WO2012111747A1 - 電気化学素子用電極の製造方法 - Google Patents

電気化学素子用電極の製造方法 Download PDF

Info

Publication number
WO2012111747A1
WO2012111747A1 PCT/JP2012/053652 JP2012053652W WO2012111747A1 WO 2012111747 A1 WO2012111747 A1 WO 2012111747A1 JP 2012053652 W JP2012053652 W JP 2012053652W WO 2012111747 A1 WO2012111747 A1 WO 2012111747A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
porous body
aluminum
active material
lithium
Prior art date
Application number
PCT/JP2012/053652
Other languages
English (en)
French (fr)
Inventor
細江 晃久
奥野 一樹
肇 太田
弘太郎 木村
健吾 後藤
西村 淳一
英彰 境田
Original Assignee
住友電気工業株式会社
富山住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 富山住友電工株式会社 filed Critical 住友電気工業株式会社
Priority to CN201280008970.5A priority Critical patent/CN103443987B/zh
Priority to KR1020137021060A priority patent/KR20140051132A/ko
Priority to DE112012000905T priority patent/DE112012000905T5/de
Priority to US13/557,442 priority patent/US8528375B2/en
Publication of WO2012111747A1 publication Critical patent/WO2012111747A1/ja
Priority to US13/969,098 priority patent/US9484570B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0473Filling tube-or pockets type electrodes; Applying active mass in cup-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49224Contact or terminal manufacturing with coating

Definitions

  • the present invention relates to a method for producing an electrode for an electrochemical element such as a lithium battery (including a “lithium secondary battery”), an electric double layer capacitor, a lithium ion capacitor, or a molten salt battery.
  • a lithium battery including a “lithium secondary battery”
  • an electric double layer capacitor including a “lithium secondary battery”
  • a lithium ion capacitor including a “lithium secondary battery”
  • a molten salt battery molten salt battery
  • electrochemical devices such as lithium batteries, electric double layer capacitors, lithium ion capacitors, and molten salt batteries have been widely used as portable small electronic devices such as mobile phones and notebook personal computers and power supplies for EVs. .
  • an electrode in which a mixture layer containing an active material is formed on a metal foil is generally used.
  • a positive electrode active material such as lithium cobaltate (LiCoO 2 ) powder, polyvinylidene fluoride on both surfaces of a current collector 32 made of aluminum (Al) foil.
  • a lithium secondary battery electrode 31 formed with a positive electrode mixture layer 33 containing a binder such as (PVDF) and a conductive auxiliary agent such as carbon powder is used.
  • the positive electrode mixture made into a slurry by adding a solvent is applied onto the current collector 32 made of Al foil, and then the coated film is dried (for example, Patent Document 1).
  • the present invention has been made in view of the above problems of the conventional manufacturing method, and an object of the present invention is to provide a method for manufacturing an electrode for an electrochemical element that can be easily adjusted in capacity and manufactured at low cost.
  • the invention described in claim 1 A thickness adjusting step for compressing the aluminum porous body having continuous air holes and adjusting it to a predetermined thickness; And a filling step of filling the adjusted porous aluminum body with an active material.
  • a metal porous body that is, an aluminum porous body (Al porous body) as a current collector.
  • the slurry conditions are fixed, the thickness of the current collector is changed, and the amount of slurry to be filled is adjusted, so that the slurry is changed for each electrode specification or the slurry conditions are adjusted according to the amount of solvent. It turns out that it is not necessary and the cost is low.
  • the amount of the active material to be filled can be adjusted by carrying out the thickness adjusting step before the active material (slurry) is filled into the Al porous body having continuous air holes.
  • An electrode having a desired capacity can be obtained without changing the composition of the slurry containing the active material. For this reason, an electrode can be manufactured at low cost.
  • the thickness variation of the Al porous body can be reduced by the thickness adjusting process, the capacity variation can also be reduced.
  • the large-sized electrode was wound many times to form a cylindrical battery.
  • the battery pack produced by combining such cylindrical batteries could not sufficiently increase the volume energy density.
  • a battery pack that combines battery cells manufactured using positive and negative electrodes manufactured as described above using an Al porous body has a volume energy density that is lower than a battery pack that combines conventional cylindrical batteries. Improvement and space saving can be achieved. Specifically, for example, if the battery pack has the same volume, the volume energy density can be increased by 1.5 times or more, and when used as a vehicle-mounted battery pack, the cruising distance of the electric vehicle is improved by 1.5 times or more. It becomes possible. Further, if the battery pack has the same capacity, the volume can be reduced to 2/3 or less.
  • the batteries when combining conventional cylindrical batteries, the batteries could not be arranged at high density due to heat dissipation problems and restrictions due to the cylindrical shape.
  • the net battery volume remains at about 40% of the entire battery pack volume.
  • the battery cell produced using the Al porous body electrode of the present invention is excellent in heat dissipation because the cell itself is thin, and can be formed into a square shape, so that it should be arranged at a high density. Can do.
  • the volume can be reduced by up to 51% when a battery pack having the same capacity as the above-described vehicle battery pack using a 18650 type cylindrical battery is produced.
  • Such an electrode is used not only as a lithium secondary battery but also as another lithium battery such as a lithium primary battery, and as an electrode of an electrochemical element such as an electric double layer capacitor, a lithium ion capacitor, or a molten salt battery. Also confirmed that it can be applied.
  • the invention described in claim 2 2.
  • the invention according to claim 2 is performed after the cutting step of cutting the aluminum porous body into a predetermined dimension is filled with the active material.
  • the active material can be continuously filled into the aluminum porous body before cutting, and the production cost can be further reduced.
  • the invention according to claim 3 3.
  • the thickness of the porous aluminum body is adjusted by a roller press, the thickness of the porous aluminum body can be adjusted only by adjusting the position of the roller. For this reason, the production cost can be further reduced.
  • the invention according to claim 4 A drying step of drying the aluminum porous body filled with the active material; 4. The production of an electrode for an electrochemical element according to claim 1, wherein a compression step of compressing the dried aluminum porous body is arranged before the cutting step. 5. Is the method.
  • the solvent in the slurry is evaporated by providing a drying step.
  • the space in which the solvent is present remains as it is, the volume of the electrode is high and the packing density of the active material is low.
  • the compression step By providing the compression step, the volume of the space remaining in the electrode can be optimized and a high-density electrode can be obtained.
  • the electrode surface can be smoothed, and the risk of short circuit is reduced.
  • the aluminum porous body is an aluminum porous body whose surface oxygen content determined by energy dispersive X-ray analysis (EDX analysis) at an acceleration voltage of 15 kV is 3.1 mass% or less. It is the manufacturing method of the electrode for electrochemical elements of any one of thru
  • EDX analysis energy dispersive X-ray analysis
  • the Al porous body tends to oxidize easily when heated in an oxygen-containing environment during the production process, and an oxide film is likely to be formed on the surface.
  • an Al porous body with an oxide film the entire surface area cannot be used effectively, so that a sufficient amount of the active material cannot be supported, and the contact resistance between the active material and the Al porous body should be lowered. I can't.
  • the present inventor has developed a method for producing an Al porous body without heating Al in an oxygen-containing environment.
  • an Al porous body with a small amount of oxygen on the surface that is, an Al porous body with a small oxide film on the surface can be obtained.
  • the foamed resin having continuous air holes formed with an Al layer is immersed in a molten salt and heated to a temperature not higher than the melting point of Al while applying a negative potential to the Al layer.
  • a molten salt By decomposing, an Al porous body whose surface oxygen content determined by EDX analysis at an acceleration voltage of 15 kV is 3.1% by mass or less can be obtained.
  • the amount of active material supported can be increased, and the contact resistance between the active material and the Al porous body can be kept low, thereby improving the utilization efficiency of the active material. be able to.
  • the present invention it is possible to provide a method for manufacturing an electrode for an electrochemical element that can be easily adjusted in capacity and manufactured at low cost. Moreover, the electrode for electrochemical elements suitable for manufacture of the battery pack which can aim at the improvement of volume energy density or space saving can be provided.
  • 1 is a schematic cross-sectional view of a lithium ion capacitor in which an electrode for an electrochemical element according to an embodiment of the present invention is used.
  • 1 is a schematic cross-sectional view of a molten salt battery in which an electrode for an electrochemical element according to an embodiment of the present invention is used.
  • Electrode for Electrochemical Element First, a method for producing an electrode for an electrochemical element will be described first, and a method for producing an Al porous body will be described. Then, the production of an electrode for a lithium secondary battery will be described as an example. A method for producing an electrode for an electrochemical element using an Al porous body will be described.
  • FIG. 1 is a schematic diagram for explaining an example of a method for producing a porous aluminum body, and schematically shows how an aluminum structure (porous body) is formed using a resin molded body as a core material.
  • FIG. 1A is an enlarged schematic view showing a part of a cross section of a foamed resin molded body having continuous air holes as an example of a resin molded body serving as a base, and pores are formed using the foamed resin molded body 1 as a skeleton. It shows how it is.
  • the surface of the resin molded body is made conductive. By this step, a thin conductive layer is formed on the surface of the foamed resin molded body 1 using a conductive material. Subsequently, aluminum plating in a molten salt is performed to form an aluminum plating layer 2 on the surface of the resin molded body on which the conductive layer is formed (FIG. 1B).
  • a porous resin molded body having a three-dimensional network structure and continuous air holes is prepared as a resin molded body to be a base.
  • Arbitrary resin can be selected as a raw material of a porous resin molding.
  • the material include foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • a resin molded article having an arbitrary shape can be selected as long as it has continuous pores (continuous vent holes). For example, what has a shape like a nonwoven fabric entangled with a fibrous resin can be used instead of the foamed resin molded article.
  • the foamed resin molded article preferably has a continuous ventilation hole having a porosity of 40 to 98% and a cell diameter of 50 to 1000 ⁇ m, more preferably a porosity of 80% to 98% and a cell diameter of 50 ⁇ m to 500 ⁇ m.
  • Foamed urethane and foamed melamine have high porosity, and have excellent porosity and thermal decomposability, and therefore can be preferably used as a porous resin molded article.
  • Urethane foam is preferable in terms of pore uniformity and availability, and foamed urethane is preferable in that a cell having a small cell diameter can be obtained.
  • the porous resin molded body often has residues such as foaming agents and unreacted monomers in the foam production process, and it is preferable to perform a washing treatment for the subsequent steps.
  • the urethane foam forms continuous pores as a whole by forming a three-dimensional network of resin molded bodies as a skeleton.
  • the urethane skeleton has a substantially triangular shape in a cross section perpendicular to the extending direction.
  • the surface of the foamed resin is subjected to a conductive treatment in advance.
  • the treatment method is not particularly limited as long as it is a treatment that can provide a conductive layer on the surface of the foamed resin, electroless plating of a conductive metal such as nickel, vapor deposition and sputtering of aluminum, etc., carbon, etc.
  • coating of the electroconductive coating material containing these electroconductive particles, can be selected.
  • the conductive treatment As examples of the conductive treatment, a method for conducting the conductive treatment by sputtering of aluminum and a method for conducting the conductive treatment of the surface of the foamed resin using carbon as conductive particles will be described below.
  • the sputtering treatment using aluminum is not limited as long as aluminum is used as a target, and may be performed according to a conventional method. For example, after attaching a foamed resin to the substrate holder, while applying an inert gas, a DC voltage is applied between the holder and the target (aluminum) to cause the ionized inert gas to collide with aluminum. The aluminum particles sputtered off are deposited on the foamed resin surface to form an aluminum sputtered film.
  • the sputtering treatment is preferably performed at a temperature at which the foamed resin does not dissolve. Specifically, the sputtering treatment may be performed at about 100 to 200 ° C., preferably about 120 to 180 ° C.
  • Carbon coating A carbon coating is prepared as a conductive coating.
  • the suspension as the conductive paint preferably contains carbon particles, a binder, a dispersant and a dispersion medium. In order to uniformly apply the conductive particles, the suspension needs to maintain a uniform suspension state. For this reason, the suspension is preferably maintained at 20 ° C. to 40 ° C.
  • the reason for this is that when the temperature of the suspension is below 20 ° C., the uniform suspension state collapses, and only the binder forms a layer on the surface of the skeleton that forms the network structure of the synthetic resin molding. Because it does. In this case, the applied carbon particle layer is easy to peel off, and it is difficult to form a metal plating that is firmly adhered.
  • the temperature of the suspension exceeds 40 ° C., the amount of evaporation of the dispersant is large, and the suspension is concentrated as the coating treatment time elapses, and the amount of carbon applied tends to fluctuate.
  • the particle size of the carbon particles is 0.01 to 5 ⁇ m, preferably 0.01 to 0.5 ⁇ m. If the particle size is large, the pores of the porous resin molded body may be clogged or smooth plating may be hindered. If it is too small, it is difficult to ensure sufficient conductivity.
  • Application of the carbon particles to the resin molding can be performed by immersing the target resin molding in the suspension, and performing squeezing and drying.
  • a long sheet-like strip-shaped resin having a three-dimensional network structure is continuously drawn out from a supply bobbin and immersed in a suspension in a tank.
  • the strip-shaped resin immersed in the suspension is squeezed with a squeeze roll, and excess suspension is squeezed out.
  • the belt-shaped resin is wound on a winding bobbin after the dispersion medium of the suspension is removed by hot air injection or the like from a hot air nozzle and sufficiently dried.
  • the temperature of the hot air is preferably in the range of 40 ° C to 80 ° C.
  • an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt that is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • an organic molten salt bath that melts at a relatively low temperature because plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used. Specifically, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable. Since the molten salt deteriorates when moisture or oxygen is mixed in the molten salt, the plating is preferably performed in an atmosphere of an inert gas such as nitrogen or argon and in a sealed environment.
  • an inert gas such as nitrogen or argon
  • a molten salt bath containing nitrogen is preferable, and among them, an imidazolium salt bath is preferably used.
  • an imidazolium salt bath is preferably used.
  • the resin is dissolved or decomposed in the molten salt faster than the growth of the plating layer, and the plating layer cannot be formed on the surface of the resin molded body.
  • the imidazolium salt bath can be used without affecting the resin even at a relatively low temperature.
  • the imidazolium salt a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • aluminum chloride + 1-ethyl-3-methylimidazolium chloride (AlCl 3 + EMIC) molten salt is stable. Is most preferably used because it is high and difficult to decompose.
  • Plating onto foamed urethane resin or foamed melamine resin is possible, and the temperature of the molten salt bath is 10 ° C to 65 ° C, preferably 25 ° C to 60 ° C. The lower the temperature, the narrower the current density range that can be plated, and the more difficult it is to plate on the entire porous body surface. At a high temperature exceeding 65 ° C., a problem that the shape of the base resin is impaired tends to occur.
  • an organic solvent to the molten salt bath, and 1,10-phenanthroline is particularly preferably used.
  • the amount added to the plating bath is preferably 0.2 to 7 g / L. If it is 0.2 g / L or less, it is brittle with plating having poor smoothness, and it is difficult to obtain the effect of reducing the difference in thickness between the surface layer and the inside. On the other hand, if it is 7 g / L or more, the plating efficiency is lowered and it is difficult to obtain a predetermined plating thickness.
  • an inorganic salt bath can be used as the molten salt as long as the resin is not dissolved.
  • the inorganic salt bath is typically a binary or multicomponent salt of AlCl 3 —XCl (X: alkali metal).
  • Such an inorganic salt bath generally has a higher melting temperature than an organic salt bath such as an imidazolium salt bath, but is less restricted by environmental conditions such as moisture and oxygen, and can be put into practical use at a low cost overall.
  • the resin is a foamed melamine resin, it can be used at a higher temperature than the foamed urethane resin, and an inorganic salt bath at 60 ° C. to 150 ° C. is used.
  • the aluminum layer is formed by molten salt plating.
  • it can be performed by any method such as vapor deposition, sputtering, vapor phase method such as plasma CVD, and application of aluminum paste.
  • the resin may be used as a composite of resin and metal as it is, but the resin is removed when used as a porous metal body without resin due to restrictions on the use environment.
  • the resin is removed by decomposition in a molten salt described below so that oxidation of aluminum does not occur.
  • the heating temperature can be appropriately selected according to the type of foamed resin molding.
  • the resin molding is urethane, decomposition takes place at about 380 ° C., so the temperature of the molten salt bath needs to be 380 ° C. or higher.
  • the melting point of the aluminum (660 ° C.) or lower is required. It is necessary to process at temperature.
  • a preferable temperature range is 500 ° C. or more and 600 ° C. or less.
  • the amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
  • alkali metal or alkaline earth metal halide salts can be used so that the electrode potential of the aluminum layer is low.
  • LiCl lithium chloride
  • KCl potassium chloride
  • NaCl sodium chloride
  • a eutectic molten salt is more preferable.
  • an aluminum porous body having a porosity of 40 to 98% and a cell diameter of 50 to 1000 ⁇ m is preferably used. More preferably, the porosity is 80 to 98%, and the cell diameter is 350 to 900 ⁇ m.
  • a method for producing a slurry will be described by taking the case of a positive electrode of a lithium secondary battery as an example.
  • An active material powder such as LiCoO 2 , a binder such as PVDF, and a conductive aid such as acetylene black are mixed at a predetermined ratio, and a predetermined amount of N-methyl-2-pyrrolidone (mixture) is mixed with the obtained mixture (mixture).
  • NMP N-methyl-2-pyrrolidone
  • the mixing ratio of these materials is appropriately determined in consideration of electrode capacity, conductivity, slurry viscosity, and the like.
  • FIG. 2 is a diagram for explaining a procedure for manufacturing the electrode for the lithium secondary battery of the present embodiment.
  • the lithium secondary battery electrode has a thickness adjustment process, a lead welding process, a filling process, a drying process, a compression process, a length direction cutting process, a winding process, and a width direction cutting from the upstream side. It manufactures by implementing each process in order of a process.
  • the Al porous body 3 manufactured based on the above manufacturing method is unwound, and the thickness of the Al porous body 3 is adjusted to a predetermined thickness by a roller press through a thickness adjusting roll. .
  • the precursor 11 is prepared by compressing to a predetermined thickness through a roll, thereby reducing the gap and adjusting the filling density of the mixture.
  • the precursor 11 is cut (slit) in the length direction and divided in the width direction to produce a long electrode 21 for a lithium secondary battery. Wind up.
  • FIGS. 3A and 3B are diagrams schematically illustrating a state in which the precursor of the electrode for the lithium secondary battery is cut in the present embodiment.
  • FIGS. 3A and 3B are a plan view and a cross section before cutting. It is a figure, (c), (d) is the top view and sectional drawing after a cutting
  • 12 and 22 are electrode main-body parts (mixture filling part). As shown in FIG. 3, the precursor is cut at the center of the width and the center of the lead 4 to produce the lithium secondary battery electrode 21.
  • Width-direction cutting step Next, the long lithium secondary battery electrode 21 is unwound and cut into a predetermined length.
  • the manufacturing method of the electrode for lithium secondary batteries was demonstrated, it manufactures similarly about other lithium batteries, such as a lithium primary battery, and also an electrode for electric double layer capacitors, a lithium ion capacitor, and a molten salt battery. Can do.
  • Electrochemical element Next, the electrochemical element using the electrochemical element electrode produced as described above is divided into a lithium battery, an electric double layer capacitor, a lithium ion capacitor, and a sodium battery. explain.
  • Lithium Battery First, the characteristics of the positive electrode for a lithium battery manufactured as described above using an Al porous body will be described, and then the configuration of the lithium secondary battery will be described.
  • a positive electrode for a lithium battery produced using an Al porous body As a conventional positive electrode for a lithium secondary battery, an electrode in which an active material is applied to the surface of an Al foil (current collector) is used.
  • Lithium secondary batteries have higher capacities than nickel metal hydride batteries and capacitors, but there is a need for higher capacities for automotive applications, and in order to improve battery capacity per unit area, The coating thickness is increased. Further, in order to effectively use the active material, the active material must be mixed with a conductive additive because the aluminum foil as a current collector and the active material must be in electrical contact. Yes.
  • an electrode filled with an active material mixed with a conductive additive or a binder using an Al porous body as a current collector is used.
  • This Al porous body has a high porosity and a large surface area per unit area.
  • the lithium secondary battery using the Al porous body as the current collector can improve the capacity even with a small electrode area, the energy density of the battery should be higher than that of the lithium secondary battery using the conventional Al foil. Can do.
  • the effect on the secondary battery has been mainly described.
  • the effect of increasing the contact area when the Al porous body is filled with the active material is the same as in the case of the secondary battery. Can be improved.
  • FIG. 5 is a longitudinal sectional view of an all-solid lithium secondary battery (using a solid electrolyte as an electrolyte) in which an electrode for an electrochemical element (lithium secondary battery) according to an embodiment of the present invention is used.
  • the all solid lithium secondary battery 60 includes a positive electrode 61, a negative electrode 62, and a solid electrolyte layer (SE layer) 63 disposed between the two electrodes.
  • the positive electrode 61 includes a positive electrode layer (positive electrode body) 64 and a positive electrode current collector 65
  • the negative electrode 62 includes a negative electrode layer 66 and a negative electrode current collector 67.
  • a non-aqueous electrolyte may be used as the electrolyte.
  • a separator a porous polymer film, a nonwoven fabric, paper, or the like
  • the non-aqueous electrolyte is used. Is impregnated in both electrodes and the separator.
  • the positive electrode, the negative electrode, and the electrolyte constituting the lithium secondary battery will be described in this order.
  • a material capable of removing and inserting lithium can be used as the positive electrode active material, and the thickness of such a material is adjusted in advance.
  • an electrode suitable for a lithium secondary battery can be obtained.
  • transition metal oxide such as conventional lithium iron phosphate and its compounds (LiFePO 4, LiFe 0.5 Mn 0.5 PO 4) a is olivine compound.
  • the transition metal element contained in these materials may be partially substituted with another transition metal element.
  • LiMS x is a transition metal element such as Mo, Ti, Cu, Ni, Fe, or Sb
  • M is a transition metal element such as Mo, Ti, Cu, Ni, Fe, or Sb
  • a metal oxide such as TiO 2 , Cr 3 O 8 , V 2 O 5 , or MnO 2
  • the lithium titanate (Li 4 Ti 5 O 12 ) described above can also be used as a negative electrode active material.
  • a solid electrolyte may be further added to fill the Al porous body.
  • a positive electrode active material and a solid electrolyte By filling the Al porous body with a positive electrode active material and a solid electrolyte, an electrode more suitable as a positive electrode for a lithium secondary battery can be obtained.
  • the proportion of the active material in the material filled in the Al porous body is preferably 50% by mass or more and more preferably 70% by mass or more from the viewpoint of securing the discharge capacity.
  • a sulfide-based solid electrolyte having high lithium ion conductivity is preferably used.
  • a sulfide-based solid electrolyte having high lithium ion conductivity examples include a sulfide-based solid electrolyte containing lithium, phosphorus, and sulfur. It is done.
  • These sulfide-based solid electrolytes may further contain elements such as O, Al, B, Si, and Ge.
  • Such a sulfide-based solid electrolyte can be obtained by a known method.
  • lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) are prepared as starting materials, and the ratio of Li 2 S and P 2 S 5 is about 50:50 to 80:20 in molar ratio.
  • Melting and quenching method melting and quenching method
  • mechanically milled mechanical milling method
  • the sulfide-based solid electrolyte obtained by the above method is amorphous. Although it can be used in this amorphous state, it may be heat-treated to obtain a crystalline sulfide solid electrolyte. Crystallization can be expected to improve lithium ion conductivity.
  • carbon black such as acetylene black (AB) and ketjen black (KB)
  • carbon fiber such as carbon nanotube (CNT)
  • binder for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), xanthan gum, or the like can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVA polyvinyl alcohol
  • CMC carboxymethylcellulose
  • xanthan gum or the like
  • (D) Solvent As described above, an organic solvent or water can be used as the solvent used when preparing the positive electrode mixture slurry.
  • the organic solvent can be appropriately selected as long as it does not adversely affect the material filled in the Al porous body (that is, the active material, the conductive additive, the binder, and, if necessary, the solid electrolyte). .
  • organic solvents examples include n-hexane, cyclohexane, heptane, toluene, xylene, trimethylbenzene, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate.
  • Tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, ethylene glycol, N-methyl-2-pyrrolidone and the like can be used.
  • a surfactant may be used in order to improve the filling property.
  • a known method such as a dip filling method or a coating method can be used.
  • the coating method include roll coating method, applicator coating method, electrostatic coating method, powder coating method, spray coating method, spray coater coating method, bar coater coating method, roll coater coating method, dip coater coating method, doctor Examples thereof include a blade coating method, a wire bar coating method, a knife coater coating method, a blade coating method, and a screen printing method.
  • Negative electrode For the negative electrode, a copper or nickel foil, punching metal, porous body, or the like is used as a current collector, and graphite, lithium titanate (Li 4 Ti 5 O 12 ), an alloy system such as Sn or Si, Alternatively, a negative electrode active material such as lithium metal is used. A negative electrode active material is also used in combination with a conductive additive and a binder.
  • non-aqueous electrolyte a solution obtained by dissolving a supporting salt in a polar aprotic organic solvent is used.
  • polar aprotic organic solvents include ethylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, ⁇ -butyrolactone, and sulfolane.
  • the supporting salt lithium tetrafluoroborate, lithium hexafluorophosphate, and an imide salt are used.
  • concentration of the supporting salt serving as an electrolyte is high, a concentration around 1 mol / L is generally used because there is a limit to dissolution.
  • FIG. 6 is a schematic cross-sectional view showing an example of an electric double layer capacitor in which an electrode for an electrochemical element (electric double layer capacitor) according to an embodiment of the present invention is used.
  • an electrode material in which an electrode active material (activated carbon) is supported on an Al porous body is disposed as the polarizable electrode 141.
  • the polarizable electrode 141 is connected to the lead wire 144, and the whole is housed in the case 145.
  • the surface area of the current collector is increased and the contact area with the activated carbon as the active material is increased, so that an electric double layer capacitor capable of high output and high capacity can be obtained. Obtainable.
  • activated carbon is filled in an Al porous body current collector as an active material.
  • Activated carbon is used by adding a conductive additive, a binder, and, if necessary, a solid electrolyte.
  • Active material Active material
  • the amount of activated carbon as a main component is large, and the activated carbon is preferably 90% or more in terms of the composition ratio after drying (after solvent removal).
  • conductive aids and binders are necessary, they are a cause of a decrease in capacity, and binders further increase internal resistance.
  • the conductive assistant is preferably 10% by mass or less, and the binder is preferably 10% by mass or less.
  • the activated carbon has a specific surface area of preferably 1000 m 2 / g or more because the larger the surface area, the larger the capacity of the electric double layer capacitor.
  • Activated carbon can use plant-derived coconut shells, petroleum-based materials, and the like. In order to improve the surface area of the activated carbon, it is preferable to perform activation treatment using water vapor or alkali.
  • conductive additive for example, carbon black such as acetylene black (AB) and ketjen black (KB) and carbon fiber such as carbon nanotube (CNT) can be used.
  • AB acetylene black
  • KB ketjen black
  • CNT carbon nanotube
  • binder for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), xanthan gum, or the like can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVA polyvinyl alcohol
  • CMC carboxymethylcellulose
  • xanthan gum or the like
  • a slurry of activated carbon paste is prepared by mixing an organic solvent or water as a solvent with a mixture composed of the above active material and other additives.
  • the organic solvent can be appropriately selected as long as it does not adversely affect the material (active material, conductive additive, binder, and solid electrolyte as required) filled in the Al porous body.
  • organic solvents examples include n-hexane, cyclohexane, heptane, toluene, xylene, trimethylbenzene, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate.
  • Tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, ethylene glycol, N-methyl-2-pyrrolidone and the like can be used.
  • a surfactant may be used in order to improve the filling property.
  • a known method such as an immersion filling method or a coating method can be used as a filling method of the activated carbon paste.
  • the coating method include roll coating method, applicator coating method, electrostatic coating method, powder coating method, spray coating method, spray coater coating method, bar coater coating method, roll coater coating method, dip coater coating method, doctor Examples thereof include a blade coating method, a wire bar coating method, a knife coater coating method, a blade coating method, and a screen printing method.
  • the electrodes obtained as described above are punched out to an appropriate size to prepare two sheets, and are opposed to each other with a separator interposed therebetween.
  • the separator is preferably a porous film or non-woven fabric made of cellulose or polyolefin resin. And it accommodates in a cell case using a required spacer, and impregnates electrolyte solution. Finally, the electric double layer capacitor can be manufactured by sealing the case with an insulating gasket.
  • the electric double layer capacitor may be manufactured in an environment with little moisture, and the sealing may be performed in a reduced pressure environment.
  • the method for manufacturing the electric double layer capacitor described above is an embodiment, and the method for manufacturing the electric double layer capacitor is not limited as long as the electrode manufactured according to the present invention is used. May be produced.
  • both aqueous and non-aqueous electrolytes can be used, but non-aqueous electrolytes are preferred because the voltage can be set higher.
  • potassium hydroxide can be used as the aqueous electrolyte.
  • Non-aqueous electrolytes include ionic liquids, many in combination with cations and anions.
  • cation lower aliphatic quaternary ammonium, lower aliphatic quaternary phosphonium, imidazolinium and the like are used, and as the anion, imide such as metal chloride ion, metal fluoride ion and bis (fluorosulfonyl) imide.
  • imide such as metal chloride ion, metal fluoride ion and bis (fluorosulfonyl) imide. Compounds and the like are known.
  • polar aprotic organic solvents and specifically, ethylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, ⁇ -butyrolactone, sulfolane, and the like are used.
  • the supporting salt in the non-aqueous electrolyte lithium tetrafluoroborate, lithium hexafluorophosphate, or the like is used.
  • FIG. 7 is a schematic cross-sectional view showing an example of a lithium ion capacitor using an electrode for an electrochemical element (lithium ion capacitor) according to an embodiment of the present invention.
  • an electrode material carrying a positive electrode active material on an Al porous body is arranged as a positive electrode 146
  • an electrode material carrying a negative electrode active material on a current collector is arranged as a negative electrode 147.
  • the positive electrode 146 and the negative electrode 147 are connected to the lead wire 144, and the whole is housed in the case 145.
  • an Al porous body as a positive electrode current collector, a surface area of the current collector is increased, and a lithium ion capacitor capable of high output and high capacity even when activated carbon as an active material is thinly applied is obtained. Can do.
  • an Al porous body current collector is filled with activated carbon as an active material.
  • Activated carbon is used by adding a conductive additive, a binder, and, if necessary, a solid electrolyte.
  • (I) Active material Active material (activated carbon)
  • the activated carbon is preferably 90% or more in terms of the composition ratio after drying (after solvent removal).
  • conductive aids and binders are necessary, they are a cause of a decrease in capacity, and binders further increase internal resistance.
  • the conductive assistant is preferably 10% by mass or less, and the binder is preferably 10% by mass or less.
  • the activated carbon has a specific surface area of preferably 1000 m 2 / g or more because the larger the surface area, the larger the capacity of the lithium ion capacitor.
  • Activated carbon can use plant-derived coconut shells, petroleum-based materials, and the like. In order to improve the surface area of the activated carbon, it is preferable to perform activation treatment using water vapor or alkali.
  • carbon black such as acetylene black (AB) and ketjen black (KB)
  • carbon fiber such as carbon nanotube (CNT)
  • a composite material thereof can be used.
  • binder for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), xanthan gum, or the like can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVA polyvinyl alcohol
  • CMC carboxymethylcellulose
  • xanthan gum or the like
  • a slurry of activated carbon paste is prepared by mixing an organic solvent or water as a solvent with a mixture composed of the above active material and other additives.
  • N-methyl-2-pyrrolidone is often used as the organic solvent. Further, when water is used as the solvent, a surfactant may be used in order to improve the filling property.
  • organic solvents in addition to N-methyl-2-pyrrolidone, organic solvents that do not adversely affect the material (active material, conductive additive, binder, and solid electrolyte as required) filled in the Al porous body If it is, it can select suitably.
  • organic solvents examples include n-hexane, cyclohexane, heptane, toluene, xylene, trimethylbenzene, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate. , Tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, ethylene glycol and the like.
  • a known method such as an immersion filling method or a coating method can be used as a filling method of the activated carbon paste.
  • the coating method include roll coating method, applicator coating method, electrostatic coating method, powder coating method, spray coating method, spray coater coating method, bar coater coating method, roll coater coating method, dip coater coating method, doctor Examples thereof include a blade coating method, a wire bar coating method, a knife coater coating method, a blade coating method, and a screen printing method.
  • the negative electrode is not particularly limited, and a conventional negative electrode for a lithium secondary battery can be used.
  • a conventional negative electrode for a lithium secondary battery can be used.
  • the conventional electrode using a copper foil as a current collector has a small capacity
  • An electrode in which a porous material made of copper such as nickel or nickel is filled with an active material is preferable.
  • the negative electrode is doped with lithium ions in advance.
  • a known method can be used as the doping method. For example, a method of attaching a lithium metal foil on the negative electrode surface and immersing it in an electrolyte solution, or arranging an electrode with lithium metal attached in a lithium ion capacitor and assembling the cell, between the negative electrode and the lithium metal electrode And a method of electrically doping with an electric current, or a method of assembling an electrochemical cell with a negative electrode and lithium metal, and taking out and using the negative electrode electrically doped with lithium.
  • any method it is better to increase the amount of lithium doping in order to sufficiently lower the potential of the negative electrode.
  • the remaining capacity of the negative electrode is smaller than the positive electrode capacity, the capacity of the lithium ion capacitor is reduced, so the positive electrode capacity is not doped. It is preferable to leave it in
  • Electrolytic solution The same electrolytic solution as the nonaqueous electrolytic solution used for the lithium secondary battery is used.
  • a solution in which a supporting salt is dissolved in a polar aprotic organic solvent is used.
  • polar aprotic organic solvents include ethylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, ⁇ -butyrolactone, and sulfolane.
  • the supporting salt lithium tetrafluoroborate, lithium hexafluorophosphate, and an imide salt are used.
  • the electrode obtained as described above is punched out to an appropriate size and is opposed to the negative electrode with a separator interposed therebetween.
  • the negative electrode may be previously doped with lithium ions, and when a method of doping after assembling the cell is taken, an electrode connected with lithium metal may be disposed in the cell.
  • the separator is preferably a porous film or non-woven fabric made of cellulose or polyolefin resin. And it accommodates in a cell case using a required spacer, and impregnates electrolyte solution. Finally, the case is covered and sealed with an insulating gasket, so that a lithium ion capacitor can be produced.
  • the lithium ion capacitor may be manufactured in an environment with little moisture, and the sealing may be performed in a reduced pressure environment.
  • the above-described method for manufacturing a lithium ion capacitor is an embodiment, and as long as the electrode manufactured according to the present invention is used, the method for manufacturing a lithium capacitor is not limited and is manufactured by a method other than the above. It may be.
  • the Al porous body can also be used as an electrode material for a molten salt battery.
  • a metal compound capable of intercalating a cation of a molten salt serving as an electrolyte such as sodium chromite (NaCrO 2 ) or titanium disulfide (TiS 2 ) as an active material Is used.
  • the active material is used by adding a conductive additive and a binder.
  • Acetylene black or the like can be used as a conductive aid.
  • polytetrafluoroethylene (PTFE) etc. can be used as a binder.
  • PTFE polytetrafluoroethylene
  • the Al porous body can also be used as a negative electrode material for a molten salt battery.
  • an Al porous body is used as a negative electrode material
  • sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material.
  • Sodium has a melting point of about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.), and among these, sodium and Sn An alloy of these is particularly preferable because it is easy to handle.
  • Sodium or sodium alloy can be supported on the surface of the Al porous body by a method such as electrolytic plating or hot dipping.
  • a metal such as Si
  • a metal that is alloyed with sodium is attached to the Al porous body by a method such as plating, and then charged in a molten salt battery to form a sodium alloy.
  • FIG. 8 is a schematic cross-sectional view showing an example of a molten salt battery in which an electrode for an electrochemical element (molten salt battery) according to an embodiment of the present invention is used.
  • the positive electrode 121 carrying the positive electrode active material on the surface of the Al skeleton part of the Al porous body, the negative electrode 122 carrying the negative electrode active material on the surface of the Al skeleton part of the Al porous body, and the molten salt as an electrolyte are impregnated.
  • the separator 123 is housed in the case 127.
  • a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate 124 is disposed.
  • the current collector (Al porous body) of the positive electrode 121 and the current collector (Al porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
  • molten salt As the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca)
  • strontium (Sr) and barium (Ba) can be used.
  • the melting point of the molten salt it is preferable to use a mixture of two or more salts.
  • potassium bis (fluorosulfonyl) amide [KN (SO 2 F) 2 ; KFSA] and sodium bis (fluorosulfonyl) amide [Na—N (SO 2 F) 2 ; NaFSA] are used in combination.
  • the operating temperature of the battery can be 90 ° C. or lower.
  • a separator is provided in order to prevent a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, a porous resin molding, etc. can be used.
  • the above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case, and used as a molten salt battery.
  • Electrode for lithium secondary battery Example A (A1 to A3)
  • Example A1 Production of porous aluminum body As a foamed resin molded body, a urethane foam having a thickness of 1.0 mm, a porosity of 95%, and a number of pores (number of cells) per inch of about 50 is prepared. It cut
  • a conductive layer having carbon particles attached to the entire surface was formed.
  • the components of the suspension include graphite + carbon black 25%, and include a resin binder, a penetrating agent, and an antifoaming agent.
  • the particle size of carbon black was 0.5 ⁇ m.
  • a urethane foam with a conductive layer formed on the surface is set as a work piece in a jig with a power supply function, and then placed in a glove box with an argon atmosphere and low moisture (dew point -30 ° C or less), and melted at a temperature of 40 ° C. It was immersed in a salt aluminum plating bath (33 mol% EMIC-67 mol% AlCl 3 ). The jig on which the workpiece was set was connected to the cathode side of the rectifier, and a counter electrode Al plate (purity 99.99%) was connected to the anode side.
  • the sample of the skeleton part of the obtained Al porous body was sampled, cut and observed at a cross section perpendicular to the extending direction of the skeleton.
  • the cross section has a substantially triangular shape, which reflects the structure of the urethane foam as the core material.
  • the obtained aluminum porous body was dissolved in aqua regia and measured with an ICP (inductively coupled plasma) emission spectrometer.
  • the Al purity was 98.5% by mass.
  • the carbon content was measured by JIS-G1211 high frequency induction furnace combustion-infrared absorption method and found to be 1.4% by mass. Furthermore, as a result of EDX analysis of the surface with an acceleration voltage of 15 kV, almost no oxygen peak was observed, and it was confirmed that the oxygen content of the aluminum porous body was below the EDX detection limit (3.1 mass%).
  • Example A2 A positive electrode was produced in the same manner as in Example 1 except that the thickness of the porous Al body was 0.6 mm and the thickness after compression molding was 0.5 mm.
  • Example A3 A positive electrode was produced in the same manner as in Example 1 except that the thickness of the Al porous body was 0.9 mm, and the thickness after compression molding of the active material-filled Al porous body was 0.5 mm.
  • Example B (1) Production of Al porous body An Al porous body having a width of 1 m and a length of 100 m was produced using a polyurethane foam having a thickness of 1.4 mm, a porosity of 97%, and a cell diameter of about 450 ⁇ m.
  • an electrode for a lithium secondary battery having a predetermined filling capacity can be manufactured at low cost by continuously filling a long Al porous body with an active material and then cutting.
  • Battery Pack In the following, a battery pack is manufactured by combining square stacked battery cells in which positive and negative electrodes are manufactured using an Al porous body, and a conventional cylindrical battery is combined. A comparison was made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、容量調整が容易で、低コストで製造することができる電気化学素子用電極の製造方法を提供することを目的とする。本発明の電気化学素子用電極の製造方法は、連通気孔を有するアルミニウム多孔体を圧縮して所定の厚さに調整する調厚工程と、調厚された前記アルミニウム多孔体に活物質を充填する充填工程とを備えている。

Description

電気化学素子用電極の製造方法
 本発明は、リチウム電池(「リチウム二次電池」を含む)、電気二重層キャパシタ、リチウムイオンキャパシタ、溶融塩電池などの電気化学素子用電極の製造方法に関する。
 近年、携帯電話やノート型パーソナルコンピュータ等の携帯用小型電子機器やEV用の電源などとして、リチウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、溶融塩電池などの電気化学素子が広く用いられている。
 これらの電気化学素子には、一般に、金属箔上に活物質を含有する合剤層が形成されている電極が用いられている。例えば、リチウム二次電池の正極の場合、図4に示すように、アルミニウム(Al)箔製の集電体32の両面に、コバルト酸リチウム(LiCoO2)粉末等の正極活物質、ポリフッ化ビニリデン(PVDF)等のバインダ、カーボン粉末等の導電助剤を含有する正極合剤層33が形成されたリチウム二次電池用電極31が用いられており、このようなリチウム二次電池用電極31は、溶媒を添加混合してスラリー状にした正極合剤を、Al箔製の集電体32上に塗布後、塗膜を乾燥することによって製造される(例えば、特許文献1)。
特開2001-143702号公報
 上記のような電極を用いた従来の電気化学素子において容量を調整する場合、電極に充填する合剤のスラリー体積当たりの活物質量を調節する方法が採用されているが、電極の仕様毎にスラリー条件を調整しなければならないため、生産コストが高くなるという問題があった。
 本発明は、上記従来の製造方法の問題に鑑み、容量調整が容易で、低コストで製造することができる電気化学素子用電極の製造方法を提供することを目的とする。
 請求項1に記載の発明は、
 連通気孔を有するアルミニウム多孔体を圧縮して所定の厚さに調整する調厚工程と、
 調厚された前記アルミニウム多孔体に活物質を充填する充填工程と
を備えていることを特徴とする電気化学素子用電極の製造方法である。
 例えば、従来のリチウム二次電池の電極の場合、一般的に厚みを大きくすることが困難であるため、電極のサイズを変更することにより容量の調整方法が行われているが、電池の仕様に応じて種々の電極を作製しなければならず、問題の解決には至っていなかった。
 そこで、本発明者は、鋭意検討を行った結果、金属多孔体、すなわちアルミニウム多孔体(Al多孔体)を集電体として用いることに着目するに至った。そして、スラリー条件は固定して、集電体の厚みを変え、充填するスラリー量を調節することにより、電極の仕様毎にスラリーを変更したり、溶媒量に合わせてスラリー条件を調整したりする必要がなく低コストとなることが分かった。
 請求項1の発明においては、連通気孔を有するAl多孔体に活物質(スラリー)を充填する前に、調厚工程を実施することにより、充填される活物質の量を調整することができるため、活物質を含有するスラリーの組成を変えることなく、所望の容量の電極を得ることができる。このため、低コストで電極を製造することができる。
 さらに、調厚工程によりAl多孔体の厚さのばらつきも小さくできるため、容量のバラツキも小さくすることができる。
 また、前記したように、従来のリチウム二次電池の電極の場合、電極のサイズを変更することにより容量の調整を行っていたため、サイズの大きな電極を何重にも巻回して円筒型電池として用いられていたが、このような円筒型電池を組み合わせて作製された電池パックは、体積エネルギー密度を充分に大きくすることができなかった。
 しかし、Al多孔体を用いて上記のように製造された正負の電極を用いて作製された電池セルを組み合わせた電池パックは、従来の円筒型電池を組み合わせた電池パックに比べ、体積エネルギー密度の向上や省スペース化を図ることができる。具体的には、例えば、同じ体積の電池パックであれば体積エネルギー密度を1.5倍以上にでき、車載用電池パックとして用いた場合、電気自動車の航続距離を1.5倍以上に向上させることが可能となる。また、同じ容量の電池パックであれば体積を2/3以下に低減することができる。
 即ち、従来の円筒型電池を組み合わせる場合、放熱の問題や円筒形であることによる制約などから電池を高密度に配置することができなかった。具体的な一例として、例えば、18650タイプの円筒型電池を組み合わせた車載用電池パックの場合、正味の電池体積は電池パック全体の体積の40%程度に留まっていた。
 これに対し、本発明のAl多孔体の電極を用いて作製された電池セルは、セル自体が薄いため放熱性に優れており、さらに角型にすることができるため、高密度に配置することができる。
 本発明者の実験によれば、18650タイプの円筒型電池を用いた上記の車載用電池パックと同じ容量の電池パックを作製した場合、体積を最大で51%低減できることが確認できている。
 そして、このような電極は、リチウム二次電池のみならずリチウム一次電池などの他のリチウム電池、さらには、前記した電気二重層キャパシタ、リチウムイオンキャパシタ、溶融塩電池などの電気化学素子の電極としても適用することができることを確認した。
 請求項2に記載の発明は、
 前記充填工程の後に、前記活物質が充填された前記アルミニウム多孔体を所定の長さ寸法に切断する切断工程を備えていることを特徴とする請求項1に記載の電気化学素子用電極の製造方法である。
 請求項2に記載の発明は、前記アルミニウム多孔体を所定の寸法に切断する切断工程が活物質の充填された後に行われる。切断前の前記アルミニウム多孔体に対して前記活物質を連続的に充填することができ、生産コストをさらに低減できる。
 請求項3に記載の発明は、
 前記調厚工程は、ローラプレスにより前記アルミニウム多孔体の厚さを調整することを特徴とする請求項1または請求項2に記載の電気化学素子用電極の製造方法である。
 請求項3に記載の発明は、ローラプレスにより前記アルミニウム多孔体の厚さを調整するため、ローラの位置調整を行うだけで、前記アルミニウム多孔体の厚さの調整が可能になる。このため、生産コストをさらに低減できる。
 請求項4に記載の発明は、
 前記活物質が充填された前記アルミニウム多孔体を乾燥させる乾燥工程と、
 乾燥させた前記アルミニウム多孔体を圧縮する圧縮工程と
を、前記切断工程の前に配置したことを特徴とする請求項1ないし請求項3のいずれか1項に記載の電気化学素子用電極の製造方法である。
 電気化学素子用電極の製造方法においては、乾燥工程を設けてスラリー中の溶媒を蒸発させるが、このままでは溶媒の存在した空間が残って電極の嵩が高く活物質の充填密度が低いため、前記圧縮工程を設けることにより、電極内に残った空間の体積を最適化し、高密度の電極を得ることができる。また、電極表面を平滑にでき、短絡の危険性が低下する。
 請求項5に記載の発明は、
 前記アルミニウム多孔体が、15kVの加速電圧でのエネルギー分散型X線分析(EDX分析)により定量した表面の酸素量が3.1質量%以下のアルミニウム多孔体であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の電気化学素子用電極の製造方法である。
 Al多孔体は、製造工程において、酸素のある環境で加熱すると酸化が進みやすく表面に酸化皮膜ができやすい。酸化皮膜ができたAl多孔体の場合、表面積の全てを有効に活用することができないため、活物質を充分多く担持させることができず、活物質とAl多孔体との接触抵抗を低くすることができない。
 このような状況に鑑み、本発明者は、Alを酸素のある環境で加熱せずに、Al多孔体を製造する方法を開発した。これにより、表面に酸素量が少ないAl多孔体、即ち、表面に酸化皮膜が少ないAl多孔体を得ることができるようになった。
 具体的には、Al層が形成された連通気孔を有する発泡樹脂を、溶融塩に浸漬した状態で、Al層に負電位を印加しながらAlの融点以下の温度に加熱して前記発泡樹脂を分解することにより、15kVの加速電圧でのEDX分析により定量した表面の酸素量が3.1質量%以下であるAl多孔体を得ることができる。
 そして、このようなAl多孔体を用いることにより、活物質の担持量を多くでき、また、活物質とAl多孔体との接触抵抗を低く保つことができるため、活物質の利用効率を向上させることができる。
 本発明によれば、容量調整が容易で、低コストで製造することができる電気化学素子用電極の製造方法を提供することができる。また、体積エネルギー密度の向上あるいは省スペース化を図ることができる電池パックの製造に好適な電気化学素子用電極を提供することができる。
本発明におけるAl多孔体の製造方法の一例を説明する図である。 本発明の一実施の形態のリチウム二次電池用電極の製造の手順を説明する図である。 本発明の一実施の形態において、リチウム二次電池用電極の前駆体を切断している様子を模式的に説明する図である。 従来のリチウム二次電池用電極の形態を模式的に示す断面図である。 本発明の一実施の形態に係る電気化学素子用電極が用いられた全固体リチウム二次電池の縦断面図である。 本発明の一実施の形態に係る電気化学素子用電極が用いられた電気二重層キャパシタの断面模式図である。 本発明の一実施の形態に係る電気化学素子用電極が用いられたリチウムイオンキャパシタの断面模式図である。 本発明の一実施の形態に係る電気化学素子用電極が用いられた溶融塩電池の断面模式図である。
 以下、本発明を実施の形態に基づき図面を参照しつつ説明する。なお、以下においては、まず、電気化学素子用電極の製造方法について説明し、その後、電気化学素子用電極を用いたリチウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、溶融塩電池について説明する。
[A]電気化学素子用電極
 最初に、電気化学素子用電極の製造方法について、まず、Al多孔体の製造方法について説明し、その後、リチウム二次電池用電極の作製を例に挙げて、このAl多孔体を用いた電気化学素子用電極の製造方法について説明する。
1.アルミニウム多孔体の製造
 始めに、本発明の電気化学素子用電極に用いられるアルミニウム多孔体の製造方法について説明する。図1は、アルミニウム多孔体の製造方法の一例を説明する模式図であり、樹脂成形体を芯材としてアルミニウム構造体(多孔体)を形成する様子を模式的に示したものである。
 まず、基体となる樹脂成形体の準備を行う。図1(a)は、基体となる樹脂成形体の例として、連通気孔を有する発泡樹脂成形体の断面の一部を示す拡大模式図であり、発泡樹脂成形体1を骨格として気孔が形成されている様子を示している。次に、樹脂成形体表面の導電化を行う。この工程により、発泡樹脂成形体1の表面には薄く導電体による導電層が形成される。続いて溶融塩中でのアルミニウムめっきを行い、導電層が形成された樹脂成形体の表面にアルミニウムめっき層2を形成する(図1(b))。これにより、樹脂成形体を基材として表面にアルミニウムめっき層2が形成されたアルミニウム構造体が得られる。その後、発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)3を得ることができる(図1(c))。以下各工程について順を追って説明する。
(1)多孔質樹脂成形体の準備
 まず、基体となる樹脂成形体として、三次元網目構造を有し連通気孔を有する多孔質樹脂成形体を準備する。多孔質樹脂成形体の素材は任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。発泡樹脂成形体と表記したが、連続した気孔(連通気孔)を有するものであれば任意の形状の樹脂成形体を選択できる。例えば繊維状の樹脂を絡めて不織布のような形状を有するものも発泡樹脂成形体に代えて使用可能である。
 発泡樹脂成形体としては、気孔率40~98%で、セル径50~1000μmの連通気孔を持つものが好ましいが、気孔率80%~98%、セル径は50μm~500μmであればより好ましい。発泡ウレタン及び発泡メラミンは気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため、多孔質樹脂成形体として好ましく使用できる。発泡ウレタンは気孔の均一性や入手の容易さ等の点で好ましく、発泡ウレタンはセル径の小さなものが得られる点で好ましい。
 多孔質樹脂成形体には発泡体製造過程での製泡剤や未反応モノマーなどの残留物があることが多く、洗浄処理を行うことが後の工程のために好ましい。例えばウレタン発泡体は樹脂成形体が骨格として三次元的に網目を構成することで、全体として連続した気孔を構成している。発泡ウレタンの骨格はその延在方向に垂直な断面において略三角形状をなしている。ここで気孔率は、次式で定義される。
    気孔率[%]=(1-(多孔質材の重量[g]/(多孔質材の体積[cm3]×素材密度)))×100
 また、セル径は、樹脂成形体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりの気孔数をセル数として計数して、平均セル径=25.4mm/セル数として平均的な値を求める。
(2)樹脂成形体表面の導電化
 電解めっきを行うために、発泡樹脂の表面をあらかじめ導電化処理する。処理方法としては、発泡樹脂の表面に導電性を有する層を設けることができる処理である限り特に制限はなく、ニッケル等の導電性金属の無電解めっき、アルミニウム等の蒸着及びスパッタ、又はカーボン等の導電性粒子を含有した導電性塗料の塗布等任意の方法を選択できる。
 導電化処理の例として、アルミニウムのスパッタリング処理によって導電化処理する方法、及び導電性粒子としてカーボンを用いて発泡樹脂の表面を導電化処理する方法について以下述べる。
(i)アルミニウムのスパッタリング
 アルミニウムを用いたスパッタリング処理としては、アルミニウムをターゲットとする限り限定的でなく、常法に従って行えばよい。例えば、基板ホルダに発泡状樹脂を取り付けた後、不活性ガスを導入しながら、ホルダとターゲット(アルミニウム)との間に直流電圧を印加することにより、イオン化した不活性ガスをアルミニウムに衝突させて、はじき飛ばされたアルミニウム粒子を発泡状樹脂表面に堆積することによってアルミニウムのスパッタ膜を形成する。なお、スパッタリング処理は発泡状樹脂が溶解しない温度下で行うことが好ましく、具体的には、100~200℃程度、好ましくは120~180℃程度で行えばよい。
(ii)カーボン塗布
 導電性塗料としてのカーボン塗料を準備する。導電性塗料としての懸濁液は、好ましくは、カーボン粒子、粘結剤、分散剤および分散媒を含む。導電性粒子の塗布を均一に行うには、懸濁液が均一な懸濁状態を維持している必要がある。このため、懸濁液は、20℃~40℃に維持されていることが好ましい。
 その理由は、懸濁液の温度が20℃未満になった場合、均一な懸濁状態が崩れ、合成樹脂成形体の網状構造をなす骨格の表面に粘結剤のみが集中して層を形成するからである。この場合、塗布されたカーボン粒子の層は剥離し易く、強固に密着した金属めっきを形成し難い。一方、懸濁液の温度が40℃を越えた場合は、分散剤の蒸発量が大きく、塗布処理時間の経過とともに懸濁液が濃縮されてカーボンの塗布量が変動しやすい。また、カーボン粒子の粒径は、0.01~5μmで、好ましくは0.01~0.5μmである。粒径が大きいと多孔質樹脂成形体の空孔を詰まらせたり、平滑なめっきを阻害したりする要因となり、小さすぎると十分な導電性を確保することが難しくなる。
 樹脂成形体へのカーボン粒子の塗布は、上記懸濁液に対象となる樹脂成形体を浸漬し、絞りと乾燥を行うことで可能である。実用上の製造工程の一例としては、三次元網状構造を有する長尺シート状の帯状樹脂が、サプライボビンから連続的に繰り出され、槽内の懸濁液内に浸漬される。懸濁液に浸漬された帯状樹脂は、絞りロールで絞られ、過剰な懸濁液が絞り出される。続いて、当該帯状樹脂は熱風ノズルによる熱風の噴射等により懸濁液の分散媒等が除去され、充分に乾燥された上で巻取りボビンに巻き取られる。熱風の温度は40℃から80℃の範囲であるとよい。このような装置を用いると、自動的かつ連続的に導電化処理を実施することができ、目詰まりのない網目構造を有し、且つ、均一な導電層を具備した骨格が形成されるので、次工程の金属めっきを円滑に行うことができる。
(3)アルミニウム層の形成:溶融塩めっき
 次に溶融塩中で電解めっきを行い、樹脂成形体表面にアルミニウムめっき層を形成する。溶融塩浴中でアルミニウムのめっきを行うことにより特に三次元網目構造を有する樹脂成形体のように複雑な骨格構造の表面に均一に厚いアルミニウム層を形成することができる。表面が導電化された樹脂成形体を陰極、純度99.0%のアルミニウムを陽極として溶融塩中で直流電流を印加する。溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。
 比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としてはイミダゾリウム塩、ピリジニウム塩等が使用でき、具体的には1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。
 溶融塩浴としては窒素を含有した溶融塩浴が好ましく、中でもイミダゾリウム塩浴が好ましく用いられる。溶融塩として高温で溶融する塩を使用した場合は、めっき層の成長よりも樹脂が溶融塩中に溶解や分解する方が早くなり、樹脂成形体表面にめっき層を形成することができない。イミダゾリウム塩浴は、比較的低温であっても樹脂に影響を与えず使用可能である。
 イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム+1-エチル-3-メチルイミダゾリウムクロライド(AlCl3+EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。発泡ウレタン樹脂や発泡メラミン樹脂などへのめっきが可能であり、溶融塩浴の温度は10℃から65℃、好ましくは25℃から60℃である。低温になる程めっき可能な電流密度範囲が狭くなり、多孔体表面全体へのめっきが難しくなる。65℃を超える高温では基材樹脂の形状が損なわれる不具合が生じやすい。
 金属表面への溶融塩アルミニウムめっきにおいて、めっき表面の平滑性向上の目的でAlCl3-EMICにキシレン、ベンゼン、トルエン、1,10-フェナントロリンなどの添加剤を加えることが報告されている。本発明者らは特に三次元網目構造を備えた樹脂成形体上にアルミニウムめっきを施す場合に、1,10-フェナントロリンの添加によりアルミニウム構造体の形成に特有の効果が得られることを見出した。すなわち、めっき皮膜の平滑性が向上し、多孔体を形成するアルミニウム骨格が折れにくいという第1の特徴と、多孔体の表面部と内部とのめっき厚さの差が小さい均一なめっきが可能であるという第2の特徴が得られるのである。
 以上の、折れにくい、めっき厚が内外で均一という2つの特徴により、完成したアルミニウム多孔体をプレスする場合などに、骨格全体が折れにくく均等にプレスされた多孔体を得ることができる。アルミニウム多孔体を電池等の電極材料として用いる場合に、電極に電極活物質を充填してプレスにより密度を上げることが行われ、活物質の充填工程やプレス時に骨格が折れやすいため、このような用途では極めて有効である。
 上記のことから、溶融塩浴に有機溶媒を添加することが好ましく、特に1,10-フェナントロリンが好ましく用いられる。めっき浴への添加量は、0.2~7g/Lが好ましい。0.2g/L以下では平滑性に乏しいめっきで脆く、また表層と内部の厚み差を小さくする効果が得られ難い。また7g/L以上ではめっき効率が低下し所定のめっき厚を得ることが困難になる。
 一方、樹脂が溶解等しない範囲で溶融塩として無機塩浴を用いることもできる。無機塩浴とは、代表的にはAlCl3-XCl(X:アルカリ金属)の2成分系あるいは多成分系の塩である。このような無機塩浴はイミダゾリウム塩浴のような有機塩浴に比べて一般に溶融温度は高いが、水分や酸素など環境条件の制約が少なく、全体に低コストでの実用化が可能である。樹脂が発泡メラミン樹脂である場合は、発泡ウレタン樹脂に比べて高温での使用が可能であり、60℃~150℃での無機塩浴が用いられる。
 以上の工程により骨格の芯として樹脂成形体を有するアルミニウム構造体が得られる。なお、上記では、溶融塩めっきによりアルミニウム層を形成しているが、蒸着、スパッタ、プラズマCVD等の気相法、アルミニウムペーストの塗布等任意の方法で行うことができる。
 各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良いが、使用環境の制約などから、樹脂が無い金属多孔体として用いる場合には樹脂を除去する。本発明においては、アルミニウムの酸化が起こらないように、以下に説明する溶融塩中での分解により樹脂を除去する。
(4)樹脂の除去:溶融塩による処理
 溶融塩中での分解は以下の方法で行う。表面にアルミニウムめっき層を形成した樹脂成形体を溶融塩に浸漬し、アルミニウム層に負電位(アルミニウムの標準電極電位より卑な電位)を印加しながら加熱して発泡樹脂成形体を除去する。溶融塩に浸漬した状態で負電位を印加すると、アルミニウムを酸化させることなく発泡樹脂成形体を分解することができる。
 加熱温度は発泡樹脂成形体の種類に合わせて適宜選択できる。樹脂成形体がウレタンである場合には分解は約380℃で起こるため溶融塩浴の温度は380℃以上にする必要があるが、アルミニウムを溶融させないためにはアルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は500℃以上600℃以下である。
 また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。このような方法によって、連通気孔を有し、表面の酸化層が薄く、3.1質量%以下という少ない酸素量のアルミニウム多孔体を得ることができる。
 樹脂の分解に使用する溶融塩としては、アルミニウム層の電極電位が卑となるように、アルカリ金属又はアルカリ土類金属のハロゲン化物の塩を使用することができる。具体的には、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)からなる群より選択される1種以上を含むと好ましく、上記の2種以上を混合して融点を下げた共晶溶融塩がより好ましい。このような方法によって、連通気孔を有し、表面の酸化層が薄く、3.1質量%以下という少ない酸素量のアルミニウム多孔体を得ることができる。
 アルミニウム多孔体としては、気孔率が40~98%であり、セル径が50~1000μmのアルミニウム多孔体が好ましく用いられる。より好ましくは気孔率が80~98%であり、セル径が350~900μmである。
2.スラリーの作製
 次に、リチウム二次電池の正極の場合を例にとり、スラリーの作製方法について説明する。LiCoO2等の活物質粉末、PVDF等のバインダ、さらに、アセチレンブラック等の導電助剤を所定の比率で混合し、得られた混合物(合剤)に所定量のN-メチル-2-ピロリドン(NMP)等の溶媒を加えて混練することによりスラリーが作製される。なお、これらの材料の配合比率は、電極の容量、導電性、スラリーの粘度等を考慮して適宜決定される。
3.リチウム二次電池用電極の作製
 次に、電気化学素子用電極の作製について、リチウム二次電池用電極の作製を例に挙げて説明する。図2は、本実施の形態のリチウム二次電池用電極の製造の手順を説明する図である。
 リチウム二次電池用電極は、図2に示すように、上流側から、調厚工程、リード溶接工程、充填工程、乾燥工程、圧縮工程、長さ方向切断工程、巻取り工程、および幅方向切断工程の順に、各工程が実施されることにより製造される。
(1)調厚工程
 前記の製造方法に基づいて製造されたAl多孔体3を巻き出し、調厚用のロールを通してローラプレスにより、Al多孔体3の厚さを所定の厚さに調厚する。
(2)リード溶接工程
 次に、リード4を巻き出し、調厚されたAl多孔体3にリード4を溶接して集電体を作製する。
(3)充填工程
 次に、前記の作製方法に基づいて作製されたスラリーを、ロールを用いて集電体の連通気孔中に充填する。
(4)乾燥工程
 次に、乾燥炉を通すことにより、スラリー中に含まれる溶媒を蒸発させる。
(5)圧縮工程
 次に、ロールを通して所定の厚さに圧縮することにより、空隙を小さくし、合剤の充填密度を調整して、前駆体11を作製する。
(6)長さ方向の切断工程および巻取り工程
 次に、この前駆体11を長さ方向に切断(スリット)して幅方向に分断し、長尺のリチウム二次電池用電極21を作製し、巻き取る。
 図3は、本実施の形態において、リチウム二次電池用電極の前駆体を切断している様子を模式的に説明する図であり、(a)、(b)は切断前の平面図および断面図であり、(c)、(d)は切断後の平面図および断面図である。図3において、12、22は、電極本体部分(合剤充填部)である。図3に示すように、前駆体は、幅中央およびリード4の中央で切断されて、リチウム二次電池用電極21が作製される。
(7)幅方向切断工程
 次に、長尺のリチウム二次電池用電極21を巻き出して、所定の長さに切断する。
 以上、リチウム二次電池用電極の製造方法について説明したが、リチウム一次電池などの他のリチウム電池、さらには、電気二重層キャパシタ、リチウムイオンキャパシタ、溶融塩電池用電極についても同様に製造することができる。
[B]電気化学素子
 次に、上記のように作製された電気化学素子用電極が用いられた電気化学素子につき、リチウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、ナトリウム電池に分けて具体的に説明する。
1.リチウム電池
 初めに、Al多孔体を用いて上記のように作製されたリチウム電池用正極の特徴について説明し、その後、リチウム二次電池の構成について説明する。
(1)Al多孔体を用いて作製されたリチウム電池用正極の特徴
 従来のリチウム二次電池用正極としては、Al箔(集電体)の表面に活物質を塗布した電極が用いられている。リチウム二次電池は、ニッケル水素電池やキャパシタに比べれば高容量であるが、自動車用途などでは更なる高容量化が求められており、単位面積当たりの電池容量を向上させるために、活物質の塗布厚みを厚くしている。また、活物質を有効に利用するためには、集電体であるアルミニウム箔と活物質とが電気的に接触している必要があるため、活物質は導電助剤と混合して用いられている。
 これに対し、本発明においては、Al多孔体を集電体として、導電助剤やバインダと混合された活物質が充填された電極が用いられている。このAl多孔体は、気孔率が高く単位面積当たりの表面積が大きい。この結果、集電体と活物質の接触面積が大きくなるため、活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。
 このように、Al多孔体を集電体に用いたリチウム二次電池は、小さい電極面積でも容量を向上できるため、従来のAl箔を用いリチウム二次電池よりも電池のエネルギー密度を高くすることができる。
 また、上記では主に二次電池についての効果を説明したが、一次電池についてもAl多孔体に活物質を充填したときに接触面積が大きくなる効果は二次電池の場合と同じであり、容量の向上が可能である。
(2)リチウム二次電池の構成
 リチウム二次電池には、電解質として固体電解質を用いる場合と、非水電解液を用いる場合とがある。図5は、本発明の一実施の形態に係る電気化学素子(リチウム二次電池)用電極が用いられた全固体リチウム二次電池(電解質として固体電解質を使用)の縦断面図である。この全固体リチウム二次電池60は、正極61、負極62、および、両電極間に配置される固体電解質層(SE層)63を備えている。そして、正極61は、正極層(正極体)64と正極集電体65とからなり、負極62は、負極層66と負極集電体67とからなる。
 なお、電解質としては、前記したように、非水電解液が用いられる場合もあり、この場合、両極間には、セパレータ(多孔質ポリマーフィルムや不織布、紙等)が配置され、非水電解液は両極およびセパレータ中に含浸される。
 以下、リチウム二次電池を構成する正極、負極、電解質の順に説明する。
(i)正極
 Al多孔体をリチウム二次電池の正極集電体として使用する場合は、正極活物質として、リチウムを脱挿入できる材料を使用することができ、このような材料を予め調厚されたAl多孔体に充填することにより、リチウム二次電池に適した電極を得ることができる。
(a)正極活物質
 このような正極活物質としては、例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、ニッケルコバルト酸リチウム(LiCo0.3Ni0.72)、マンガン酸リチウム(LiMn24)、チタン酸リチウム(Li4Ti512)、リチウムマンガン酸化合物(LiMyMn2-y4;M=Cr、Co、Ni)、リチウム酸等が使用できる。これらの活物質は導電助剤及びバインダと組み合わせて使用する。
 また、従来のリチウムリン酸鉄及びその化合物(LiFePO4、LiFe0.5Mn0.5PO4)であるオリビン化合物などの遷移金属酸化物を用いることもできる。そして、これらの材料の中に含まれる遷移金属元素を、別の遷移金属元素に一部置換してもよい。
 さらに、他の正極活物質の材料としては、例えば、TiS2、V23、FeS、FeS2、LiMSx(MはMo、Ti、Cu、Ni、Feなどの遷移金属元素、又はSb、Sn、Pb)などの硫化物系カルコゲン化物、TiO2、Cr38、V25、MnO2などの金属酸化物を骨格としたリチウム金属を用いることもできる。なお、上記したチタン酸リチウム(Li4Ti512)は、負極活物質として使用することも可能である。
(b)固体電解質
 上記正極活物質の他に、必要に応じて、さらに、固体電解質を加えてAl多孔体に充填してもよい。Al多孔体に正極活物質と固体電解質とを充填することにより、リチウム二次電池用正極としてより適した電極を得ることができる。ただし、Al多孔体に充填する材料の内、活物質の割合は、放電容量を確保する観点から、50質量%以上であることが好ましく、70質量%以上であるとより好ましい。
 上記固体電解質には、リチウムイオン伝導度の高い硫化物系固体電解質を使用することが好ましく、このような硫化物系固体電解質としては、リチウム、リン、及び硫黄を含む硫化物系固体電解質が挙げられる。そして、これらの硫化物系固体電解質は、さらに、O、Al、B、Si、Geなどの元素を含有していてもよい。
 このような硫化物系固体電解質は、公知の方法により得ることができる。例えば、出発原料として硫化リチウム(Li2S)及び五硫化二リン(P25)を用意し、Li2SとP25とをモル比で50:50~80:20程度の割合で混合し、これを溶融して急冷する方法(溶融急冷法)や、これをメカニカルミリングする方法(メカニカルミリング法)により得ることができる。
 上記方法により得られる硫化物系固体電解質は、非晶質である。この非晶質の状態のまま利用することもできるが、これを加熱処理して結晶性の硫化物系固体電解質としてもよい。結晶化することで、リチウムイオン伝導度の向上が期待できる。
(c)導電助剤およびバインダ
 上記活物質の合剤(活物質と固体電解質)をAl多孔体に充填するに際しては、必要に応じて導電助剤やバインダを加え、これに有機溶剤や水を混合して正極合剤スラリーを作製する。
 導電助剤としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラックや、カーボンナノチューブ(CNT)などの炭素繊維を用いることができる。
 また、バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、キサンタンガムなどを用いることができる。
(d)溶媒
 正極合剤スラリーを作製する際に用いられる溶媒としては、上記したように、有機溶剤や水を用いることができる。
 有機溶剤としては、Al多孔体に充填する材料(即ち、活物質、導電助剤、バインダ、および必要に応じて固体電解質)に対して悪影響を及ぼさないものであれば、適宜選択することができる。
 このような有機溶剤としては、例えば、n-ヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン、トリメチルベンゼン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、エチレングリコール、N-メチル-2-ピロリドンなどを用いることができる。
 また、溶媒に水を用いる場合には、充填性を高めるために界面活性剤を使用してもよい。
(e)スラリーの充填
 作製された正極合剤スラリーの充填方法としては、浸漬充填法や塗工法などの公知の方法を用いることができる。塗工法としては、例えば、ロール塗工法、アプリケータ塗工法、静電塗工法、粉体塗工法、スプレー塗工法、スプレーコータ塗工法、バーコータ塗工法、ロールコータ塗工法、ディップコータ塗工法、ドクターブレード塗工法、ワイヤーバー塗工法、ナイフコータ塗工法、ブレード塗工法、及びスクリーン印刷法などが挙げられる。
(ii)負極
 負極には、銅やニッケルの箔やパンチングメタル、多孔体などが集電体として用いられ、黒鉛、チタン酸リチウム(Li4Ti512)、SnやSi等の合金系、あるいはリチウム金属等の負極活物質が使用される。負極活物質も、導電助剤及びバインダと組み合わせて使用する。
(iii)電解質
 前記したように、リチウム二次電池には、電解質として固体電解質を用いる場合と、非水電解液を用いる場合とがある。
 固体電解質としては、前記した各固体電解質が用いられる。
 非水電解液としては、支持塩を極性非プロトン性有機溶媒に溶かしたものが用いられる。このような極性非プロトン性有機溶媒としては、例えば、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、γ-ブチロラクトン及びスルホラン等が使用される。支持塩としては、4フッ化ホウ酸リチウム、6フッ化リン酸リチウム、およびイミド塩等が使用されている。電解質となる支持塩の濃度は高い方が好ましいが、溶解に限度があるため1mol/L付近のものが一般に用いられる。
2.電気二重層キャパシタ
 図6は、本発明の一実施の形態に係る電気化学素子(電気二重層キャパシタ)用電極が用いられた電気二重層キャパシタの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、Al多孔体に電極活物質(活性炭)を担持した電極材料が分極性電極141として配置されている。分極性電極141はリード線144に接続されており、これら全体がケース145中に収納されている。
 Al多孔体を集電体として使用することにより、集電体の表面積が大きくなり、活物質としての活性炭との接触面積が大きくなるため、高出力、高容量化が可能な電気二重層キャパシタを得ることができる。
(1)電極の作製
 電気二重層キャパシタ用電極を製造するには、Al多孔体の集電体に活物質として活性炭を充填する。活性炭は、導電助剤やバインダ、及び必要に応じて固体電解質を添加して使用する。
(i)活物質(活性炭)
 電気二重層キャパシタの容量を大きくするためには主成分である活性炭の量が多い方がよく、乾燥後(溶媒除去後)の組成比で活性炭が90%以上であることが好ましい。また、導電助剤やバインダは、必要ではあるが容量低下の要因であり、バインダは更に内部抵抗を増大させる要因となるため、できる限り少ない方がよい。導電助剤は10質量%以下、バインダは10質量%以下であることが好ましい。
 活性炭は、表面積が大きい方が電気二重層キャパシタの容量が大きくなるため、比表面積が1000m2/g以上であることが好ましい。活性炭は植物由来のヤシ殻などや石油系の材料などを用いることができる。活性炭の表面積を向上させるため、水蒸気やアルカリを用いて賦活処理しておくことが好ましい。
(ii)その他の添加剤
 導電助剤としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラックや、カーボンナノチューブ(CNT)などの炭素繊維を用いることができる。
 また、バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、キサンタンガムなどを用いることができる。
 上記の活物質およびその他の添加剤からなる合剤に、有機溶剤や水を溶媒として混合することにより活性炭ペーストのスラリーが作製される。
 有機溶剤としては、Al多孔体に充填する材料(活物質、導電助剤、バインダ、及び必要に応じて固体電解質)に対して悪影響を及ぼさないものであれば、適宜選択することができる。
 このような有機溶剤としては、例えば、n-ヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン、トリメチルベンゼン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、エチレングリコール、N-メチル-2-ピロリドンなどを用いることができる。
 また、溶媒に水を用いる場合には、充填性を高めるために界面活性剤を使用してもよい。
(iii)スラリーの充填
 作製された活性炭ペースト(スラリー)を上記の予め調厚されたAl多孔体の集電体に充填して乾燥させ、必要に応じてローラプレス等により圧縮することにより密度を向上させ、電気二重層キャパシタ用電極が得られる。
 活性炭ペーストの充填方法としては、浸漬充填法や塗工法などの公知の方法を用いることができる。塗工法としては、例えば、ロール塗工法、アプリケータ塗工法、静電塗工法、粉体塗工法、スプレー塗工法、スプレーコータ塗工法、バーコータ塗工法、ロールコータ塗工法、ディップコータ塗工法、ドクターブレード塗工法、ワイヤーバー塗工法、ナイフコータ塗工法、ブレード塗工法、及びスクリーン印刷法などが挙げられる。
(2)電気二重層キャパシタの作製
 上記のようにして得られた電極を適当な大きさに打ち抜いて2枚用意し、セパレータを挟んで対向させる。セパレータはセルロースやポリオレフィン樹脂などで構成された多孔膜や不織布を用いることが好ましい。そして、必要なスペーサを用いてセルケースに収納し、電解液を含浸させる。最後に絶縁ガスケットを介してケースに蓋をして封口することにより電気二重層キャパシタを作製することができる。
 非水系の材料を使用する場合は、電気二重層キャパシタ内の水分を限りなく少なくするため、電極などの材料を十分に乾燥させることが好ましい。そして、電気二重層キャパシタの作製は水分の少ない環境下で行い、封止は減圧環境下で行ってもよい。
 なお、上記した電気二重層キャパシタの作製方法は、一実施の形態であり、本発明により製造された電極を用いている限り、電気二重層キャパシタの作製方法としては限定されず、上記以外の方法により作製されていてもよい。
 電解液としては、水系・非水系ともに使用できるが、非水系の方が電圧を高く設定することができるため好ましい。
 水系の電解質としては、例えば、水酸化カリウムなどが使用できる。
 非水系の電解質としては、イオン液体があり、カチオンやアニオンとの組み合わせで多数ある。カチオンとしては、低級脂肪族4級アンモニウム、低級脂肪族4級ホスホニウム及びイミダゾリニウム等が使用され、アニオンとしては、金属塩化物イオン、金属フッ化物イオン、及びビス(フルオロスルフォニル)イミド等のイミド化合物等が知られている。
 また、極性非プロトン性有機溶媒があり、具体的には、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、γ-ブチロラクトン及びスルホラン等が使用される。非水電解液中の支持塩としては4フッ化ホウ酸リチウム及び6フッ化リン酸リチウム等が使用される。
3.リチウムイオンキャパシタ
 図7は、本発明の一実施の形態に係る電気化学素子(リチウムイオンキャパシタ)用電極が用いられたリチウムイオンキャパシタの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、Al多孔体に正極活物質を担持した電極材料が正極146として配置され、集電体に負極活物質を担持した電極材料が負極147として配置されている。正極146および負極147はリード線144に接続されており、これら全体がケース145中に収納されている。
 Al多孔体を正極集電体として使用することにより、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても、高出力、高容量化が可能なリチウムイオンキャパシタを得ることができる。
(1)正極の作製
 リチウムイオンキャパシタ用電極(正極)を製造するには、Al多孔体の集電体に活物質として活性炭を充填する。活性炭は、導電助剤やバインダ、及び必要に応じて固体電解質を添加して使用する。
(i)活物質(活性炭)
 リチウムイオンキャパシタの容量を大きくするためには主成分である活性炭の量が多い方がよく、乾燥後(溶媒除去後)の組成比で活性炭が90%以上であることが好ましい。また、導電助剤やバインダは、必要ではあるが容量低下の要因であり、バインダは更に内部抵抗を増大させる要因となるため、できる限り少ない方がよい。導電助剤は10質量%以下、バインダは10質量%以下であることが好ましい。
 活性炭は、表面積が大きい方がリチウムイオンキャパシタの容量が大きくなるため、比表面積が1000m2/g以上であることが好ましい。活性炭は植物由来のヤシ殻などや石油系の材料などを用いることができる。活性炭の表面積を向上させるため、水蒸気やアルカリを用いて賦活処理しておくことが好ましい。
(ii)その他の添加剤
 導電助剤としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラックや、カーボンナノチューブ(CNT)などの炭素繊維やこれらの複合材料を用いることができる。
 また、バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、キサンタンガムなどを用いることができる。
 上記の活物質およびその他の添加剤からなる合剤に、有機溶剤や水を溶媒として混合することにより活性炭ペーストのスラリーが作製される。
 有機溶剤としては、N-メチル-2-ピロリドンが使用される場合が多い。また、溶媒に水を用いる場合には、充填性を高めるために界面活性剤を使用してもよい。
 有機溶剤としては、N-メチル-2-ピロリドンの他に、Al多孔体に充填する材料(活物質、導電助剤、バインダ、及び必要に応じて固体電解質)に対して悪影響を及ぼさない有機溶剤であれば、適宜選択することができる。
 このような有機溶剤としては、例えば、n-ヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン、トリメチルベンゼン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、エチレングリコールなどが挙げられる。
(iii)スラリーの充填
 作製された活性炭ペースト(スラリー)を上記の予め調厚されたAl多孔体の集電体に充填して乾燥させ、必要に応じてローラプレス等により圧縮することにより密度を向上させ、リチウムイオンキャパシタ用電極が得られる。
 活性炭ペーストの充填方法としては、浸漬充填法や塗工法などの公知の方法を用いることができる。塗工法としては、例えば、ロール塗工法、アプリケータ塗工法、静電塗工法、粉体塗工法、スプレー塗工法、スプレーコータ塗工法、バーコータ塗工法、ロールコータ塗工法、ディップコータ塗工法、ドクターブレード塗工法、ワイヤーバー塗工法、ナイフコータ塗工法、ブレード塗工法、及びスクリーン印刷法などが挙げられる。
(2)負極の作製
 負極は特に限定されず、従来のリチウム二次電池用負極を使用可能であるが、銅箔を集電体に用いた従来の電極では容量が小さいため、前述の発泡状ニッケルのような銅やニッケル製の多孔体に活物質を充填した電極が好ましい。
 また、リチウムイオンキャパシタとして動作させるために、あらかじめ負極にリチウムイオンをドープしておくことが好ましい。
 ドープ方法としては公知の方法を用いることができる。例えば、負極表面にリチウム金属箔を貼り付けて電解液中に浸してドープする方法や、リチウムイオンキャパシタ内にリチウム金属を取り付けた電極を配置し、セルを組み立ててから負極とリチウム金属電極の間で電流を流して電気的にドープする方法、あるいは負極とリチウム金属で電気化学セルを組み立て、電気的にリチウムをドープした負極を取り出して使用する方法などが挙げられる。
 いずれの方法でも、負極の電位を十分に下げるためにリチウムドープ量は多いほうがよいが、負極の残容量が正極容量より小さくなるとリチウムイオンキャパシタの容量が小さくなるため、正極容量分はドープせずに残しておくことが好ましい。
(3)電解液
 電解液は、リチウム二次電池に使用する非水電解液と同じものが用いられる。非水電解液としては、支持塩を極性非プロトン性有機溶媒の溶かしたものが用いられる。このような極性非プロトン性有機溶媒としては、例えば、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、γ-ブチロラクトン及びスルホラン等が使用される。支持塩としては4フッ化ホウ酸リチウム、6フッ化リン酸リチウム、およびイミド塩等が使用されている。
(4)リチウムイオンキャパシタの作製
 上記にようにして得られた電極を適当な大きさに打ち抜きし、セパレータを挟んで負極と対向させる。負極は、予めリチウムイオンをドープしたものを用いても構わないし、セルを組み立て後にドープする方法をとる場合は、リチウム金属を接続した電極をセル内に配置すればよい。
 セパレータはセルロースやポリオレフィン樹脂などで構成された多孔膜や不織布を用いることが好ましい。そして、必要なスペーサを用いてセルケースに収納し、電解液を含浸させる。最後に絶縁ガスケットを介してケースに蓋をして封口することによりリチウムイオンキャパシタを作製することができる。
 リチウムイオンキャパシタ内の水分を限りなく少なくするため、電極などの材料は十分乾燥することが好ましい。また、リチウムイオンキャパシタの作製は水分の少ない環境下で行い、封止は減圧環境下で行ってもよい。
 なお、上記したリチウムイオンキャパシタの作製方法は、一実施の形態であり、本発明により製造された電極を用いている限り、リチウムキャパシタの作製方法としては限定されず、上記以外の方法により作製されていてもよい。
4.溶融塩電池
 Al多孔体は、溶融塩電池用の電極材料として使用することもできる。Al多孔体を正極材料として使用する場合は、活物質として亜クロム酸ナトリウム(NaCrO2)、二硫化チタン(TiS2)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は、導電助剤及びバインダを添加して使用する。
 導電助剤としてはアセチレンブラック等が使用できる。また、バインダとしてはポリテトラフルオロエチレン(PTFE)等を使用できる。活物質として亜クロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEはこの両者をより強固に固着することができ好ましい。
 そして、Al多孔体は、溶融塩電池用の負極材料として用いることもできる。Al多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化することが好ましく、この内でも、ナトリウムとSnとを合金化したものは扱いやすいため特に好ましい。
 ナトリウム又はナトリウム合金は、Al多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、Al多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。
 図8は、本発明の一実施の形態に係る電気化学素子(溶融塩電池)用電極が用いられた溶融塩電池の一例を示す断面模式図である。Al多孔体のAl骨格部の表面に正極用活物質を担持した正極121と、Al多孔体のAl骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。
 ケース127の上面と負極122との間には、押え板124と押え板124を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材126を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(Al多孔体)、負極122の集電体(Al多孔体)はそれぞれ、正極端子128、負極端子129に、リード線130で接続されている。
 電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。
 溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えば、カリウムビス(フルオロスルフォニル)アミド[K-N(SO2F)2;KFSA]とナトリウムビス(フルオロスルフォニル)アミド[Na-N(SO2F)2;NaFSA]とを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。
 溶融塩はセパレータに含浸させて使用する。セパレータは正極と負極とが接触することを防ぐために設けられるものであり、ガラス不織布や、多孔質樹脂成形体等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、溶融塩電池として使用する。
 以下、実施例としてリチウム二次電池を挙げて、本発明をより具体的に説明する。
[1]リチウム二次電池用電極
 実施例A(A1~A3)
1.リチウム二次電池用電極の作製
(1)実施例A1
(a)アルミニウム多孔体の製造
 発泡樹脂成形体として、厚み1.0mm、気孔率95%、1インチ当たりの気孔数(セル数)約50個のウレタン発泡体を準備し、100mm×30mm角に切断し、実施の形態に記載した方法を用いてアルミニウム多孔体を作製した。具体的には、以下の通りである。
(導電層の形成)
 ウレタン発泡体をカーボン懸濁液に浸漬し乾燥することで、表面全体にカーボン粒子が付着した導電層を形成した。懸濁液の成分は、黒鉛+カーボンブラック25%を含み、樹脂バインダ、浸透剤、消泡剤を含む。カーボンブラックの粒径は0.5μmとした。
(溶融塩めっき)
 表面に導電層を形成したウレタン発泡体をワークとして、給電機能を有する治具にセットした後、アルゴン雰囲気かつ低水分(露点-30℃以下)としたグローブボックス内に入れ、温度40℃の溶融塩アルミめっき浴(33mol%EMIC-67mol%AlCl3)に浸漬した。ワークをセットした治具を整流器の陰極側に接続し、対極のAl板(純度99.99%)を陽極側に接続した。電流密度3.6A/dm2の直流電流を90分間印加してめっきすることにより、ウレタン発泡体表面に150g/m2の重量のAlめっき層が形成されたAl構造体を得た。攪拌はテフロン(登録商標)製の回転子を用いてスターラにて行った。ここで、電流密度はウレタン発泡体の見かけの面積で計算した値である。
 得られたAl多孔体の骨格部分をサンプル抽出し、骨格の延在方向に直角な断面で切断して観察した。断面は略三角形状をなしており、これは芯材としたウレタン発泡体の構造を反映したものである。
(ウレタンの分解除去)
 前記アルミニウム構造体を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を30分間印加した。溶融塩中にポリウレタンの分解反応による気泡が発生した。その後大気中で室温まで冷却した後、水洗して溶融塩を除去し、樹脂が除去されたアルミニウム多孔体を得た。このAl多孔体は連通気孔を有し、気孔率が芯材としたウレタン発泡体と同様に高いものであった。
 得られたアルミニウム多孔体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定したところ、Al純度は98.5質量%であった。またカーボン含有量をJIS-G1211の高周波誘導加熱炉燃焼-赤外線吸収法で測定したところ、1.4質量%であった。さらに表面を15kVの加速電圧でEDX分析した結果、酸素のピークはほとんど観測されず、アルミニウム多孔体の酸素量はEDXの検出限界(3.1質量%)以下であることが確認された。
(b)調厚工程
 ローラプレスを用いて、Al多孔体の厚みを0.4mmに調整した。
(c)充填工程
 LiCoO2(活物質):アセチレンブラック(導電助剤):PVDF(バインダ)を重量比で96:2:2の比率で配合し、配合物100重量部に対しNMP80重量部でスラリー化した。このスラリーを、ロール塗工法によりAl多孔体に充填し、表面に付着した余分なスラリーはブレードで除去した。
(d)乾燥工程
 活物質を充填したAl多孔体を120℃で60分乾燥し、活物質充填Al多孔体を作製した。
(e)圧縮工程
 その後、ロールプレスで圧縮成形することにより、いずれも、Al多孔体の厚みを0.2mmとした。
(2)実施例A2
 Al多孔体の調厚を、厚み0.6mmにし、圧縮成形後の厚みを0.5mmとした以外は実施例1と同様にして正極を作製した。
(3)実施例A3
 Al多孔体の調厚を、厚み0.9mmにし、活物質充填Al多孔体の圧縮成形後の厚みを、0.5mmとした以外は実施例1と同様にして正極を作製した。
2.容量の測定
(1)測定方法
 実施例A1~A3の活物質充填量に基づいて充填容量を算出した。
(2)測定結果
 測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、Al多孔体の厚さを調整するだけで種々の容量の電極を作製することができることが確認できた。
(実施例B)
(1)Al多孔体の作製
 厚さ1.4mm、気孔率97%、セル径約450μmのポリウレタンフォームを用いて幅1m、長さ100mのAl多孔体を作製した。
(2)充填プロセス
 上記長尺のAl多孔体を用いて、以下の充填プロセスを連続して行った。
(a)調厚工程
 ローラプレスを用いて、Al多孔体の厚みを1.2mmに調厚した。
(b)充填工程
 LiCoO2、アセチレンブラック、PVDFを88:6:6の重量比で配合し、配合物100重量部に対しNMP80重量部でスラリー化した。このスラリーをロールコート法によりAl多孔体に充填し、表面に付着した余分のスラリーはブレードで除去した。
(c)乾燥工程
 活物質を充填したAl多孔体を120℃で60分乾燥し、活物質充填Al多孔体を作製した。
(d)圧縮工程
 その後、ロールプレスで圧縮成形することにより、Al多孔体の厚みを0.8mmとした後、幅48mm、長さ180mmで切断し、充填容量が12mAh/cm2の電極を得た。
 本実施例により、長尺のAl多孔体に活物質を連続的に充填した後、切断することにより、所定の充填容量のリチウム二次電池用電極が低コストで製造できることが確認できた。
[2]電池パック
 以下においては、Al多孔体を用いて製造された正負の電極を積層した角型の積層電池セルを組み合わせた電池パックを作製し、従来の円筒型電池を組み合わせた電池パックとの比較を行った。
1.正極の作製
 実施例A1に示した方法と同様の方法を用いて厚さ5mmのAl多孔体を作製した。次に、LiNiMnO(LiNi1/2Mn3/24)(正極活物質):アセチレンブラック(導電助剤):PVDF(バインダ)を重量比で90:5:5の比率で配合し、配合物100重量部に対しNMP(溶媒)80重量部でスラリー化した。Al多孔体にこのスラリーを充填し、乾燥後に厚さ3.4mmにプレスした。次に10×10cmの大きさに切断後、タブリードを溶接して面積容量密度100mAh/cm2の正極を作製した。
2.負極の作製
 実施例A1に示した方法と同様の方法を用いて厚さ4mmのAl多孔体を作製した。次に、LTO(チタン酸リチウム:Li4Ti512)(負極活物質):アセチレンブラック(導電助剤):PVDF(バインダ)を重量比で90:5:5の比率で配合し、配合物100重量部に対しNMP(溶媒)80重量部でスラリー化した。Al多孔体にこのスラリーを充填し、乾燥後に厚さ2.7mmにプレスした。次に10×10cmの大きさに切断後、タブリードを溶接して面積容量密度120mAh/cm2の負極を作製した。
3.電池セルの作製
 上記で作製された正負極をそれぞれ10枚用意し、不織布セパレータを挟んで交互に積層した。電解液にLiPF6を1mol/Lの濃度でEC:DEC=1:1の溶媒に溶解させた溶液400ccを用い、アルミラミネートで封止して角型の積層電池セル(厚さ61mm)を作製した。作製したセルの電圧は3.2V、容量は100Ahであった。
4.電池パックの作製
 次に、作製したセルを4個直列に接続し、12V-100Ahの電池パックを作製した。この電池パックの体積は2.9Lであり、体積エネルギー密度は414Wh/Lであった。
5.従来の電池パックとの比較
 一般的に、18650タイプの円筒型電池を用いた車載用のリチウム二次電池パックのエネルギー密度は200~250Wh/Lと公表されており、本実施例の電池パックの場合、電池パックとして最大2倍近い体積エネルギー密度が得られ、同じ電圧および容量で電池パックを作製した場合には、体積を最大51%低減できることが分かった。
 以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。
1          発泡樹脂成形体
2          アルミニウム(Al)めっき層
3          アルミニウム(Al)多孔体
4          リード
11         前駆体
12、22      電極本体部分
21、31      リチウム二次電池用電極
32         集電体
33         正極合剤層
60         全固体リチウム二次電池
61         正極
62         負極
63         固体電解質層(SE層)
64         正極層
65         正極集電体
66         負極層
67         負極集電体
121、146    正極
122、147    負極
123、142    セパレータ
124        押え板
125        バネ
126        押圧部材
127、145    ケース
128        正極端子
129        負極端子
130、144    リード線
141        分極性電極
143        有機電解液

Claims (5)

  1.  連通気孔を有するアルミニウム多孔体を圧縮して所定の厚さに調整する調厚工程と、
     調厚された前記アルミニウム多孔体に活物質を充填する充填工程と
    を備えていることを特徴とする電気化学素子用電極の製造方法。
  2.  前記充填工程の後に、前記活物質が充填された前記アルミニウム多孔体を所定の長さ寸法に切断する切断工程を備えていることを特徴とする請求項1に記載の電気化学素子用電極の製造方法。
  3.  前記調厚工程は、ローラプレスにより前記アルミニウム多孔体の厚さを調整することを特徴とする請求項1または請求項2に記載の電気化学素子用電極の製造方法。
  4.  前記活物質が充填された前記アルミニウム多孔体を乾燥させる乾燥工程と、
     乾燥させた前記アルミニウム多孔体を圧縮する圧縮工程と
    を、前記切断工程の前に配置したことを特徴とする請求項1ないし請求項3のいずれか1項に記載の電気化学素子用電極の製造方法。
  5.  前記アルミニウム多孔体が、15kVの加速電圧でのEDX分析により定量した表面の酸素量が3.1質量%以下のアルミニウム多孔体であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の電気化学素子用電極の製造方法。
PCT/JP2012/053652 2011-02-18 2012-02-16 電気化学素子用電極の製造方法 WO2012111747A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280008970.5A CN103443987B (zh) 2011-02-18 2012-02-16 电化学元件用电极的制造方法
KR1020137021060A KR20140051132A (ko) 2011-02-18 2012-02-16 전기 화학 소자용 전극의 제조 방법
DE112012000905T DE112012000905T5 (de) 2011-02-18 2012-02-16 Verfahren zum Herstellen einer Elektrode für ein elektrochemisches Element
US13/557,442 US8528375B2 (en) 2011-02-18 2012-07-25 Method for producing electrode for electrochemical element
US13/969,098 US9484570B2 (en) 2011-02-18 2013-08-16 Method for producing electrode for electrochemical element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011033416 2011-02-18
JP2011-033416 2011-02-18
JP2011112800 2011-05-19
JP2011-112800 2011-05-19
JP2012-005607 2012-01-13
JP2012005607A JP2012256582A (ja) 2011-02-18 2012-01-13 電気化学素子用電極の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/557,442 Continuation US8528375B2 (en) 2011-02-18 2012-07-25 Method for producing electrode for electrochemical element

Publications (1)

Publication Number Publication Date
WO2012111747A1 true WO2012111747A1 (ja) 2012-08-23

Family

ID=46672659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053652 WO2012111747A1 (ja) 2011-02-18 2012-02-16 電気化学素子用電極の製造方法

Country Status (6)

Country Link
US (2) US8528375B2 (ja)
JP (1) JP2012256582A (ja)
KR (1) KR20140051132A (ja)
CN (1) CN103443987B (ja)
DE (1) DE112012000905T5 (ja)
WO (1) WO2012111747A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944572B2 (ja) * 2012-04-18 2016-07-05 エルジー・ケム・リミテッド 二次電池用電極及びそれを含む二次電池
US10170747B2 (en) * 2013-06-14 2019-01-01 Ford Global Technologies, Llc Treated current collector foil
JP2017041462A (ja) * 2014-01-14 2017-02-23 住友電気工業株式会社 アルミニウム多孔体、蓄電デバイス用電極および蓄電デバイス
US20160343519A1 (en) * 2014-01-31 2016-11-24 Sumitomo Electric Industries, Ltd. Conductive resin molded body, structure, aluminum porous body, method for producing aluminum porous body, current collector, electrode, non-aqueous electric double layer capacitor, and lithium ion capacitor
KR101753341B1 (ko) 2015-04-15 2017-07-03 주식회사 리튬플러스 리튬 이차 전지의 제조 방법
KR20170139533A (ko) * 2015-04-24 2017-12-19 스미토모덴키고교가부시키가이샤 복합 재료 및 그의 제조 방법
JP6583337B2 (ja) * 2017-03-30 2019-10-02 トヨタ自動車株式会社 電極の製造方法
KR102125965B1 (ko) * 2018-12-06 2020-06-23 삼화콘덴서공업 주식회사 하이브리드 커패시터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143510A (ja) * 1995-11-14 1997-06-03 Kataoka Tokushu Kogyo Kk 電池電極基板用金属繊維多孔体、電池電極板およびその製造方法
JP2001155739A (ja) * 1999-11-24 2001-06-08 Nissha Printing Co Ltd 二次電池用正極および二次電池
JP2005285629A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 非水電解質電池
JP2009176517A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用不織布状ニッケルクロム集電体及びそれを用いた電極
JP2009176516A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用発泡状ニッケルクロム集電体及びそれを用いた電極

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404824A (en) * 1942-02-10 1946-07-30 Mallory & Co Inc P R Electrolytic condenser and electrode therefor
US2584980A (en) * 1948-05-29 1952-02-12 Joseph B Brennan Electrode and method of making same
US2582744A (en) * 1948-08-03 1952-01-15 Joseph B Brennan Method of making compact metal strip and electrode produced therefrom
US2965513A (en) * 1953-01-30 1960-12-20 Helen E Brennan Formation of metal strip under controlled pressure
US3197382A (en) * 1960-08-11 1965-07-27 Sylvania Electric Prod Internally strengthened flat fuel plate
US3184840A (en) * 1962-08-01 1965-05-25 Texas Instruments Inc Methods of making variegated stock
US3475811A (en) * 1966-12-29 1969-11-04 Texas Instruments Inc Clad metal
US4887349A (en) * 1987-07-30 1989-12-19 Sanyo Electric Co., Ltd. Method and apparatus for manufacturing electrode for battery
JP3191394B2 (ja) * 1992-04-10 2001-07-23 松下電器産業株式会社 非水二次電池とその負極板の製造法
JP2639620B2 (ja) * 1993-10-13 1997-08-13 古河電池株式会社 水素吸蔵合金電極の製造方法
DE4342039A1 (de) * 1993-12-09 1995-06-14 Varta Batterie Elektrochemisches Sekundärelement
JP3509031B2 (ja) * 1993-12-10 2004-03-22 片山特殊工業株式会社 リード付き金属多孔体の製造方法及び該方法により製造されたリード付き金属多孔体
US5564064A (en) * 1995-02-03 1996-10-08 Mcdonnell Douglas Corporation Integral porous-core metal bodies and in situ method of manufacture thereof
US5795680A (en) * 1995-11-30 1998-08-18 Asahi Glass Company Ltd. Non-aqueous electrolyte type secondary battery
JP3508604B2 (ja) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 高強度スポンジ状焼成金属複合板の製造方法
JP4623786B2 (ja) 1999-11-10 2011-02-02 住友電気工業株式会社 非水二次電池
NL1014116C2 (nl) * 2000-01-19 2001-07-20 Corus Aluminium Walzprod Gmbh Werkwijze en inrichting voor het vormen van een laminaat van gecomprimeerd metaalpoeder met een schuimmiddel tussen twee metaallagen, en daarmee gevormd produkt.
EP1128455A1 (en) * 2000-02-22 2001-08-29 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode plates for batteries
JP4590868B2 (ja) * 2003-02-12 2010-12-01 株式会社デンソー 積層型圧電体素子及びその製造方法
US20070002525A1 (en) * 2003-08-27 2007-01-04 Showa Denko K.K. Sheet for capacitor electrodes, method and apparatus for manufacturing the same, and electrolytic capacitors
JP4608871B2 (ja) * 2003-11-20 2011-01-12 Tdk株式会社 電気化学キャパシタ用電極及びその製造方法、並びに電気化学キャパシタ及びその製造方法
CN1277466C (zh) * 2004-12-16 2006-10-04 中国科学院武汉植物园 冬凌草种苗的快速繁殖方法
BRPI0809342A2 (pt) * 2007-03-26 2014-10-07 Gillette Co Eletrodos de bateria e baterias incluindo os referidos eletrodos
JP2010009905A (ja) * 2008-06-26 2010-01-14 Sumitomo Electric Ind Ltd リチウム系二次電池用正極の集電体並びにそれを備えた正極及び電池
JP5389391B2 (ja) * 2008-07-31 2014-01-15 出光興産株式会社 リチウム電池用電極材料シート、固体リチウム電池、及び、固体リチウム電池を備えた装置
CA2801023A1 (en) * 2010-05-31 2011-12-08 Nobuhiro Ota Three-dimensional net-like aluminum porous body, electrode using the aluminum porous body, nonaqueous electrolyte battery using the electrode, and nonaqueous electrolyte capacitorusing the electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143510A (ja) * 1995-11-14 1997-06-03 Kataoka Tokushu Kogyo Kk 電池電極基板用金属繊維多孔体、電池電極板およびその製造方法
JP2001155739A (ja) * 1999-11-24 2001-06-08 Nissha Printing Co Ltd 二次電池用正極および二次電池
JP2005285629A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 非水電解質電池
JP2009176517A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用不織布状ニッケルクロム集電体及びそれを用いた電極
JP2009176516A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用発泡状ニッケルクロム集電体及びそれを用いた電極

Also Published As

Publication number Publication date
US9484570B2 (en) 2016-11-01
CN103443987B (zh) 2016-02-03
CN103443987A (zh) 2013-12-11
JP2012256582A (ja) 2012-12-27
DE112012000905T5 (de) 2013-11-14
US20130008217A1 (en) 2013-01-10
US8528375B2 (en) 2013-09-10
US20130333209A1 (en) 2013-12-19
KR20140051132A (ko) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2012111738A1 (ja) 電気化学素子
WO2012111612A1 (ja) 電気化学デバイス
WO2012111613A1 (ja) 電気化学デバイス用電極およびその製造方法
WO2012111601A1 (ja) 三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた電極、該電極を用いた非水電解質電池、非水電解液を用いたキャパシタ及びリチウムイオンキャパシタ
WO2012111605A1 (ja) 集電体用三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた集電体及び該集電体を用いた電極並びに該電極を用いた非水電解質電池、キャパシタ及びリチウムイオンキャパシタ
US9484570B2 (en) Method for producing electrode for electrochemical element
JP5883288B2 (ja) 集電体用三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた集電体、電極、非水電解質電池、キャパシタ及びリチウムイオンキャパシタ
WO2012111707A1 (ja) 電気化学素子用電極とその製造方法
WO2012111608A1 (ja) 三次元網状アルミニウム多孔体を用いた集電体及び該集電体を用いた電極並びに該電極を用いた非水電解質電池、非水電解液を用いたキャパシタ及びリチウムイオンキャパシタ並びに電極の製造方法
WO2012111659A1 (ja) 集電体用三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた電極、非水電解質電池、キャパシタ及びリチウムイオンキャパシタ
WO2012111667A1 (ja) 三次元網状アルミニウム多孔体及び該アルミニウム多孔体を用いた電極並びに該電極を用いた非水電解質電池、非水電解液を用いたキャパシタ及びリチウムイオンキャパシタ
WO2012111736A1 (ja) 電気化学素子用電極の製造方法
WO2012111663A1 (ja) 三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた集電体及び電極並びに該電極を用いた非水電解質電池、非水電解液を用いたキャパシタ及びリチウムイオンキャパシタ
JP5876839B2 (ja) 集電体用三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた集電体、電極、非水電解質電池、キャパシタ及びリチウムイオンキャパシタ
JP2012256583A (ja) 電気化学素子用電極の製造方法
WO2012111746A1 (ja) 電気化学素子用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021060

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120009053

Country of ref document: DE

Ref document number: 112012000905

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747846

Country of ref document: EP

Kind code of ref document: A1