WO2012111439A1 - 実装方法および実装装置 - Google Patents

実装方法および実装装置 Download PDF

Info

Publication number
WO2012111439A1
WO2012111439A1 PCT/JP2012/052328 JP2012052328W WO2012111439A1 WO 2012111439 A1 WO2012111439 A1 WO 2012111439A1 JP 2012052328 W JP2012052328 W JP 2012052328W WO 2012111439 A1 WO2012111439 A1 WO 2012111439A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
substrate
electrode
solder
reaction force
Prior art date
Application number
PCT/JP2012/052328
Other languages
English (en)
French (fr)
Inventor
寺田 勝美
幹夫 川上
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to KR1020137017614A priority Critical patent/KR101821958B1/ko
Publication of WO2012111439A1 publication Critical patent/WO2012111439A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13017Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/7592Load or pressure adjusting means, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Definitions

  • the present invention relates to a mounting method and a mounting apparatus in which a flip chip with pillar bumps, on which solder is formed at the tip of a pillar-shaped pillar provided on the flip chip, is thermocompression bonded to a substrate.
  • Patent Document 1 discloses a columnar pillar bump having an extremely fine bump pitch.
  • the pillar bumps have hemispherical solder formed at the tip of a pillar (columnar shape) such as Cu standing upright at a narrow pitch.
  • the solder at the tip may be hemispherical, or may have a tip that is flattened into an ellipse. Therefore, the bump pitch can be made finer than that of a conventional solder ball type solder bump.
  • it can respond to high-density mounting. Since these solder portions have a very small area on the bottom surface of the pillar (column), solder joint portions are formed with an extremely small amount of solder as compared with conventional solder ball type solder bumps.
  • the alignment between the chip and the substrate is performed by recognizing the alignment marks provided on the chip and the substrate and driving the thermocompression tool for holding the chip or the substrate stage for holding the substrate based on the image recognition data. is doing. Therefore, even if the chip and the substrate are aligned based on the alignment mark, if the center position of the pillar bump and the electrode of the substrate exceeds the predetermined range, the pillar bump will be displaced from the electrode when the chip is pressed. (In particular, pillar bumps with fine bump pitches have a narrow alignment margin, making it difficult to align the pillar bumps with the electrodes). Bonding between the chip and the substrate in a state where the pillar bump is displaced from the electrode causes a problem such as a short circuit.
  • the amount of solder provided at the tip of the pillar bump is smaller than that of the conventional ball bump, depending on the balance between the heating of the solder by the heater and the pressing force of the chip, the molten solder between the pillar and the electrode There is also a problem that the material is crushed and protrudes from the joint surface of the electrode.
  • an object of the present invention is to determine whether or not pillar bumps are favorably thermocompression bonded to electrodes of a substrate in a mounting method in which a chip on which fine solder bumps such as pillar bumps are formed is thermocompression bonded to a substrate.
  • a mounting method and a mounting apparatus are provided.
  • the invention of claim 2 is the invention of claim 1, After the pillar bumps of the chip contact the substrate electrodes, A first height measuring step for measuring the raising and lowering position of the thermocompression bonding tool holding the chip; After pressing the chip to the substrate side for a preset time at a preset pressure, A second height measuring step for measuring the lift position of the thermocompression bonding tool holding the chip; From the measurement result of the first height measurement step and the measurement result of the second height measurement step, a change in the distance between the chip and the substrate caused by pressing the chip is obtained, and the pillar bump and the electrode before melting the solder
  • thermocompression bonding tool for holding a chip provided with pillar bumps; A substrate stage for holding a substrate having electrodes to which the pillar bumps of the chip are bonded; Driving means for moving the thermocompression bonding tool holding the chip up and down toward the substrate stage holding the substrate; A height detection means for detecting the raising and lowering position of the thermocompression bonding tool holding the chip; A load detecting means for detecting a pressing force when the thermocompression bonding tool holding the chip presses the substrate; A heater for raising the temperature of the thermocompression bonding tool; A mounting apparatus comprising: a control unit that measures chip height position information by the height detection unit, measures a pressing force to the chip by the load detection unit, and controls the driving unit and the heater.
  • the control means is The heater is heated to the solder melting temperature, the driving means is driven, and the thermocompression bonding tool is pushed into the board side by a preset pushing amount, and the detected load measured by the load detecting means and the pillar bump are applied.
  • This is a mounting device having a function of judging whether or not the alignment of the melted pillar bump and the electrode is good from the detection load when the provided solder is melted.
  • the invention of claim 4 is the invention of claim 3,
  • the control means is After the pillar bumps of the chip contact the substrate electrodes, The chip is pressed to the substrate side for a preset time at a preset pressure, and the alignment between the pillar bump and the electrode before melting is judged from the change in the distance between the tip and the substrate due to the pressing.
  • This is a mounting device having a function.
  • the chip provided with the pillar bump is held by the thermocompression bonding tool and is lowered to the substrate side. Then, after the pillar bumps of the chip come into contact with the electrodes of the substrate, the temperature of the thermocompression bonding tool that holds the chip is raised to the solder melting temperature. Then, while the temperature of the thermocompression bonding tool is transmitted to the pillar bump, the chip is pushed into the substrate side by a preset pushing amount. Then, the reaction force from the electrode of the substrate when the pushing of the chip is completed is measured by the load detecting means provided in the thermocompression bonding tool, and stored in the control means as the first reaction force measurement result ( First reaction force measurement step).
  • thermocompression bonding tool when the temperature of the thermocompression bonding tool is transmitted to the pillar bumps, melting of the solder provided on the pillar bumps proceeds. For this reason, even if the thermocompression bonding tool holds the lift position in a preset amount of pushing, when the pillar bump solder melts, the reaction force from the electrodes on the substrate gradually decreases.
  • the reaction force from the electrodes on the substrate is increased after a preset time (the time for completing the melting of the pillar bump solder) elapses until the solder provided on the pillar bump melts. Measured and stored as a second reaction force measurement result in the control means (second reaction force measurement step). And the quality of position alignment of the melted pillar bump and the electrode is determined from the first reaction force measurement result stored in the control means and the second reaction force measurement result (reaction force determination step).
  • the melted solder of the pillar bump protrudes from the bonding surface of the substrate electrode. Compared with the case where the entire molten solder is supported by the joining surface of the electrode, the reaction force from the electrode is reduced by the amount of protrusion from the electrode.
  • the solder of the pillar bump is not completely melted. Therefore, if the pillar bump is aligned with the contact surface of the electrode (the surface on which the pillar bump contacts), A reaction force within a predetermined range can be received from the electrode even if the chip protrudes slightly from the contact surface or the chip is pressed by a predetermined pressing amount. However, when the pillar bump solder is melted, the pillar bump solder is supported by the entire joint surface of the electrode on the entire contact surface of the electrode, or when the pillar bump solder partially protrudes from the electrode. Differences in power occur. In the second reaction force measurement step, the solder of the pillar bumps is in a molten state. Therefore, when the solder protrudes from the joint surface of the electrode, the reaction force from the electrode caused by pushing the chip is applied to the contact surface of the electrode. Compared to the case where everything is supported, it is detected by lowering.
  • reaction force determination step From these reaction force measurement results (the measurement result of the first reaction force measurement step and the measurement result of the second reaction force measurement step), the pillar bumps of the chip and the electrodes of the substrate are well aligned, and thermocompression bonding It is possible to determine whether or not the reaction has been performed (reaction force determination step).
  • the chip provided with the pillar bump is held by the thermocompression bonding tool and lowered to the substrate side, and the pillar bump of the chip contacts the electrode of the substrate. Then, the raising / lowering position of the thermocompression bonding tool holding the chip is measured (first height measurement step).
  • thermocompression bonding tool holding the chip is measured (second height) Measurement process).
  • the temperature of the thermocompression bonding tool is not increased, so that the solder of the pillar bumps is in a solid phase that is not melted. Therefore, when the contact position of the solder of the pillar bump is aligned with the range of the bonding surface of the electrode of the substrate, the solder at the tip of the pillar bump comes into contact with the bonding surface of the electrode. In this state, even if the chip is pressed against the substrate only for a preset pressure and for a preset time, only the deformation of the solder of the pillar bump accompanying the press will change the gap between the chip and the substrate. .
  • the contact position of the solder of the pillar bump is out of the contact surface of the electrode, and is in contact with the end of the contact surface of the electrode, if the chip is pressed with a predetermined pressure for a predetermined time, the contact surface of the electrode Since the reaction force from is not sufficient, the chip sinks to the substrate side with the pressing amount. Therefore, the gap between the chip and the substrate is narrower than in the case where the solder at the tip of the pillar bump is aligned within the bonding surface of the electrode.
  • the measurement result of the first height measurement process which is the raising / lowering position of the thermocompression bonding tool in which the pillar bump contacts the electrode, and the second raising / lowering position of the thermocompression bonding tool after pressing the chip at a predetermined pressure for a predetermined time.
  • the mounting apparatus includes a thermocompression tool for holding a chip having pillar bumps, a substrate stage for holding the substrate, and a substrate stage for holding the substrate with the thermocompression tool for holding the chip.
  • Drive means for moving up and down to the side, height detection means for detecting the raising and lowering position of the thermocompression bonding tool holding the chip, load detection means for detecting the pressing force when the thermocompression bonding tool holding the chip presses the substrate, A heater for raising the temperature of the thermocompression bonding tool, and a control means for controlling the driving means based on the chip height position detected by the height detection means and the pressing force of the thermocompression bonding tool detected by the load detection means. ing.
  • control means raises the heater to the solder melting temperature, drives the driving means by a preset pushing amount, pushes the chip with pillar bumps in contact with the electrodes of the board toward the board side, and loads
  • the detection means measures the reaction force from the electrode before the solder provided on the pillar bump melts and the reaction force from the electrode after the solder melts, and has a function to judge the alignment of the pillar bump and the electrode. is doing.
  • the tip is pushed in precisely, and the reaction force from the electrode accompanying the pushing is detected by the load detection means. Even if the solder portion of the pillar bump is aligned with the bonding surface of the electrode, when it partially protrudes, the reaction force from the electrode after a predetermined time has elapsed is smaller than when it does not protrude.
  • the load detecting means accurately detects the subtle difference in these reaction forces, it is possible to detect the displacement of the pillar bump.
  • the control means presses the chip to the substrate side with a predetermined pressure for a predetermined time. It has a function of measuring the change in the gap between the chip and the substrate due to the pressing by the height detecting means and determining whether the alignment of the solder of the pillar bump and the electrode before melting is good or bad.
  • thermocompression bonding tool By lowering the thermocompression bonding tool, the position where the pillar bump of the chip held by the thermocompression bonding tool is contacted is measured by the height detection means, and the pressing force of the chip is maintained at a predetermined value by the load detection means for a predetermined time, Pressing.
  • the change in the gap between the chip and the substrate can be measured by measuring the position of the thermocompression bonding tool when the pressing is completed with the height detection means.
  • the solder of the pillar bumps before the solder is melted is deformed according to the amount of pressing because of the solid state, and the amount of deformation is a change in the gap between the chip and the substrate.
  • the pillar bump and the electrode are aligned, if the pillar bump is positioned at the end of the joint surface of the electrode, the chip sinks to the substrate side according to the pressing force. In such a case, when the pressing is completed, the gap between the chip and the substrate becomes narrower than in the case where the pillar bump and the electrode are aligned. Since the control means for judging whether or not the alignment is good from the change in the gap between the chip and the substrate is used, the positional deviation of the pillar bump before melting can be detected well.
  • FIG. 1 is a side view of a mounting apparatus according to an embodiment of the present invention
  • FIG. 2 is a side view of a chip 2 and a substrate 6 used in the mounting apparatus.
  • the left-right direction toward the mounting apparatus 1 is an X-axis
  • the front-rear direction is a Y-axis
  • an axis orthogonal to the XY plane composed of the X-axis and the Y-axis is a Z-axis
  • the Z-axis is the ⁇ -axis.
  • the mounting apparatus 1 includes a head 8 for sucking and holding the chip 2, a substrate stage 11 for sucking and holding the substrate 6, a two-field camera 13 for recognizing alignment marks provided on the chip 2 and the substrate 6, and the mounting apparatus 1. It is comprised from the control part 20 which controls the whole.
  • the head 8 has a built-in load cell 10 for detecting the pressure applied to the chip 2.
  • a tool 9 for sucking and holding the chip 2 is attached to the lower side of the head 8.
  • the tool 9 incorporates a heater 16 and a thermocouple 18 so that the chip 2 can be heated based on a command from the control unit 20 (the heater 16 is indicated by a dotted line in FIG. 1).
  • the head 8 moves up and down in the Z direction by driving and controlling the servo motor 14 and the ball screw 15 connected to the servo motor 14.
  • the drive means of the present invention is composed of a servo motor 14 and a ball screw 15.
  • the head 8 is configured to be able to control load control for controlling the pressing force and position control for controlling the Z-axis height position based on a command from the control unit 20.
  • the thermocompression bonding tool of the present invention includes a head 8 and a tool 9.
  • the pressing force of the head 8 is preferably controlled by the torque of the motor, but any means that generates a pressing force such as a voice coil motor or a pneumatic cylinder may be used.
  • the movement amount that fluctuates up and down in the Z direction in order to keep the pressing force constant during load control is configured so that position information can be acquired by position detection means by the encoder 19 of the servo motor 14.
  • position detection means can measure the position in the Z direction
  • a linear scale or the like may be used outside.
  • the substrate stage 11 can be moved in the X, Y, and ⁇ directions by a drive mechanism (not shown), and can be configured to position the substrate 6 held by suction at a predetermined position.
  • the two-field camera 13 is inserted between the chip 2 sucked and held by the tool 9 and the circuit board 6 sucked and held by the substrate stage 11, and recognizes the alignment marks attached to the chip 2 and the substrate 6. can do. Usually, it stands by at the standby position (dotted line notation in FIG. 1) and can move to the image recognition position (between the chip 2 and the substrate 6) during image recognition.
  • the chip 2 is provided with a Cu pillar 4 (copper support) on the chip back surface 2b.
  • Solder 5 is formed at the tip of the pillar 4.
  • a pillar bump 3 is formed by the pillar 4 and the solder 5.
  • An electrode 7 is provided on the substrate 6, and the surface of the electrode 7 is subjected to solder plating 7a.
  • An adhesive 17 that is a non-conductive thermosetting resin is filled around the electrode 7 of the substrate 6.
  • the electrode 7 is provided with a flat bonding surface 7 b to be bonded to the pillar bump 3.
  • the shape of the pillar 4 made of Cu is cylindrical.
  • the pillar 4 is not limited to a cylindrical shape, and may be a polygonal column or a conical column as long as the solder 5 is formed at the tip of the column.
  • FIG. 4 A mounting method for mounting the chip 2 on the substrate 6 using the mounting apparatus 1 will be described with reference to the flowchart in FIG. 3 and the graph for explaining the mounting state in FIG.
  • the horizontal axis represents time
  • the vertical axis represents the height of the head 8 in the Z-axis direction and the detected load of the load cell 10.
  • the chip 2 is sucked and held by the tool 9 of the head 8, and the head 8 is lowered to a predetermined height (search height) toward the substrate 6 while the substrate 6 is sucked and held by the substrate stage 11.
  • the alignment mark on the chip 2 and the alignment mark on the substrate 6 are image-recognized by a two-field camera, and the substrate stage 11 is aligned in the X, Y, and ⁇ directions based on the image recognition data.
  • the heater 16 of the tool 9 is warmed to the preheating temperature T1.
  • the solder is in a softened state (for example, 160 ° C.) that moves from the solid phase state to the molten state.
  • the servo motor 14 is driven based on the detection position of the encoder 19 which is a height detection means, and the position is controlled (step ST00).
  • the head 8 is lowered at a predetermined height at a low speed.
  • the pillar bump 3 descends while pushing away the adhesive 17 around the electrode 7. This state is the timing at t0 in FIG.
  • the pillar bump 3 approaches the vicinity of the electrode 7.
  • the head 8 gradually descends, and a search operation is performed to detect the timing at which the solder 5 at the tip of the pillar bump 3 contacts the electrode 7 (step ST01).
  • the load P1 is detected by the load cell 10 (step ST02).
  • the load P1 is set as a search load.
  • the timing t1 in FIG. 4 is the timing at which the solder 5 of the pillar bump 3 contacts the electrode 7.
  • the drive control of the head 8 is switched to load control based on the detected load of the load cell 10.
  • the adhesive 17 prefilled in the substrate 6 is pushed out from the contacted portion between the pillar bump 3 and the electrode 7 when the chip 2 is pressed against the substrate 6 with the search load P1. This process is performed because if the adhesive 17 remains between the pillar bumps 3 and the electrodes 7, a product failure occurs in a later process.
  • the search load P1 is maintained for a predetermined time tm1 (step ST03).
  • the chip 2 is provided with a plurality of pillar bumps 3.
  • the height of each pillar bump 3 is slightly different. Therefore, all the pillar bumps 3 are grounded to the joint surface 7b of the electrode 7 by maintaining the search load P1 for a predetermined time tm1.
  • the height position H1 of the head 8 is measured by the encoder 19 which is a height detection means of the head 8, and stored in the control unit 20 (step ST04).
  • the measurement is performed at timing t2 in FIG.
  • the measurement of the height position H1 corresponds to the first height measurement process of the present invention.
  • the set load of the head 8 is changed to P2 (step ST05).
  • a preheating state for example, a state of about 160 ° C.
  • the solder 5 formed at the tip of the pillar bump 3 is not melted.
  • the solder 5 is in a softened state at the stage of transition from the solid phase state to the liquid phase state. Therefore, when the head 8 is load-controlled with the set load P2, the softened solder 5 is pushed into the electrode 7 and the shape is deformed.
  • the head 8 is subjected to load control with the set load P2 for a predetermined time tm2 from timing t3 to t4 in FIG.
  • the height position H2 of the head 8 is measured by the encoder 19 which is a height detection means of the head 8, and stored in the control unit 20 (step ST06).
  • the measurement of the height position H2 corresponds to the second height measurement process of the present invention.
  • the pillar bump 3 is pushed into the electrode 7 by changing the setting load P1 of the load control of the head 8 from P1 to P2.
  • the height displacement amount (H1-H2) of the head 8 measured in step ST04 and step ST06 is a preset allowable value. Ha will be exceeded. Therefore, after performing load control for a predetermined time tm2 with the set load P2, it is determined whether or not the height displacement amount (H1-H2) of the head 8 is within the allowable value Ha (step ST07). The determination is made at timing t4 in FIG.
  • the height displacement amount (H1-H2) of the head 8 corresponds to the change in the gap between the chip 2 and the substrate 6, and it is determined whether or not it is within the range of the allowable value Ha according to the present invention. This corresponds to a sinking amount determination step for determining whether or not the alignment is good.
  • the control unit 20 stores that there is a misalignment defect between the solder 5 and the electrode 7 on the working substrate 6 (step). ST07NG).
  • the allowable value Ha is set based on the case where the solder 5 of the pillar bump 3 is aligned near the center of the joint surface 7b of the electrode 7.
  • the contact position between the solder 5 and the joint surface 7b is displaced and is in contact with the end of the electrode 7, if the chip 2 is pressed for a predetermined time tm2 with the set load P2, the reaction force from the electrode 7 is sufficient. Therefore, the chip 2 sinks to the substrate 6 side with the pressing amount.
  • the set load P2 is measured in advance in a state where the solder 5 is heated to the preheating temperature T1 and is softened and is not crushed, and is stored in the control unit 20 and used in an actual process. Therefore, the solder 5 does not endure the load P2 and does not collapse.
  • the drive control of the head 8 is switched from the load control based on the detected load of the load cell 10 to the position control based on the detected position of the encoder 19 which is a height detecting means. Thereby, position control is performed so that the distance between the pillar bump 3 and the electrode 7 is kept constant.
  • the set temperature of the heater 16 is changed to T2. At the temperature T2, the solder 5 at the tip of the pillar bump 3 reaches the solder melting temperature (for example, 240 to 280 ° C.).
  • the head 8 is further lowered toward the substrate 6 by the pushing amount Hb, and the pillar bump 3 is pushed into the electrode 7 (step ST08).
  • the pushing is performed at timing t5 in FIG.
  • a reaction force is generated.
  • the reaction force is measured as the detected load P3 of the head 8 by the load cell 10 when the push-in is completed (timing t6 in FIG. 4) (step ST09).
  • the measurement of the detected load P3 corresponds to the first reaction force measurement step of the present invention.
  • the detected load P4 of the head 8 is measured by the load cell 10.
  • the measurement of the detected load P4 is performed at a stage where the load fluctuation of the head 8 is generated and stabilized (timing t7 in FIG. 4) and the solder 5 is melted (step ST10).
  • the measurement of the detected load P4 corresponds to the second reaction force measurement step of the present invention. Since the position of the head 8 is controlled so as to maintain the pushing amount Hb, the reaction force (detected load P3) generated when the pillar bump 3 is pushed into the electrode 7 decreases as the solder 5 melts. Since the solder 5 is heated at the temperature T2, the solder 5 has reached the melting temperature. Further, the adhesive 17 filled between the chip 2 and the substrate 6 is cured.
  • the reaction force (detected load P4) generated between the molten solder 5 and the electrode 7 maintains a predetermined value.
  • the reaction force from the electrode 7 does not act on the pillar bump 3, so the detected load P4 is compared with the case where the alignment is performed with high accuracy. , Get lower. Based on this characteristic, it is determined from the detected load P3 and the detected load P4 whether or not the difference (P3-P4) is within the preset allowable value Hb (step ST11).
  • P3-P4 is within the allowable value Hb, it is determined that the alignment of the pillar bump 3 and the electrode 7 is accurately performed. If it is out of the range, the alignment of the pillar bump 3 and the electrode 7 is displaced. It is determined that This pass / fail determination corresponds to the reaction force determination step of determining the pass / fail alignment of the melted pillar bump 3 and the electrode 7 of the present invention. If the allowable value Hb is exceeded, the control unit 20 stores that there is a misalignment between the pillar bump 3 and the electrode 7 (step ST11NG).
  • step ST12 the heater 16 is turned off, the suction holding of the chip 2 by the tool 9 is released, the head 8 is raised, and the mounting of the chip 2 on the substrate 6 is completed (step ST12).
  • FIG. 5 shows the positional relationship between the chip 2 and the substrate 6 in the processes from step ST01 to step ST10.
  • FIG. 5A shows a state where the pillar bump 3 of the chip 2 is in contact with the electrode 7 (step ST02). The distance between the back surface 2b of the chip 2 in this state and the substrate 6 is h0. The detected load is P1, and the height H1 of the head 8 is maintained.
  • FIG. 5B shows a state where the pillar bump 3 of the chip 2 is pressed against the electrode 7 with a predetermined load (a load in which the pillar 4 and the electrode 7 do not contact) (step ST06).
  • a predetermined load a load in which the pillar 4 and the electrode 7 do not contact
  • the distance between the back surface 2b of the chip 2 in this state and the substrate 6 is h1.
  • the detected load is P2, and the height H2 of the head 8 is maintained.
  • FIG. 5C shows a state where the pillar bump 3 of the chip 2 is pushed into the electrode by a predetermined pushing amount Hb (step ST09) and the solder 5 has reached the melting temperature (step ST10).
  • Hb predetermined pushing amount
  • FIG. 5 (d) shows a case where the solder 5 and the electrode 7 are misaligned. Since the positions of the melted solder 5 and the electrode 7 are shifted, the reaction force from the electrode 7 is not transmitted to the solder 5. Therefore, the detected load P4 is lower than that in a state where the detection load P4 is accurately aligned.
  • the values of the detected loads P3 and P4 with respect to the pushing amount Hb are stored in the control unit 20 in advance.
  • a setting value is stored in the control unit 20 with respect to the detected load P4 when a positional deviation occurs. Based on these data, the detected loads P3 and P4 are compared for each joining of the chip 2 and the substrate 6, and the quality of the joining is judged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

課題 ピラーバンプなどの微細な半田バンプが形成されたチップを基板に熱圧着する実装方法において、ピラーバンプが基板の電極に良好に熱圧着されているかどうかを判定することができる実装方法および実装装置を提供すること。 解決手段 チップを熱圧着ツールで保持して基板側に下降させる工程と、チップのピラーバンプが基板の電極に接触した後、チップを保持する熱圧着ツールの温度を半田溶融温度に昇温する工程と、予め設定されている押し込み量だけ、チップを基板側に押し込み、押し込みが完了した際の、基板の電極からの反力を測定する第1の反力測定工程と、ピラーバンプに設けられた半田溶融した際の基板の電極からの反力を測定する第2の反力測定工程と、前記第1の反力測定工程の測定結果と、前記第2の反力測定工程の測定結果から、溶融したピラーバンプと電極の位置合わせの良否を判定する反力判定工程と、を有する実装方法および実装装置を提供する。

Description

実装方法および実装装置
 本発明は、フリップチップに設けられた柱状のピラーの先端に半田が形成されたピラーバンプ付きのフリップチップを基板に熱圧着する実装方法および実装装置に関するものである。
 近年、高密度実装の要求から半田バンプも電極間隔を狭め、バンプの構造も丸みをおびたボールバンプから、柱状の形状のものが用いられるようになっている。特許文献1には、バンプピッチを超微細にした柱状のピラーバンプが、開示されている。ピラーバンプは、狭ピッチで立設したCu等のピラー(円柱状)の先端に半球状の半田を形成している。先端の半田は、半球状の場合もあるし、先端部を楕円状に平坦化させたものもある。そのため、バンプピッチを従来の半田ボールタイプの半田バンプに比べて微細にすることができる。また高密度実装に対応することができる。これらの半田部分は、ピラー(円柱)の底面の面積が微小面積であるため、従来の半田ボールタイプの半田バンプに比べて、極めて少ない量の半田で半田接合部分が形成されている。
特開2006-245288号公報
 このようなピラーバンプが形成されたチップを、基板に熱圧着し接合状態を検査しようとすると次のような問題がある。
 チップと基板の位置合わせは、チップおよび基板に設けられた位置合わせマークを画像認識し、画像認識データに基づいて、チップを保持する熱圧着ツールもしくは基板を保持する基板ステージを駆動して位置合わせしている。そのため、位置合わせマークに基づいてチップと基板が位置合わせされていても、ピラーバンプと基板の電極のセンター位置が所定範囲を超えていると、チップを押圧する際に、ピラーバンプが電極からズレおちる問題がある(特に、バンプピッチが微細化されたピラーバンプでは、位置合わせのマージンが狭く、ピラーバンプと電極の位置合わせが困難な状況となっている)。ピラーバンプが電極からズレおちた状態のチップと基板の接合は、回路のショートなど、不具合を招く要因となる。
 また、ピラーバンプの先端に設けられている半田の量が、従来のボールバンプに比べて少ないため、ヒータによる半田の加熱と、チップの押圧力のバランスによっては、ピラーと電極の間で溶融した半田が押し潰されて、電極の接合面からはみ出してしまう問題もある。
 そこで、本発明の課題は、ピラーバンプなどの微細な半田バンプが形成されたチップを基板に熱圧着する実装方法において、ピラーバンプが基板の電極に良好に熱圧着されているかどうかを判定することができる実装方法および実装装置を提供することとする。
 上記課題を解決するために、請求項1に記載の発明は、
チップに設けられたピラーバンプを、基板に設けられた電極に、押圧しながら加熱し熱圧着する実装方法であつて、
チップを熱圧着ツールで保持して基板側に下降させる工程と、
チップのピラーバンプが基板の電極に接触した後、
チップを保持する熱圧着ツールの温度を半田溶融温度に昇温する工程と、
予め設定されている押し込み量だけ、チップを基板側に押し込み、押し込みが完了した際の、基板の電極からの反力を測定する第1の反力測定工程と、
ピラーバンプに設けられた半田溶融した際の基板の電極からの反力を測定する第2の反力測定工程と、
前記第1の反力測定工程の測定結果と、前記第2の反力測定工程の測定結果から、溶融したピラーバンプと電極の位置合わせの良否を判定する反力判定工程と、を有する実装方法である。
 請求項2に記載の発明は、請求項1の発明において、
チップのピラーバンプが基板の電極に接触した後、
チップを保持している熱圧着ツールの昇降位置を測定する第1の高さ測定工程と、
予め設定されている圧力で、予め設定されている時間、チップを基板側に押圧した後、
チップを保持している熱圧着ツールの昇降位置を測定する第2の高さ測定工程と、
前記第1の高さ測定工程の測定結果と、前記第2の高さ測定工程の測定結果から、チップを押圧したことによるチップと基板の間隔の変化を求め、半田溶融前のピラーバンプと電極の位置合わせの良否を判定する沈み込み量判定工程を有する実装方法である。
 請求項3に記載の発明は、
ピラーバンプが設けられたチップを保持する熱圧着ツールと、
チップのピラーバンプが接合される電極を有した基板を保持する基板ステージと、
チップを保持した熱圧着ツールを、基板を保持した基板ステージ側に、昇降させる駆動手段と、
チップを保持した熱圧着ツールの昇降位置を検出する高さ検出手段と、
チップを保持した熱圧着ツールが基板を押圧する際の、押圧力を検出する荷重検出手段と、
熱圧着ツールの温度を昇温するヒータと、
前記高さ検出手段でチップ高さ位置情報を測定し、前記荷重検出手段でチップへの押圧力を測定し、前記駆動手段と前記ヒータとを制御する制御手段とを備えた実装装置であって、
前記制御手段が、
前記ヒータを半田溶融温度に昇温し、前記駆動手段を駆動し熱圧着ツールを基板側に予め設定されている押し込み量だけ押し込んだ際の、前記荷重検出手段で測定した検出荷重と、ピラーバンプに設けられた半田が溶融した際の検出荷重から、溶融したピラーバンプと電極の位置合わせの良否を判定する機能を有する実装装置である。
 請求項4に記載の発明は、請求項3の発明において、
前記制御手段が、
チップのピラーバンプが基板の電極に接触した後、
予め設定されている圧力で、予め設定されている時間、チップを基板側に押圧し、押圧したことによるチップと基板の間隔に変化から、溶融前のピラーバンプと電極の位置合わせの良否を判定する機能を有する実装装置である。
 請求項1に記載の発明によれば、ピラーバンプを備えたチップを熱圧着ツールで保持して基板側に下降している。そして、チップのピラーバンプが基板の電極に接触した後、チップを保持する熱圧着ツールの温度を半田溶融温度に昇温している。そして、熱圧着ツールの温度がピラーバンプに伝わる間に、チップを基板側に、予め設定されている押し込み量だけ押し込んでいる。そして、チップの押し込みが完了した際の、基板の電極からの反力を、熱圧着ツールに設けられた荷重検出手段で測定し、制御手段に第1の反力測定結果として記憶している(第1の反力測定工程)。一方、熱圧着ツールの温度がピラーバンプに伝わることによりピラーバンプに設けられた半田の溶融が進んでいく。そのため、予め設定された押し込み量の状態で、熱圧着ツールが昇降位置を保持していても、ピラーバンプの半田が溶融すると、基板の電極からの反力は少しずつ低下していく。
 そのため、請求項1の発明では、ピラーバンプに設けられた半田が溶融するまでの、予め設定されている時間(ピラーバンプの半田の溶融が完了する時間)経過した後、基板の電極からの反力を測定し、制御手段に第2の反力測定結果として記憶している(第2の反力測定工程)。そして、制御手段に記憶した第1の反力測定結果と、第2の反力測定結果とから溶融したピラーバンプと電極の位置合わせの良否を判定している(反力判定工程)。
 ピラーバンプと電極の位置ずれが発生していると、溶融したピラーバンプの半田が基板の電極の接合面からはみだした状態となる。溶融した半田全体を、電極の接合面で支える場合に比べて、電極からはみでている分、電極からの反力は低下する。
 より具体的には、第1の反力測定工程では、ピラーバンプの半田は完全に溶融していないため、電極の接触面(ピラーバンプが当接する面)にピラーバンプが位置合わせされていれば、電極の接触面から多少はみ出ていても、所定の押し込み量だけチップを押し込んでも、所定の範囲の反力を電極から受けることができる。しかし、ピラーバンプの半田が溶融した状態では、電極の接触面の全てで、ピラーバンプの半田が電極の接合面全体で支えている場合と、ピラーバンプの半田の一部が電極からはみ出ている場合では反力の違いが生じる。第2の反力測定工程は、ピラーバンプの半田が溶融した状態となるため、電極の接合面から半田がはみ出ている場合は、チップを押し込むことによる電極からの反力が、電極の接触面の全てで支えている場合に比べて低下して検出される。
 これらの反力の測定結果(第1の反力測定工程の測定結果と、第2の反力測定工程の測定結果)から、チップのピラーバンプと、基板の電極が良好に位置合わせされ、熱圧着されたかを判定することができる(反力判定工程)。
 請求項2に記載の発明によれば、請求項1に記載の発明において、さらに、ピラーバンプを備えたチップを熱圧着ツールで保持して基板側に下降し、チップのピラーバンプが基板の電極に接触した後、チップを保持している熱圧着ツールの昇降位置を測定している(第1の高さ測定工程)。
 そして、予め設定されている圧力で、予め設定されている時間だけ、チップを基板側に押圧した後、チップを保持している熱圧着ツールの昇降位置を測定している(第2の高さ測定工程)。
 そして、第1の高さ測定工程の測定結果と、第2の高さ測定工程の測定結果から、押圧したことによるチップと基板の間隙の変化を求め、半田溶融前のピラーバンプと電極の位置合わせを判定している(沈み込み量判定工程)。
 チップのピラーバンプが基板の電極に接触した状態では、熱圧着ツールが昇温していないため、ピラーバンプの半田は溶融していない固相状態となる。そのため、基板の電極の接合面の範囲にピラーバンプの半田の接触位置が位置合わせされていると、ピラーバンプの先端の半田が電極の接合面に当たった状態となる。この状態で、予め設定されている圧力と、予め設定されている時間だけ、チップを基板に押圧しても、押圧にともなうピラーバンプの半田の変形分のみが、チップと基板の間隙の変化となる。しかし、ピラーバンプの半田の接触位置が、電極の接触面から外れてしまい、電極の接触面の端部に片当たりしている場合は、チップを所定圧で所定時間、押圧すると、電極の接触面からの反力が十分でないため、押圧量にともなってチップが基板側に沈み込むことになる。そのため、チップと基板の間隙は、ピラーバンプの先端の半田が電極の接合面内に位置合わせされている場合に比べて、狭まることになる。
 従い、ピラーバンプが電極に接触した熱圧着ツールの昇降位置である第1の高さ測定工程の測定結果と、所定圧力で所定時間、チップを押圧した後の熱圧着ツールの昇降位置である第2の高さ測定工程の測定結果から、チップと基板の間隙の変化を求めることにより、溶融前のピラーバンプの半田と電極の位置合わせが良好に行われているか判定することができる(沈み込み量判定工程)。
 請求項3に記載の発明によれば、実装装置が、ピラーバンプを備えたチップを保持する熱圧着ツールと、基板を保持する基板ステージと、チップを保持した熱圧着ツールを基板を保持した基板ステージ側に昇降させる駆動手段と、チップを保持した熱圧着ツールの昇降位置を検出する高さ検出手段と、チップを保持した熱圧着ツールが基板を押圧する際の押圧力を検出する荷重検出手段と、熱圧着ツールの温度を昇温するヒータと、高さ検出手段で検出されたチップ高さ位置と荷重検出手段で検出した熱圧着ツールの押圧力に基づいて駆動手段を制御する制御手段を備えている。
 さらに、制御手段は、ヒータを半田溶融温度に昇温し、予め設定されている押し込み量だけ駆動手段を駆動し、基板の電極に接触しているピラーバンプを備えたチップを基板側に押し込み、荷重検出手段でピラーバンプに設けられた半田が溶融する前の電極からの反力と、半田が溶融した後の電極からの反力を測定し、ピラーバンプと電極の位置合わせの良否を判定する機能を有している。
 半田溶融温度にヒータを昇温した後、熱圧着ツールに保持されたチップのピラーバンプの先端に設けられた半田が溶融していくまで時間経過を必要とする。その間、高さ検出手段の検出結果に基づいて精密に、チップを押し込み、押し込みにともなう電極からの反力を荷重検出手段で検出している。ピラーバンプの半田部分が電極の接合面に位置合わせされていても、部分的にはみ出している場合は、所定時間経過後の電極からの反力が、はみ出していない場合に比べて少なくなる。これらの反力の微妙な違いを荷重検出手段が正確に検出することで、ピラーバンプの位置ずれを検出することができる。
 請求項4に記載の発明によれば、制御手段が、チップのピラーバンプが基板の電極の接合面に接触した後、所定圧力で所定時間、チップを基板側に押圧する。押圧したことによるチップと基板の間隙の変化を高さ検出手段で測定し、溶融前のピラーバンプの半田と電極の位置合わせの良否を判定する機能を有している。
 熱圧着ツールを下降させることにより、熱圧着ツールに保持されたチップのピラーバンプが接触した位置を高さ検出手段で測定し、荷重検出手段でチップの押圧力を所定の値に保ちながら所定時間、押圧している。押圧が完了した際の熱圧着ツールの位置を高さ検出手段で測定することにより、チップと基板の間隙の変化を測定することができる。
 チップのピラーバンプが、電極の接合面に位置合わせされていると、半田溶融前のピラーバンプの半田は、固相状態のため押圧量に応じて変形し、変形量がチップと基板の間隙の変化となる。しかし、ピラーバンプと電極の位置合わせにおいて、ピラーバンプが電極の接合面の端に位置されていると、押圧力に応じてチップは基板側に沈み込んでしまう。このような場合、押圧完了時には、チップと基板の間隙はピラーバンプと電極が位置合わせされている場合に比べて、狭まってしまう。チップと基板の間隙の変化から位置合わせの良否を判定する制御手段を用いているので、溶融前のピラーバンプの位置ずれを良好に検出することができる。
 このように、本発明によれば、半田バンプが基板の電極に良好に熱圧着されているかどうかを判定することができる。
本発明に係る実装装置の概略側面図である。 チップと基板の関係を示す概略側面図である。 本発明に係る実装方法を説明するフローチャートである。 Z軸ヘッド高さと検出荷重を示すチャートである。 チップと基板の状態を示す側面図と、検出荷重、Z軸ヘッド高さの関係を説明する図である。
 本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態の実装装置の側面図、図2は実装装置で使用するチップ2と基板6の側面図である。図1において、実装装置1に向かって左右方向をX軸、前後方向をY軸、X軸とY軸で構成されるXY平面に直交する軸をZ軸、Z軸周りをθ軸とする。
 実装装置1は、チップ2を吸着保持するヘッド8と、基板6を吸着保持する基板ステージ11と、チップ2と基板6に設けられた位置合わせマークを認識する2視野カメラ13と、実装装置1全体を制御する制御部20とから構成されている。
 ヘッド8には、チップ2に付与されている加圧力を検出するロードセル10が内蔵されている。ヘッド8の下側にはチップ2を吸着保持するツール9が装着されている。ツール9にはヒータ16と熱電対18が内蔵されており、制御部20からの指令に基づいてチップ2を加熱できるように構成されている(図1でヒータ16は点線で表記した)。ヘッド8はサーボモータ14とサーボモータ14に連結されたボールねじ15を駆動制御することによりZ方向上下に昇降する。本発明の駆動手段は、サーボモータ14とボールねじ15で構成されている。
 また、ヘッド8は、制御部20からの指令に基づいて、押圧力を制御する荷重制御と、Z軸高さ位置を制御する位置制御との制御ができるように構成されている。本発明の熱圧着ツールは、ヘッド8とツール9で構成されている。
 ヘッド8の押圧力はモーターのトルクによって制御されるのが好ましいが、ボイスコイルモータや空圧シリンダーなど押し付け力を発生するものであれば、どのような手段であっても良い。
 荷重制御中に押圧力を一定に保つためにZ方向に上下に変動した移動量は、サーボモータ14のエンコーダー19による位置検出手段により位置情報を取得できるように構成されている。位置検出手段はZ方向に位置を測定出来るものであれば、外部にリニアスケールなどを用いても良い。
 基板ステージ11は、図示していない駆動機構によりX,Y、θ方向に移動可能で、吸着保持された基板6を所定の位置に位置決めできるように構成されている。
 2視野カメラ13は、ツール9に吸着保持されたチップ2と、基板ステージ11に吸着保持された回路基板6との間に挿入され、チップ2および基板6に付された位置合わせマークを画像認識することができる。通常は、待機位置(図1の点線表記部分)で待機しており画像認識の際に画像認識位置(チップ2と基板6の間)に移動できるようになっている。
 図2(a)に示すように、チップ2は、チップ裏面2bにCu製のピラー4(銅製の支柱)が設けられている。ピラー4の先端には半田5が形成されている。ピラー4と半田5でピラーバンプ3を形成している。基板6には電極7が設けられ、電極7の表面は半田メッキ7aが施されている。基板6の電極7の周囲には非導電性熱硬化樹脂である接着剤17が充填されている。電極7には、ピラーバンプ3と接合される平坦な接合面7bが設けられている。
 Cu製のピラー4の形状は、円柱状のものが用いられている。なお、ピラー4は円柱状に限らず、多角形の柱であっても、円錐状の柱であってもよく、柱の先端に半田5が形成されたものであればよい。例えば、図2(b)の様な形状であっても良い。
 このような、実装装置1を用いてチップ2を基板6に実装する実装方法について、図3のフローチャートと、図4の実装状態を説明するグラフと、を用いて説明する。図4は、横軸に時間を表記し、縦軸にヘッド8のZ軸方向の高さおよび、ロードセル10の検出荷重を表記している。
 まず、ヘッド8のツール9にチップ2が吸着保持されており、基板ステージ11に基板6が吸着保持されている状態で、ヘッド8が基板6側に所定高さ(サーチ高さ)下降した状態から始める。予め、チップ2の位置合わせマークと基板6の位置合わせマークは2視野カメラによって画像認識され、画像認識データに基づいて、基板ステージ11がX、Y、θ方向に位置合わせされている。また、ツール9のヒータ16は予熱温度T1に暖められている。予熱温度T1では、半田が固相状態から溶融状態に移る軟化した状態となる(例えば、160℃など)。ヘッド8の駆動制御は、高さ検出手段であるエンコーダー19の検出位置に基づいてサーボモータ14が駆動され、位置制御されている(ステップST00)。
 次に、ヘッド8を低速で所定高さだけ下降させる。電極7の周囲の接着剤17を押しのけながら、ピラーバンプ3が下降する。この状態は、図4のt0のタイミングとなる。ピラーバンプ3が電極7の近傍まで近づいた状態となる。ヘッド8が徐々に下降し、ピラーバンプ3の先端の半田5が電極7に接触するタイミングを検出するサーチ動作を行う(ステップST01)。
 次に、ロードセル10で荷重P1が検出される(ステップST02)。荷重P1をサーチ荷重とする。図4のタイミングt1がピラーバンプ3の半田5が電極7に接触したタイミングである。ヘッド8の駆動制御をロードセル10の検出荷重に基づく荷重制御に切り換える。
 ピラーバンプ3の半田5が電極7に接触すると、予熱温度T1に暖められているツール9の温度が基板6側に伝わるようになる。
 また、基板6に予め充填されている接着剤17は、チップ2が基板6にサーチ荷重P1で押し付けられると、ピラーバンプ3と電極7の接触した部分から押し出される。この工程は、接着剤17がピラーバンプ3と電極7の間に残留していると、後の工程で製品不具合となるため行われている。
 次に、所定時間tm1だけサーチ荷重P1を維持する(ステップST03)。チップ2には、複数のピラーバンプ3が設けられている。それぞれのピラーバンプ3の高さは、微妙に違っている。そのため、所定時間tm1だけサーチ荷重P1を維持することにより、全てのピラーバンプ3を電極7の接合面7bに接地させるようにしている。
 次に、ヘッド8の高さ検出手段であるエンコーダー19でヘッド8の高さ位置H1を計測し、制御部20に記憶する(ステップST04)。計測は、図4のタイミングt2で行われる。高さ位置H1の計測は、本発明の第1の高さ測定工程に対応する。
 次に、ヘッド8の設定荷重をP2に変更する(ステップST05)。予熱状態(例えば、160℃程度の状態)では、ピラーバンプ3の先端に形成された半田5は溶融しない。半田5は、固相状態から液相状態に移る段階で、軟化した状態となる。そのため、ヘッド8が設定荷重P2で荷重制御されることにより、軟化した半田5が電極7に押し込まれ、形状が変形する。
 次に、図4のタイミングt3からt4までの所定時間tm2、ヘッド8を設定荷重P2で荷重制御する。
 次に、ヘッド8の高さ検出手段であるエンコーダー19でヘッド8の高さ位置H2を計測し、制御部20に記憶する(ステップST06)。高さ位置H2の計測は、本発明の第2の高さ測定工程に対応する。
 ヘッド8の荷重制御の設定荷重P1からP2に変更したことにより、ピラーバンプ3が電極7に押し込まれる。この際、ピラーバンプ3と電極7の接合面7bが位置ずれしている場合、ステップST04とステップST06で計測されたヘッド8の高さ変位量(H1-H2)が、予め設定されている許容値Haをオーバーすることになる。そのため、設定荷重P2で所定時間tm2、荷重制御を行った後、ヘッド8の高さ変位量(H1-H2)が許容値Haの範囲内かどうか判定する(ステップST07)。判定は図4のタイミングt4で行われる。ヘッド8の高さ変位量(H1-H2)は、チップ2と基板6の間隙の変化に対応し、許容値Haの範囲内かどうかの判定は、本発明の、溶融前の半田バンプと電極の位置合わせの良否を判定する沈み込み量判定工程に対応する。許容値Haを超えるヘッド8の高さ変位量(H1-H2)が検出された場合は、制御部20に作業中基板6に半田5と電極7の位置ずれ不良があることを記憶する(ステップST07NG)。
 許容値Haは、ピラーバンプ3の半田5が電極7の接合面7bの中心付近に位置合わせされている場合を基準に設定される。半田5と接合面7bの接触位置にズレが生じ、電極7の端部に片当たりしている場合は、設定加重P2で所定時間tm2だけチップ2を押圧すると、電極7からの反力が十分でないため、押圧量にともなってチップ2が基板6側に沈み込むことになる。
 従い、許容値Haを超えるヘッド8の高さ変位量を検出することにより、ピラーバンプ3の半田5と電極7の接合面7bの位置合わせが良好に行われているか判定することができる。
 なお、設定荷重P2は、予め、半田5を予熱温度T1に加熱し軟化した状態で潰れることのない荷重を測定し制御部20に記憶させ、実際の工程で用いている。そのため、半田5が荷重P2に耐えきれずに潰れてしまうことがない。
 次に、ヘッド8の駆動制御を、ロードセル10の検出荷重に基づく荷重制御から、高さ検出手段であるエンコーダー19の検出位置に基づく位置制御に切り換える。これにより、ピラーバンプ3と電極7の間隔が一定に保たれるように位置制御が行われる。次に、ヒータ16の設定温度をT2に変更する。温度T2では、ピラーバンプ3の先端部の半田5が半田溶融温度に到達する(例えば、240~280℃)。
 次に、所定時間tm3経過した後、さらに、ヘッド8を押し込み量Hbだけ基板6側に下降し、ピラーバンプ3を電極7に押し込む(ステップST08)。押し込みは、図4のタイミングt5で行われる。ピラーバンプ3が電極7に押し込まれることにより、反力が発生する。反力は、押し込みが完了した際(図4のタイミングt6)、ロードセル10でヘッド8の検出荷重P3として測定される(ステップST09)。検出荷重P3の測定は、本発明の第1の反力測定工程に対応する。
 次に、所定時間tm4経過した後、ロードセル10でヘッド8の検出荷重P4を測定する。検出荷重P4の測定は、ヘッド8の荷重変動が発生し安定した段階(図4のタイミングt7)で、半田5が溶融した段階に行われる(ステップST10)。検出荷重P4の測定は、本発明の第2の反力測定工程に対応する。ヘッド8は、押し込み量Hbを維持するように位置制御されているので、ピラーバンプ3が電極7に押し込まれることによって生じた反力(検出荷重P3)は、半田5の溶融にともない低下する。半田5は温度T2で加熱されているので、半田5が溶融温度に達している。また、チップ2と基板6の間に充填されている接着剤17が硬化する。
 ピラーバンプ3と電極7の位置合わせが精度良く行われている場合、溶融した半田5と電極7とで生じる反力(検出荷重P4)は、所定の値を維持する。しかし、ピラーバンプ3と電極7の位置合わせにズレが生じている場合、電極7からの反力がピラーバンプ3に作用しないため、検出荷重P4は、位置合わせが精度良く行われている場合に比べて、低くなる。この特性に基づき、検出荷重P3と検出荷重P4とから、その差(P3-P4)が、予め設定されている許容値Hbの範囲内かどうかを判定する(ステップST11)。P3-P4が許容値Hbの範囲内ならば、ピラーバンプ3と電極7の位置合わせは精度良く行われていると判定し、範囲外ならば、ピラーバンプ3と電極7の位置合わせにズレが生じていると判定する。この良否判定は、本発明の、溶融したピラーバンプ3と電極7の位置合わせの良否を判定する反力判定工程に対応する。許容値Hbを超える場合は、制御部20にピラーバンプ3と電極7の位置ずれ不良があることを記憶する(ステップST11NG)。
 次に、ヒータ16をOFFし、ツール9によるチップ2の吸着保持を解除し、ヘッド8を上昇し、チップ2の基板6への実装を終了する(ステップST12)。
 反力判定工程について、チップ2の半田5と基板6の電極7の状態を、図5を用いて詳細説明する。ステップST01からステップST10までの工程に於いて、チップ2と基板6の位置関係を図5に示す。チップ2のピラーバンプ3が電極7に接触した状態(ステップST02)を、図5(a)に示す。この状態のチップ2の裏面2bと基板6との距離をh0とする。検出荷重はP1で、ヘッド8の高さH1が保たれている。
 チップ2のピラーバンプ3が電極7に所定の荷重(ピラー4と電極7が接触しない荷重)で押圧された状態(ステップST06)を、図5(b)に示す。この状態のチップ2の裏面2bと基板6との距離をh1とする。検出荷重はP2で、ヘッド8の高さH2が保たれている。
 チップ2のピラーバンプ3が電極に所定の押し込み量Hbだけ押し込まれ(ステップST09)、半田5が溶融温度に到達した状態(ステップST10)を、図5(c)に示す。この状態では半田5と電極7の位置合わせが精度良く行われている。そのため、半田5と電極7とで生じる反力は、半田溶融状態であっても所定値を維持する。
 一方、半田5と電極7の位置合わせにズレが生じている場合を図5(d)に示す。溶融した半田5と電極7の位置がずれているため、電極7からの反力が半田5に伝わらない。そのため、検出荷重P4が精度良く位置合わせされた状態に比べて低くなる。
 具体的には、チップ2と基板6の生産ロット毎に、押し込み量Hbに対する、検出荷重P3およびP4の値が、制御部20に予め記憶されている。また、位置ずれが発生した場合の検出荷重P4についても設定値が制御部20に記憶されている。これらのデータに基づき、チップ2と基板6の接合毎に検出荷重P3、P4を比較し、接合の良否判断を行う。
 1  実装装置
 2  チップ
 2b  チップ裏面
 3  ピラーバンプ
 4  ピラー
 5  半田
 6  基板
 7  電極
 7a  半田メッキ
 7b  接合面
 8  ヘッド
 9  ツール
 10  ロードセル
 11  基板ステージ
 13  2視野カメラ
 14  サーボモータ
 15  ボールねじ
 16  ヒータ
 17  接着剤
 18  熱電対
 19  エンコーダー
 20  制御部
 T1  予熱温度
 T2  半田溶融温度

Claims (4)

  1. チップに設けられたピラーバンプを、基板に設けられた電極に、押圧しながら加熱し熱圧着する実装方法であつて、
    チップを熱圧着ツールで保持して基板側に下降させる工程と、
    チップのピラーバンプが基板の電極に接触した後、
    チップを保持する熱圧着ツールの温度を半田溶融温度に昇温する工程と、
    予め設定されている押し込み量だけ、チップを基板側に押し込み、押し込みが完了した際の、基板の電極からの反力を測定する第1の反力測定工程と、
    ピラーバンプに設けられた半田溶融した際の基板の電極からの反力を測定する第2の反力測定工程と、
    前記第1の反力測定工程の測定結果と、前記第2の反力測定工程の測定結果から、溶融したピラーバンプと電極の位置合わせの良否を判定する反力判定工程と、を有する実装方法。
  2. 請求項1の発明において、
    チップのピラーバンプが基板の電極に接触した後、
    チップを保持している熱圧着ツールの昇降位置を測定する第1の高さ測定工程と、
    予め設定されている圧力で、予め設定されている時間、チップを基板側に押圧した後、
    チップを保持している熱圧着ツールの昇降位置を測定する第2の高さ測定工程と、
    前記第1の高さ測定工程の測定結果と、前記第2の高さ測定工程の測定結果から、チップを押圧したことによるチップと基板の間隔の変化を求め、半田溶融前のピラーバンプと電極の位置合わせの良否を判定する沈み込み量判定工程を有する実装方法。
  3. ピラーバンプが設けられたチップを保持する熱圧着ツールと、
    チップのピラーバンプが接合される電極を有した基板を保持する基板ステージと、
    チップを保持した熱圧着ツールを、基板を保持した基板ステージ側に、昇降させる駆動手段と、
    チップを保持した熱圧着ツールの昇降位置を検出する高さ検出手段と、
    チップを保持した熱圧着ツールが基板を押圧する際の、押圧力を検出する荷重検出手段と、
    熱圧着ツールの温度を昇温するヒータと、
    前記高さ検出手段でチップ高さ位置情報を測定し、前記荷重検出手段でチップへの押圧力を測定し、前記駆動手段と前記ヒータとを制御する制御手段とを備えた実装装置であって、
    前記制御手段が、
    前記ヒータを半田溶融温度に昇温し、前記駆動手段を駆動し熱圧着ツールを基板側に予め設定されている押し込み量だけ押し込んだ際の、前記荷重検出手段で測定した検出荷重と、ピラーバンプに設けられた半田が溶融した際の検出荷重から、溶融したピラーバンプと電極の位置合わせの良否を判定する機能を有する実装装置。
  4. 請求項3の発明において、
    前記制御手段が、
    チップのピラーバンプが基板の電極に接触した後、
    予め設定されている圧力で、予め設定されている時間、チップを基板側に押圧し、押圧したことによるチップと基板の間隔に変化から、溶融前のピラーバンプと電極の位置合わせの良否を判定する機能を有する実装装置。
PCT/JP2012/052328 2011-02-15 2012-02-02 実装方法および実装装置 WO2012111439A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137017614A KR101821958B1 (ko) 2011-02-15 2012-02-02 실장방법 및 실장장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011030158A JP5877645B2 (ja) 2011-02-15 2011-02-15 実装方法および実装装置
JP2011-030158 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111439A1 true WO2012111439A1 (ja) 2012-08-23

Family

ID=46672370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052328 WO2012111439A1 (ja) 2011-02-15 2012-02-02 実装方法および実装装置

Country Status (4)

Country Link
JP (1) JP5877645B2 (ja)
KR (1) KR101821958B1 (ja)
TW (1) TWI580510B (ja)
WO (1) WO2012111439A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130414A (ja) * 2014-01-08 2015-07-16 東レエンジニアリング株式会社 自動ボンディング装置
WO2019044819A1 (ja) * 2017-08-28 2019-03-07 株式会社新川 対象物に対して移動体を直線移動させる装置および方法
JP7174443B2 (ja) 2018-06-13 2022-11-17 国立研究開発法人産業技術総合研究所 電子回路の接続方法及び電子回路
JP2020080383A (ja) * 2018-11-13 2020-05-28 株式会社ブイ・テクノロジー 表示装置の製造方法及び製造装置
KR102252732B1 (ko) 2019-06-11 2021-05-18 세메스 주식회사 다이 본딩 방법 및 다이 본딩 장치
JP7368962B2 (ja) * 2019-07-09 2023-10-25 芝浦メカトロニクス株式会社 実装装置
US20230268312A1 (en) * 2022-02-18 2023-08-24 Bae Systems Information And Electronic Systems Integration Inc. Soft touch eutectic solder pressure pad

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297761A (ja) * 1998-04-09 1999-10-29 Taiyo Yuden Co Ltd 電子部品の実装方法及び実装装置
WO2007066559A1 (ja) * 2005-12-06 2007-06-14 Toray Engineering Co., Ltd. チップ実装装置およびチップ実装方法
JP2008117993A (ja) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd 熱圧着装置および熱圧着方法
WO2010103934A1 (ja) * 2009-03-12 2010-09-16 ナミックス株式会社 アンダーフィル材、及び、電子部品の実装方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271689A (ja) * 1986-05-14 1987-11-25 オムロン株式会社 部品組込装置
US5686353A (en) * 1994-12-26 1997-11-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device and manufacturing method thereof
JP2003023040A (ja) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd バンプ付電子部品の実装方法
JP2003332792A (ja) * 2002-05-14 2003-11-21 Fuji Mach Mfg Co Ltd 電子回路部品装着ヘッド
JP2006054275A (ja) * 2004-08-11 2006-02-23 Sony Corp 半導体装置の製造方法および半導体製造装置
JP4324572B2 (ja) * 2005-03-03 2009-09-02 カシオマイクロニクス株式会社 バンプの形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297761A (ja) * 1998-04-09 1999-10-29 Taiyo Yuden Co Ltd 電子部品の実装方法及び実装装置
WO2007066559A1 (ja) * 2005-12-06 2007-06-14 Toray Engineering Co., Ltd. チップ実装装置およびチップ実装方法
JP2008117993A (ja) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd 熱圧着装置および熱圧着方法
WO2010103934A1 (ja) * 2009-03-12 2010-09-16 ナミックス株式会社 アンダーフィル材、及び、電子部品の実装方法

Also Published As

Publication number Publication date
JP2012169495A (ja) 2012-09-06
KR20140043045A (ko) 2014-04-08
TWI580510B (zh) 2017-05-01
TW201233486A (en) 2012-08-16
JP5877645B2 (ja) 2016-03-08
KR101821958B1 (ko) 2018-01-25

Similar Documents

Publication Publication Date Title
WO2012111439A1 (ja) 実装方法および実装装置
JP5014151B2 (ja) チップ実装装置およびチップ実装方法
US20070181644A1 (en) Component mounting method and component mounting apparatus
KR101331548B1 (ko) 전자부품 실장 장치 및 그 방법
JP2003205371A (ja) 接合装置
JP5797368B2 (ja) 半導体チップのボンディング装置及びボンディング方法
JP6325053B2 (ja) 接合システム、接合方法、および半導体デバイスの製造方法
JP5930563B2 (ja) 実装方法および実装装置
JP5847390B2 (ja) 実装装置および実装方法
JP5003590B2 (ja) 電子部品の製造装置及びその製造方法
JP5973753B2 (ja) チップ受け渡し治具およびチップ受け渡し方法
KR101591125B1 (ko) 칩 실장 장치
JP4260712B2 (ja) 電子部品実装方法及び装置
JPH05109840A (ja) インナリ−ドボンデイング装置
JP2012064711A (ja) 電子部品の実装装置及び実装方法
JP2014143442A (ja) チップ実装装置
JP6345819B2 (ja) チップ実装装置
JP2005333005A (ja) 微小部品貼り合せ装置及び貼り合せ方法
JP2018129552A (ja) チップ実装装置
KR20070022058A (ko) 부품 실장방법 및 부품 실장장치
JP4377402B2 (ja) 部品実装方法と装置
JP2015080915A (ja) 溶着装置および溶着方法
JP2002033351A (ja) フリップチップのボンディング装置
JP2004146544A (ja) バンプを備えた部品の超音波ボンディング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137017614

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746716

Country of ref document: EP

Kind code of ref document: A1