配線パターンが形成されたレジスト表面に金の薄膜が形成された基板に対して混相流体(気体:蒸気+空気、液体:水)を噴射して、不要な金のリフトオフを行なった。 Example 2
As a comparative experiment, the same conditions as in Example 1 were used except that a double nozzle having the same structure as Example 1 was used except that no shielding rod and jet slit were provided and the P / W ratio was 7.0. Then, the state of the mixed phase fluid ejected from each nozzle was observed by ejecting the mixed phase fluid. The results are shown in FIG. Furthermore, unnecessary gold lift-off is performed by injecting a mixed phase fluid (gas: vapor + air, liquid: water) onto the substrate on which the gold thin film is formed on the resist surface on which the electrode wiring pattern is formed under the above conditions. Was done.
以上の結果、例1に係る複連ノズルで混相流体を噴射する場合、例2のものの場合と比較して、各ノズルからの噴射量が均一になっていることが観察された(図9)。更に、金のリフトオフを行なったところ、例1に係る複連ノズルを使用した場合には、均一に金がリフトオフされている様子が観察されたが、例2に係る複連ノズルの場合には、一部の金がリフトオフされずに残っている様子が観察された。
As a result of the above, it was observed that when the multiphase fluid was ejected with the multiple nozzles according to Example 1, the amount of ejection from each nozzle was uniform compared to the case of Example 2 (FIG. 9). . Furthermore, when the gold was lifted off, it was observed that the gold was uniformly lifted off when the double nozzle according to Example 1 was used, but in the case of the double nozzle according to Example 2, It was observed that some gold remained without being lifted off.
打撃力の均一性の実験
以下の条件下、加速ノズルを7本とした本発明に係る複連ノズル1用いて、混相流体を噴射して、各ノズルからの噴出される流体の衝撃力を測定した。尚、衝撃力の測定にはロードセルを用いた。結果を図10、図11に示す。 Impact force uniformity experiment Under the following conditions, a multiphase fluid is ejected using thedouble nozzle 1 according to the present invention having seven acceleration nozzles, and the impact force of the fluid ejected from each nozzle is measured. did. A load cell was used for measuring the impact force. The results are shown in FIGS.
以下の条件下、加速ノズルを7本とした本発明に係る複連ノズル1用いて、混相流体を噴射して、各ノズルからの噴出される流体の衝撃力を測定した。尚、衝撃力の測定にはロードセルを用いた。結果を図10、図11に示す。 Impact force uniformity experiment Under the following conditions, a multiphase fluid is ejected using the
気体全体の圧力:0.34MPa
蒸気の温度:68℃
蒸気の流量:15kg/Hr・本
空気の温度:25℃
空気の流量:150L/min・本
純水の流量:300cc/min・本
純水の温度:20℃
ノズルGAP:10mm
ノズルスキャン:0mm/s Total gas pressure: 0.34 MPa
Steam temperature: 68 ° C
Steam flow rate: 15kg / Hr ・ Main air temperature: 25 ℃
Air flow rate: 150 L / min · Pure water flow rate: 300 cc / min · Pure water temperature: 20 ° C.
Nozzle GAP: 10mm
Nozzle scan: 0 mm / s
蒸気の温度:68℃
蒸気の流量:15kg/Hr・本
空気の温度:25℃
空気の流量:150L/min・本
純水の流量:300cc/min・本
純水の温度:20℃
ノズルGAP:10mm
ノズルスキャン:0mm/s Total gas pressure: 0.34 MPa
Steam temperature: 68 ° C
Steam flow rate: 15kg / Hr ・ Main air temperature: 25 ℃
Air flow rate: 150 L / min · Pure water flow rate: 300 cc / min · Pure water temperature: 20 ° C.
Nozzle GAP: 10mm
Nozzle scan: 0 mm / s
以上の結果から、遮蔽棒が設けられていない場合には、中心に位置する加速ノズルからの気体の噴射量が多くなり、液体の噴射量が少なくなる。遮蔽棒を設けることによって各ノズルからの気体、液体の各噴出量が均一になる。特に、角度が60°~120°においては各ノズルからの噴出量は高い均一性を有していた。
From the above results, when the shielding rod is not provided, the gas injection amount from the acceleration nozzle located at the center increases, and the liquid injection amount decreases. By providing the shielding rod, the amount of gas and liquid ejected from each nozzle becomes uniform. In particular, when the angle was 60 ° to 120 °, the amount of ejection from each nozzle was highly uniform.
更に詳細に、180°遮蔽棒を設けて、噴出口スリットを設けていない、複連ノズルと、例1で用いた複連ノズルを用いて衝撃力の詳細な測定を行った。上記の噴射条件において、複連ノズルの片端から他端にかけて、ノズル横方向位置を変化させながら衝撃力を測定した。結果を図12に示す。
In more detail, the impact force was measured in detail using a double nozzle provided with a 180 ° shielding bar and no jet slit and the double nozzle used in Example 1. Under the above injection conditions, the impact force was measured while changing the lateral position of the nozzle from one end to the other end of the multiple nozzle. The results are shown in FIG.
結果、噴出口間に[スリット幅]/[噴出口の縦方向の幅]:0.4、スリットの深さ:5mmのスリット設けて、遮蔽棒の角形状傾斜部位の傾斜角度を90°とすることによって、各ノズル下、ならびにノズル噴出口間における衝撃力分布は高い均一性を示した。
As a result, a slit having [slit width] / [longitudinal width of the outlet]: 0.4 and slit depth: 5 mm is provided between the outlets, and the inclination angle of the angled inclined portion of the shielding rod is 90 °. By doing so, the impact force distribution under each nozzle and between nozzle nozzles showed high uniformity.
本発明に係るノズル及び装置は、半導体ウエハ、液晶ディスプレイ、ハードディスクなどの記録媒体、プリント基板、太陽電池基板等の製造工程における剥離、洗浄工程や、発光ダイオード、半導体レーザなど発光デバイス製造プロセスの電極形成工程で用いられる。
The nozzle and apparatus according to the present invention are electrodes for manufacturing processes for manufacturing semiconductor wafers, liquid crystal displays, hard disks and other recording media, printed circuit boards, solar cell substrates, etc. Used in the forming process.
1 複連ノズル
10 複連加速ノズル部
100 加速ノズル
101 第一の気体導入孔
103 第一の液体導入孔
105 加速流路
107 噴出口
20 気体滞留部
201 第二の気体導入孔
203 気体滞留空間
205 遮蔽棒
30 液体滞留部
301 第二の液体導入孔
302 液体滞留空間
A 水蒸気供給部
B ガス供給部
C 水供給部
D 2流体調整部
E 混相流体噴射部
F 基板保持・回転・上下機構部 DESCRIPTION OFSYMBOLS 1 Double nozzle 10 Double acceleration nozzle part 100 Acceleration nozzle 101 1st gas introduction hole 103 1st liquid introduction hole 105 Acceleration flow path 107 Spout 20 Gas retention part 201 2nd gas introduction hole 203 Gas retention space 205 Shielding rod 30 Liquid retention part 301 Second liquid introduction hole 302 Liquid retention space A Water vapor supply part B Gas supply part C Water supply part D Two-fluid adjustment part E Multiphase fluid injection part F Substrate holding / rotation / up / down mechanism part
10 複連加速ノズル部
100 加速ノズル
101 第一の気体導入孔
103 第一の液体導入孔
105 加速流路
107 噴出口
20 気体滞留部
201 第二の気体導入孔
203 気体滞留空間
205 遮蔽棒
30 液体滞留部
301 第二の液体導入孔
302 液体滞留空間
A 水蒸気供給部
B ガス供給部
C 水供給部
D 2流体調整部
E 混相流体噴射部
F 基板保持・回転・上下機構部 DESCRIPTION OF
Claims (12)
- 第一の気体導入孔、前記第一の気体導入孔よりも下流に設けられた第一の液体導入孔、該第一の気体導入孔から供給された気体及び該第一の液体導入孔から供給された液体を加速する加速流路、及び加速された混相流体が噴射される噴出口を有する加速ノズルを複数備え、該加速ノズルが並列に配されている、複連加速ノズル部を具備する複連ノズル。 First gas introduction hole, first liquid introduction hole provided downstream from the first gas introduction hole, gas supplied from the first gas introduction hole, and supply from the first liquid introduction hole A plurality of acceleration nozzles each having an acceleration flow path for accelerating the generated liquid and an ejection port through which the accelerated multiphase fluid is ejected, and a plurality of acceleration nozzles arranged in parallel. Continuous nozzle.
- 第二の気体導入孔、該第二の気体導入孔から供給された気体を滞留させて、前記第一の気体導入孔を介して前記複数の加速ノズルに対して気体を供給する気体滞留空間、を備える気体滞留部を更に具備する、請求項1記載の複連ノズル。 A second gas introduction hole, a gas retention space for retaining gas supplied from the second gas introduction hole, and supplying gas to the plurality of acceleration nozzles via the first gas introduction hole, The double nozzle according to claim 1, further comprising a gas retention part comprising:
- 前記気体滞留部は、前記気体滞留空間内の第二の気体導入孔の近傍に、当該第二の気体導入孔から噴出される気体を拡散する遮蔽棒を更に備える、請求項2記載の複連ノズル。 3. The multiple connection according to claim 2, wherein the gas retention portion further includes a shielding rod for diffusing the gas ejected from the second gas introduction hole in the vicinity of the second gas introduction hole in the gas retention space. nozzle.
- 前記遮蔽棒の幅が前記気体導入孔の内径よりも大きい、請求項3記載の複連ノズル。 The multiple nozzle according to claim 3, wherein a width of the shielding rod is larger than an inner diameter of the gas introduction hole.
- 前記遮蔽棒が、前記気体導入孔の方向に対向した角形状傾斜部位を有する、請求項3又は4記載の複連ノズル。 The multiple nozzle according to claim 3 or 4, wherein the shielding rod has a square inclined portion opposed to the direction of the gas introduction hole.
- 前記角形状傾斜部位の傾斜角が、30~150°である、請求項5記載の複連ノズル。 The double nozzle according to claim 5, wherein an inclination angle of the angular inclined portion is 30 to 150 °.
- 前記複数の加速ノズルは、各々の噴出口が横方向に一連に配置されており、
前記複数の加速ノズルの噴出口の横方向の広がり幅W([絞り部横幅]-[噴出口横幅])/2)に対する、前記複数の加速ノズルの噴出口の横方向端部から隣接する噴出口の横方向端部の距離Pの比([P]/[W])が、0.2~1.0である、請求項1~6のいずれか一項記載の複連ノズル。 Each of the plurality of acceleration nozzles is arranged in a row in the lateral direction,
Adjacent jets from the lateral ends of the outlets of the plurality of acceleration nozzles with respect to the lateral spread width W ([throttle portion lateral width] − [jet outlet lateral width]) / 2) of the plurality of acceleration nozzles. The double nozzle according to any one of claims 1 to 6, wherein a ratio ([P] / [W]) of the distance P between the lateral ends of the outlet is 0.2 to 1.0. - 前記噴出口は、隣接する噴出口をつなぎ、噴出方向に開放するスリットが設けられている、請求項7記載の複連ノズル。 The multiple nozzle according to claim 7, wherein the jet nozzle is provided with a slit that connects adjacent jet ports and opens in the jet direction.
- 第二の液体導入孔、該第二の液体導入孔から導入された液体を滞留させて、前記第一の液体導入孔を介して前記複数の加速ノズルに対して液体を供給する液体滞留空間、を備える液体滞留部を更に具備する、請求項1~8のいずれか一項記載の複連ノズル。 A second liquid introduction hole, a liquid retention space for retaining the liquid introduced from the second liquid introduction hole, and supplying the liquid to the plurality of acceleration nozzles through the first liquid introduction hole; The multi-continuous nozzle according to any one of claims 1 to 8, further comprising a liquid retention part comprising:
- 前記液体滞留部が、前記複連ノズルの側面に設けられており、
前記液体滞留空間が横長直方体形状を有しており、
前記第二の液体導入孔が、液体滞留空間の一端の上部に設けられており、
前記第一の液体導入孔が、前記液体滞留空間の他端の上部に設けられている、請求項9記載の複連ノズル。 The liquid retention portion is provided on a side surface of the double nozzle;
The liquid retention space has a horizontally long rectangular parallelepiped shape;
The second liquid introduction hole is provided at an upper portion of one end of the liquid retention space;
The multiple nozzle according to claim 9, wherein the first liquid introduction hole is provided at an upper portion of the other end of the liquid retention space. - 請求項1~10のいずれか一項記載の複連ノズルと、
前記複連ノズルに対して水蒸気を供給する蒸気発生部と、
前記複連ノズルに対して液体を供給する水供給部と、を具備する基板処理装置。 A double nozzle according to any one of claims 1 to 10,
A steam generator for supplying steam to the multiple nozzles;
A substrate processing apparatus comprising: a water supply unit that supplies a liquid to the multiple nozzles. - 前記複連ノズルに対して不活性ガス又は清浄空気を供給するガス供給部を更に具備する、請求項11記載の基板処理装置。 The substrate processing apparatus according to claim 11, further comprising a gas supply unit that supplies an inert gas or clean air to the multiple nozzles.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280008138.5A CN103370771A (en) | 2011-02-17 | 2012-02-17 | Series of nozzles, and substrate treatment apparatus provided with series of nozzles |
KR1020137021031A KR20140042782A (en) | 2011-02-17 | 2012-02-17 | Series of nozzles, and substrate treatment apparatus provided with series of nozzles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011032677A JP2012174741A (en) | 2011-02-17 | 2011-02-17 | Multiply-connected nozzle and substrate processing apparatus having the same |
JP2011-032677 | 2011-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012111809A1 true WO2012111809A1 (en) | 2012-08-23 |
Family
ID=46672720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/053828 WO2012111809A1 (en) | 2011-02-17 | 2012-02-17 | Series of nozzles, and substrate treatment apparatus provided with series of nozzles |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2012174741A (en) |
KR (1) | KR20140042782A (en) |
CN (1) | CN103370771A (en) |
TW (1) | TWI579061B (en) |
WO (1) | WO2012111809A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018150669A1 (en) * | 2017-02-14 | 2018-08-23 | 株式会社Screenホールディングス | Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI595332B (en) | 2014-08-05 | 2017-08-11 | 頎邦科技股份有限公司 | Method for photoresist stripping |
JP6013557B1 (en) * | 2015-06-02 | 2016-10-25 | 株式会社Nsc | Spray etching equipment |
KR101835986B1 (en) * | 2016-07-25 | 2018-03-07 | 시오 컴퍼니 리미티드 | Fluid Supply Pipe |
WO2019212058A1 (en) * | 2018-05-01 | 2019-11-07 | ユニバーサル製缶株式会社 | Nozzle, drying device, and method for producing can body |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07185434A (en) * | 1993-12-28 | 1995-07-25 | Kao Corp | Coating device |
JP2003145064A (en) * | 2001-11-12 | 2003-05-20 | Tokyo Electron Ltd | Two-fluid jet nozzle and substrate cleaning device |
JP2004237282A (en) * | 2003-01-16 | 2004-08-26 | Kyoritsu Gokin Co Ltd | Double fluid nozzle |
JP2005021894A (en) * | 1999-10-27 | 2005-01-27 | Tokyo Electron Ltd | Liquid treatment apparatus |
JP2007319853A (en) * | 2006-05-02 | 2007-12-13 | Kyoritsu Gokin Co Ltd | Two-fluid nozzle and spray method using the two-fluid nozzle |
WO2009013797A1 (en) * | 2007-07-20 | 2009-01-29 | Aqua Science Corporation | Method of treating work and system for treating work |
JP2009154146A (en) * | 2007-12-06 | 2009-07-16 | Fukuoka Prefecture | Pulverizing apparatus and pulverizing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI469832B (en) * | 2008-12-17 | 2015-01-21 | Aqua Science Corp | Object cleansing method and object cleansing system |
WO2010125664A1 (en) * | 2009-04-30 | 2010-11-04 | アクアサイエンス株式会社 | Peeling liquid and method for cleaning object |
-
2011
- 2011-02-17 JP JP2011032677A patent/JP2012174741A/en not_active Withdrawn
-
2012
- 2012-02-14 TW TW101104640A patent/TWI579061B/en active
- 2012-02-17 CN CN201280008138.5A patent/CN103370771A/en active Pending
- 2012-02-17 WO PCT/JP2012/053828 patent/WO2012111809A1/en active Application Filing
- 2012-02-17 KR KR1020137021031A patent/KR20140042782A/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07185434A (en) * | 1993-12-28 | 1995-07-25 | Kao Corp | Coating device |
JP2005021894A (en) * | 1999-10-27 | 2005-01-27 | Tokyo Electron Ltd | Liquid treatment apparatus |
JP2003145064A (en) * | 2001-11-12 | 2003-05-20 | Tokyo Electron Ltd | Two-fluid jet nozzle and substrate cleaning device |
JP2004237282A (en) * | 2003-01-16 | 2004-08-26 | Kyoritsu Gokin Co Ltd | Double fluid nozzle |
JP2007319853A (en) * | 2006-05-02 | 2007-12-13 | Kyoritsu Gokin Co Ltd | Two-fluid nozzle and spray method using the two-fluid nozzle |
WO2009013797A1 (en) * | 2007-07-20 | 2009-01-29 | Aqua Science Corporation | Method of treating work and system for treating work |
JP2009154146A (en) * | 2007-12-06 | 2009-07-16 | Fukuoka Prefecture | Pulverizing apparatus and pulverizing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018150669A1 (en) * | 2017-02-14 | 2018-08-23 | 株式会社Screenホールディングス | Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method |
Also Published As
Publication number | Publication date |
---|---|
TWI579061B (en) | 2017-04-21 |
CN103370771A (en) | 2013-10-23 |
TW201240743A (en) | 2012-10-16 |
KR20140042782A (en) | 2014-04-07 |
JP2012174741A (en) | 2012-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012111809A1 (en) | Series of nozzles, and substrate treatment apparatus provided with series of nozzles | |
KR20060061827A (en) | Method of processing substrate and substrate processing apparatus | |
CN107078083B (en) | Substrate liquid processing apparatus and substrate liquid processing method | |
JP2008080230A (en) | Apparatus and method of treating substrate | |
JP5362623B2 (en) | Substrate processing equipment | |
CN107993960B (en) | Substrate processing apparatus, process fluid processing apparatus, and ozonolysis method | |
JP4514140B2 (en) | Substrate processing apparatus and substrate processing method | |
JP2006205086A (en) | Washing device of substrate | |
JP2004006551A (en) | Device and method for treating substrate | |
CN1810389B (en) | Device and method processing substrate | |
TWI312816B (en) | Approach and apparatus for etching a substrate in an etching fluid | |
KR101950987B1 (en) | Slit nozzle for jetting steam | |
JP3881169B2 (en) | Substrate processing equipment | |
JP2005216908A (en) | Apparatus and method of treating object | |
KR20100055812A (en) | Apparatus for processing a substrate | |
KR100862231B1 (en) | Apparatus for injecting cleaning liquid and apparatus for cleaning a substrate having the same | |
KR102020230B1 (en) | Substrate treating apparatus, process fluid treating apparatus and ozone decomposition method | |
JP2017054943A (en) | Plasma processing device | |
JP2012190845A (en) | Resist peeling interfacial active agent and substrate processing method using the same | |
JP2010212519A (en) | Substrate cleaning device | |
JP2010103383A (en) | Substrate processing apparatus | |
JP2007059832A (en) | Substrate processing apparatus | |
JP2008253893A (en) | Substrate processing apparatus | |
JP2004349577A (en) | Object processing device and object processing method | |
JP6347572B2 (en) | Lift-off device and lift-off method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12746511 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137021031 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12746511 Country of ref document: EP Kind code of ref document: A1 |