WO2012111448A1 - 鋳造用鋳型、Cu-Ga合金スラブ、スパッタリングターゲット、およびCu-Ga合金スラブの製造方法 - Google Patents

鋳造用鋳型、Cu-Ga合金スラブ、スパッタリングターゲット、およびCu-Ga合金スラブの製造方法 Download PDF

Info

Publication number
WO2012111448A1
WO2012111448A1 PCT/JP2012/052418 JP2012052418W WO2012111448A1 WO 2012111448 A1 WO2012111448 A1 WO 2012111448A1 JP 2012052418 W JP2012052418 W JP 2012052418W WO 2012111448 A1 WO2012111448 A1 WO 2012111448A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
mold body
alloy
casting
opening
Prior art date
Application number
PCT/JP2012/052418
Other languages
English (en)
French (fr)
Inventor
山下 和貴
尚也 佐藤
俊昭 熊谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012111448A1 publication Critical patent/WO2012111448A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture

Definitions

  • the present invention relates to a casting mold, a Cu—Ga alloy slab, a sputtering target, and a method for producing a Cu—Ga alloy slab used when a Cu—Ga alloy slab is produced by a melt casting method.
  • a Cu—Ga alloy having a relatively large composition ratio of Ga (gallium) is mainly used as a sputtering target for forming a thin film of a light absorption layer constituting a thin film solar cell.
  • a sputtering target is a cuboid-shaped alloy ingot manufactured by a melt casting method (for example, 300 mm ⁇ 400 mm ⁇ 1000 mm), cut into several pieces using a lathe or a circular saw, and cut alloy pieces. Manufactured by rolling and cutting (slab).
  • Patent Document 1 discloses a method for producing a Cu—Ga alloy slab for a sputtering target by a melt casting method.
  • Patent Document 1 only a relatively small size Cu—Ga alloy slab can be manufactured.
  • the technique disclosed in Patent Document 1 has extremely low productivity because a mold that matches the desired size of the Cu—Ga alloy slab must be prepared each time.
  • the Cu—Ga alloy slab manufactured by this method has a low relative density of 95% or less and a high oxygen content of several thousand ppm when processed into a sputtering target. There are problems of abnormal discharge and contamination by oxides.
  • the Cu—Ga alloy slab is manufactured by a melt casting method.
  • Cu—Ga alloy having a relatively large Ga composition ratio has poor ductility and malleability, has high hardness, and is easily cracked (brittle). Therefore, cracks may occur in the Cu—Ga alloy slab manufactured by the melt casting method. In order to commercialize such a cracked Cu—Ga alloy slab, for example, the cracked portion must be cut and removed. Moreover, since impurities are mixed into the generated cutting waste by cutting, it cannot be reused as a raw material for the sputtering target. Therefore, a large amount of cutting waste that cannot be reused is generated, and the yield of Cu—Ga alloy slab products is deteriorated.
  • Non-Patent Document 1 as a method for suppressing the occurrence of cracks when a copper alloy casting is produced by a melt casting method, a method of reducing stress sources due to a change in mold shape, and each part of the casting is uniformly cooled.
  • a method of reducing the temperature gradient to relieve stress a method of providing a heat generating material, a heat insulating material, and the like in a hot metal part such as the upper part of the mold are disclosed.
  • Non-Patent Document 1 since a Cu—Ga alloy having a relatively large Ga composition ratio is a brittle material with high hardness, it is disclosed in Non-Patent Document 1 as a countermeasure against cracking when a Cu—Ga alloy slab is manufactured by a melt casting method. Even when the technology described above is applied, it has been difficult to produce a large-sized Cu—Ga alloy slab while sufficiently suppressing the occurrence of cracks.
  • An object of the present invention is to provide a method for producing a Cu—Ga alloy slab capable of producing a large Cu—Ga alloy slab while suppressing the occurrence of cracks.
  • Another object of the present invention is to provide a casting mold used in carrying out the method, a Cu—Ga alloy slab produced by a melt casting method using the casting mold, and a sputtering target. That is.
  • the present invention provides a casting mold used when a Cu-Ga alloy slab is produced by a melt casting method.
  • a mold body having an opening formed in a bottomed cylindrical shape and forming an opening to which a molten Cu-Ga alloy is supplied;
  • a guide portion provided in the opening of the mold body, for guiding the molten Cu—Ga alloy supplied toward the opening into the mold body while reducing the kinetic energy of the molten metal.
  • the guide portion is an inclined surface through which a molten Cu—Ga alloy supplied toward the opening of the mold body flows, and the opening of the mold body Including an inclined member formed with an inclined surface extending toward the inside of the mold body so as to approach the bottom surface of the mold body, A molten Cu—Ga alloy that has flowed along the inclined surface of the inclined member is disposed between the tip of the inclined member closest to the bottom surface of the mold body and the inner peripheral surface of the mold body. It is preferable that a gap for pouring is formed in the mold body.
  • the mold body is formed in a rectangular tube shape having a rectangular opening.
  • the inclined surface of the inclined member is preferably formed to extend closer to the bottom surface of the mold body as it goes inward from one short side of the opening of the mold body.
  • the guide portion is A first inclined member formed with an inclined surface extending toward the bottom surface of the mold body as it goes inward from the opening of the mold body; A second inclined member provided opposite to the first inclined member in a direction parallel to the bottom surface of the mold body, and approaches the bottom surface of the mold body as it goes inward from the opening of the mold body.
  • a second inclined member formed with an inclined surface extending so as to The first inclined member and the second inclined member are displaced in a direction parallel to the bottom surface of the mold main body, with their respective distal end portions closest to the bottom surface of the mold main body not contacting each other. It is preferable that they are arranged so as to be in different positions.
  • the first inclined member and the second inclined member have respective tip portions located on the same plane parallel to the bottom surface of the mold body, and It is preferable to arrange so that a gap is formed therebetween.
  • the first inclined member and the second inclined member may be configured such that the gap formed between the tip portions is located at the center of the opening of the mold body. It is preferable that they are arranged as described above.
  • the mold body is formed in a rectangular tube shape having a rectangular opening.
  • each inclined surface approaches the bottom surface of the mold body as it goes inward from each of two opposing short sides in the opening of the mold body. It is preferable to be formed so as to extend.
  • the casting mold of the present invention in the outer peripheral surface of the mold body, there is a pouring in the mold body in a predetermined region on the lower side in the normal direction where the bottom surface is formed with respect to the normal direction of the bottom surface of the mold body. It is preferable to provide a cooling suppression member that suppresses excessive cooling of the molten Cu—Ga alloy.
  • the length of the cooling suppression member in the normal direction is preferably 1 ⁇ 4 or more than the length of the mold body in the normal direction.
  • the maximum temperature (° C.) of the mold body is 22% or more and 62% or less of the temperature of the molten Cu—Ga alloy (° C.) before being poured into the mold body. It is preferable that the cooling suppression member is configured to be adjustable.
  • the present invention is a Cu-Ga alloy slab produced by a melt casting method using the casting mold, A Cu—Ga alloy slab having a Ga composition ratio of 10 at% or more and 50 at% or less.
  • the present invention also provides a sputtering target made of a Cu-Ga alloy, A sputtering target produced using the Cu—Ga alloy slab.
  • the present invention also provides a method for producing a Cu-Ga alloy slab, Charging copper (Cu) and gallium (Ga) in a crucible and reducing the pressure to 10 ⁇ 1 Torr or less; Under this pressure, the temperature is raised to a temperature of 800 ° C. to 1100 ° C. at a temperature raising rate of 5 to 20 ° C./min, and then kept at that temperature for 30 minutes to 12 hours, and the pressure is reduced to 8 ⁇ 10 ⁇ 4 Torr or less.
  • the Cu—Ga alloy is subjected to 450 ° C. or more and less than 700 ° C. for 1 hour to 12 hours under atmospheric pressure. It is preferable to further include the step of heating for the following time.
  • the casting mold of the present invention is a mold used when a Cu—Ga alloy slab is produced by a melt casting method.
  • the casting mold includes a mold body and a guide part.
  • the mold body is formed in a bottomed cylindrical shape and has an opening to which a molten Cu—Ga alloy is supplied.
  • the guide portion is provided in the opening of the mold body, and guides and pours the molten Cu—Ga alloy supplied toward the opening into the mold body while reducing the kinetic energy of the melt.
  • the molten Cu—Ga alloy is directed toward the guide portion provided in the opening of the mold body. Will be supplied. That is, when a Cu—Ga alloy slab is produced by the melt casting method using the casting mold of the present invention, the molten Cu—Ga alloy is poured directly into the mold body from the opening. Instead, the molten metal is poured into the mold body with the kinetic energy reduced by the guide. Thereby, since the convection of the molten metal when poured into the mold body can be suppressed, the molten metal can be uniformly solidified in the mold body. Therefore, a large Cu—Ga alloy slab can be manufactured while suppressing the occurrence of cracks.
  • the guide portion includes an inclined member.
  • the inclined member has an inclined surface extending so as to approach the bottom surface of the mold body as it goes inward from the opening of the mold body.
  • a molten Cu—Ga alloy that has flowed along the inclined surface of the inclined member is formed between the tip of the inclined member closest to the bottom surface of the mold main body and the inner peripheral surface of the mold main body.
  • a gap for pouring is formed inside.
  • the Cu—Ga alloy melt is an inclined member in the guide portion provided in the opening of the mold body. It will be supplied toward the inclined surface.
  • the Cu—Ga alloy melt supplied to the inclined surface of the inclined member flows along the inclined surface and reaches the tip. Then, the molten Cu—Ga alloy that has reached the tip portion is poured into the mold body along the inner peripheral surface of the mold body from the gap formed between the tip portion and the inner peripheral surface of the mold body. It gets hot.
  • the molten Cu—Ga alloy is poured into the mold body directly from the opening. Instead of flowing along the inclined surface of the inclined member, the mold is formed along the inner peripheral surface of the mold body from the gap formed between the tip and the inner peripheral surface of the mold body. Since the molten metal is poured into the main body, the kinetic energy of the molten metal when poured into the mold body can be reduced, and at the same time, it collides with the inner peripheral surface (especially the bottom surface) of the mold body during pouring. It is possible to prevent the molten metal from scattering.
  • the convection of the molten metal when poured into the mold body can be suppressed and the molten metal can be prevented from being scattered, so that the molten metal can be uniformly solidified in the mold body. Therefore, a large Cu—Ga alloy slab can be manufactured while suppressing the occurrence of cracks and internal defects.
  • the mold body is formed in a rectangular tube shape having a rectangular opening.
  • the inclined surface of the inclined member is preferably formed so as to extend closer to the bottom surface of the mold body as it goes inward from one short side of the opening of the mold body.
  • the guide portion includes a first inclined member and a second inclined member.
  • the first inclined member has an inclined surface extending so as to approach the bottom surface of the mold body as it goes inward from the opening of the mold body.
  • the second inclined member is provided to face the first inclined member in a direction parallel to the bottom surface of the mold body.
  • the second inclined member is formed with an inclined surface that extends closer to the bottom surface of the mold body as it goes inward from the opening of the mold body.
  • the 1st inclination member and the 2nd inclination member are the positions where each front-end
  • the Cu—Ga alloy molten metal is provided in the first inclined member provided in the opening of the mold body or It will be supplied toward the inclined surface of the second inclined member.
  • the molten Cu—Ga alloy supplied to the inclined surface of the first inclined member or the second inclined member flows along the inclined surface and reaches the tip. Since the first inclined member and the second inclined member are arranged so that the respective distal end portions are shifted in a direction parallel to the bottom surface of the mold body without contacting the inclined surfaces of each other, The molten Cu—Ga alloy that has reached the tip is poured into the mold body.
  • the molten Cu—Ga alloy is poured into the mold body directly from the opening. Rather than being flown, it flows along the inclined surface of the first inclined member or the second inclined member and is poured into the mold body from the tip portion. The kinetic energy can be reduced. Thereby, since the convection of the molten metal when poured into the mold body can be suppressed, the molten metal can be uniformly solidified in the mold body. Therefore, a large Cu—Ga alloy slab can be manufactured while suppressing the occurrence of cracks.
  • the first inclined member and the second inclined member have their tip portions located on the same plane parallel to the bottom surface of the mold body, and a gap is formed between the tip portions. It is preferable to arrange as described above. As a result, the Cu—Ga alloy melt supplied to the inclined surface of the first inclined member or the second inclined member flows along the inclined surface, and the respective front end portions of the first inclined member and the second inclined member. Since the molten metal is poured into the mold body through the gap formed between them, the kinetic energy of the molten metal when poured into the mold body can be reduced.
  • the first inclined member and the second inclined member are arranged such that the gap formed between the respective front end portions is located at the center of the opening of the mold body. Is preferred.
  • the molten Cu—Ga alloy supplied to the inclined surface of the first inclined member or the second inclined member flows along the inclined surface, and from the gap located at the center of the opening of the mold body, the mold body. Since the molten metal is poured into the mold body, the kinetic energy of the molten metal when poured into the mold body can be reduced.
  • the mold body is formed in a rectangular tube shape having a rectangular opening.
  • each inclined surface extends so as to approach the bottom surface of the mold body as it goes inward from each of the two short sides facing each other in the opening of the mold body. It is preferable to be formed as follows. Thereby, since the length of each inclined surface of the first inclined member and the second inclined member can be sufficiently secured, the controllability of the flow rate of the molten metal flowing along the inclined surface can be improved. it can. Therefore, it is possible to improve the controllability regarding the decrease in the kinetic energy of the molten metal when poured into the mold body.
  • Cu—Ga poured into the mold body is provided in a predetermined region on the lower side in the normal direction where the bottom surface is formed with respect to the normal direction of the bottom surface of the mold body on the outer peripheral surface of the mold body. It is preferable to provide a cooling suppression member that suppresses excessive cooling of the molten alloy. As a result, the molten metal that has flowed along the inclined surface of the first inclined member or the second inclined member and poured into the mold body from the tip can be prevented from being rapidly cooled. The molten metal can be uniformly solidified in the mold body.
  • the length of the cooling suppression member in the normal direction is preferably 1 ⁇ 4 or more than the length of the mold body in the normal direction. Accordingly, it is possible to more reliably prevent the molten metal that has flowed along the inclined surface of the first inclined member or the second inclined member and poured into the mold body from the tip portion from being rapidly cooled. it can.
  • the maximum temperature (° C.) of the mold body can be adjusted to 22% or more and 62% or less of the temperature (° C.) of the molten Cu—Ga alloy before being poured into the mold body.
  • the cooling suppression member is preferably configured. Accordingly, the molten metal poured into the mold body can be prevented from being rapidly cooled, and the molten metal can be uniformly and efficiently solidified in the mold body.
  • the Cu—Ga alloy slab preferably has a Ga composition ratio of 10 at% or more and 50 at% or less. Since a Cu—Ga alloy having a relatively large Ga composition ratio is a brittle material with high hardness, there is a risk of cracks occurring when a Cu—Ga alloy slab is produced by a melt casting method.
  • the Cu—Ga alloy slab of the present invention is produced by a melt casting method using a casting mold capable of reducing the kinetic energy of the molten metal when poured into the mold body. Therefore, the generation of cracks is suppressed.
  • the sputtering target is produced using the Cu—Ga alloy slab of the present invention in which the generation of cracks is suppressed.
  • the sputtering target of this invention can be used suitably as a sputtering target for thin film formation of the light absorption layer which comprises a thin film type solar cell, for example.
  • the method for producing a Cu—Ga alloy slab first, copper (Cu) and gallium (Ga) are charged in a crucible and the pressure is reduced to 10 ⁇ 1 Torr or less. Next, the under pressure, temperature was raised to a temperature of 800 ° C.-1100 ° C. at a rate 5 ⁇ 20 ° C. / min temperature increase, while held at that temperature for 30 minutes to 12 hours, 8 ⁇ 10 -4 Torr or less To obtain a molten Cu—Ga alloy in the crucible. Next, the molten metal in the crucible is cast using the casting mold of the present invention.
  • the molten metal is supplied toward the guide part of the casting mold, so that the molten metal is poured into the mold body and cast.
  • the Cu—Ga alloy cast in the mold body is cooled to room temperature, the Cu—Ga alloy is taken out of the mold body to obtain a Cu—Ga alloy slab.
  • the molten Cu—Ga alloy is not poured directly into the mold body from the opening, but the kinetic energy is generated by the guide.
  • the molten metal is poured into the mold body in a reduced state. Therefore, since the convection of the molten metal when poured into the mold body can be suppressed, the molten metal can be uniformly solidified in the mold body. Therefore, a large Cu—Ga alloy slab can be manufactured while suppressing the occurrence of cracks.
  • the Cu—Ga alloy is subjected to 450 ° C. or more and less than 700 ° C. under atmospheric pressure for 1 hour or more and 12 hours or less. It is preferable to heat for this time.
  • the Cu—Ga alloy slab obtained by solidifying the molten metal in the mold body the segregation of Ga in Cu is suppressed and the stress generated in the Cu—Ga alloy slab is released. be able to.
  • FIG. 1st Embodiment of this invention It is a perspective view which shows the structure of the casting mold 100 which is 1st Embodiment of this invention.
  • 2 is a cross-sectional view showing a configuration of a casting mold 100.
  • FIG. It is a perspective view which shows the structure of the casting mold 200 which is 2nd Embodiment of this invention.
  • 3 is a cross-sectional view showing a configuration of a casting mold 200.
  • FIG. 1 is a perspective view showing a configuration of a casting mold 100 according to the first embodiment of the present invention.
  • one side wall of the mold body 1 is omitted so that the internal structure of the casting mold 100 can be easily understood.
  • FIG. 2 is a cross-sectional view showing the configuration of the casting mold 100.
  • the casting mold 100 of the present embodiment is a mold used when a Cu—Ga alloy slab is produced by a melt casting method.
  • Examples of the material constituting the casting mold 100 include sand, metal, ceramics, graphite (carbon), and the like. Among these, considering that it does not become a metal contamination source in the Cu—Ga alloy, sand, ceramics, graphite and the like are preferable, graphite is particularly preferable in terms of high heat capacity and thermal conductivity, and high cooling efficiency.
  • the casting mold 100 includes the mold body 1, the guide portion 100 ⁇ / b> A, and the cooling suppression member 3.
  • the guide part 100A reduces the kinetic energy of the molten Cu—Ga alloy supplied toward the opening 11 of the mold body 1 into the mold body 1. If it is comprised so that it may guide and pour, it will not specifically limit.
  • Such a guide portion 100A prevents the molten Cu—Ga alloy supplied toward the opening 11 of the mold body 1 from being poured directly into the mold body 1 from the opening 11. It is configured.
  • the guide part 100A is a supply part to which the molten Cu—Ga alloy is directly supplied, and a part of the peripheral part is connected to the opening part 11, and another part of the peripheral part is provided. Is a member having a supply portion that becomes a free end inside the opening 11.
  • a supply surface that is a surface to which a molten Cu—Ga alloy is directly supplied in the supply portion may be formed in, for example, a step shape, or may be inclined in a planar shape. It may be formed as an inclined surface.
  • the guide portion 100A includes the inclined member 2 whose supply surface is an inclined surface.
  • the mold body 1 accommodates a molten Cu—Ga alloy.
  • the mold body 1 is formed in a bottomed rectangular tube shape, and the opening 11 facing the bottom surface 12 is rectangular.
  • the opening 11 is an opening through which a molten Cu—Ga alloy is supplied.
  • the length X of the inner peripheral surface of the mold body 1 in the direction parallel to the long side of the opening 11 (hereinafter referred to as “long side direction”), that is, the length of the long side of the opening 11 on the inner peripheral surface of the mold body 1
  • the length (hereinafter referred to as “long-side inner diameter”) is X1
  • the length of the short side of the opening 11 on the inner peripheral surface of 1 (hereinafter referred to as “short side inner diameter”) is Y1
  • the direction parallel to the normal of the bottom surface 12 of the inner peripheral surface of the mold body 1 (hereinafter referred to as “method”).
  • the size of the mold body 1 is preferably an opening.
  • 11 has a long side inner diameter X1 of 100 mm or more and 1000 mm or less, and a short side inner diameter Y1 of the opening 11 is 20. m or more 1000mm or less, the height internal diameter Z1 of the mold body 1 is 20mm or more 1000mm or less.
  • the long side inner diameter X1 of the opening 11 is 150 mm or more and 800 mm or less
  • the short side inner diameter Y1 of the opening 11 is 30 mm or more and 150 mm or less
  • the height inner diameter Z1 of the mold body 1 is 50 mm or more and 900 mm or less.
  • the long side inner diameter X1 of the opening 11 is 200 mm to 500 mm
  • the short side inner diameter Y1 of the opening 11 is 40 mm to 100 mm
  • the height inner diameter Z1 of the mold body 1 is 100 mm to 800 mm.
  • the relationship between the long side inner diameter X1 of the opening 11 and the short side inner diameter Y1 of the opening 11 is preferably X1> Y1.
  • the productivity of the Cu—Ga alloy slab is lowered, and the molten Cu—Ga alloy is rapidly cooled, which may cause brittle cracks.
  • the size of the mold body 1 becomes too large, not only will stress build up inside the Cu—Ga alloy slab after casting and cause brittle cracks, but the final solidification position of the molten Cu—Ga alloy It becomes the central part, causing internal defects.
  • the length ratio between the long side inner diameter X1 of the opening 11 and the short side inner diameter Y1 of the opening 11 is such that Y1: X1 is 1: 2 ⁇ It is preferably 1:15. More preferably, Y1: X1 is 1: 3 to 1:10.
  • the value of X1 in this “Y1: X1” is small, the solidification form in the mold body 1 of the molten Cu—Ga alloy changes, and stress accumulates in the central part in the normal direction Z, which causes brittle cracking. Moreover, segregation may occur even when slow cooling is performed in order to reduce stress generation.
  • the inner volume of the mold body 1 is determined based on conditions such as the specific heat, density, and thermal conductivity of the material constituting the casting mold 100, the casting temperature at the time of casting, and the adjustment temperature of the mold body 1 by the cooling suppression member 3 described later. What is necessary is just to select suitably in light of conditions, such as.
  • the inclined member 2 extends from one short side of the opening 11 of the mold body 1 toward the inside of the long side direction X, and is inclined so as to approach the bottom surface 12 of the mold body 1 toward the inside. It has a surface 21. Then, Cu—Ga that has flowed along the inclined surface 21 of the inclined member 2 between the tip portion 22 closest to the bottom surface 12 of the mold body 1 in the inclined member 2 and the inner peripheral surface of the mold body 1. A gap G serving as an opening through which molten alloy is poured into the mold body 1 is formed.
  • the shape of the inclined member 2 is not particularly limited, and it can be mentioned that the shape when viewed from the short side direction Y of the opening 11 of the mold body 1 is a triangle, a trapezoid, a rectangle or the like.
  • the inclined member 2 is disposed at a position where a sufficient amount of the molten Cu—Ga alloy poured into the mold body 1 can be secured, that is, the Cu—Ga alloy slab after casting is desired.
  • the position is not particularly limited as long as it has a size.
  • the inclined member 2 is positioned so that the position of the lowermost part of the inclined member 2 is more than 1 ⁇ 2 from the lowermost part of the mold body 1. It is preferably arranged, more preferably arranged to be located at a location of 3/5 or more, particularly preferably arranged to be located at a location of 2/3 or more. If the lowermost part of the inclined member 2 is disposed on the lower side in the mold body 1, the obtained Cu—Ga alloy slab becomes smaller than the inner volume of the mold body 1. It is preferable that it is arranged as high as possible in the interior of 1.
  • the inclined member provided with the molten Cu—Ga alloy in the opening 11 of the mold body 1. 2 is supplied toward the second inclined surface 21.
  • the Cu—Ga alloy melt supplied to the inclined surface 21 of the inclined member 2 flows along the inclined surface 21 and reaches the tip 22.
  • the molten Cu—Ga alloy that has reached the tip portion 22 extends along the inner peripheral surface of the mold body 1 from the gap G formed between the tip portion 22 and the inner peripheral surface of the mold body 1.
  • the molten metal is poured into the mold body 1.
  • the inclined surface 21 of the inclined member 2 is provided so as to continue from one short side of the opening 11 of the mold body 1 toward the inside of the long side direction X, and the tip 22 and the mold body. Since the gap G is formed between the inner peripheral surface of the mold body 1 and the molten Cu—Ga alloy poured into the mold body 1 from the gap G, 11 is poured along the inner peripheral surface including the other short side. As a result, the contact area of the molten Cu—Ga alloy poured along the inner peripheral surface of the mold body 1 with the inner peripheral surface of the mold body 1 can be reduced. It is possible to prevent the molten Cu—Ga alloy from being rapidly cooled. Therefore, it is possible to prevent the surface of the Cu—Ga alloy slab obtained after casting from becoming rough.
  • the molten Cu—Ga alloy is directly cast from the opening 11 as described above. Instead of pouring into the mold body 1, it flows along the inclined surface 21 of the inclined member 2, and from the gap G formed between the tip 22 and the inner peripheral surface of the mold body 1, the mold body 1. Since the molten metal is poured into the mold main body 1 along the inner peripheral surface of the mold, the kinetic energy of the molten metal when poured into the mold main body 1 can be reduced and the mold main body 1 at the time of pouring can be reduced. It is possible to prevent the molten metal from scattering due to collision with the inner peripheral surface (particularly the bottom surface 12).
  • the convection of the molten metal when poured into the mold body 1 can be suppressed and the molten metal can be prevented from being scattered, the molten metal can be uniformly solidified in the mold body 1. Therefore, a large Cu—Ga alloy slab can be manufactured while suppressing the occurrence of cracks and internal defects.
  • the inclination angle ⁇ which is an angle formed between the inclined surface 21 of the inclined member 2 and the bottom surface 12 of the mold body 1, is preferably 10 ° or more and 70 ° or less, and more preferably 15 ° or more and 60 ° or less. Particularly preferably, the angle is 20 ° or more and 40 ° or less.
  • the inclination angle ⁇ is too small, the flow rate when the molten Cu—Ga alloy flows through the inclined surface 21 becomes too slow, and the solidification of the molten Cu—Ga alloy occurs at the beginning and end of casting. As a result, the Cu-Ga alloy slab after casting is not only cracked, but also the Cu-Ga alloy melt is solidified on the inclined surface 21, and solidification in the mold body 1 is caused.
  • the area of the gap G formed between the tip 22 of the inclined member 2 and the inner peripheral surface of the mold body 1 is preferably 500 mm 2 or more and 3000 mm 2 or less, more preferably 600 mm 2 or more, 2100 mm 2 or less. If the area of the gap G is too small, the Cu—Ga alloy melt that has flowed along the inclined surface 21 cannot be poured smoothly into the mold body 1, and Cu— The Ga alloy melt is solidified, causing a problem that solidification in the mold body 1 does not occur. If the area of the gap G is too large, convection of the molten Cu—Ga alloy poured into the mold body 1 will occur strongly, and cracks will occur in the Cu—Ga alloy slab after casting. End up.
  • the length X2 in the long side direction X when the inclined member 2 is viewed from the normal direction Z may be set as appropriate depending on the inclination angle ⁇ of the inclined surface 21 and the area of the gap G described above.
  • the casting mold 100 of this embodiment includes the cooling suppression member 3.
  • the cooling suppression member 3 is provided on the outer peripheral surface of the mold body 1 so as to cover a predetermined region below the normal direction Z where the bottom surface 12 is formed with respect to the normal direction Z of the bottom surface 12 of the mold body 1.
  • the cooling suppression member 3 suppresses excessive cooling of the molten Cu—Ga alloy poured into the mold body 1. As a result, it flows along the inclined surface 21 of the inclined member 2 and extends along the inner peripheral surface of the mold body 1 from the gap G formed between the tip 22 and the inner peripheral surface of the mold body 1. Since the molten metal poured into the mold body 1 can be prevented from being rapidly cooled, the molten metal can be uniformly solidified in the mold body 1.
  • the cooling suppressing member 3 is not particularly limited as long as it exhibits at least one of the heat retaining effect and the heating effect on the lower part of the mold body 1.
  • a heat retaining material that exhibits the heat retaining effect examples thereof include glass wool and crecafert that are used as heat insulating materials, and aramid fiber sheets that are used as refractory materials.
  • heating materials that exhibit a heating effect include pipe heaters.
  • the length Z3 in the normal direction Z of the cooling suppression member 3 (height of the cooling suppression member 3) Z3 is the length in the normal direction Z of the mold body 1 (height of the mold body 1) Z2. It is preferably 1/4 or more and 3/4 or less, more preferably 3/10 or more and 2/3 or less, and particularly preferably 2/5 or more and 3/5 or less. As a result, it flows along the inclined surface 21 of the inclined member 2 and extends along the inner peripheral surface of the mold body 1 from the gap G formed between the tip 22 and the inner peripheral surface of the mold body 1. Thus, the molten metal poured into the mold body 1 can be more reliably prevented from being rapidly cooled.
  • the maximum temperature (° C.) on the lower side of the mold body 1 is preferably 22% to 62% of the temperature of the molten Cu—Ga alloy (casting temperature, ° C.) before being poured into the mold body 1.
  • the cooling suppressing member 3 is configured to be adjustable below, more preferably 25% to 50%. When the adjustment temperature of the mold body 1 by the cooling suppression member 3 is too low, there is no effect of heat retention or heating on the lower side region of the mold body 1, and the temperature gradient increases in the normal direction Z of the mold body 1. Cracks are likely to occur in the cast Cu—Ga alloy slab.
  • FIG. 3 is a perspective view showing a configuration of a casting mold 200 according to the second embodiment of the present invention.
  • one side wall of the mold body 1 is omitted so that the internal structure of the casting mold 200 can be easily understood.
  • FIG. 4 is a cross-sectional view showing the configuration of the casting mold 200.
  • the casting mold 200 is similar to the casting mold 100 of the first embodiment described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the casting mold 200 is configured to guide the molten metal of Cu—Ga alloy supplied toward the opening 11 of the mold body 1 into the mold body 1 while reducing the kinetic energy of the molten metal and pouring the molten metal.
  • the configuration is the same as that of the casting mold 100 except that the configuration is different from the guide portion 100A described above.
  • the guide part 100A of the casting mold 100 is constituted by one inclined member 2
  • the guide part 200A of the casting mold 200 is constituted by a first inclined member 201 and a second inclined member 202. .
  • the first inclined member 201 extends from one short side of the opening 11 of the mold body 1 inward in the long side direction X, and inclines so as to approach the bottom surface 12 of the mold body 1 as it goes inward.
  • the first inclined surface 2011 is an inclined surface.
  • the second inclined member 202 is provided to face the first inclined member 201 in the long side direction X (direction parallel to the bottom surface 12).
  • the second inclined member 202 extends inward in the long side direction X from the other short side of the opening 11 of the mold body 1 so as to approach the bottom surface 12 of the mold body 1 as it goes inward. It has the 2nd inclined surface 2021 which is an inclined inclined surface.
  • the first tip portion 2012 that is the tip portion of the first inclined member 201 (the portion closest to the bottom surface 12 of the mold body 1) is not in contact with the second inclined surface 2021 that is the inclined surface of the second inclined member 202.
  • the second tip 2022 which is the tip of the second inclined member 202 (the portion closest to the bottom surface 12 of the mold body 1) contacts the first inclined surface 2011 which is the inclined surface of the first inclined member 201.
  • the 1st inclination member 201 and the 2nd inclination member 202 are the positions which the 1st front-end
  • first inclined member 201 and the second inclined member 202 are such that the first tip portion 2012 and the second tip portion 2022 are located on the same plane parallel to the bottom surface 12 of the mold body 1.
  • a gap G ⁇ b> 1 is formed between the first tip portion 2012 and the second tip portion 2022 at the central portion in the long side direction X of the opening 11 of the mold body 1.
  • the shape of the 1st inclination member 201 and the 2nd inclination member 202 is not specifically limited,
  • template main body 1 is a triangle, trapezoid, a rectangle, etc. Can be mentioned.
  • the arrangement positions of the first inclined member 201 and the second inclined member 202 are positions where a sufficient amount of the Cu—Ga alloy molten metal poured into the mold body 1 can be secured, that is, after casting. There is no particular limitation as long as the Cu-Ga alloy slab has a desired size.
  • the height inner diameter Z1 of the mold body 1 is “1”
  • the first inclined member 201 and the second inclined member 202 are positioned at the lowermost positions of the first inclined member 201 and the second inclined member 202, respectively. It is preferably arranged so as to be located at a place of 1/2 or more from the lowermost part of the mold body 1, more preferably arranged to be located at a place of 3/5 or more, particularly preferably 2/3 or more.
  • the alloy slab is disposed as high as possible in the mold body 1.
  • a molten Cu—Ga alloy is provided in the opening 11 of the mold body 1. It is supplied toward the first inclined surface 2011 that is the inclined surface of the inclined member 201. A part of the molten Cu—Ga alloy supplied to the first inclined surface 2011 of the first inclined member 201 flows along the first inclined surface 2011, and the remainder flows from the first inclined surface 2011 to the second inclined surface. After splashing on the second inclined surface 2021 of the member 202, it flows along the second inclined surface 2021. The molten metal that flows along the first inclined surface 2011 reaches the first tip portion 2012, and the molten metal that flows along the second inclined surface 2021 reaches the second tip portion 2022. The molten metal that has reached the first tip portion 2012 and the second tip portion 2022 is poured into the mold body 1.
  • the molten Cu—Ga alloy is directly cast from the opening 11 as described above. Instead of being poured into the interior, it flows along the first inclined surface 2011 and the second inclined surface 2021, and at the central portion in the long side direction X of the opening 11 of the mold body 1, the first tip portion 2012. Since the molten metal is poured into the mold body 1 from the gap G1 formed between the first tip 2022 and the second tip 2022, the kinetic energy of the molten metal when poured into the mold body 1 can be reduced.
  • first inclined angle ⁇ 1 that is an angle formed between the first inclined surface 2011 of the first inclined member 201 and the bottom surface 12 of the mold body 1, and the second inclined surface 2021 of the second inclined member 202 and the mold body 1
  • the second inclination angle ⁇ 2 that is an angle formed with the bottom surface 12 is preferably 10 ° or more and 70 ° or less, more preferably 15 ° or more and 60 ° or less, and particularly preferably 20 ° or more and 40 ° or less. .
  • first inclined angle ⁇ 1 of the first inclined surface 2011 and the second inclined angle ⁇ 2 of the second inclined surface 2021 may be the same, May be different.
  • the area of G1 is preferably 500 mm 2 or more and 3000 mm 2 or less, more preferably 600 mm 2 or more and 2100 mm 2 or less.
  • the area of the gap G1 is too narrow, the molten Cu—Ga alloy that has flowed along the first inclined surface 2011 and the second inclined surface 2021 cannot be poured smoothly into the mold body 1.
  • the Cu—Ga alloy melt is solidified on the first inclined surface 2011 and the second inclined surface 2021, thereby causing a problem that solidification does not occur in the mold body 1.
  • the area of the gap G1 is too large, convection of the molten Cu—Ga alloy poured into the mold body 1 is strongly generated, and cracks are generated in the Cu—Ga alloy slab after casting. End up.
  • X4 may be appropriately set according to the first inclination angle ⁇ 1 of the first inclined surface 2011, the second inclination angle ⁇ 2 of the second inclined surface 2021, the area of the gap G1, and the like.
  • FIG. 5 is a cross-sectional view showing a configuration of a casting mold 300 according to the third embodiment of the present invention.
  • the casting mold 300 is similar to the casting mold 200 of the second embodiment described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the casting mold 300 has a guide part 300A for guiding the molten metal of Cu—Ga alloy supplied toward the opening 11 of the mold body 1 into the mold body 1 while reducing the kinetic energy of the molten metal.
  • the first inclined member 301 and the second inclined member 302 are configured in the same manner as the casting mold 200 except that the first inclined member 201 and the second inclined member 302 are different from the first inclined member 201 and the second inclined member 202 in the guide portion 200A described above. .
  • the first inclined member 301 provided in the casting mold 300 extends inward from one short side of the opening 11 of the mold body 1 and is inclined so as to approach the bottom surface 12 of the mold body 1 as it goes inward.
  • the first inclined surface 3011 is an inclined surface.
  • the second inclined member 302 included in the casting mold 300 is provided to face the first inclined member 301 in the long side direction X.
  • the second inclined member 302 is an inclined surface that extends inward from the other short side of the opening 11 of the mold body 1 and is inclined so as to approach the bottom surface 12 of the mold body 1 as it goes inward.
  • a second inclined surface 3021 is provided.
  • the first tip portion 3012 that is the tip portion of the first inclined member 301 (the portion closest to the bottom surface 12 of the mold body 1) is not in contact with the second inclined surface 3021 that is the inclined surface of the second inclined member 302.
  • the second tip portion 3022 that is the tip portion of the second inclined member 302 contacts the first inclined surface 3011 that is the inclined surface of the first inclined member 301.
  • the first inclined member 301 and the second inclined member 302 are positions where the first tip portion 3012 and the second tip portion 3022 are displaced in a direction parallel to the bottom surface 12 of the mold body 1 (long side direction X). It arrange
  • the first inclined member 201 and the second inclined member 202 are such that the first tip portion 2012 and the second tip portion 2022 are located on the same plane parallel to the bottom surface 12 of the mold body 1.
  • the first inclined member 301 and the second inclined member 302 are the same plane in which the first tip portion 3012 and the second tip portion 3022 are parallel to the bottom surface 12.
  • the first tip portion 3012 is not located above and is located above the second tip portion 3022 in the normal direction Z. Further, when the casting mold 300 is viewed from the normal direction Z, there is no portion where the first inclined member 301 and the second inclined member 302 overlap.
  • a molten Cu—Ga alloy is provided in the opening 11 of the mold body 1. It is supplied toward the first inclined surface 3011 that is the inclined surface of the inclined member 301. A part of the molten Cu—Ga alloy supplied to the first inclined surface 3011 of the first inclined member 301 flows along the first inclined surface 3011, and the remaining part from the first inclined surface 3011 to the second inclined surface 3011. After scattering on the second inclined surface 3021 of the member 302, it flows along the second inclined surface 3021.
  • the molten metal that flows along the first inclined surface 3011 reaches the first tip portion 3012, and the molten metal that flows along the second inclined surface 3021 reaches the second tip portion 3022.
  • the molten metal reaching the first tip portion 3012 and the second tip portion 3022 is poured into the mold body 1.
  • the molten Cu—Ga alloy is directly cast from the opening 11 as described above. Instead of pouring into the mold body, it flows along the first inclined surface 3011 and the second inclined surface 3021 and is poured into the mold body 1 from the first tip portion 3012 and the second tip portion 3022. Therefore, the kinetic energy of the molten metal when poured into the mold body 1 can be reduced. Thereby, since the convection of the molten metal when poured into the mold main body 1 can be suppressed, the molten metal can be uniformly solidified in the mold main body 1. Therefore, a large Cu—Ga alloy slab can be manufactured while suppressing the occurrence of cracks.
  • FIG. 6 is a cross-sectional view showing a configuration of a casting mold 400 according to the fourth embodiment of the present invention.
  • the casting mold 400 is similar to the casting mold 200 of the second embodiment described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the casting mold 400 is a guide 400A that guides the molten Cu—Ga alloy supplied toward the opening 11 of the mold body 1 into the mold body 1 while reducing the kinetic energy of the molten metal and pouring the molten metal.
  • the first inclined member 401 and the second inclined member 402 are configured in the same manner as the casting mold 200 except that the first inclined member 201 and the second inclined member 402 are different from the first inclined member 201 and the second inclined member 202 in the guide portion 200A described above. .
  • the first inclined member 401 provided in the casting mold 400 extends inwardly from one short side of the opening 11 of the mold body 1 and inclines so as to approach the bottom surface 12 of the mold body 1 as it goes inward.
  • the first inclined surface 4011 is an inclined surface.
  • the second inclined member 402 included in the casting mold 400 is provided to face the first inclined member 401 in the long side direction X.
  • the second inclined member 402 is an inclined surface that extends inward from the other short side of the opening 11 of the mold body 1 and is inclined so as to approach the bottom surface 12 of the mold body 1 as it goes inward.
  • a second inclined surface 4021 is provided.
  • the first tip portion 4012 that is the tip portion of the first inclined member 401 (the portion closest to the bottom surface 12 of the mold body 1) is not in contact with the second inclined surface 4021 that is the inclined surface of the second inclined member 402.
  • the second tip portion 4022 that is the tip portion of the second inclined member 402 (the portion closest to the bottom surface 12 of the mold body 1) contacts the first inclined surface 4011 that is the inclined surface of the first inclined member 401.
  • the 1st inclination member 401 and the 2nd inclination member 402 are the positions where the 1st front-end
  • the first inclined member 201 and the second inclined member 202 are such that the first tip portion 2012 and the second tip portion 2022 are located on the same plane parallel to the bottom surface 12 of the mold body 1.
  • the first inclined member 401 and the second inclined member 402 are the same plane in which the first tip portion 4012 and the second tip portion 4022 are parallel to the bottom surface 12.
  • the first tip 4012 is not located above and is located above the second tip 4022 in the normal direction Z. Further, when the casting mold 400 is viewed from the normal direction Z, there is a portion where the first inclined member 401 and the second inclined member 402 overlap.
  • a molten Cu—Ga alloy is provided in the opening 11 of the mold body 1. It is supplied toward the first inclined surface 4011 that is the inclined surface of the inclined member 401. A part of the molten Cu—Ga alloy supplied to the first inclined surface 4011 of the first inclined member 401 flows along the first inclined surface 4011, and the remaining part from the first inclined surface 4011 to the second inclined surface. After splashing on the second inclined surface 4021 of the member 402, it flows along the second inclined surface 4021. The molten metal that flows along the first inclined surface 4011 reaches the first tip 4012, drops from the second inclined surface 4021, and flows along the second inclined surface 4021. The molten metal flowing along the second inclined surface 4021 reaches the second tip portion 4022. Then, the molten metal that has reached the second tip portion 4022 is poured into the mold body 1.
  • the molten Cu—Ga alloy is directly cast from the opening 11 as described above. Instead of pouring into the mold body, it flows along the first inclined surface 4011 and the second inclined surface 4021 and is poured into the mold main body 1 from the second tip portion 4022, so that the inside of the mold main body 1 It is possible to reduce the kinetic energy of the molten metal when it is poured. Thereby, since the convection of the molten metal when poured into the mold main body 1 can be suppressed, the molten metal can be uniformly solidified in the mold main body 1. Therefore, a large Cu—Ga alloy slab can be manufactured while suppressing the occurrence of cracks.
  • the Cu—Ga alloy slab of the present embodiment is made of a Cu—Ga alloy produced by a melt casting method.
  • the composition ratio of Ga in the Cu—Ga alloy is not particularly limited, but is preferably 10 at% or more and 50 at% or less, more preferably 20 at% or more and 40 at% or less.
  • “at%” represents an atomic percentage, and means the number of atoms of a specific element (Ga) when the total number of atoms of the Cu—Ga alloy is 100. Treat as a synonym.
  • Ga concentration When the Ga concentration is low, Ga solid solution occurs in Cu, so there is little cracking. If the Ga concentration is too high, the solid solution limit is exceeded, so an intermetallic compound is formed, cracking is increased, and segregation is likely to occur during casting.
  • a Cu—Ga alloy having a relatively large Ga composition ratio is a brittle material with high hardness, and thus there is a risk of cracking when a Cu—Ga alloy slab is produced by a melt casting method.
  • the Cu—Ga alloy slab of this embodiment can reduce the kinetic energy of the molten metal when poured into the mold body 1, and can reduce the kinetic energy of the casting 100, 200, 300, of this embodiment. Since 400 was produced by the melt casting method, the generation of cracks was suppressed.
  • the sputtering target of this embodiment is manufactured using the Cu—Ga alloy slab of this embodiment.
  • Common methods such as wire electric discharge machining, electric discharge machining, laser machining, diamond cutting with a grinding machine, cutting, water jet machining, wire saw, blade saw, etc., are used to process a Cu—Ga alloy slab into a sputtering target. Can be adopted.
  • wire electric discharge machining, electric discharge machining, laser machining, wire saw, water jet machining, etc. are preferable, wire electric discharge machining, A wire saw is more preferable, and wire electric discharge machining is particularly preferable.
  • wire wire When processing a Cu—Ga alloy slab into a sputtering target by wire electric discharge machining, it is preferable to use a wire wire of 0.1 mm or more and 0.4 mm or less, more preferably 0.2 mm or more and 0.4 mm or less.
  • the cutting speed (working speed) in wire electric discharge machining is preferably 0.1 mm / min or more and 8 mm / min or less, more preferably 0.1 mm / min or more and 3 mm / min or less. If the thickness of the wire is too thin, it will cause the wire to break during processing, and if the processing speed is too slow, it will lead to a decrease in productivity, and if it is too fast, it will cause cracking.
  • the sputtering target of this embodiment is manufactured using the Cu—Ga alloy slab of this embodiment in which cracks are suppressed, for example, a sputtering target for forming a thin film of a light absorption layer constituting a thin film type solar cell. Can be suitably used.
  • Method for producing Cu-Ga alloy slab In the method for producing a Cu—Ga alloy slab of this embodiment, first, necessary amounts of copper (Cu) and gallium (Ga) are charged into a crucible. The amount charged in this case may be appropriately selected depending on the crucible size, the casting mold size, or the number of casting molds. Thereafter, the inside of the chamber in which the crucible is put is depressurized to 10 ⁇ 1 Torr or less.
  • the temperature was raised to a temperature of 800 ° C. to 1100 ° C. at a temperature rising rate of 5 to 20 ° C./min, preferably 7 to 18 ° C./min. Warm up. If the rate of temperature increase is too fast, bumping may occur, and if the rate of temperature increase is too slow, productivity will decrease.
  • the holding temperature (casting temperature) after the temperature rise varies depending on the melting point of the alloy composition, the casting mold material, volume, specific heat, density, and the like. For example, when the melting point of the alloy composition is 850 ° C., the holding temperature (casting temperature) after the temperature rise is preferably 900 ° C.
  • the temperature is preferably maintained for 30 minutes to 12 hours at the temperature after the temperature rise (casting temperature), more preferably 1 hour to 5 hours.
  • the mixture of Cu and Ga is made into an alloy liquid (molten metal). If the holding time is too short, the alloy may not be completely mixed, or the gas remaining in the alloy liquid may not be completely removed, which may cause bumping in the subsequent higher vacuum process. . Further, if the holding time is too long, the productivity is lowered, which is not preferable.
  • the pressure is reduced to 8 ⁇ 10 ⁇ 4 Torr or less, preferably 5 ⁇ 10 ⁇ 4 Torr at the casting temperature, and maintained for 30 minutes or more and 12 hours or less, preferably 1 hour or more and 5 hours or less.
  • the reason for reducing the pressure to a high vacuum after raising the temperature to the casting temperature is that excessive pressure reduction before the temperature rise can cause bumping.
  • the pressure in the chamber at the time of casting is high, entrainment of gas into the Cu—Ga alloy slab after casting occurs, causing internal defects.
  • the holding time is short, the gas present in the molten metal cannot be removed, causing internal defects.
  • productivity is lowered, which is not preferable.
  • a molten Cu—Ga alloy is obtained in the crucible. Then, maintaining the temperature in the chamber to the casting temperature, while maintaining the pressure to a pressure below 8 ⁇ 10 -4 Torr, using a casting mold 100, 200, 300 and 400 of the present embodiment described above And casting the molten metal in the crucible. Specifically, the molten metal is directed toward the inclined surface 21 of the inclined member 2 of the casting mold 100 and the first inclined surfaces 2011, 3011, 4011 of the first inclined members 201, 301, 401 of the casting molds 200, 300, 400. As a result, the molten metal is poured into the mold body 1 and cast.
  • the Cu—Ga alloy taken out from the mold body 1 is preferably subjected to a heat treatment under atmospheric pressure or under vacuum (preferably under atmospheric pressure from the viewpoint of equipment and the like).
  • a heat treatment under atmospheric pressure or under vacuum (preferably under atmospheric pressure from the viewpoint of equipment and the like).
  • temperature at the time of heat processing it is 450 degreeC or more and less than 700 degreeC, More preferably, it is 500 degreeC or more and 600 degrees C or less.
  • the segregation of Ga in Cu is suppressed, and then the Cu—Ga alloy The stress generated inside can be released. If the temperature during the heat treatment is too low, the stress generated during solidification cannot be released, and if it is too high, segregation occurs.
  • the heat treatment time is preferably 1 hour or more and 12 hours or less, more preferably 2 hours or more and 8 hours or less.
  • the heat treatment time is too short, the internal stress of the Cu—Ga alloy cannot be released, and when it is too long, the productivity is lowered.
  • the molten Cu—Ga alloy is not poured directly into the mold body 1 from the opening 11 of the mold body 1.
  • the inclined surface 21 of the inclined member 2 the first inclined surfaces 2011, 3011 and 4011 of the first inclined members 201, 301 and 401, and the second inclined surfaces 2021, 3021 and 4021 of the second inclined members 202, 302 and 402, respectively.
  • the molten metal is poured into the mold body 1 from the tip part 22, the first tip parts 2012, 3012, 4012, and the second tip parts 2022, 3022, 4022.
  • the kinetic energy of the molten metal when pouring can be reduced.
  • Example 1 ⁇ Cast for casting> The casting mold shown in FIG. 1 was used as the casting mold.
  • ⁇ Material: High purity graphite (carbon) Mold body: The opening is formed in a rectangular bottomed rectangular tube shape, and the inner diameter of the opening is 250 mm on the inner peripheral surface of the mold body, and the inner diameter on the short side of the opening is 50 mm (the inner diameter of the opening). The ratio was such that the short side: long side 1: 5) and the mold body had a height inside diameter of 650 mm.
  • Inclined member An inclined member whose inclination angle is 30 ° and whose length in the long side direction parallel to the long side of the opening when viewed in plan is 230 mm was used.
  • Cooling suppression member A cooling suppression member (Klecafet) was provided on the outer peripheral surface of the mold body so as to cover the lower side where the bottom surface of the mold body was formed. The height of the cooling suppression member was set to 1/2 with respect to the height of the mold body. Moreover, the cooling suppression member was comprised so that the maximum attainment temperature (degreeC) of a casting_mold
  • the molten metal in the crucible was cast using the above casting mold while maintaining the temperature in the chamber at the casting temperature and the pressure at 2 ⁇ 10 ⁇ 4 Torr. Specifically, by supplying the molten metal toward the inclined surface of the inclined member of the casting mold, the molten metal is caused to flow along the inclined surface and formed between the tip portion and the inner peripheral surface of the mold body. From the gap, the molten metal was poured into the mold main body and cast along the inner peripheral surface of the mold main body (the inner peripheral surface including the short side of the opening). Next, after the Cu—Ga alloy cast in the mold body was naturally cooled to room temperature, the Cu—Ga alloy was taken out from the mold body and subjected to heat treatment at 500 ° C. for 2 hours using a hot air circulating furnace. Thereafter, the four sides of the outer periphery were cut to obtain a rectangular parallelepiped Cu—Ga alloy slab of 240 mm ⁇ 400 mm ⁇ 50 mm (t).
  • Example 2 ⁇ Cast for casting> As the casting mold, the casting mold shown in FIG. 3 was used.
  • ⁇ Material: High purity graphite (carbon) Mold body: The opening is formed in a rectangular bottomed rectangular tube shape, and the inner diameter of the opening is 250 mm on the inner peripheral surface of the mold body, and the inner diameter on the short side of the opening is 50 mm (the inner diameter of the opening). The ratio was such that the short side: long side 1: 5) and the mold body had a height inside diameter of 650 mm.
  • First inclined member A first inclined member having a first inclined angle of 30 ° and a length in the long side direction parallel to the long side of the opening when viewed in plan is 120 mm.
  • Second inclined member A second inclined member having a second inclined angle of 45 ° and a length in the long side direction parallel to the long side of the opening when viewed in plan is 100 mm.
  • -Gap The first inclined member and the second inclined member were arranged such that the first tip portion and the second tip portion were located on the same plane parallel to the bottom surface of the mold body. And the area of the gap
  • Cooling suppression member A cooling suppression member (Klecafet) was provided on the outer peripheral surface of the mold body so as to cover the lower side where the bottom surface of the mold body was formed.
  • the height of the cooling suppression member was set to 1/2 with respect to the height of the mold body.
  • the cooling suppression member was comprised so that the maximum attainment temperature (degreeC) of a casting_mold
  • the molten metal in the crucible was cast using the above casting mold while maintaining the temperature in the chamber at the casting temperature and the pressure at 2 ⁇ 10 ⁇ 4 Torr. Specifically, by supplying the molten metal toward the first inclined surface of the first inclined member of the casting mold, the molten metal is caused to flow along the first inclined surface and the second inclined surface, so that the inside of the mold body. The molten metal was poured into the casting. Next, after the Cu—Ga alloy cast in the mold body was naturally cooled to room temperature, the Cu—Ga alloy was taken out from the mold body and subjected to heat treatment at 500 ° C. for 2 hours using a hot air circulating furnace. Thereafter, the four sides of the outer periphery were cut to obtain a rectangular parallelepiped Cu—Ga alloy slab of 240 mm ⁇ 400 mm ⁇ 50 mm (t).
  • Example 2 As the casting mold, the inclined member is not arranged, and the cooling suppressing member made of a pipe heater can adjust the maximum temperature (° C.) of the mold body to 58.0% of the casting temperature (° C.).
  • Example 1 was used except that the casting mold configured as described above was used.
  • Example 4 As the casting mold, the same procedure as in Example 1 was used except that a casting mold in which no inclined member was arranged and no cooling suppression member was used was used. The maximum temperature (° C.) of the mold body when the molten metal was poured into the casting mold was 21.9% of the casting temperature (° C.).
  • Example 5 The casting mold in which the inclined member is not disposed as the casting mold, and the cooling suppression member (the cooling suppression member is 1/3 the height of the mold body) is disposed above the mold body.
  • Example 1 was used except that.
  • the obtained four slice plates were immersed in a dye penetrant flaw detector (manufactured by Taseto Co., Ltd.).
  • a dye penetrant flaw detection agent one capable of dyeing defects having a depth of 30 ⁇ m or more and a width of 1 ⁇ m or more was used.
  • the dyeing state of the four slice plates after immersion in the dye penetrant flaw detection agent was visually confirmed, and the number of cracks per 1000 cm 2 was evaluated. Further, the number of internal defects having a width dimension of 0.5 mm or more was visually evaluated on the surface (three surfaces) obtained by slicing the Cu—Ga alloy slab. The evaluation results are shown in Table 1.
  • the molten Cu—Ga alloy is used as the inclined surface of the inclined member or the first and second inclined surfaces of the first and second inclined members. It can be seen that a Cu—Ga alloy slab free from cracks and internal defects can be produced by casting along the mold and pouring into the mold body for casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

 本発明は、Cu-Ga合金スラブを溶解鋳造法により作製するときに用いる鋳造用鋳型を提供する。鋳造用鋳型(100)は、鋳型本体(1)、および傾斜部材(2)を含む。傾斜部材(2)は、鋳型本体(1)の開口部(11)から内方に向かうにつれて、鋳型本体(1)の底面(12)に近接するように延びる傾斜面(21)を有する。傾斜部材(2)の先端部(22)と鋳型本体(1)の内周面との間には、Cu-Ga合金の溶湯が鋳型本体(1)内に注湯される開口となる間隙Gが形成される。

Description

鋳造用鋳型、Cu-Ga合金スラブ、スパッタリングターゲット、およびCu-Ga合金スラブの製造方法
 本発明は、Cu-Ga合金スラブを溶解鋳造法により作製するときに用いる鋳造用鋳型、Cu-Ga合金スラブ、スパッタリングターゲット、およびCu-Ga合金スラブの製造方法に関する。
 Ga(ガリウム)の組成比が比較的大きいCu-Ga合金は、主に、薄膜型太陽電池を構成する光吸収層の薄膜形成用のスパッタリングターゲットとして用いられる。
 スパッタリングターゲットは、溶解鋳造法によって製造された直方体形状(例えば大きさが、300mm×400mm×1000mmである)の合金インゴットを、旋盤や丸鋸を用いて幾つかに切断し、切断された合金片(スラブ)を圧延、切削することにより製造される。
 例えば、特許文献1には、溶解鋳造法によって、スパッタリングターゲット用のCu-Ga合金スラブを製造する方法が開示されている。しかしながら、特許文献1に開示される技術では、比較的小さなサイズのCu-Ga合金スラブしか製造することができない。また、特許文献1に開示される技術では、所望するCu-Ga合金スラブの大きさに合わせたモールドをその都度用意しなければならないので、生産性が極めて低い。
 スパッタリングターゲット用のCu-Ga合金スラブを製造する他の方法としては、セラミックス等の成形と同様に、Cu-Ga合金粉末を焼結することによって所望の形状に成形する方法がある。しかしながら、この方法によって製造されたCu-Ga合金スラブは、スパッタリングターゲットに加工したときに、相対密度が95%以下と低密度であり、酸素含有率が数1000ppmと高いため、スパッタ成膜時の異常放電や酸化物による汚染の問題が伴う。
 そのため、スパッタリングターゲット作製時にCu-Ga合金スラブを用いる場合には、Cu-Ga合金スラブは一般的に溶解鋳造法によって製造されていることが望ましい。
 Gaの組成比が比較的大きいCu-Ga合金は、延性や展性が乏しく、硬度が高くて割れ易い(脆い)。そのため、溶解鋳造法により製造されたCu-Ga合金スラブには、ひび割れが発生している場合がある。このようなひび割れが発生したCu-Ga合金スラブを製品化するためには、例えばひび割れが発生した部分を切削して除去しなければならない。また、発生した切削屑には切削によって不純物が混入してしまうため、スパッタリングターゲットの原料として再利用することができない。そのため、再利用できない多量の切削屑が発生してCu-Ga合金スラブの製品の歩留まりが悪くなる。
 例えば、非特許文献1には、銅合金鋳物を溶解鋳造法により製造するときのひび割れの発生を抑制する方法として、鋳型形状の変更による応力発生源を少なくする方法、鋳物各部を一様に冷却して温度勾配を小さくして応力を緩和する方法、鋳型上部などの押し湯部に発熱材や保温材などを設ける方法などが開示されている。
特開2000-73163号公報
「銅合金鋳物の生産技術」、財団法人素形材センター、p.391~392
 しかしながら、Gaの組成比が比較的大きいCu-Ga合金は、硬度が高くて脆い材料であるので、Cu-Ga合金スラブを溶解鋳造法により製造するときのひび割れ対策として、非特許文献1に開示される技術を適用したとしても、大型のCu-Ga合金スラブを、ひび割れ発生を充分に抑制して製造することは困難であった。
 本発明の目的は、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができるCu-Ga合金スラブの製造方法を提供することである。また、本発明の他の目的は、該方法を実施する際に用いられる鋳造用鋳型、並びに該鋳造用鋳型を用いて溶解鋳造法により作製されたCu-Ga合金スラブ、およびスパッタリングターゲットを提供することである。
 本発明は、Cu-Ga合金スラブを溶解鋳造法により作製するときに用いる鋳造用鋳型において、
 有底筒状に形成され、Cu-Ga合金の溶湯が供給される開口を形成する開口部を有する鋳型本体と、
 前記鋳型本体の前記開口部に設けられ、前記開口部に向けて供給されたCu-Ga合金の溶湯を、該溶湯の運動エネルギーを減少させて前記鋳型本体内に案内して注湯させる案内部とを含む鋳造用鋳型である。
 また本発明の鋳造用鋳型において、前記案内部は、前記鋳型本体の前記開口部に向けて供給されたCu-Ga合金の溶湯が流過する傾斜面であって、前記鋳型本体の前記開口部から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びる傾斜面が形成される傾斜部材を含み、
 前記傾斜部材において前記鋳型本体の底面に最も近接する先端部と、前記鋳型本体の内周面との間には、前記傾斜部材の前記傾斜面に沿って流過したCu-Ga合金の溶湯が、前記鋳型本体内に注湯される間隙が形成されることが好ましい。
 また本発明の鋳造用鋳型において、前記鋳型本体は、前記開口部が長方形状の四角筒状に形成され、
 前記傾斜部材の前記傾斜面は、前記鋳型本体の前記開口部の一方の短辺から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びるように形成されることが好ましい。
 また本発明の鋳造用鋳型において、前記案内部は、
  前記鋳型本体の前記開口部から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びる傾斜面が形成される第1傾斜部材と、
  前記鋳型本体の底面に平行な方向に関して前記第1傾斜部材と対向して設けられる第2傾斜部材であって、前記鋳型本体の前記開口部から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びる傾斜面が形成される第2傾斜部材とを含み、
 前記第1傾斜部材と前記第2傾斜部材とは、前記鋳型本体の底面に最も近接したそれぞれの先端部が、互いの傾斜面に接触することなく、前記鋳型本体の底面に平行な方向にずれた位置となるように配置されることが好ましい。
 また本発明の鋳造用鋳型において、前記第1傾斜部材と前記第2傾斜部材とは、それぞれの先端部が、前記鋳型本体の底面に平行な同一平面上に位置し、それぞれの先端部同士の間に間隙が形成されるように配置されることが好ましい。
 また本発明の鋳造用鋳型において、前記第1傾斜部材と前記第2傾斜部材とは、それぞれの先端部同士の間に形成される前記間隙が、前記鋳型本体の前記開口部の中央に位置するように配置されることが好ましい。
 また本発明の鋳造用鋳型において、前記鋳型本体は、前記開口部が長方形状の四角筒状に形成され、
 前記第1傾斜部材および前記第2傾斜部材において、それぞれの傾斜面は、前記鋳型本体の前記開口部において対向する2つの短辺のそれぞれから内方に向かうにつれて、前記鋳型本体の底面に近接するように延びるように形成されることが好ましい。
 また本発明の鋳造用鋳型では、前記鋳型本体の外周面において、前記鋳型本体の底面の法線方向に関して底面が形成される法線方向下方側の所定領域には、前記鋳型本体内に注湯されたCu-Ga合金の溶湯が過度に冷却されるのを抑制する冷却抑制部材が設けられることが好ましい。
 また本発明の鋳造用鋳型では、前記冷却抑制部材の前記法線方向の長さは、前記鋳型本体の前記法線方向の長さに対して1/4以上であることが好ましい。
 また本発明の鋳造用鋳型では、前記鋳型本体の最高到達温度(℃)を、前記鋳型本体内に注湯される前のCu-Ga合金の溶湯の温度(℃)の22%以上62%以下に調整可能となるように、前記冷却抑制部材は構成されることが好ましい。
 また本発明は、前記鋳造用鋳型を用いて、溶解鋳造法により作製されたCu-Ga合金スラブであって、
 Gaの組成比が、10at%以上50at%以下であるCu-Ga合金スラブである。
 また本発明は、Cu-Ga合金からなるスパッタリングターゲットであって、
 前記Cu-Ga合金スラブを用いて作製されるスパッタリングターゲットである。
 また本発明は、Cu-Ga合金スラブを製造する方法であって、
 坩堝内に銅(Cu)およびガリウム(Ga)を仕込み、10-1Torr以下に減圧する工程と、
 その圧力下で、昇温速度5~20℃/分で800℃~1100℃の温度に昇温した後、その温度で30分間~12時間保持するとともに、8×10-4Torr以下まで減圧し、坩堝内においてCu-Ga合金の溶湯を得る工程と、
 前記鋳造用鋳型を用いて坩堝内の前記溶湯を鋳造する工程であって、前記案内部に向けて前記溶湯を供給することで、前記鋳型本体内に前記溶湯を注湯して鋳造する工程と、
 前記鋳型本体内で鋳造されたCu-Ga合金を室温まで冷却した後、前記鋳型本体からCu-Ga合金を取出して、Cu-Ga合金スラブを得る工程と、を含むCu-Ga合金スラブの製造方法である。
 また本発明のCu-Ga合金スラブの製造方法は、前記鋳型本体からCu-Ga合金を取出した後、そのCu-Ga合金を大気圧下、450℃以上700℃未満で、1時間以上12時間以下の時間、加熱する工程をさらに含むことが好ましい。
 本発明の鋳造用鋳型は、Cu-Ga合金スラブを溶解鋳造法により作製するときに用いる鋳型である。この鋳造用鋳型は、鋳型本体と、案内部とを含んで構成される。鋳型本体は、有底筒状に形成され、Cu-Ga合金の溶湯が供給される開口部を有する。案内部は、鋳型本体の開口部に設けられ、該開口部に向けて供給されたCu-Ga合金の溶湯を、該溶湯の運動エネルギーを減少させて鋳型本体内に案内して注湯させる。
 以上のように構成された鋳造用鋳型を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、鋳型本体の開口部に設けられる案内部に向けて供給されることになる。すなわち、本発明の鋳造用鋳型を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、開口部から直接的に鋳型本体内に注湯されるのではなく、案内部によって運動エネルギーが減少された状態で鋳型本体内に注湯される。これによって、鋳型本体内に注湯されるときの溶湯の対流を抑制することができるので、鋳型本体内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができる。
 また本発明によれば、案内部は、傾斜部材を含むことが好ましい。この傾斜部材は、鋳型本体の開口部から内方に向かうにつれて、鋳型本体の底面に近接するように延びる傾斜面が形成されている。そして、傾斜部材において鋳型本体の底面に最も近接する先端部と、鋳型本体の内周面との間には、傾斜部材の傾斜面に沿って流過したCu-Ga合金の溶湯が、鋳型本体内に注湯される間隙が形成される。
 以上のように構成された鋳造用鋳型を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、鋳型本体の開口部に設けられる案内部における傾斜部材の傾斜面に向けて供給されることになる。傾斜部材の傾斜面に供給されたCu-Ga合金の溶湯は、傾斜面に沿って流過して先端部に到達する。そして、先端部に到達したCu-Ga合金の溶湯は、先端部と鋳型本体の内周面との間に形成された間隙から、鋳型本体の内周面に沿うようにして鋳型本体内に注湯される。
 このような鋳造用鋳型を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、前述のように、Cu-Ga合金の溶湯が、開口部から直接的に鋳型本体内に注湯されるのではなく、傾斜部材の傾斜面に沿って流過して、先端部と鋳型本体の内周面との間に形成された間隙から、鋳型本体の内周面に沿うようにして鋳型本体内に注湯されるので、鋳型本体内に注湯されるときの溶湯の運動エネルギーを減少させることができるとともに、注湯時における鋳型本体の内周面(特に底面)に衝突することによる溶湯の飛散を防止することができる。これによって、鋳型本体内に注湯されるときの溶湯の対流を抑制し、溶湯の飛散を防止することができるので、鋳型本体内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生および内部欠陥の発生を抑制して製造することができる。
 また本発明によれば、鋳型本体は、開口部が長方形状の四角筒状に形成されることが好ましい。また、傾斜部材の傾斜面は、鋳型本体の開口部の一方の短辺から内方に向かうにつれて、鋳型本体の底面に近接するように延びるように形成されることが好ましい。これによって、傾斜部材の傾斜面の長さを充分に確保することができるので、傾斜面に沿って流過する溶湯の流過速度の制御性を向上することができる。そのため、鋳型本体内に注湯されるときの溶湯の運動エネルギーの減少に関する制御性を向上させることができる。
 また本発明によれば、案内部は、第1傾斜部材と第2傾斜部材とを含むことが好ましい。第1傾斜部材は、鋳型本体の開口部から内方に向かうにつれて、鋳型本体の底面に近接するように延びる傾斜面が形成される。第2傾斜部材は、鋳型本体の底面に平行な方向に関して第1傾斜部材と対向して設けられる。この第2傾斜部材は、鋳型本体の開口部から内方に向かうにつれて、鋳型本体の底面に近接するように延びる傾斜面が形成される。そして、第1傾斜部材と第2傾斜部材とは、鋳型本体の底面に最も近接したそれぞれの先端部が、互いの傾斜面に接触することなく、鋳型本体の底面に平行な方向にずれた位置となるように配置される。
 以上のように構成された鋳造用鋳型を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、鋳型本体の開口部に設けられる第1傾斜部材または第2傾斜部材の傾斜面に向けて供給されることになる。第1傾斜部材または第2傾斜部材の傾斜面に供給されたCu-Ga合金の溶湯は、傾斜面に沿って流過して先端部に到達する。第1傾斜部材と第2傾斜部材とは、それぞれの先端部が、互いの傾斜面に接触することなく、鋳型本体の底面に平行な方向にずれた位置となるように配置されているので、先端部に到達したCu-Ga合金の溶湯は、鋳型本体内に注湯される。
 このような鋳造用鋳型を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、前述のように、Cu-Ga合金の溶湯が、開口部から直接的に鋳型本体内に注湯されるのではなく、第1傾斜部材または第2傾斜部材の傾斜面に沿って流過して先端部から鋳型本体内に注湯されるので、鋳型本体内に注湯されるときの溶湯の運動エネルギーを減少させることができる。これによって、鋳型本体内に注湯されるときの溶湯の対流を抑制することができるので、鋳型本体内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができる。
 また本発明によれば、第1傾斜部材と第2傾斜部材とは、それぞれの先端部が、鋳型本体の底面に平行な同一平面上に位置し、それぞれの先端部同士の間に間隙が形成されるように配置されることが好ましい。これによって、第1傾斜部材または第2傾斜部材の傾斜面に供給されたCu-Ga合金の溶湯は、傾斜面に沿って流過し、第1傾斜部材および第2傾斜部材のそれぞれの先端部同士の間に形成された間隙から鋳型本体内に注湯されるので、鋳型本体内に注湯されるときの溶湯の運動エネルギーを減少させることができる。
 また本発明によれば、第1傾斜部材と第2傾斜部材とは、それぞれの先端部同士の間に形成される前記間隙が、鋳型本体の開口部の中央に位置するように配置されることが好ましい。これによって、第1傾斜部材または第2傾斜部材の傾斜面に供給されたCu-Ga合金の溶湯は、傾斜面に沿って流過し、鋳型本体の開口部の中央に位置する間隙から鋳型本体内に注湯されるので、鋳型本体内に注湯されるときの溶湯の運動エネルギーを減少させることができる。
 また本発明によれば、鋳型本体は、開口部が長方形状の四角筒状に形成されることが好ましい。また、第1傾斜部材および第2傾斜部材において、それぞれの傾斜面は、鋳型本体の開口部において対向する2つの短辺のそれぞれから内方に向かうにつれて、鋳型本体の底面に近接するように延びるように形成されることが好ましい。これによって、第1傾斜部材および第2傾斜部材の各傾斜面の長さを充分に確保することができるので、傾斜面に沿って流過する溶湯の流過速度の制御性を向上することができる。そのため、鋳型本体内に注湯されるときの溶湯の運動エネルギーの減少に関する制御性を向上させることができる。
 また本発明によれば、鋳型本体の外周面において、鋳型本体の底面の法線方向に関して底面が形成される法線方向下方側の所定領域には、鋳型本体内に注湯されたCu-Ga合金の溶湯が過度に冷却されるのを抑制する冷却抑制部材が設けられることが好ましい。これによって、第1傾斜部材または第2傾斜部材の傾斜面に沿って流過して先端部から鋳型本体内に注湯された溶湯が、急激に冷却されるのを防止することができるので、鋳型本体内において溶湯を一様に凝固させることができる。
 また本発明によれば、冷却抑制部材の前記法線方向の長さは、鋳型本体の前記法線方向の長さに対して1/4以上であることが好ましい。これによって、第1傾斜部材または第2傾斜部材の傾斜面に沿って流過して先端部から鋳型本体内に注湯された溶湯が、急激に冷却されるのをより確実に防止することができる。
 また本発明によれば、鋳型本体の最高到達温度(℃)を、鋳型本体内に注湯される前のCu-Ga合金の溶湯の温度(℃)の22%以上62%以下に調整可能となるように、冷却抑制部材は構成されることが好ましい。これによって、鋳型本体内に注湯された溶湯が、急激に冷却されるのを防止することができるとともに、鋳型本体内において溶湯を一様に効率よく凝固させることができる。
 また本発明によれば、Cu-Ga合金スラブは、Gaの組成比が10at%以上50at%以下であることが好ましい。Gaの組成比が比較的大きいCu-Ga合金は、硬度が高くて脆い材料であるので、Cu-Ga合金スラブを溶解鋳造法により製造するときにひび割れが発生する恐れがある。これに対して、本発明のCu-Ga合金スラブは、鋳型本体内に注湯されるときの溶湯の運動エネルギーを減少させることができる鋳造用鋳型を用いて、溶解鋳造法により作製されたものであるので、ひび割れ発生が抑制されたものである。
 また本発明によれば、スパッタリングターゲットは、ひび割れ発生が抑制された本発明のCu-Ga合金スラブを用いて作製される。これによって、本発明のスパッタリングターゲットは、例えば、薄膜型太陽電池を構成する光吸収層の薄膜形成用のスパッタリングターゲットとして好適に用いることができる。
 また本発明によれば、Cu-Ga合金スラブの製造方法は、まず、坩堝内に銅(Cu)およびガリウム(Ga)を仕込み、10-1Torr以下に減圧する。次に、その圧力下で、昇温速度5~20℃/分で800℃~1100℃の温度に昇温した後、その温度で30分間~12時間保持するとともに、8×10-4Torr以下まで減圧し、坩堝内においてCu-Ga合金の溶湯を得る。次に、坩堝内の前記溶湯を、本発明の鋳造用鋳型を用いて鋳造する。具体的には、鋳造用鋳型の案内部に向けて溶湯を供給することで、鋳型本体内に溶湯を注湯して鋳造する。次に、鋳型本体内で鋳造されたCu-Ga合金を室温まで冷却した後、鋳型本体からCu-Ga合金を取出して、Cu-Ga合金スラブを得る。
 本発明のCu-Ga合金スラブの製造方法では、前述のように、Cu-Ga合金の溶湯が、開口部から直接的に鋳型本体内に注湯されるのではなく、案内部によって運動エネルギーが減少された状態で鋳型本体内に注湯される。これによって、鋳型本体内に注湯されるときの溶湯の対流を抑制することができるので、鋳型本体内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができる。
 また本発明のCu-Ga合金スラブの製造方法では、鋳型本体からCu-Ga合金を取出した後、そのCu-Ga合金を大気圧下、450℃以上700℃未満で、1時間以上12時間以下の時間、加熱することが好ましい。これによって、鋳型本体内において溶湯が凝固されて得られたCu-Ga合金スラブにおいて、Cu中にGaが偏析するのを抑制した上で、Cu-Ga合金スラブの内部に発生した応力を解放することができる。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の第1実施形態である鋳造用鋳型100の構成を示す斜視図である。 鋳造用鋳型100の構成を示す断面図である。 本発明の第2実施形態である鋳造用鋳型200の構成を示す斜視図である。 鋳造用鋳型200の構成を示す断面図である。 本発明の第3実施形態である鋳造用鋳型300の構成を示す断面図である。 本発明の第4実施形態である鋳造用鋳型400の構成を示す断面図である。
 以下、図面を参考にして本発明の好適な実施例を詳細に説明する。
 (鋳造用鋳型)
 図1は、本発明の第1実施形態である鋳造用鋳型100の構成を示す斜視図である。図1では、鋳造用鋳型100の内部構造が容易に理解できるように、鋳型本体1の1つの側壁を省略して示している。図2は、鋳造用鋳型100の構成を示す断面図である。
 本実施形態の鋳造用鋳型100は、Cu-Ga合金スラブを溶解鋳造法により作製するときに用いる鋳型である。
 鋳造用鋳型100を構成する材料としては、砂、金属、セラミックス、黒鉛(カーボン)などを挙げることができる。これらの中でも、Cu-Ga合金中への金属汚染源にならないことを考慮すると、砂、セラミックス、黒鉛などが好ましく、熱容量および熱伝導率が高く、冷却効率が高いという点で、黒鉛が特に好ましい。
 鋳造用鋳型100は、鋳型本体1と、案内部100Aと、冷却抑制部材3とを含んで構成される。本実施形態の鋳造用鋳型100において、案内部100Aは、鋳型本体1の開口部11に向けて供給されたCu-Ga合金の溶湯を、該溶湯の運動エネルギーを減少させて鋳型本体1内に案内して注湯させるように構成されていれば特に限定されるものではない。このような案内部100Aは、鋳型本体1の開口部11に向けて供給されたCu-Ga合金の溶湯が、開口部11から直接的に鋳型本体1内に注湯されることがないように構成されている。具体的には、案内部100Aは、Cu-Ga合金の溶湯が直接的に供給されることになる供給部分であって、周縁部の一部分が開口部11に接続され、周縁部の他の一部分が開口部11の内方において遊端となる供給部分を有する部材である。
 前記案内部100Aは、前記供給部分においてCu-Ga合金の溶湯が直接的に供給される面となる供給面が、たとえば、階段状に形成されていてもよいし、平面状に傾斜して延びる傾斜面として形成されていてもよい。本実施形態では、前記案内部100Aは、前記供給面が傾斜面となる傾斜部材2からなる。
 鋳型本体1は、Cu-Ga合金の溶湯を収容するものであり、本実施形態では、有底四角筒状に形成され、底面12に対向する開口部11が長方形状となっている。この開口部11が、Cu-Ga合金の溶湯が供給される開口となる。
 鋳型本体1の内周面における開口部11の長辺に平行な方向(以下、「長辺方向」という)Xの長さ、すなわち鋳型本体1の内周面における開口部11の長辺の長さ(以下、「長辺内径」という)をX1、鋳型本体1の内周面における開口部11の短辺に平行な方向(以下、「短辺方向」という)Yの長さ、すなわち鋳型本体1の内周面における開口部11の短辺の長さ(以下、「短辺内径」という)をY1、鋳型本体1の内周面における底面12の法線に平行な方向(以下、「法線方向」という)Zの長さ、すなわち鋳型本体1の内周面における高さ(以下、「高さ内径」という)をZ1とした場合、鋳型本体1の大きさは、好ましくは、開口部11の長辺内径X1が100mm以上1000mm以下、開口部11の短辺内径Y1が20mm以上1000mm以下、鋳型本体1の高さ内径Z1が20mm以上1000mm以下である。より好ましくは、開口部11の長辺内径X1が150mm以上800mm以下、開口部11の短辺内径Y1が30mm以上150mm以下、鋳型本体1の高さ内径Z1が50mm以上900mm以下である。特に好ましくは、開口部11の長辺内径X1が200mm以上500mm以下、開口部11の短辺内径Y1が40mm以上100mm以下、鋳型本体1の高さ内径Z1が100mm以上800mm以下である。さらに、鋳型本体1において、開口部11の長辺内径X1と、開口部11の短辺内径Y1との関係は、X1>Y1であることが好ましい。
 鋳型本体1の大きさが小さすぎると、Cu-Ga合金スラブの生産性が低下し、さらにCu-Ga合金の溶湯の急冷が起こるため、脆性割れの原因ともなりえる。また、鋳型本体1の大きさが大きくなりすぎると、鋳造後のCu-Ga合金スラブの内部に応力がたまって脆性割れの原因となるばかりではなく、Cu-Ga合金の溶湯の最終凝固位置が中央部となるため内部欠陥発生の原因となる。
 また、鋳型本体1において、開口部11の長辺内径X1と、開口部11の短辺内径Y1との長さ比率は、Y1を「1」とした場合、Y1:X1が、1:2~1:15であることが好ましい。より好ましくは、Y1:X1が、1:3~1:10である。この「Y1:X1」においてX1の値が小さい場合、Cu-Ga合金の溶湯の鋳型本体1内における凝固形態が変化し、法線方向Zの中央部に応力が溜まるため、脆性割れの原因となり、また応力発生を軽減するため、徐冷を行った場合でも、偏析が起こる原因となりえる。更にこの「Y1:X1」においてX1の値が大きい場合、短辺内径Y1に対して長辺内径X1が大きいため、鋳型本体1内の底面12に平行な面内においてCu-Ga合金の溶湯に対する冷却にバラツキが生じ、応力が大きくなってひび割れが発生しやすい。また、「Y1:X1」においてX1の値が大きい場合、鋳造後に得られるCu-Ga合金スラブを持ち上げて加工するなどの際に、長辺方向Xの中央部に多くの力がかかり、その部分で割れが発生する可能性が高くなる。
 また、鋳型本体1の内容積は、鋳造用鋳型100を構成する材料の比熱、密度、熱伝導率などの条件から、鋳造時の鋳造温度、後述する冷却抑制部材3による鋳型本体1の調整温度などの条件と照らし合わせて、適宜選定すればよい。
 傾斜部材2は、鋳型本体1の開口部11の一方の短辺から、長辺方向Xの内方に向かって延び、内方に向かうにつれて鋳型本体1の底面12に近接するように傾斜した傾斜面21を有する。そして、傾斜部材2において鋳型本体1の底面12に最も近接する先端部22と、鋳型本体1の内周面との間には、傾斜部材2の傾斜面21に沿って流過したCu-Ga合金の溶湯が、鋳型本体1内に注湯される開口となる間隙Gが形成される。
 傾斜部材2の形状は、特に限定されるものではなく、鋳型本体1の開口部11の短辺方向Yから見たときの形状が三角形、台形、矩形などであることを挙げることができる。
 また、傾斜部材2の配置位置は、鋳型本体1内に注湯されるCu-Ga合金の溶湯の量を充分に確保することができる位置、すなわち、鋳造後のCu-Ga合金スラブが所望の大きさとなるような位置であれば特に限定されるものではない。傾斜部材2は、鋳型本体1の高さ内径Z1を「1」とした場合に、傾斜部材2の最下部の位置が、鋳型本体1の最下部から1/2以上の場所に位置するように配置されることが好ましく、より好ましくは3/5以上の場所に位置するように配置され、特に好ましくは2/3以上の場所に位置するように配置される。傾斜部材2は、その最下部が、鋳型本体1内において下方側に配置されすぎた場合には、鋳型本体1の内容積に対して、得られるCu-Ga合金スラブが小さくなるので、鋳型本体1内において可能な限り上方側に配置されることが好ましい。
 以上のように構成された鋳造用鋳型100を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、鋳型本体1の開口部11に設けられる傾斜部材2の傾斜面21に向けて供給されることになる。傾斜部材2の傾斜面21に供給されたCu-Ga合金の溶湯は、傾斜面21に沿って流過して先端部22に到達する。そして、先端部22に到達したCu-Ga合金の溶湯は、先端部22と鋳型本体1の内周面との間に形成された間隙Gから、鋳型本体1の内周面に沿うようにして鋳型本体1内に注湯される。本実施形態では、傾斜部材2の傾斜面21が、鋳型本体1の開口部11の一方の短辺から、長辺方向Xの内方に向かって連なるように設けられ、先端部22と鋳型本体1の内周面との間に間隙Gが形成されているので、間隙Gから鋳型本体1内に注湯されるCu-Ga合金の溶湯は、鋳型本体1の内周面のうち、開口部11の他方の短辺を含む内周面に沿うようにして注湯される。これによって、鋳型本体1の内周面に沿うようにして注湯されるCu-Ga合金の溶湯の、鋳型本体1の内周面との接触面積を小さくすることができるので、鋳型本体1内におけるCu-Ga合金の溶湯が急冷されるのを防止することができる。したがって、鋳造後に得られるCu-Ga合金スラブの表面が荒れてしまうのを防止することができる。
 本実施形態の鋳造用鋳型100を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、前述のように、Cu-Ga合金の溶湯が、開口部11から直接的に鋳型本体1内に注湯されるのではなく、傾斜部材2の傾斜面21に沿って流過して、先端部22と鋳型本体1の内周面との間に形成された間隙Gから、鋳型本体1の内周面に沿うようにして鋳型本体1内に注湯されるので、鋳型本体1内に注湯されるときの溶湯の運動エネルギーを減少させることができるとともに、注湯時における鋳型本体1の内周面(特に底面12)に衝突することによる溶湯の飛散を防止することができる。これによって、鋳型本体1内に注湯されるときの溶湯の対流を抑制し、溶湯の飛散を防止することができるので、鋳型本体1内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生および内部欠陥の発生を抑制して製造することができる。
 また、傾斜部材2の傾斜面21と鋳型本体1の底面12との成す角度である傾斜角度θは、10°以上70°以下であることが好ましく、より好ましくは15°以上60°以下であり、特に好ましくは20°以上40°以下である。傾斜角度θが小さすぎる場合には、Cu-Ga合金の溶湯が傾斜面21を流過するときの流過速度が遅くなりすぎ、鋳造初期と鋳造終期とで、Cu-Ga合金の溶湯の凝固状態が異なってしまい、鋳造後のCu-Ga合金スラブにひび割れが発生してしまうばかりでなく、傾斜面21上でCu-Ga合金の溶湯が凝固してしまい、鋳型本体1内での凝固が起らない問題が生じる。傾斜角度θが大きすぎる場合には、Cu-Ga合金の溶湯が傾斜面21を流過するときの流過速度が速くなりすぎ、鋳型本体1内に注湯されたCu-Ga合金の溶湯の対流が強く発生してしまい、鋳造後のCu-Ga合金スラブにひび割れが発生してしまう。
 また、傾斜部材2の先端部22と鋳型本体1の内周面との間に形成される間隙Gの面積は、500mm以上、3000mm以下であることが好ましく、より好ましくは600mm以上、2100mm以下である。間隙Gの面積が狭すぎる場合には、傾斜面21に沿って流過したCu-Ga合金の溶湯を、鋳型本体1内にスムーズに注湯することができず、傾斜面21上でCu-Ga合金の溶湯が凝固してしまい、鋳型本体1内での凝固が起らない問題が生じる。また、間隙Gの面積が広すぎる場合には、鋳型本体1内に注湯されたCu-Ga合金の溶湯の対流が強く発生してしまい、鋳造後のCu-Ga合金スラブにひび割れが発生してしまう。
 なお、傾斜部材2を法線方向Zから見たときの長辺方向Xの長さX2は、前述した傾斜面21の傾斜角度θ、間隙Gの面積などにより、適宜設定すればよい。
 また、本実施形態の鋳造用鋳型100は、冷却抑制部材3を備える。冷却抑制部材3は、鋳型本体1の外周面において、鋳型本体1の底面12の法線方向Zに関して底面12が形成される法線方向Z下方側の所定領域を覆うように設けられる。この冷却抑制部材3は、鋳型本体1内に注湯されたCu-Ga合金の溶湯が過度に冷却されるのを抑制する。これによって、傾斜部材2の傾斜面21に沿って流過して、先端部22と鋳型本体1の内周面との間に形成された間隙Gから、鋳型本体1の内周面に沿うようにして鋳型本体1内に注湯された溶湯が、急激に冷却されるのを防止することができるので、鋳型本体1内において溶湯を一様に凝固させることができる。
 冷却抑制部材3は、鋳型本体1の下部に対する保温効果および加熱効果の少なくともいずれか一方の効果を発揮するものであれば特に限定されるものではなく、保温効果を発揮する保温材としては、通常断熱材として用いられるグラスウールやクレカフェルト、耐火材として用いられるアラミド繊維シートなどを挙げることができ、加熱効果を発揮する加熱材としては、パイプヒータなどを挙げることができる。
 また、冷却抑制部材3の法線方向Zの長さ(冷却抑制部材3の高さ)Z3は、鋳型本体1の法線方向Zの長さ(鋳型本体1の高さ)Z2に対して、1/4以上3/4以下であることが好ましく、より好ましくは3/10以上2/3以下であり、特に好ましくは2/5以上3/5以下である。これによって、傾斜部材2の傾斜面21に沿って流過して、先端部22と鋳型本体1の内周面との間に形成された間隙Gから、鋳型本体1の内周面に沿うようにして鋳型本体1内に注湯された溶湯が、急激に冷却されるのをより確実に防止することができる。
 また、鋳型本体1の下部側の最高到達温度(℃)を、鋳型本体1内に注湯される前のCu-Ga合金の溶湯の温度(鋳造温度、℃)の好ましくは22%以上62%以下に、より好ましくは25%以上50%以下に、調整可能となるように冷却抑制部材3は構成される。冷却抑制部材3による鋳型本体1の調整温度が低すぎる場合には、鋳型本体1の下部側領域に対する保温、または加熱の効果がなく、鋳型本体1の法線方向Zに温度勾配が大きくなるため、鋳造後のCu-Ga合金スラブにひび割れが発生しやすい。また、冷却抑制部材3による鋳型本体1の調整温度が高すぎる場合には、冷却の速度が遅すぎるため、Cu-Ga合金の溶湯の最終凝固位置に応力が集中し、鋳造後のCu-Ga合金スラブのひび割れ発生につながるばかりでなく、偏析の発生が懸念される。
 図3は、本発明の第2実施形態である鋳造用鋳型200の構成を示す斜視図である。図3では、鋳造用鋳型200の内部構造が容易に理解できるように、鋳型本体1の1つの側壁を省略して示している。図4は、鋳造用鋳型200の構成を示す断面図である。鋳造用鋳型200は、前述した第1実施形態の鋳造用鋳型100に類似し、対応する部分については同一の参照符号を付して説明を省略する。
 鋳造用鋳型200は、鋳型本体1の開口部11に向けて供給されたCu-Ga合金の溶湯を、該溶湯の運動エネルギーを減少させて鋳型本体1内に案内して注湯させる案内部200Aの構成が、前述した案内部100Aと異なること以外は、鋳造用鋳型100と同様に構成される。鋳造用鋳型100の案内部100Aが1つの傾斜部材2により構成されているのに対して、鋳造用鋳型200の案内部200Aは、第1傾斜部材201および第2傾斜部材202により構成されている。
 第1傾斜部材201は、鋳型本体1の開口部11の一方の短辺から、長辺方向Xの内方に向かって延び、内方に向かうにつれて鋳型本体1の底面12に近接するように傾斜した傾斜面である第1傾斜面2011を有する。
 第2傾斜部材202は、第1傾斜部材201と、長辺方向X(底面12に平行な方向)に対向して設けられる。この第2傾斜部材202は、鋳型本体1の開口部11の他方の短辺から、長辺方向Xの内方に向かって延び、内方に向かうにつれて鋳型本体1の底面12に近接するように傾斜した傾斜面である第2傾斜面2021を有する。
 第1傾斜部材201の先端部(鋳型本体1の底面12に最も近接した部分)である第1先端部2012は、第2傾斜部材202の傾斜面である第2傾斜面2021に接触しておらず、第2傾斜部材202の先端部(鋳型本体1の底面12に最も近接した部分)である第2先端部2022は、第1傾斜部材201の傾斜面である第1傾斜面2011に接触していない。そして、第1傾斜部材201と第2傾斜部材202とは、第1先端部2012と第2先端部2022とが、鋳型本体1の底面12に平行な方向(長辺方向X)にずれた位置となるように配置される。また、本実施形態では、第1傾斜部材201と第2傾斜部材202とは、第1先端部2012と第2先端部2022とが、鋳型本体1の底面12に平行な同一平面上に位置するように配置される。さらに、第1先端部2012と第2先端部2022との間には、鋳型本体1の開口部11の長辺方向X中央部において、間隙G1が形成される。
 第1傾斜部材201および第2傾斜部材202の形状は、特に限定されるものではなく、鋳型本体1の開口部11の短辺方向Yから見たときの形状が三角形、台形、矩形などであることを挙げることができる。
 また、第1傾斜部材201および第2傾斜部材202の配置位置は、鋳型本体1内に注湯されるCu-Ga合金の溶湯の量を充分に確保することができる位置、すなわち、鋳造後のCu-Ga合金スラブが所望の大きさとなるような位置であれば特に限定されるものではない。第1傾斜部材201および第2傾斜部材202は、鋳型本体1の高さ内径Z1を「1」とした場合に、第1傾斜部材201および第2傾斜部材202のそれぞれの最下部の位置が、鋳型本体1の最下部から1/2以上の場所に位置するように配置されることが好ましく、より好ましくは3/5以上の場所に位置するように配置され、特に好ましくは2/3以上の場所に位置するように配置される。第1傾斜部材201および第2傾斜部材202は、それぞれの最下部が、鋳型本体1内において下方側に配置されすぎた場合には、鋳型本体1の内容積に対して、得られるCu-Ga合金スラブが小さくなるので、鋳型本体1内において可能な限り上方側に配置されることが好ましい。
 以上のように構成された鋳造用鋳型200を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、鋳型本体1の開口部11に設けられる第1傾斜部材201の傾斜面である第1傾斜面2011に向けて供給される。第1傾斜部材201の第1傾斜面2011に供給されたCu-Ga合金の溶湯は、その一部が第1傾斜面2011に沿って流過し、残部が第1傾斜面2011から第2傾斜部材202の第2傾斜面2021に飛散した後、第2傾斜面2021に沿って流過する。第1傾斜面2011に沿って流過する溶湯は第1先端部2012に到達し、第2傾斜面2021に沿って流過する溶湯は第2先端部2022に到達する。そして、第1先端部2012および第2先端部2022に到達した溶湯は、鋳型本体1内に注湯される。
 本実施形態の鋳造用鋳型200を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、前述のように、Cu-Ga合金の溶湯が、開口部11から直接的に鋳型本体1内に注湯されるのではなく、第1傾斜面2011および第2傾斜面2021に沿って流過して、鋳型本体1の開口部11の長辺方向X中央部において、第1先端部2012と第2先端部2022との間に形成される間隙G1から鋳型本体1内に注湯されるので、鋳型本体1内に注湯されるときの溶湯の運動エネルギーを減少させることができる。これによって、鋳型本体1内に注湯されるときの溶湯の対流を抑制することができるので、鋳型本体1内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができる。
 また、第1傾斜部材201の第1傾斜面2011と鋳型本体1の底面12との成す角度である第1傾斜角度θ1、および、第2傾斜部材202の第2傾斜面2021と鋳型本体1の底面12との成す角度である第2傾斜角度θ2は、10°以上70°以下であることが好ましく、より好ましくは15°以上60°以下であり、特に好ましくは20°以上40°以下である。第1傾斜角度θ1および第2傾斜角度θ2が小さすぎる場合には、Cu-Ga合金の溶湯が第1傾斜面2011および第2傾斜面2021を流過するときの流過速度が遅くなりすぎ、鋳造初期と鋳造終期とで、Cu-Ga合金の溶湯の凝固状態が異なってしまい、鋳造後のCu-Ga合金スラブにひび割れが発生してしまうばかりでなく、第1傾斜面2011および第2傾斜面2021上でCu-Ga合金の溶湯が凝固してしまい、鋳型本体1内での凝固が起らない問題が生じる。第1傾斜角度θ1および第2傾斜角度θ2が大きすぎる場合には、Cu-Ga合金の溶湯が第1傾斜面2011および第2傾斜面2021を流過するときの流過速度が速くなりすぎ、鋳型本体1内に注湯されたCu-Ga合金の溶湯の対流が強く発生してしまい、鋳造後のCu-Ga合金スラブにひび割れが発生してしまう。
 なお、第1傾斜部材201および第2傾斜部材202において、第1傾斜面2011の第1傾斜角度θ1と、第2傾斜面2021の第2傾斜角度θ2とは、同じであってもよいし、異なっていてもよい。
 また、鋳型本体1の開口部11の長辺方向X中央部において、第1傾斜部材201の第1先端部2012と、第2傾斜部材202の第2先端部2022との間に形成される間隙G1の面積は、500mm以上、3000mm以下であることが好ましく、より好ましくは600mm以上、2100mm以下である。間隙G1の面積が狭すぎる場合には、第1傾斜面2011および第2傾斜面2021に沿って流過したCu-Ga合金の溶湯を、鋳型本体1内にスムーズに注湯することができず、第1傾斜面2011および第2傾斜面2021上でCu-Ga合金の溶湯が凝固してしまい、鋳型本体1内での凝固が起らない問題が生じる。また、間隙G1の面積が広すぎる場合には、鋳型本体1内に注湯されたCu-Ga合金の溶湯の対流が強く発生してしまい、鋳造後のCu-Ga合金スラブにひび割れが発生してしまう。
 なお、第1傾斜部材201を法線方向Zから見たときの長辺方向Xの長さX3、および、第2傾斜部材202を法線方向Zから見たときの長辺方向Xの長さX4は、前述した第1傾斜面2011の第1傾斜角度θ1、第2傾斜面2021の第2傾斜角度θ2、間隙G1の面積などにより、適宜設定すればよい。
 図5は、本発明の第3実施形態である鋳造用鋳型300の構成を示す断面図である。鋳造用鋳型300は、前述した第2実施形態の鋳造用鋳型200に類似し、対応する部分については同一の参照符号を付して説明を省略する。
 鋳造用鋳型300は、鋳型本体1の開口部11に向けて供給されたCu-Ga合金の溶湯を、該溶湯の運動エネルギーを減少させて鋳型本体1内に案内して注湯させる案内部300Aにおける、第1傾斜部材301および第2傾斜部材302の構成が、前述した案内部200Aにおける第1傾斜部材201および第2傾斜部材202と異なること以外は、鋳造用鋳型200と同様に構成される。
 鋳造用鋳型300が備える第1傾斜部材301は、鋳型本体1の開口部11の一方の短辺から内方に向かって延び、内方に向かうにつれて鋳型本体1の底面12に近接するように傾斜した傾斜面である第1傾斜面3011を有する。鋳造用鋳型300が備える第2傾斜部材302は、第1傾斜部材301と、長辺方向Xに対向して設けられる。この第2傾斜部材302は、鋳型本体1の開口部11の他方の短辺から内方に向かって延び、内方に向かうにつれて鋳型本体1の底面12に近接するように傾斜した傾斜面である第2傾斜面3021を有する。第1傾斜部材301の先端部(鋳型本体1の底面12に最も近接した部分)である第1先端部3012は、第2傾斜部材302の傾斜面である第2傾斜面3021に接触しておらず、第2傾斜部材302の先端部(鋳型本体1の底面12に最も近接した部分)である第2先端部3022は、第1傾斜部材301の傾斜面である第1傾斜面3011に接触していない。そして、第1傾斜部材301と第2傾斜部材302とは、第1先端部3012と第2先端部3022とが、鋳型本体1の底面12に平行な方向(長辺方向X)にずれた位置となるように配置される。
 前述した鋳造用鋳型200において、第1傾斜部材201と第2傾斜部材202とは、第1先端部2012と第2先端部2022とが、鋳型本体1の底面12に平行な同一平面上に位置するように配置されていたが、鋳造用鋳型300において、第1傾斜部材301と第2傾斜部材302とは、第1先端部3012と第2先端部3022とが、底面12に平行な同一平面上に位置しておらず、第1先端部3012が第2先端部3022よりも法線方向Zの上方に位置している。また、鋳造用鋳型300を法線方向Zから見た場合、第1傾斜部材301と第2傾斜部材302とが重なる部分は存在しない。
 以上のように構成された鋳造用鋳型300を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、鋳型本体1の開口部11に設けられる第1傾斜部材301の傾斜面である第1傾斜面3011に向けて供給される。第1傾斜部材301の第1傾斜面3011に供給されたCu-Ga合金の溶湯は、その一部が第1傾斜面3011に沿って流過し、残部が第1傾斜面3011から第2傾斜部材302の第2傾斜面3021に飛散した後、第2傾斜面3021に沿って流過する。第1傾斜面3011に沿って流過する溶湯は第1先端部3012に到達し、第2傾斜面3021に沿って流過する溶湯は第2先端部3022に到達する。そして、第1先端部3012および第2先端部3022に到達した溶湯は、鋳型本体1内に注湯される。
 本実施形態の鋳造用鋳型300を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、前述のように、Cu-Ga合金の溶湯が、開口部11から直接的に鋳型本体1内に注湯されるのではなく、第1傾斜面3011および第2傾斜面3021に沿って流過して、第1先端部3012および第2先端部3022から鋳型本体1内に注湯されるので、鋳型本体1内に注湯されるときの溶湯の運動エネルギーを減少させることができる。これによって、鋳型本体1内に注湯されるときの溶湯の対流を抑制することができるので、鋳型本体1内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができる。
 図6は、本発明の第4実施形態である鋳造用鋳型400の構成を示す断面図である。鋳造用鋳型400は、前述した第2実施形態の鋳造用鋳型200に類似し、対応する部分については同一の参照符号を付して説明を省略する。
 鋳造用鋳型400は、鋳型本体1の開口部11に向けて供給されたCu-Ga合金の溶湯を、該溶湯の運動エネルギーを減少させて鋳型本体1内に案内して注湯させる案内部400Aにおける、第1傾斜部材401および第2傾斜部材402の構成が、前述した案内部200Aにおける第1傾斜部材201および第2傾斜部材202と異なること以外は、鋳造用鋳型200と同様に構成される。
 鋳造用鋳型400が備える第1傾斜部材401は、鋳型本体1の開口部11の一方の短辺から内方に向かって延び、内方に向かうにつれて鋳型本体1の底面12に近接するように傾斜した傾斜面である第1傾斜面4011を有する。鋳造用鋳型400が備える第2傾斜部材402は、第1傾斜部材401と、長辺方向Xに対向して設けられる。この第2傾斜部材402は、鋳型本体1の開口部11の他方の短辺から内方に向かって延び、内方に向かうにつれて鋳型本体1の底面12に近接するように傾斜した傾斜面である第2傾斜面4021を有する。第1傾斜部材401の先端部(鋳型本体1の底面12に最も近接した部分)である第1先端部4012は、第2傾斜部材402の傾斜面である第2傾斜面4021に接触しておらず、第2傾斜部材402の先端部(鋳型本体1の底面12に最も近接した部分)である第2先端部4022は、第1傾斜部材401の傾斜面である第1傾斜面4011に接触していない。そして、第1傾斜部材401と第2傾斜部材402とは、第1先端部4012と第2先端部4022とが、鋳型本体1の底面12に平行な方向(長辺方向X)にずれた位置となるように配置される。
 前述した鋳造用鋳型200において、第1傾斜部材201と第2傾斜部材202とは、第1先端部2012と第2先端部2022とが、鋳型本体1の底面12に平行な同一平面上に位置するように配置されていたが、鋳造用鋳型400において、第1傾斜部材401と第2傾斜部材402とは、第1先端部4012と第2先端部4022とが、底面12に平行な同一平面上に位置しておらず、第1先端部4012が第2先端部4022よりも法線方向Zの上方に位置している。また、鋳造用鋳型400を法線方向Zから見た場合、第1傾斜部材401と第2傾斜部材402とが重なる部分がある。
 以上のように構成された鋳造用鋳型400を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、Cu-Ga合金の溶湯が、鋳型本体1の開口部11に設けられる第1傾斜部材401の傾斜面である第1傾斜面4011に向けて供給される。第1傾斜部材401の第1傾斜面4011に供給されたCu-Ga合金の溶湯は、その一部が第1傾斜面4011に沿って流過し、残部が第1傾斜面4011から第2傾斜部材402の第2傾斜面4021に飛散した後、第2傾斜面4021に沿って流過する。第1傾斜面4011に沿って流過する溶湯は第1先端部4012に到達し、そこから第2傾斜面4021上に落下し、第2傾斜面4021に沿って流過する。第2傾斜面4021に沿って流過する溶湯は第2先端部4022に到達する。そして、第2先端部4022に到達した溶湯は、鋳型本体1内に注湯される。
 本実施形態の鋳造用鋳型400を用いてCu-Ga合金スラブを溶解鋳造法により作製する場合には、前述のように、Cu-Ga合金の溶湯が、開口部11から直接的に鋳型本体1内に注湯されるのではなく、第1傾斜面4011および第2傾斜面4021に沿って流過して、第2先端部4022から鋳型本体1内に注湯されるので、鋳型本体1内に注湯されるときの溶湯の運動エネルギーを減少させることができる。これによって、鋳型本体1内に注湯されるときの溶湯の対流を抑制することができるので、鋳型本体1内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができる。
 (Cu-Ga合金スラブ)
 本実施形態のCu-Ga合金スラブは、溶解鋳造法により作製されたCu-Ga合金からなる。Cu-Ga合金中のGaの組成比については、特に限定されるものではないが、10at%以上、50at%以下であることが好ましく、より好ましくは20at%以上、40at%以下である。なお、本発明において、「at%」は、原子百分率を表し、Cu-Ga合金全体の原子数を100とした場合の、特定の元素(Ga)の原子数を意味し、「モル%」と同義語として扱うこととする。
 Ga濃度が低い場合には、Cu中へのGa固溶が起こるため、ひび割れの発生が少ない。Ga濃度が高すぎる場合は、固溶限界を超えるため、金属間化合物が形成され、ひび割れの発生が多くなり、かつ鋳造時に偏析が起こりやすくなる。
 Gaの組成比が比較的大きいCu-Ga合金は、硬度が高くて脆い材料であるので、Cu-Ga合金スラブを溶解鋳造法により製造するときにひび割れが発生する恐れがある。これに対して、本実施形態のCu-Ga合金スラブは、鋳型本体1内に注湯されるときの溶湯の運動エネルギーを減少させることができる本実施形態の鋳造用鋳型100,200,300,400を用いて、溶解鋳造法により作製されたものであるので、ひび割れ発生が抑制されたものである。
 (スパッタリングターゲット)
 本実施形態のスパッタリングターゲットは、本実施形態のCu-Ga合金スラブを用いて作製される。Cu-Ga合金スラブをスパッタリングターゲットへと加工する方法としては、ワイヤー放電加工、放電加工、レーザー加工、研削機によるダイヤモンド切断加工、切削加工、ウォータージェット加工、ワイヤーソー、ブレードソーなど一般的な方法を採用することができる。これらの加工方法の中でも、Cu-Ga合金が、硬度が高くて脆い材料であることを考慮すると、ワイヤー放電加工、放電加工、レーザー加工、ワイヤーソー、ウォータージェット加工などが好ましく、ワイヤー放電加工、ワイヤーソーがより好ましく、ワイヤー放電加工が特に好ましい。
 Cu-Ga合金スラブを、ワイヤー放電加工にてスパッタリングターゲットへと加工する場合、0.1mm以上、0.4mm以下のワイヤー線を用いることが好ましく、より好ましくは0.2mm以上、0.4mm以下のワイヤー線を使用する。また、ワイヤー放電加工における切断速度(加工速度)は、0.1mm/分以上、8mm/分以下が好ましく、より好ましくは0.1mm/分以上、3mm/分以下である。ワイヤー線の太さは、細すぎるとワイヤー線が加工中に切れる原因になり、また加工速度においては、遅すぎると生産性の低下につながり、早すぎると割れる原因になる。
 本実施形態のスパッタリングターゲットは、ひび割れ発生が抑制された本実施形態のCu-Ga合金スラブを用いて作製されるので、例えば、薄膜型太陽電池を構成する光吸収層の薄膜形成用のスパッタリングターゲットとして好適に用いることができる。
 (Cu-Ga合金スラブの製造方法)
 本実施形態のCu-Ga合金スラブの製造方法では、まず、坩堝内に銅(Cu)およびガリウム(Ga)の必要量を仕込む。この場合の仕込み量は、坩堝サイズ、または鋳造用鋳型サイズ、鋳造用鋳型の個数によって適宜選定すればよい。その後、坩堝が投入されたチャンバー内を10-1Torr以下まで減圧する。
 チャンバー内が10-1Torr以下まで減圧されたことを確認後、その圧力下で、昇温速度5~20℃/分、好ましくは7~18℃/分で800℃~1100℃の温度に昇温する。昇温速度が速すぎる場合、突沸が起こる可能性があり、昇温速度が遅すぎる場合、生産性が下がる。昇温後の保持温度(鋳造温度)は、合金組成の融点、鋳造用鋳型の材料、体積、比熱、密度などによって変化する。例えば、合金組成の融点が850℃である場合には、昇温後の保持温度(鋳造温度)は、900℃以上、1000℃以下が好ましく、930℃以上、970℃以下がより好ましい。なお、大気中で昇温した場合、原料の酸化等の問題が起こり、歩留まりの低下につながる。
 その後、昇温後の温度(鋳造温度)で30分間~12時間保持することが好ましく、より好ましくは1時間~5時間保持する。これによって、CuとGaの混合物を合金液体(溶湯)にする。保持時間が短すぎる場合、合金が完全に混ざり合わない、または合金液体中に残存する気体が除ききらないおそれがあり、後のさらに高真空化する工程で、突沸が起こる原因となり得るおそれがある。また、保持時間が長すぎる場合、生産性の低下を招き好ましくない。
 さらにその後、前記鋳造温度下で、8×10-4Torr以下、好ましくは5×10-4Torrまで減圧し、30分間以上、12時間以下、好ましくは1時間以上、5時間以下保持する。このように、鋳造温度にまで昇温させた後に、高真空に減圧する理由は、昇温前に減圧しすぎることが、突沸の原因となり得るためである。鋳造時のチャンバー内圧力が高い場合、鋳造後のCu-Ga合金スラブ内への気体の巻き込みが起こり、内部欠陥の原因となる。また低すぎる場合には、ポンプ性能をあげる必要性があり、製造機器の高コスト化につながる。保持時間が短い場合、溶湯中に存在する気体が除ききれず、内部欠陥の原因となる。逆に長すぎる場合には、やはり生産性の低下を招き好ましくない。
 以上のような工程を経て、坩堝内においてCu-Ga合金の溶湯を得る。次に、チャンバー内の温度を前記鋳造温度に保持し、圧力を8×10-4Torr以下の圧力に保持した状態で、前述した本実施形態の鋳造用鋳型100,200,300,400を用いて坩堝内の前記溶湯を鋳造する。具体的には、鋳造用鋳型100の傾斜部材2の傾斜面21、鋳造用鋳型200,300,400の第1傾斜部材201,301,401の第1傾斜面2011,3011,4011に向けて溶湯を供給することで、鋳型本体1内に溶湯を注湯して鋳造する。なお、鋳造用鋳型100,200,300,400のいずれかを複数個並べて、一度に鋳造することも可能である。次に、鋳型本体1内で鋳造されたCu-Ga合金を室温まで自然冷却した後、鋳型本体1からCu-Ga合金を取出す。
 次に、鋳型本体1から取出したCu-Ga合金を大気圧下または真空下(好ましくは装置の設備などの観点から大気圧下)で加熱処理を行うことが好ましい。加熱処理時の温度としては、450℃以上、700℃未満、より好ましくは500℃以上、600℃以下である。Cu-Ga合金に加熱処理を施すことによって、鋳型本体1内において溶湯が凝固されて得られたCu-Ga合金において、Cu中にGaが偏析するのを抑制した上で、Cu-Ga合金の内部に発生した応力を解放することができる。加熱処理時の温度が低すぎる場合、凝固時に発生した応力を解放できず、高すぎる場合は偏析が起こる。加熱処理の時間は、1時間以上、12時間以下が好ましく、より好ましくは2時間以上、8時間以下である。加熱処理の時間が短すぎる場合、Cu-Ga合金の内部応力の解放ができず、長すぎる場合生産性の低下につながる。
 このようにして、Cu-Ga合金スラブを得る。本実施形態のCu-Ga合金スラブの製造方法では、前述のように、Cu-Ga合金の溶湯が、鋳型本体1の開口部11から直接的に鋳型本体1内に注湯されるのではなく、傾斜部材2の傾斜面21、第1傾斜部材201,301,401の第1傾斜面2011,3011,4011、および、第2傾斜部材202,302,402の第2傾斜面2021,3021,4021に沿って流過して、先端部22、第1先端部2012,3012,4012、および、第2先端部2022,3022,4022から鋳型本体1内に注湯されるので、鋳型本体1内に注湯されるときの溶湯の運動エネルギーを減少させることができる。これによって、鋳型本体1内に注湯されるときの溶湯の対流を抑制することができるので、鋳型本体1内において溶湯を一様に凝固させることができる。そのため、大型のCu-Ga合金スラブを、ひび割れ発生を抑制して製造することができる。
 以下、本発明を実施例により更に詳細に説明するが、実施例は本発明の一実施態様であり、本発明を限定するものではない。
 (実施例1)
 <鋳造用鋳型>
 鋳造用鋳型として、図1に示した鋳造用鋳型を用いた。
  ・材質:高純度黒鉛(カーボン)
  ・鋳型本体:開口部が長方形状の有底四角筒状に形成され、鋳型本体の内周面において開口部の長辺内径が250mm、開口部の短辺内径が50mmであり(開口部の内径比が短辺:長辺=1:5)、鋳型本体の高さ内径が650mmであるものを用いた。
  ・傾斜部材:傾斜面の傾斜角度が30°であり、平面視したときの開口部の長辺に平行な長辺方向の長さが230mmであるものを用いた。
  ・間隙:傾斜部材の先端部と鋳型本体の内周面との間に形成される間隙の面積は、1000mmであった。
  ・冷却抑制部材:鋳型本体の外周面において、鋳型本体の底面が形成される下方側を覆うように冷却抑制部材(クレカフェルト)を設けた。冷却抑制部材の高さは、鋳型本体の高さに対して1/2に設定した。また、冷却抑制部材は、鋳型本体の最高到達温度(℃)を、鋳造温度(℃)の46.0%に調整可能となるように構成した。
 <Cu-Ga合金スラブの製造>
 坩堝内に銅(Cu)44200g、ガリウム(Ga)20800gを仕込み、坩堝が投入されたチャンバー内を1×10-1Torr台まで減圧した後、その圧力下で、昇温速度8.5℃/分で940℃(鋳造温度)に昇温した。その後、940℃で1時間保持した後、2×10-4Torr台まで減圧して2時間保持して、Cu-Ga合金の溶湯を得た。
 次に、チャンバー内の温度を前記鋳造温度に保持し、圧力を2×10-4Torrに保持した状態で、坩堝内の溶湯を、上記の鋳造用鋳型を用いて鋳造した。具体的には、鋳造用鋳型の傾斜部材の傾斜面に向けて溶湯を供給することで、溶湯を傾斜面に沿って流過させて、先端部と鋳型本体の内周面との間に形成された間隙から、鋳型本体の内周面(開口部の短辺を含む内周面)に沿うようにして鋳型本体内に溶湯を注湯して鋳造した。次に、鋳型本体内で鋳造されたCu-Ga合金を室温まで自然冷却した後、鋳型本体からCu-Ga合金を取出して、熱風循環炉を用い、500℃で2時間の熱処理を行った。その後、外周4辺を切断して、240mm×400mm×50mm(t)の直方体形状のCu-Ga合金スラブを得た。
 (実施例2)
 <鋳造用鋳型>
 鋳造用鋳型として、図3に示した鋳造用鋳型を用いた。
  ・材質:高純度黒鉛(カーボン)
  ・鋳型本体:開口部が長方形状の有底四角筒状に形成され、鋳型本体の内周面において開口部の長辺内径が250mm、開口部の短辺内径が50mmであり(開口部の内径比が短辺:長辺=1:5)、鋳型本体の高さ内径が650mmであるものを用いた。
  ・第1傾斜部材:第1傾斜面の第1傾斜角度が30°であり、平面視したときの開口部の長辺に平行な長辺方向の長さが120mmであるものを用いた。
  ・第2傾斜部材:第2傾斜面の第2傾斜角度が45°であり、平面視したときの開口部の長辺に平行な長辺方向の長さが100mmであるものを用いた。
  ・間隙:第1傾斜部材と第2傾斜部材とは、第1先端部と第2先端部とが、鋳型本体の底面に平行な同一平面上に位置するように配置した。そして、鋳型本体の開口部の長辺方向中央部において、第1先端部と第2先端部との間に形成される間隙の面積は、1500mmであった。
  ・冷却抑制部材:鋳型本体の外周面において、鋳型本体の底面が形成される下方側を覆うように冷却抑制部材(クレカフェルト)を設けた。冷却抑制部材の高さは、鋳型本体の高さに対して1/2に設定した。また、冷却抑制部材は、鋳型本体の最高到達温度(℃)を、鋳造温度(℃)の46.0%に調整可能となるように構成した。
 <Cu-Ga合金スラブの製造>
 坩堝内に銅(Cu)44200g、ガリウム(Ga)20800gを仕込み、坩堝が投入されたチャンバー内を1×10-1Torr台まで減圧した後、その圧力下で、昇温速度8.5℃/分で940℃(鋳造温度)に昇温した。その後、940℃で1時間保持した後、2×10-4Torr台まで減圧して2時間保持して、Cu-Ga合金の溶湯を得た。
 次に、チャンバー内の温度を前記鋳造温度に保持し、圧力を2×10-4Torrに保持した状態で、坩堝内の溶湯を、上記の鋳造用鋳型を用いて鋳造した。具体的には、鋳造用鋳型の第1傾斜部材の第1傾斜面に向けて溶湯を供給することで、溶湯を第1傾斜面よび第2傾斜面に沿って流過させて、鋳型本体内に溶湯を注湯して鋳造した。次に、鋳型本体内で鋳造されたCu-Ga合金を室温まで自然冷却した後、鋳型本体からCu-Ga合金を取出して、熱風循環炉を用い、500℃で2時間の熱処理を行った。その後、外周4辺を切断して、240mm×400mm×50mm(t)の直方体形状のCu-Ga合金スラブを得た。
 (比較例1)
 鋳造用鋳型として、傾斜部材が配置されておらず、冷却抑制部材が、鋳型本体の最高到達温度(℃)を、鋳造温度(℃)の49.0%に調整可能となるように構成した鋳造用鋳型を用いること以外は、実施例1と同様とした。
 (比較例2)
 鋳造用鋳型として、傾斜部材が配置されておらず、パイプヒータからなる冷却抑制部材が、鋳型本体の最高到達温度(℃)を、鋳造温度(℃)の58.0%に調整可能となるように構成した鋳造用鋳型を用いること以外は、実施例1と同様とした。
 (比較例3)
 鋳造用鋳型として、傾斜部材が配置されておらず、鋳型本体の開口部の内径比が短辺:長辺=1:1.8であり、冷却抑制部材が配置されていない鋳造用鋳型を用いること以外は、実施例1と同様とした。
 (比較例4)
 鋳造用鋳型として、傾斜部材が配置されておらず、冷却抑制部材が配置されていない鋳造用鋳型を用いること以外は、実施例1と同様とした。なお、鋳造用鋳型に溶湯を注湯したときの鋳型本体の最高到達温度(℃)は、鋳造温度(℃)の21.9%であった。
 (比較例5)
 鋳造用鋳型として、傾斜部材が配置されておらず、鋳型本体の上部に冷却抑制部材(冷却抑制部材の高さは、鋳型本体の高さに対して1/3)が配置された鋳造用鋳型を用いること以外は、実施例1と同様とした。
 (比較例6)
 鋳造用鋳型として、傾斜部材が配置されておらず、冷却抑制部材が、鋳型本体の最高到達温度(℃)を、鋳造温度(℃)の62.7%に調整可能となるように構成した鋳造用鋳型を用いること以外は、実施例1と同様とした。
 実施例1,2、および比較例1~6で得られたCu-Ga合金スラブについて、以下の評価を行った。
 <ひび割れおよび内部欠陥の評価>
 実施例1,2、および比較例1~6で得られた240mm×400mm×50mm(t)のCu-Ga合金スラブを、ワイヤー放電加工機(0.3mmのワイヤー線)を用いて、加工速度0.7mm/分で、240mm×400mm×12mm(t)の4枚のスライス板に加工した。
 得られた4枚のスライス板を、染色浸透探傷剤(株式会社タセト製)に浸漬した。この染色浸透探傷剤としては、深さ30μm以上、幅1μm以上の欠陥を染色することができるものを用いた。染色浸透探傷剤に浸漬した後の4枚のスライス板について、染色状態を目視にて確認し、1000cmあたりのひび割れの本数を評価した。また、Cu-Ga合金スラブに対してスライス加工を施した表面(3面)について、0.5mm以上の幅寸法を有する内部欠陥の個数を目視にて評価した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1,2では、4枚のスライス板のいずれにもひび割れの発生がなく、スライス加工した3面の表面のいずれにも内部欠陥の発生がなかった。これに対して、比較例1では、4枚のスライス板のうち2枚のスライス板に1本のひび割れが発生し、スライス加工した3面の表面のいずれにも7個の内部欠陥の発生が確認された。比較例2では、4枚のスライス板のうち2枚のスライス板に1本のひび割れが発生し、スライス加工した3面の表面のいずれにも5個の内部欠陥の発生が確認された。比較例3,6では、4枚のスライス板のいずれにも20本のひび割れが発生し、スライス加工した3面の表面のいずれにも2個の内部欠陥の発生が確認された。比較例4では、4枚のスライス板のいずれにも9本のひび割れが発生し、スライス加工した3面の表面のいずれにも5個の内部欠陥の発生が確認された。比較例5では、4枚のスライス板のいずれにも9本のひび割れが発生し、スライス加工した3面の表面のいずれにも2個の内部欠陥の発生が確認された。
 以上の結果より、Cu-Ga合金スラブを溶解鋳造法に作製するに際し、Cu-Ga合金の溶湯を、傾斜部材の傾斜面、または、第1,第2傾斜部材の第1,第2傾斜面に沿って流過させて鋳型本体内に注湯して鋳造することによって、ひび割れおよび内部欠陥の発生がないCu-Ga合金スラブを製造することができることがわかる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 1 鋳型本体
 2 傾斜部材
 3 冷却抑制部材
 11 開口部
 12 底面
 21 傾斜面
 22 先端部
 100,200,300,400 鋳造用鋳型
 201,301,401 第1傾斜部材
 202,302,402 第2傾斜部材
 2011,3011,4011 第1傾斜面
 2012,3012,4012 第1先端部
 2021,3021,4021 第2傾斜面
 2022,3022,4022 第2先端部

Claims (14)

  1.  Cu-Ga合金スラブを溶解鋳造法により作製するときに用いる鋳造用鋳型において、
     有底筒状に形成され、Cu-Ga合金の溶湯が供給される開口を形成する開口部を有する鋳型本体と、
     前記鋳型本体の前記開口部に設けられ、前記開口部に向けて供給されたCu-Ga合金の溶湯を、該溶湯の運動エネルギーを減少させて前記鋳型本体内に案内して注湯させる案内部とを含む鋳造用鋳型。
  2.  前記案内部は、前記鋳型本体の前記開口部に向けて供給されたCu-Ga合金の溶湯が流過する傾斜面であって、前記鋳型本体の前記開口部から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びる傾斜面が形成される傾斜部材を含み、
     前記傾斜部材において前記鋳型本体の底面に最も近接する先端部と、前記鋳型本体の内周面との間には、前記傾斜部材の前記傾斜面に沿って流過したCu-Ga合金の溶湯が、前記鋳型本体内に注湯される間隙が形成される請求項1に記載の鋳造用鋳型。
  3.  前記鋳型本体は、前記開口部が長方形状の四角筒状に形成され、
     前記傾斜部材の前記傾斜面は、前記鋳型本体の前記開口部の一方の短辺から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びるように形成される請求項2に記載の鋳造用鋳型。
  4.  前記案内部は、
      前記鋳型本体の前記開口部から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びる傾斜面が形成される第1傾斜部材と、
      前記鋳型本体の底面に平行な方向に関して前記第1傾斜部材と対向して設けられる第2傾斜部材であって、前記鋳型本体の前記開口部から内方に向かうにつれて、前記鋳型本体の底面に近接するように延びる傾斜面が形成される第2傾斜部材とを含み、
     前記第1傾斜部材と前記第2傾斜部材とは、前記鋳型本体の底面に最も近接したそれぞれの先端部が、互いの傾斜面に接触することなく、前記鋳型本体の底面に平行な方向にずれた位置となるように配置される請求項1に記載の鋳造用鋳型。
  5.  前記第1傾斜部材と前記第2傾斜部材とは、それぞれの先端部が、前記鋳型本体の底面に平行な同一平面上に位置し、それぞれの先端部同士の間に間隙が形成されるように配置される請求項4に記載の鋳造用鋳型。
  6.  前記第1傾斜部材と前記第2傾斜部材とは、それぞれの先端部同士の間に形成される前記間隙が、前記鋳型本体の前記開口部の中央に位置するように配置される請求項5に記載の鋳造用鋳型。
  7.  前記鋳型本体は、前記開口部が長方形状の四角筒状に形成され、
     前記第1傾斜部材および前記第2傾斜部材において、それぞれの傾斜面は、前記鋳型本体の前記開口部において対向する2つの短辺のそれぞれから内方に向かうにつれて、前記鋳型本体の底面に近接するように延びるように形成される請求項4~6のいずれか1つに記載の鋳造用鋳型。
  8.  前記鋳型本体の外周面において、前記鋳型本体の底面の法線方向に関して底面が形成される法線方向下方側の所定領域には、前記鋳型本体内に注湯されたCu-Ga合金の溶湯が過度に冷却されるのを抑制する冷却抑制部材が設けられる請求項1~7のいずれか1つに記載の鋳造用鋳型。
  9.  前記冷却抑制部材の前記法線方向の長さは、前記鋳型本体の前記法線方向の長さに対して1/4以上である請求項8に記載の鋳造用鋳型。
  10.  前記冷却抑制部材は、前記鋳型本体の最高到達温度(℃)を、前記鋳型本体内に注湯される前のCu-Ga合金の溶湯の温度(℃)の22%以上62%以下に調整可能となるように構成される請求項8または9に記載の鋳造用鋳型。
  11.  請求項1~10のいずれか1つに記載の鋳造用鋳型を用いて、溶解鋳造法により作製されたCu-Ga合金スラブであって、
     Gaの組成比が、10at%以上50at%以下であるCu-Ga合金スラブ。
  12.  Cu-Ga合金からなるスパッタリングターゲットであって、
     請求項11に記載のCu-Ga合金スラブを用いて作製されるスパッタリングターゲット。
  13.  Cu-Ga合金スラブを製造する方法であって、
     坩堝内に銅(Cu)およびガリウム(Ga)を仕込み、10-1Torr以下に減圧する工程と、
     その圧力下で、昇温速度5~20℃/分で800℃~1100℃の温度に昇温した後、その温度で30分間~12時間保持するとともに、8×10-4Torr以下まで減圧し、坩堝内においてCu-Ga合金の溶湯を得る工程と、
     請求項1~10のいずれか1つに記載の鋳造用鋳型を用いて坩堝内の前記溶湯を鋳造する工程であって、前記案内部に向けて前記溶湯を供給することで、前記鋳型本体内に前記溶湯を注湯して鋳造する工程と、
     前記鋳型本体内で鋳造されたCu-Ga合金を室温まで冷却した後、前記鋳型本体からCu-Ga合金を取出して、Cu-Ga合金スラブを得る工程と、を含むCu-Ga合金スラブの製造方法。
  14.  前記鋳型本体からCu-Ga合金を取出した後、そのCu-Ga合金を大気圧下、450℃以上700℃未満で、1時間以上12時間以下の時間、加熱する工程をさらに含む請求項13に記載の方法。
PCT/JP2012/052418 2011-02-16 2012-02-02 鋳造用鋳型、Cu-Ga合金スラブ、スパッタリングターゲット、およびCu-Ga合金スラブの製造方法 WO2012111448A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-031423 2011-02-16
JP2011031424 2011-02-16
JP2011031423 2011-02-16
JP2011-031424 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111448A1 true WO2012111448A1 (ja) 2012-08-23

Family

ID=46672379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052418 WO2012111448A1 (ja) 2011-02-16 2012-02-02 鋳造用鋳型、Cu-Ga合金スラブ、スパッタリングターゲット、およびCu-Ga合金スラブの製造方法

Country Status (2)

Country Link
TW (1) TW201247338A (ja)
WO (1) WO2012111448A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456029A (en) * 1977-10-12 1979-05-04 Nippon Steel Corp Upper pouring type steel casting method
JPH026144U (ja) * 1988-06-27 1990-01-16
JP2000073163A (ja) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2003311376A (ja) * 2002-04-26 2003-11-05 Dowa Mining Co Ltd 金属インゴット鋳造装置及び鋳造方法
JP2009255286A (ja) * 2008-03-27 2009-11-05 Sumitomo Chemical Co Ltd Cu−Ga合金の切断方法
JP2010280944A (ja) * 2009-06-04 2010-12-16 Hitachi Cable Ltd Cu−Ga合金、スパッタリングターゲット、Cu−Ga合金の製造方法、スパッタリングターゲットの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456029A (en) * 1977-10-12 1979-05-04 Nippon Steel Corp Upper pouring type steel casting method
JPH026144U (ja) * 1988-06-27 1990-01-16
JP2000073163A (ja) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2003311376A (ja) * 2002-04-26 2003-11-05 Dowa Mining Co Ltd 金属インゴット鋳造装置及び鋳造方法
JP2009255286A (ja) * 2008-03-27 2009-11-05 Sumitomo Chemical Co Ltd Cu−Ga合金の切断方法
JP2010280944A (ja) * 2009-06-04 2010-12-16 Hitachi Cable Ltd Cu−Ga合金、スパッタリングターゲット、Cu−Ga合金の製造方法、スパッタリングターゲットの製造方法

Also Published As

Publication number Publication date
TW201247338A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
JP5519800B2 (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
CN101934367A (zh) 一种液态金属冷却定向凝固铸造设备用隔热挡板
CN112139648B (zh) 钛铝金属间化合物原位增材定向凝固方法
CN113814413A (zh) 激光增材制造无裂纹、强度和韧性可控的高温合金的制备方法
JP2012193423A (ja) Cu−Ga合金材およびその製造方法
JP2013086157A (ja) Cu−Ga合金スラブの製造方法
JP6456810B2 (ja) In−Cu合金スパッタリングターゲット及びその製造方法
JP2013151015A (ja) 鋳造用鋳型、Cu−Ga合金スラブ、スパッタリングターゲット、およびCu−Ga合金スラブの製造方法
WO2012111448A1 (ja) 鋳造用鋳型、Cu-Ga合金スラブ、スパッタリングターゲット、およびCu-Ga合金スラブの製造方法
JP2013204081A (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
JP6390432B2 (ja) Cu−Ga合金円筒型スパッタリングターゲット、Cu−Ga合金円筒型鋳塊、Cu−Ga合金円筒型スパッタリングターゲットの製造方法及びCu−Ga合金円筒型鋳塊の製造方法
JP2008255372A (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP2016145421A (ja) 多結晶シリコンスパッタリングターゲット
JP5882248B2 (ja) Cu−Ga合金スパッタリングターゲット、同スパッタリングターゲット用鋳造品及びこれらの製造方法
KR20120085338A (ko) 다결정 실리콘 블록재의 제조 방법, 다결정 실리콘 웨이퍼의 제조 방법 및 다결정 실리콘 블록재
JP2013086154A (ja) 鋳造装置
JP2008246560A (ja) アルミニウム鋳塊の鋳造方法
JP2013086156A (ja) 鋳造装置
JP6147788B2 (ja) Cu−Ga合金スパッタリングターゲット
JP2013086155A (ja) 鋳造装置
JP6016849B2 (ja) Cu−Ga合金スパッタリングターゲット
JP2008255411A (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP2016043377A (ja) Cu−Ga合金の連続鋳造方法
JP5441854B2 (ja) インジウムターゲットの製造方法及びインジウムターゲット
JP2013091822A (ja) 合金スラブおよびスパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747070

Country of ref document: EP

Kind code of ref document: A1