WO2012111316A1 - 導波路型光スイッチ - Google Patents

導波路型光スイッチ Download PDF

Info

Publication number
WO2012111316A1
WO2012111316A1 PCT/JP2012/000970 JP2012000970W WO2012111316A1 WO 2012111316 A1 WO2012111316 A1 WO 2012111316A1 JP 2012000970 W JP2012000970 W JP 2012000970W WO 2012111316 A1 WO2012111316 A1 WO 2012111316A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
output
input
optical switch
unit
Prior art date
Application number
PCT/JP2012/000970
Other languages
English (en)
French (fr)
Inventor
渡辺 俊夫
鈴木 賢哉
郷 隆司
山崎 裕史
森 淳
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US13/984,282 priority Critical patent/US9360629B2/en
Priority to JP2012557830A priority patent/JP5913139B2/ja
Priority to CN201280008701.9A priority patent/CN103370650B/zh
Publication of WO2012111316A1 publication Critical patent/WO2012111316A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches

Definitions

  • the present invention relates to a waveguide-type optical switch used in optical communication or the like, and in particular, a matrix light that is configured by connecting an optical switch and an optical combiner or an optical branching device and has a many-to-one to one-to-many connection function. Regarding switches.
  • the present invention also relates to a technique for realizing a circuit configuration in which the number of waveguide crossings is reduced.
  • Optical communication technology using an optical fiber as a transmission medium has led to an increase in signal transmission distance, and a large-scale optical communication network has been constructed.
  • communication traffic has increased rapidly, and demands for large capacity, high speed, and high functionality for communication networks are increasing.
  • it has become possible to increase the transmission capacity between two points by introducing a wavelength multiplexing communication technique for simultaneously transmitting a plurality of optical signals having different wavelengths through one transmission line.
  • An optical switch connects multiple unit optical switch elements with 1 input and 2 outputs or 2 inputs and 1 output to make 1 input multiple output (or multiple input 1 output), multiple input multiple output, and 2 input 2 output multiple With respect to the number of input / output ports and the connection pattern between the ports, optical switches having various circuit configurations can be manufactured. Among them, a multi-input / multi-output matrix optical switch is widely used as an optical switch for arbitrarily setting a route between a plurality of input / output ports.
  • a matrix optical switch capable of many-to-one to one-to-many connection as well as a normal one-to-one connection is desired. That is, a many-to-one connection function that combines different optical signals input to a plurality of input ports and outputs them to one output port of a plurality of output ports, or one input of a plurality of input ports
  • a matrix optical switch having a one-to-many connection function for branching an optical signal input to a port and outputting it to a plurality of output ports has been required for constructing a flexible network.
  • a configuration as shown in FIG. 1 is known as a configuration of a waveguide optical switch in which a matrix optical switch having such a many-to-one to one-to-many connection function is realized by a waveguide device (non-patent document). Reference 1).
  • the matrix optical switch shown in FIG. 1 includes four 1-input 4-output optical switches (combining four 1-input 2-output unit optical switch elements) 111 to 114 and four 4-input 1-output light. It consists of mergers 131-134. Each input of the optical switches 111 to 114 is connected to four external input ports 101 to 104. The outputs of the optical combiners 131 to 134 are connected to external output ports 141 to 144, respectively.
  • the four output ports of the optical switch 111 are connected to the input ports of the optical combiners 131 to 134 via the intersection 121, respectively.
  • the four output ports of each of the optical switches 112 to 114 are connected to the input ports of the optical combiners 131 to 134 via the intersection 121, respectively.
  • the optical combiner is used as an optical distributor as it is, a plurality of optical signals input to one external input port are branched. Can be output to the external output port.
  • the conventional matrix optical switch shown in FIG. 1 has a problem that many crossings occur between the optical switch and the optical combiner. That is, at the intersection 121 in FIG. 1, 14 of the 16 waveguides except for the two at the ends intersect to connect the optical switch and the optical combiner.
  • the route having the maximum number of intersections is a route from the external input port 101 to the external output port 144 (or a route from the external input port 104 to the external output port 141), and there are nine intersections in the route. Yes.
  • the number of intersections increases as the number of external input / output ports of the matrix optical switch increases. That is, when the matrix optical switch as shown in FIG. 1 has N inputs and N outputs, N 2 waveguides are formed at the intersection, and the waveguide with the largest intersection is (N ⁇ 1). ) You will have two intersections.
  • Insertion loss and crosstalk occurs at the intersection of waveguides, and optical characteristics deteriorate. Insertion loss and crosstalk can be suppressed to some extent by increasing the crossing angle, but in order to increase the crossing angle, the waveguide must be developed on the substrate, which requires a large space. .
  • the present invention solves such problems, and is a matrix optical switch having a many-to-one to one-to-many connection function configured by connecting a unit optical switch element and an optical combiner or an optical branching unit.
  • An object of the present invention is to provide a waveguide-type optical switch that can be fabricated on a single substrate by reducing the number of crossings.
  • the present invention is a waveguide type optical switch in the form of an M-input N-output matrix optical switch (M and N are integers of 3 or more) formed on a single substrate. It is composed of N 1-input N-output optical switches and N M-input 1-output optical combiners.
  • the a-th input (a is an integer of 1 to M) of the matrix optical switch is a
  • the b-th (b is an integer between 1 and N) of the matrix optical switch is the output of the b-th M-input 1-output optical combiner.
  • Each of the optical switches is composed of (N ⁇ 1) 1-input 2-output unit optical switch elements, and each of the optical combiners is composed of (M ⁇ 1) 2 inputs.
  • the input of the first unit optical switch element constitutes the input of the optical switch, and one of the outputs of the i-th unit optical switch element (i is an integer of 1 to (N ⁇ 2)) is (i + 1).
  • the other of the outputs of the i th unit optical switch element constitutes the i th output of the optical switch, and the (N ⁇ 1) th unit optical switch element
  • the two outputs constitute the (N ⁇ 1) -th output and the N-th output of the optical switch.
  • the two inputs of the first unit optical combining element are the first of the optical combiner.
  • the other of the inputs of the j-th unit optical confluence element is connected to the output, and (j + 1) of the optical confluence
  • the output of the (M ⁇ 1) -th unit optical confluence element constitutes the output of the optical combiner, and the p-th optical switch (p is 1 in the optical switches) in the matrix optical switch.
  • An integer less than or equal to M) and a q-th optical combiner (q is an integer equal to or greater than 1 and less than or equal to N) among optical combiners are any of the outputs of the p-th optical switch and the q-th optical combiner. If any output of the p-th optical switch is a k-th output (k is an integer not less than 1 and not more than N), any of the q-th optical combiners is connected.
  • the combined light power ratio of the two input terminals of the first unit optical combining element in the optical combining device is 1: 1, and the jth (j is 2 or more (M ⁇ 1) or less).
  • the combined optical power ratio of the input terminal connected to the input of the optical switch of the unit optical confluence element and the input terminal connected to the other unit optical confluence element is 1: j.
  • the present invention is a waveguide type optical switch in the form of an N-input M-output matrix optical switch (M and N are integers of 3 or more) formed on a single substrate. It is composed of M 1-input M-output optical branching units and M N-input 1-output optical switches, and the a-th input (a is an integer of 1 to N) of the matrix optical switch is a The b-th output of the matrix optical switch (b is an integer from 1 to M) is the output of the b-th N-input 1-output optical switch.
  • Each of the optical branching units is composed of (M ⁇ 1) 1-input 2-output unit optical branching elements, and each of the optical switches is composed of (N ⁇ 1) 2 inputs.
  • the input of the nth unit optical branching element constitutes the input of the optical branching unit, and one of the outputs of the i th unit optical branching element (i is an integer of 1 to (M ⁇ 2)) is (i + 1)
  • the other of the outputs of the i-th unit optical branch element constitutes the i-th output of the optical splitter, and the (M ⁇ 1) -th unit optical branch element
  • the two outputs of the optical switch constitute the (M ⁇ 1) -th output and the M-th output of the optical branching unit.
  • the two inputs of the first unit optical switch element are the first of the optical switch.
  • An input and a second input, and one of the inputs of the j-th unit optical switch element (j is an integer of 2 or more and (N ⁇ 1) or less) is the (j ⁇ 1) -th unit optical switch element.
  • the other of the inputs of the jth unit optical switch element is connected to the output and the (j + 1) th of the optical switch And the output of the (N-1) th unit optical switch element constitutes the output of the optical switch.
  • the p-th optical branching device (p is 1 or more).
  • N is an integer less than or equal to N) and the q-th optical switch (q is an integer between 1 and M) is the output of any of the p-th optical branching units and the input of any of the q-th optical switches.
  • k is an integer of 1 to N.
  • M the number of units optical branching elements constituting the kth output of the pth optical splitter
  • qth Between inputs of unit optical switch elements constituting the kth input of the optical switch This connection is characterized in that no waveguide crossing is included.
  • the branch optical power ratio of the two output terminals of the (M ⁇ 1) th unit optical branch element in the optical splitter is 1: 1, and the i-th (i is 1 or more (M -2)
  • the branched light power ratio of the output terminal connected to the output of the optical switch of the unit optical branching device of the following integer) to the output terminal connected to the other unit optical branching device is 1: (Mi) Features.
  • the M input / output optical combiner is divided into two input / output unit optical combining elements (M ⁇ 1), and the N input optical outputs of N switches are combined. Out of the output ports, it is arranged immediately after each (N ⁇ 1) output ports excluding one output port close to the input of the matrix optical switch. Therefore, since the output ports of each optical switch do not merge at the optical combiner after intersecting, but intersect after joining at the unit optical confluence element, the number of intersections in the entire matrix optical switch can be reduced. Can do.
  • the 1-input M-output optical branching device is divided into 1-input 2-output unit optical branching elements (M-1), and the N-input 1-output optical switch is divided.
  • the N input ports are arranged immediately before each (N ⁇ 1) input ports excluding one input port close to the output of the matrix optical switch. Therefore, after branching by the optical branching device, it is not crossed and input to the optical switch, but after crossing, it is branched by the unit optical branching element and input to the optical switch. The number can be reduced.
  • a matrix optical switch having a many-to-one or one-to-many connection function can be formed on a single substrate.
  • the optical switch can be miniaturized, and components such as an optical fiber wiring board are not required, so that the number of components can be reduced.
  • FIG. 4B is an explanatory diagram of a configuration example of an optical switch element used in the present invention, and is a cross-sectional view taken along a cross-sectional line IVB-IVB in FIG. 4A.
  • thermo-optic effect As a system of the waveguide type optical switch for implementing the present invention, there are a system using a thermo-optic effect, a system using an electro-optic effect, a system using a refractive index change by current injection, and the like.
  • the unit optical switch element using the thermo-optic effect of the silica-based optical waveguide has good compatibility with the optical fiber, low insertion loss, and low principle polarization dependence. Is the most practical because it is physically and chemically stable and highly reliable.
  • a unit optical switch element other than the unit optical switch element using the thermo-optic effect of the quartz optical waveguide may be used.
  • FIG. 2 is an explanatory view showing the first embodiment of the present invention, and shows an example in which a 4-input 4-output matrix optical switch is configured.
  • the matrix optical switch shown in FIG. 2 includes 16 1-input 2-output unit optical switch elements (2511 to 2514, 2521 to 2524, 2531 to 2534, 2541 to 2544) and 12 2-input 1-output unit lights. It consists of confluence elements (2611 to 2613, 2621 to 2623, 2631 to 2633, 2641 to 2643).
  • the four unit optical switch elements 2511, 2512, 2513, and 2514 are connected in a column to form a 1-input 4-output optical switch 211 (not shown).
  • the unit optical switch elements 2521 to 2524, 2531 to 2534, and 2541 to 2544 are connected in series, and constitute 1-input 4-output optical switches 212, 213, and 214 (reference numerals are not shown).
  • the three unit optical merging elements 2611, 2612, and 2613 are connected in series to constitute a four-input / one-output optical merging device 231 (not shown).
  • the unit optical combining elements 2621 to 2623, 2631 to 2633, and 2641 to 2643 are respectively connected in cascade to constitute four-input one-output optical combiners 232, 233, and 234 (reference numerals are not shown).
  • the combined optical power ratio of the unit optical combiners 2611, 2612, and 2613 is equal.
  • these combined light power ratio is 1: 1, 2: 1,..., (N ⁇ 1): 1 in order from the unit optical combining element close to the input of the matrix optical switch.
  • a directional coupler, an asymmetric Y branch, or the like can be used as the unit light combining element.
  • the side with the larger combined optical power ratio is connected to the output port of the unit optical confluence element 2611.
  • the side with the larger combined optical power ratio is connected to the output port of the unit optical confluence element 2612.
  • Each input of the optical switches 211 to 214 is connected to four external input ports 201 to 204, and each output of the optical combiners 231 to 234 is connected to four external output ports 241 to 244.
  • the output port of the unit optical switch element 2511 included in the optical switch 211 is connected to the input port of the unit optical confluence element 2621.
  • the unit optical switch element 2512 is provided with a unit optical merge element 2641 immediately after that, and the output port of the unit optical switch element 2512 and the input port of the unit optical merge element 2641 intersect with other paths. Connected without.
  • the output port of the unit optical switch element 2513, the input port of the unit optical confluence element 2632, and the output port of the unit optical switch element 2514 and the input port of the unit optical confluence element 2613 do not intersect with other paths. It is connected.
  • the output port of the unit optical switch element 2521 included in the optical switch 212 is connected to the input port of the unit optical confluence element 2611.
  • the unit optical switch element 2522 is provided with a unit optical merge element 2621 immediately after that, and the output port of the unit optical switch element 2522 and the input port of the unit optical merge element 2621 intersect with other paths. Connected without.
  • the output port of the unit optical switch element 2523, the input port of the unit optical confluence element 2642, and the output port of the unit optical switch element 2524 and the input port of the unit optical confluence element 2633 do not intersect with other paths. It is connected.
  • the output port of the unit optical switch element 2531 included in the optical switch 213 is connected to the input port of the unit optical confluence element 2641. Further, the unit optical switching element 2532 is immediately followed by the unit optical combining element 2631, and the output port of the unit optical switching element 2532 and the input port of the unit optical combining element 2631 intersect with other paths. Connected without. Similarly, the output port of the unit optical switch element 2533, the input port of the unit optical confluence element 2612, the output port of the unit optical switch element 2534, and the input port of the unit optical confluence element 2623 do not intersect with other paths. It is connected.
  • the output port of the unit optical switch element 2541 included in the optical switch 214 is connected to the input port of the unit optical confluence element 2631. Further, the unit optical switching element 2542 is provided with a unit optical combining element 2611 immediately after that, and the output port of the unit optical switching element 2542 and the input port of the unit optical combining element 2611 intersect with other paths. Connected without. Similarly, the output port of the unit optical switch element 2543, the input port of the unit optical confluence element 2622, and the output port of the unit optical switch element 2544 and the input port of the unit optical confluence element 2643 do not intersect with other paths. It is connected.
  • the output ports of each optical switch do not merge at the optical combiner after intersecting, but intersect after joining at the unit optical confluence element, so the number of intersections in the entire matrix optical switch Can be reduced.
  • the optical switch of FIG. 2 even when the intersection in one path is maximum (a path from the external input port 201 to the external output port 241 or a path from the external input port 204 to the external output port 244). There are at most 5 places.
  • unit optical switch elements 2514, 2524, 2534, and 2544 having one input and two outputs, which are illustrated as one input and one output in which one output is omitted, are arranged to increase the extinction ratio. Even without these, the present invention can perform basic operations. These unit optical switch elements have an effect of increasing the extinction ratio of the matrix optical switch even if the extinction ratio of the unit optical switch element with one input and two outputs is insufficient.
  • the external input port of the matrix optical switch is an external output port
  • the external output port is an external input port
  • the optical combiner is an optical branching unit
  • the unit optical combining element is a unit optical branching element.
  • FIG. 3 is an explanatory view showing a second embodiment of the present invention, and shows an example in which an 8-input 8-output matrix optical switch is configured.
  • the matrix optical switch shown in FIG. 3 has 64 unit input / output unit optical switch elements (3511 to 3518, 3521 to 3528, 3531 to 3538, 3541 to 3548, 3551 to 3558, 3561 to 3568, 3571 to 3578, 3581 to 3588) and 64 one-input one-output gate optical switch elements (3711 to 3718, 3721 to 3728, 3731 to 3738, 3741 to 3748, 3751 to 3758, 3761 to 3768, 3771 to 3778, 3781 to 3788) )
  • unit optical confluence elements (3611 to 3617, 3621 to 3627, 3631 to 3637, 3641 to 3647, 3651 to 3657, 3661 to 3667, 3671 to 3679, and 3681 to 3687).
  • Eight unit optical switch elements 3511, 3512, 3513, 3514, 3515, 3516, 3517, and 3518 are connected in series, and gate optical switch elements for improving the extinction ratio at the output port of each unit optical switch element Reference numerals 3711 to 3718 are connected to form a 1-input 8-output optical switch 311 (not shown).
  • unit optical switch elements 3521 to 3528, 3531 to 3538, 3541 to 3548, 3551 to 3558, 3561 to 3568, 3571 to 3578, and 3581 to 3588 are connected in series, and the output of each unit optical switch element Gate optical switch elements 3721 to 3728, 3731 to 3738, 3741 to 3748, 3751 to 3758, 3761 to 3768, 3771 to 3778, and 3781 to 3788 are connected to the ports, and optical switches 312, 313, and 314 having one input and eight outputs are connected. 315, 316, 317, 318 (reference numerals are not shown).
  • unit optical merging elements 3611, 3612, 3613, 3614, 3615, 3616, 3617 are connected in series to constitute an 8-input / one-output optical merging device 331 (not shown).
  • unit optical confluence elements 3621 to 3627, 3631 to 3637, 3641 to 3647, 3651 to 3657, 3661 to 3667, 3671 to 3677, and 3681 to 3687 are connected in series to form an optical input combiner with 8 inputs and 1 output.
  • 332, 333, 334, 335, 336, 337, 338 are formed.
  • the unit optical combining elements 3611, 3612, 3613, 3614, 3615 are set to 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, and 7: 1, respectively. It is clear that this combined light power ratio is 1: 1, 2: 1,..., (N ⁇ 1): 1 in order from the unit optical combining element close to the input of the matrix optical switch.
  • a directional coupler, an asymmetric Y branch, or the like can be used as the unit light combining element.
  • the side with the larger combined light power ratio is connected to the output port of the unit light combining element 3611.
  • the side with the larger combined light power ratio is connected to the output port of the unit light combining element 3612.
  • the side with the larger confluence optical power ratio is connected to the output port of the unit optical confluence elements 3613, 3614, 3615, and 3616, respectively.
  • Each input of the optical switches 311 to 318 is connected to eight external input ports 301 to 308, and each output of the optical combiners 331 to 338 is connected to external output ports 341 to 348.
  • the output port of the gate optical switch element 3711 included in the optical switch 311 is connected to the input port of the unit optical converging element 3621. Further, the unit optical confluence element 3641 is disposed immediately after the gate optical switch element 3712, and the output port of the gate optical switch element 3712 and the input port of the unit optical confluence element 3641 do not intersect with other paths. It is connected.
  • the output port and the input port of the unit optical confluence element 3617 are all connected without intersecting with other paths.
  • the output port of the gate optical switch element 3721 included in the optical switch 312 is connected to the input port of the unit optical confluence element 3611. Further, the unit optical confluence element 3621 is disposed immediately after the gate optical switch element 3722, and the output port of the gate optical switch element 3722 and the input port of the unit optical confluence element 3621 do not intersect with other paths. It is connected.
  • the output port of the gate optical switch element 3723, the input port of the unit optical confluence element 3642, the output port of the gate optical switch element 3724, the input port of the unit optical confluence element 3663, the output port of the gate optical switch element 3725, and the unit light The input port of the confluence element 3684, the output port of the gate optical switch element 3726 and the input port of the unit optical confluence element 3675, the output port of the gate optical switch element 3727 and the input port of the unit optical confluence element 3656, and the gate optical switch element 3728
  • the output port and the input port of the unit optical confluence element 3637 are all connected without intersecting other paths.
  • each of the eight output ports of the optical switches 313 to 318 is similarly connected to the unit optical confluence element.
  • one input and one output unit optical switch elements are illustrated as one input and two outputs 3518, 3528, 3538, 3548, 3558, 3568, 3578, 3588,
  • the gate optical switch elements are arranged to increase the extinction ratio, and the present invention can perform a basic operation without them.
  • These unit optical switch elements and gate optical switch elements have the effect of increasing the extinction ratio of the matrix optical switch even if the extinction ratio of the unit optical switch element with one input and two outputs is insufficient.
  • the external input port of the matrix optical switch is an external output port
  • the external output port is an external input port
  • the optical combiner is an optical branching unit
  • the unit optical combining element is a unit optical branching element.
  • a single mode optical waveguide having a cladding layer and a buried core formed of quartz glass on a silicon substrate having a thickness of 1 mm and a diameter of 6 inches is subjected to a flame hydrolysis reaction of a raw material gas such as SiCl 4 or GeCl 4.
  • a quartz glass film deposition technique and a reactive ion etching technique were used in combination, and a thin film heater and a power supply electrode were fabricated on the surface of the cladding layer by vacuum deposition and patterning.
  • the core size of the manufactured optical waveguide was 6 ⁇ m ⁇ 6 ⁇ m, and the relative refractive index difference with the cladding layer was 1.5%.
  • the waveguide type optical switch in the present embodiment is formed by using this optical waveguide and combining a straight waveguide and a curved waveguide.
  • the optical switch element is a Mach-Zehnder interferometer circuit whose effective optical path length difference between arm waveguides is 1 ⁇ 2 of the signal light wavelength, as shown in FIGS. 4A and 4B.
  • the signal light wavelength is 1.55 ⁇ m
  • the refractive index of the silica-based glass is 1.45. Therefore, the difference in the actual arm optical waveguide length is 0.534 ⁇ m.
  • Thin film heaters (441, 442) having a thickness of 0.3 ⁇ m, a width of 20 ⁇ m, and a length of 2 mm were formed on the surface of the cladding layer (42) as a phase shifter based on the thermo-optic effect. Further, heat insulating grooves (451, 452, 453) having a depth until the silicon substrate (41) is exposed are formed along the thin film heaters (441, 442).
  • the length of the optical switch element constituted by the Mach-Zehnder interferometer circuit as shown in FIGS. 4A and 4B was 5.5 mm.
  • the chip size was 110 mm ⁇ 15 mm.
  • the insertion loss was 12 dB or less including the principle loss of 9 dB due to confluence.
  • the extinction ratio was 45 dB or more. Also, when the input and output were switched, light was input from the external output port side, and the optical characteristics of the light output to the external input port were measured. The insertion loss and the extinction ratio were the same.
  • a waveguide type optical switch is a matrix optical switch including M 1-input N-output optical switches and N M-input 1-output optical combiners.
  • the a-th input (a is an integer from 1 to M) of the matrix optical switch is composed of the inputs of the a-th 1-input N-output optical switch.
  • the b-th output (b is an integer not smaller than 1 and not larger than N) of the matrix switch is composed of the output of the b-th M-input 1-output optical combiner.
  • Each of the optical switches is composed of (N ⁇ 1) 1-input 2-output unit optical switch elements, and each of the optical combiners has (M ⁇ 1) 2-input 1-output units. It is composed of unit optical confluence elements.
  • the input of the first unit optical switch element constitutes the input of the optical switch.
  • One of the outputs of the i-th unit optical switch element (i is an integer of 1 to (N ⁇ 2)) is connected to the input of the (i + 1) -th unit optical switch element, and the i-th unit light
  • the other of the outputs of the switch elements constitutes the i-th output of the optical switch.
  • the two outputs of the (N ⁇ 1) th unit optical switch element constitute the (N ⁇ 1) th output and the Nth output of the optical switch.
  • the two inputs of the first unit optical combining element constitute the first input and the second input of the optical combiner.
  • One of the inputs of the j-th unit light combining element (j is an integer of 2 to (M ⁇ 1)) is connected to the output of the (j ⁇ 1) -th unit light combining element, and the j-th unit light
  • the other of the inputs of the junction element constitutes the (j + 1) th input of the optical combiner.
  • the output of the (M-1) th unit optical combining device constitutes the output of the optical combining device.
  • the p-th optical switch (p is an integer from 1 to M) among the optical switches and the q-th optical combiner (q is an integer from 1 to N) among the optical combiners.
  • any output of the p-th optical switch is a k-th output (k is an integer of 1 to N)
  • any input of the q-th optical combiner is the k-th input. It is.
  • k is 2 or more and (N ⁇ 1) or less
  • the output of the unit optical switch element constituting the kth output of the pth optical switch and the kth input of the qth optical combiner The connection between the input of the unit optical converging elements constituting the above does not include the waveguide crossing.
  • a further feature of the present invention is that the combined optical power ratio of the two input terminals of the first unit optical combining element in the optical combining device is 1: 1, and jth (j is 2 or more (M ⁇ 1) or less). ), The combined optical power ratio of the input terminal connected to the input of the optical switch of the unit optical combining element and the input terminal connected to the other unit optical combining element is set to 1: j.
  • the unit optical switch element with one input and one output and the gate optical switch element are arranged to increase the extinction ratio. May be.
  • the present invention can perform basic operations.
  • These 1-input 1-output unit optical switch elements and gate optical switch elements have the effect of increasing the extinction ratio of the matrix optical switch even if the extinction ratio of the 1-input 2-output unit optical switch element is insufficient.
  • the external input port of the matrix optical switch is an external output port
  • the external output port is an external input port
  • the optical combiner is an optical splitter
  • the unit optical combiner is a unit optical splitter
  • the branching light power ratio between the output terminal connected to the output of the optical switch of the optical branching element and the output terminal connected to another unit optical branching element is 1: (Mi).
  • FIG. 5 is an explanatory view showing a fifth embodiment of the present invention, and shows an example in which a 6-input 8-output matrix optical switch is configured.
  • the matrix optical switch shown in FIG. 5 has 48 unit optical switch elements (5511 to 5518, 5521 to 5528, 5531 to 5538, 5541 to 5548, 5551 to 5558, 5561 to 5568) and 48 unit optical switch elements.
  • 1-input 1-output gate optical switch elements (5711-5718, 5721-5728, 5731-5738, 5741-5748, 5751-5758, 5761-5768) and 40 2-input single-output unit optical confluence elements ( 5611 to 5615, 5621 to 5625, 5631 to 5635, 5641 to 5645, 5651 to 5655, 5661 to 5665, 5671 to 5675, and 5681 to 5585).
  • unit optical switch elements 5511, 5512, 5513, 5514, 5515, 5516, 5517, and 5518 are connected in series, and gate optical switch elements for improving the extinction ratio at the output port of each unit optical switch element 5711 to 5718 are connected to form a 1-input 8-output optical switch 511 (not shown).
  • unit optical switch elements 5521 to 5528, 5531 to 5538, 5541 to 5548, 5551 to 5558, and 5561 to 5568 are connected in series, and gate optical switch elements 5721 to 5580 are connected to output ports of the unit optical switch elements.
  • 5728, 5731 to 5738, 5741 to 5748, 5751 to 5758, and 5761 to 5768 are connected to form one-input eight-output optical switches 512, 513, 514, 515, and 516 (not shown).
  • the five unit optical merging elements 5611, 5612, 5613, 5614, and 5615 are connected in series to constitute a 6-input / one-output optical merging device 531 (not shown).
  • the unit optical confluence elements 5621 to 5625, 5631 to 5635, 5641 to 5645, 5651 to 5655, 5661 to 5665, 5671 to 5675, and 5681 to 5665 are connected in series to form an optical confluence device with six inputs and one output.
  • 532, 533, 534, 535, 536, 537, 538 are configured.
  • the unit optical combiners 5611, 5612, 5613, 5614, and 5615 The combined light power ratio is set to 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, respectively. It is clear that this combined light power ratio is 1: 1, 2: 1,..., (M ⁇ 1): 1 in order from the unit optical combining element close to the input of the matrix optical switch.
  • a directional coupler, an asymmetric Y branch, or the like can be used as the unit light combining element.
  • the side with the larger combined optical power ratio is connected to the output port of the unit optical confluence element 5611.
  • the side with the larger combined optical power ratio is connected to the output port of the unit optical confluence element 5612.
  • the side with the larger combined optical power ratio is connected to the output port of the unit optical confluence elements 5613 and 5614, respectively.
  • Each input of the optical switches 511 to 516 is connected to six external input ports 501 to 506, and each output of the optical combiners 531 to 538 is connected to external output ports 541 to 548.
  • the output port of the gate optical switch element 5711 included in the optical switch 511 is connected to the input port of the unit optical confluence element 5621.
  • the unit optical confluence element 5641 is arranged immediately after the gate optical switch element 5712, and the output port of the gate optical switch element 5712 and the input port of the unit optical confluence element 5641 do not intersect with other paths. It is connected.
  • the output port and the input port of the unit optical confluence element 5615 are all connected without intersecting with other paths.
  • the output port of the gate optical switch element 5721 included in the optical switch 512 is connected to the input port of the unit optical confluence element 5611. Further, the unit optical confluence element 5621 is arranged immediately after the gate optical switch element 5722, and the output port of the gate optical switch element 5722 and the input port of the unit optical confluence element 5621 do not intersect with other paths. It is connected.
  • the output port and the input port of the unit optical confluence element 5635 are all connected without intersecting other paths.
  • each of the eight output ports of the optical switches 513 to 516 is similarly connected to the unit optical confluence element.
  • each optical switch do not merge at the optical combiner after intersecting, but intersect after joining at the unit optical confluence element, so the number of intersections in the entire matrix optical switch Can be reduced. In fact, in the optical switch of FIG. 5, there are at most 11 intersections in one path.
  • one-input two-output unit optical switch elements 5518, 5528, 5538, 5548, 5558, 5568, and gate light which are illustrated as one-input one-output unit optical switch elements in which one output is omitted.
  • the switch elements are arranged to increase the extinction ratio, and the present invention can perform a basic operation without them.
  • These unit optical switch elements and gate optical switch elements have the effect of increasing the extinction ratio of the matrix optical switch even if the extinction ratio of the unit optical switch element with one input and two outputs is insufficient.
  • the external input port of the matrix optical switch is an external output port
  • the external output port is an external input port
  • the optical combiner is an optical branching unit
  • the unit optical combining element is a unit optical branching element.
  • the matrix optical switch according to the present invention can be used alone as described above, but can also be configured by combining a plurality of matrix optical switches.
  • FIG. 6 is an explanatory view showing a sixth embodiment of the present invention.
  • a matrix optical switch with 12 inputs and 8 outputs is constructed by combining two matrix input switches with 6 inputs and 8 outputs according to the fifth embodiment of the present invention. The example which comprised is shown.
  • the matrix optical switch shown in FIG. 6 includes two 6-input 8-output matrix optical switches (611, 612) and eight 2-input 1-output optical combiners 621 to 628, and includes optical combiners 621 to 628.
  • the combined light power ratio is 1: 1.
  • One of the two input ports of the first optical combiner 621 is connected to the first output port of the eight output ports of the matrix optical switch 611.
  • One of the eight output ports of the matrix optical switch 612 is connected to the other of the two input ports.
  • the second output port of the eight output ports of the matrix optical switch 611 is connected to one of the two input ports of the second optical combiner 622, and the optical combiner 622 is connected.
  • the second output port of the eight output ports of the matrix optical switch 612 is connected to the other of the two input ports.
  • one of the two input ports of the third to eighth optical combiners 623 to 628 is connected to the third to eighth output ports of the eight output ports of the matrix optical switch 611, respectively.
  • the third to eighth output ports of the eight output ports of the matrix optical switch 612 are connected to the other of the two input ports of the optical combiners 623 to 628, respectively. ing.
  • the matrix optical switches 611 and 612 have two inputs compared to a single-input 8-output matrix optical switch. Although many crossings occur between the optical combiners 621 to 628 having one output, there is an advantage that an increase in the types of optical combiners can be suppressed.
  • the combined optical power ratio is 1: 1, 1: 2,. . . 11:11, 11 types of optical combiners are required.
  • the required types of optical combiners are combined.
  • the optical power ratio is 1: 1, 1: 2,. . . , 1: 5 only.
  • 101 to 104 external input ports 111 to 114: 1 input 4 output optical switch 121: intersection 131 to 134: 4 input 1 output optical combiner 141 to 144: external output port 201 to 204: external input port 211 to 214: 1 input 4 output optical switches 231 to 234: 4 input 1 output optical combiners 241 to 244: external output ports 2511 to 2514, 2521 to 2524, 2531 to 2534, 2541 to 2544: units of 1 input and 2 outputs
  • 5751-5758, 5761-5768 1-input 1-output gate optical switch elements 601-612: external input port 611, 612: 6-input 8-output optical switch 621-628: 2-input 1-output optical combiners 631-638: external output port

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Physics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 単位光スイッチ素子と光合流器又は光分岐器を接続して構成される多対1乃至1対多の接続機能を有するマトリクス光スイッチにおいて、交差の数を削減し、単一基板上に作製可能な導波路型光スイッチを提供すること。本発明の一実施形態によれば、M入力1出力の光合流器は2入力1出力の単位光合流素子(M-1)個に分割されて、1入力N出力の光スイッチのN本の出力ポートのうち、マトリクス光スイッチの入力に近い1本の出力ポートを除いた(N-1)本の各出力ポートの直後に配置される。従って、各光スイッチの出力ポートは、交差した後に光合流器で合流するのではなく、単位光合流素子で合流した後に交差することになるので、マトリクス光スイッチ全体における交差の数を削減することができる。

Description

導波路型光スイッチ
 本発明は、光通信等で用いられる導波路型光スイッチに関し、特に、光スイッチと光合流器又は光分岐器を接続して構成され、多対1乃至1対多の接続機能を有するマトリクス光スイッチに関する。また、本発明は、導波路交差の数を削減した回路構成を実現するための技術に関する。
 光ファイバを伝送媒体とする光通信技術は、信号の伝送距離の拡大をもたらし、大規模な光通信網が構築されてきた。近年では、インターネット通信が広範に普及するのに伴って、通信トラフィックが急速に増大しており、通信網に対する大容量化、高速化、高機能化の要求が高まっている。これまでに、波長の異なる複数の光信号を1本の伝送路で同時に伝送する波長多重通信技術の導入によって、二地点間の伝送容量を増大することが可能となった。
 しかし、通信網においては、複数の伝送路が集まるノードにおいて、信号の経路を設定(ルーティング)したり、切替(スイッチング)したりする必要があり、伝送容量の増大に伴って、これらの信号処理がボトルネックになってきている。これまでは、伝送されてきた光信号を一旦電気信号に変換した後に経路設定や経路切替を行ない、再び電気信号を光信号に変換して伝送路に送出する方式が用いられてきた。今後は、光信号を電気信号に変換することなく、信号経路の設定や切替処理を行なう方式を用いることによって、ノードのスループットを飛躍的に拡大することができるものと期待されている。このような方式を光通信網に導入するうえで必要不可欠な部品が光スイッチである。
 光スイッチは、1入力2出力又は2入力1出力の単位光スイッチ素子を複数接続することによって、1入力多出力(又は多入力1出力)、多入力多出力、2入力2出力を多連にしたものなど、入出力ポート数やポート間の接続パターンに関して、様々な回路構成の光スイッチを作製することができる。そのなかで、多入力多出力のマトリクス光スイッチは、複数の入出力ポート間の方路を任意に設定するための光スイッチとして、広く用いられている。
 さらに、最近では、通常の1対1接続だけではなく、多対1乃至1対多の接続が可能なマトリクス光スイッチが望まれている。即ち、複数の入力ポートに入力された異なる光信号を合流して複数ある出力ポートの内の1つの出力ポートに出力する多対1の接続機能、あるいは、複数ある入力ポートの内の1つの入力ポートに入力された光信号を分岐して複数の出力ポートに出力する1対多の接続機能を有するマトリクス光スイッチが、柔軟なネットワークを構築する上で必要とされてきている。
 このような多対1乃至1対多の接続機能を有するマトリクス光スイッチを導波路型デバイスで実現した導波路型光スイッチの構成として、図1に示すような構成が知られている(非特許文献1を参照)。
 図1に示すマトリクス光スイッチは、4個の1入力4出力の光スイッチ(1入力2出力の単位光スイッチ素子を4つ組み合わせたもの)111~114と、4個の4入力1出力の光合流器131~134からなる。光スイッチ111~114の各入力は、4本の外部入力ポート101~104に接続される。光合流器131~134の各出力は、外部出力ポート141~144に接続される。
 光スイッチ111の4本の出力ポートはそれぞれ、交差部121を介して、光合流器131~134の入力ポートに接続される。同様に、光スイッチ112~114の各々4本の出力ポートはそれぞれ、交差部121を介して、光合流器131~134の入力ポートに接続される。
 このような構成によれば、複数の外部入力ポートに入力された異なる光信号を合流して1つの外部出力ポートに出力することができる。
 また、図1に示す光スイッチの外部入力ポートと外部出力ポートを入れ替え、光合流器をそのまま光分配器として用いた場合には、1つの外部入力ポートに入力された光信号を分岐して複数の外部出力ポートに出力することが可能である。
M. Kobayashi et al., Electronics Letters, vol. 36, no. 17, pp. 1451-1452, August 2000.
 図1に示す従来のマトリクス光スイッチは、光スイッチと光合流器との間に多数の交差が生じるという問題があった。即ち、図1の交差部121において、16本の導波路のうち両端の2本を除く14本が交差して光スイッチと光合流器とが接続されている。交差数が最大となる経路は、外部入力ポート101から外部出力ポート144に至る経路(あるいは、外部入力ポート104から外部出力ポート141に至る経路)であり、その経路では9ヶ所もの交差が生じている。さらに、この交差の数は、マトリクス光スイッチの外部入出力ポート数が増大するにつれて増加する。即ち、図1に示すようなマトリクス光スイッチをN入力N出力とした場合、その交差部にはN本の導波路ができ、その中で一番交差の多い導波路は、(N-1)本の交差を有することになる。
 一般に、導波路型光デバイスでは、導波路の交差において挿入損失やクロストークが生じ、光学特性が劣化する。挿入損失やクロストークは、交差角を大きくすることで、ある程度は抑制できるが、交差角を大きくするためには基板上で導波路を展開しなければならず、大きなスペースが必要となってしまう。
 そのため、多対1乃至1対多の接続機能を有するマトリクス光スイッチを、単一基板上の導波路型光スイッチとして作製することは困難であり、光スイッチと光合流器を別の基板上に作製し、その間の交差部は光ファイバ配線板を用いるというような構成が必要であった。
 本発明はこのような課題を解決するものであって、単位光スイッチ素子と光合流器又は光分岐器を接続して構成される多対1乃至1対多の接続機能を有するマトリクス光スイッチにおいて、交差の数を削減し、単一基板上に作製可能な導波路型光スイッチを提供することを目的とする。
 本発明は、単一の基板上に形成された、M入力N出力のマトリクス光スイッチ(M,Nは3以上の整数)の形態の導波路型光スイッチであって、マトリクス光スイッチは、M個の1入力N出力の光スイッチと、N個のM入力1出力の光合流器とから構成されており、マトリクス光スイッチのa番目(aは1以上M以下の整数)の入力は、a番目の1入力N出力の光スイッチの入力から構成されており、マトリクス光スイッチのb番目(bは1以上N以下の整数)の出力は、b番目のM入力1出力の光合流器の出力から構成されており、光スイッチの各々は、(N-1)個の1入力2出力の単位光スイッチ素子から構成されており、光合流器の各々は、(M-1)個の2入力1出力の単位光合流素子から構成されており、光スイッチにおいて、1番目の単位光スイッチ素子の入力は、光スイッチの入力を構成し、i番目(iは1以上(N-2)以下の整数)の単位光スイッチ素子の出力の内の一方は(i+1)番目の単位光スイッチ素子の入力に接続し、i番目の単位光スイッチ素子の出力の内の他方は光スイッチのi番目の出力を構成し、且つ(N-1)番目の単位光スイッチ素子の2つの出力は、光スイッチの(N-1)番目の出力及びN番目の出力を構成し、光合流器において、1番目の単位光合流素子の2つの入力は、光合流器の1番目の入力及び2番目の入力を構成し、j番目(jは2以上(M-1)以下の整数)の単位光合流素子の入力の内の一方は(j-1)番目の単位光合流素子の出力に接続し、j番目の単位光合流素子の入力の内の他方は光合流器の(j+1)番目の入力を構成し、且つ(M-1)番目の単位光合流素子の出力は、光合流器の出力を構成し、マトリクス光スイッチにおいて、光スイッチのうちp番目の光スイッチ(pは1以上M以下の整数)と光合流器のうちq番目の光合流器(qは1以上N以下の整数)とは、p番目の光スイッチのいずれかの出力とq番目の光合流器のいずれかの入力との間で接続され、接続において、p番目の光スイッチのいずれかの出力がk番目(kは1以上N以下の整数)の出力である場合、q番目の光合流器のいずれかの入力がk番目の入力であり、且つ接続において、kが2以上(N-1)以下の場合、p番目の光スイッチのk番目の出力を構成する単位光スイッチ素子の出力と、q番目の光合流器のk番目の入力を構成する単位光合流素子の入力との間の接続に、導波路交差が含まれないことを特徴とする。
 本発明の一実施形態において、光合流器における1番目の単位光合流素子の2つの入力端子の合流光パワー比は、1:1であり、j番目(jは2以上(M-1)以下の整数)の単位光合流素子の光スイッチの入力につながる入力端子と他の単位光合流素子につながる入力端子の合流光パワー比は、1:jであることを特徴とする。
 本発明は、単一の基板上に形成された、N入力M出力のマトリクス光スイッチ(M,Nは3以上の整数)の形態の導波路型光スイッチであって、マトリクス光スイッチは、N個の1入力M出力の光分岐器と、M個のN入力1出力の光スイッチとから構成されており、マトリクス光スイッチのa番目(aは1以上N以下の整数)の入力は、a番目の1入力M出力の光分岐器の入力から構成されており、マトリクス光スイッチのb番目(bは1以上M以下の整数)の出力は、b番目のN入力1出力の光スイッチの出力から構成されており、光分岐器の各々は、(M-1)個の1入力2出力の単位光分岐素子から構成されており、光スイッチの各々は、(N-1)個の2入力1出力の単位光スイッチ素子から構成されており、光分岐器において、1番目の単位光分岐素子の入力は、光分岐器の入力を構成し、i番目(iは1以上(M-2)以下の整数)の単位光分岐素子の出力の内の一方は(i+1)番目の単位光分岐素子の入力に接続し、i番目の単位光分岐素子の出力の内の他方は光分岐器のi番目の出力を構成し、且つ(M-1)番目の単位光分岐素子の2つの出力は、光分岐器の(M-1)番目の出力及びM番目の出力を構成し、光スイッチにおいて、1番目の単位光スイッチ素子の2つの入力は、光スイッチの1番目の入力及び2番目の入力を構成し、j番目(jは2以上(N-1)以下の整数)の単位光スイッチ素子の入力の内の一方は(j-1)番目の単位光スイッチ素子の出力に接続し、j番目の単位光スイッチ素子の入力の内の他方は光スイッチの(j+1)番目の入力を構成し、且つ(N-1)番目の単位光スイッチ素子の出力は、光スイッチの出力を構成し、マトリクス光スイッチにおいて、光分岐器のうちp番目の光分岐器(pは1以上N以下の整数)と光スイッチのうちq番目の光スイッチ(qは1以上M以下の整数)とは、p番目の光分岐器のいずれかの出力とq番目の光スイッチのいずれかの入力との間で接続され、接続において、p番目の光分岐器のいずれかの出力がk番目(kは1以上N以下の整数)の出力である場合、q番目の光スイッチのいずれかの入力がk番目の入力であり、且つ接続において、kが2以上(M-1)以下の場合、p番目の光分岐器のk番目の出力を構成する単位光分岐素子の出力と、q番目の光スイッチのk番目の入力を構成する単位光スイッチ素子の入力との間の接続に、導波路交差が含まれないことを特徴とする。
 本発明の一実施形態において、光分岐器における(M-1)番目の単位光分岐素子の2つの出力端子の分岐光パワー比は、1:1であり、i番目(iは1以上(M-2)以下の整数)の単位光分岐素子の光スイッチの出力につながる出力端子と他の単位光分岐素子につながる出力端子の分岐光パワー比は、1:(M-i)であることを特徴とする。
 本発明の一実施形態によれば、M入力1出力の光合流器は2入力1出力の単位光合流素子(M-1)個に分割されて、1入力N出力の光スイッチのN本の出力ポートのうち、マトリクス光スイッチの入力に近い1本の出力ポートを除いた(N-1)本の各出力ポートの直後に配置される。従って、各光スイッチの出力ポートは、交差した後に光合流器で合流するのではなく、単位光合流素子で合流した後に交差することになるので、マトリクス光スイッチ全体における交差の数を削減することができる。
 また、本発明の別の実施形態によれば、1入力M出力の光分岐器は1入力2出力の単位光分岐素子(M-1)個に分割されて、N入力1出力の光スイッチのN本の入力ポートのうち、マトリクス光スイッチの出力に近い1本の入力ポートを除いた(N-1)本の各入力ポートの直前に配置される。従って、光分岐器で分岐した後、交差して光スイッチに入力されるのではなく、交差した後、単位光分岐素子で分岐して光スイッチに入力されるので、マトリクス光スイッチ全体における交差の数を削減することができる。
 よって、多対1乃至1対多の接続機能を有するマトリクス光スイッチを単一基板上に形成することが可能となる。その結果、光スイッチの小型化が可能となり、また、光ファイバ配線板のような部品は不要となるので部品点数を削減することができる。
従来の4入力4出力のマトリクス光スイッチの回路構成を示す説明図である。 本発明の第一の実施形態による4入力4出力のマトリクス光スイッチの回路構成を示す説明図である。 本発明の第二の実施形態による8入力8出力のマトリクス光スイッチの回路構成を示す説明図である。 本発明に用いられる光スイッチ素子の構成例の説明図であり、上面図である。 本発明に用いられる光スイッチ素子の構成例の説明図であり、図4Aの断面線IVB-IVBにおける断面図である。 本発明の第五の実施形態による6入力8出力のマトリクス光スイッチの回路構成を示す説明図である。 本発明の第六の実施形態による12入力8出力のマトリクス光スイッチの回路構成を示す説明図である。
 本発明を実施する導波路型光スイッチの方式としては、熱光学効果を用いる方式、電気光学効果を用いる方式、電流注入による屈折率変化を用いる方式などがある。
 また、熱光学効果を用いる方式にも、用いる材料として、石英系ガラス、有機ポリマー、シリコンなどがある。そのなかでも石英系光導波路の熱光学効果を用いた単位光スイッチ素子は、光ファイバとの整合性が良く、挿入損失が低いことに加えて、原理的な偏波依存性が小さく、構成材料が物理的、化学的に安定で信頼性に優れていることから、実用性が最も高いものである。しかし、本発明の実施においては、単位光スイッチ素子として、石英系光導波路の熱光学効果を用いた単位光スイッチ素子以外のものを用いても良い。
 以下に、本発明の実施形態を、図面を参照しながら具体的な例をもって説明する。
(第一の実施形態)
 図2は、本発明の第一の実施形態を示す説明図であり、4入力4出力のマトリクス光スイッチを構成した例を示す。
 図2に示すマトリクス光スイッチは、16個の1入力2出力の単位光スイッチ素子(2511~2514、2521~2524、2531~2534、2541~2544)と、12個の2入力1出力の単位光合流素子(2611~2613、2621~2623、2631~2633、2641~2643)からなる。4個の単位光スイッチ素子2511、2512、2513、2514は縦列に接続され、1入力4出力の光スイッチ211(符号は図示せず)を構成する。同様に、単位光スイッチ素子2521~2524、2531~2534、2541~2544は各々縦列に接続され、1入力4出力の光スイッチ212、213、214(符号は図示せず)を構成する。
 3個の単位光合流素子2611、2612、2613は縦列に接続されて、4入力1出力の光合流器231(符号は図示せず)を構成する。同様に、単位光合流素子2621~2623、2631~2633、2641~2643は各々縦列に接続されて、4入力1出力の光合流器232、233、234(符号は図示せず)を構成する。
 ここで、光合流器231の4本の各入力ポートから1本の出力ポートへ合流される光パワーの比が等しくなるようにするため、単位光合流素子2611、2612、2613の合流光パワー比は、それぞれ、1:1、2:1、3:1に設定される。この合流光パワー比は、マトリクス光スイッチの入力に近い単位光合流素子から順番に、1:1、2:1、・・・、(N-1):1となることは明らかである。このような合流光パワー比を得るために、単位光合流素子として、方向性結合器や非対称Y分岐などを用いることができる。単位光合流素子2612の2つの入力ポートのうち、合流光パワー比が大きい側が単位光合流素子2611の出力ポートに接続される。単位光合流素子2613の2つの入力ポートのうち、合流光パワー比が大きい側が単位光合流素子2612の出力ポートに接続される。光合流器232~234を構成する単位光合流素子2621~2623、2631~2633、2641~2643についても同様である。
 光スイッチ211~214の各入力は4本の外部入力ポート201~204に接続され、光合流器231~234の各出力は4本の外部出力ポート241~244に接続される。
 図2に示すマトリクス光スイッチにおいて、光スイッチ211に含まれる単位光スイッチ素子2511の出力ポートは、単位光合流素子2621の入力ポートに接続されている。また、単位光スイッチ素子2512は、その直後に単位光合流素子2641が配置されており、単位光スイッチ素子2512の出力ポートと単位光合流素子2641の入力ポートとは、他の経路と交差することなく接続されている。同様に、単位光スイッチ素子2513の出力ポートと単位光合流素子2632の入力ポート及び単位光スイッチ素子2514の出力ポートと単位光合流素子2613の入力ポートは、いずれも他の経路と交差することなく接続されている。
 光スイッチ212に含まれる単位光スイッチ素子2521の出力ポートは、単位光合流素子2611の入力ポートに接続されている。また、単位光スイッチ素子2522は、その直後に単位光合流素子2621が配置されており、単位光スイッチ素子2522の出力ポートと単位光合流素子2621の入力ポートとは、他の経路と交差することなく接続されている。同様に、単位光スイッチ素子2523の出力ポートと単位光合流素子2642の入力ポート及び単位光スイッチ素子2524の出力ポートと単位光合流素子2633の入力ポートは、いずれも他の経路と交差することなく接続されている。
 光スイッチ213に含まれる単位光スイッチ素子2531の出力ポートは、単位光合流素子2641の入力ポートに接続されている。また、単位光スイッチ素子2532は、その直後に単位光合流素子2631が配置されており、単位光スイッチ素子2532の出力ポートと単位光合流素子2631の入力ポートとは、他の経路と交差することなく接続されている。同様に、単位光スイッチ素子2533の出力ポートと単位光合流素子2612の入力ポート及び単位光スイッチ素子2534の出力ポートと単位光合流素子2623の入力ポートは、いずれも他の経路と交差することなく接続されている。
 光スイッチ214に含まれる単位光スイッチ素子2541の出力ポートは、単位光合流素子2631の入力ポートに接続されている。また、単位光スイッチ素子2542は、その直後に単位光合流素子2611が配置されており、単位光スイッチ素子2542の出力ポートと単位光合流素子2611の入力ポートとは、他の経路と交差することなく接続されている。同様に、単位光スイッチ素子2543の出力ポートと単位光合流素子2622の入力ポート及び単位光スイッチ素子2544の出力ポートと単位光合流素子2643の入力ポートは、いずれも他の経路と交差することなく接続されている。
 このような構成により、各光スイッチの出力ポートは、交差した後に光合流器で合流するのではなく、単位光合流素子で合流した後に交差することになるので、マトリクス光スイッチ全体における交差の数を削減することができる。実際、図2の光スイッチにおいて、1つの経路における交差は、最大となる場合(外部入力ポート201から外部出力ポート241に至る経路、あるいは、外部入力ポート204から外部出力ポート244に至る経路)でも高々5ヶ所である。
 なお、図2において、1個の出力が省略された1入力1出力として図示されている、1入力2出力の単位光スイッチ素子2514、2524、2534、2544は、消光比を高めるために配しているものであり、これらがなくても、本願発明は基本的な動作をすることが可能である。これらの単位光スイッチ素子は、1入力2出力の単位光スイッチ素子の消光比が不十分であっても、マトリクス光スイッチの消光比を高める効果がある。
 また、第一の実施形態において、マトリクス光スイッチの外部入力ポートを外部出力ポートに、外部出力ポートを外部入力ポートに、光合流器を光分岐器に、単位光合流素子を単位光分岐素子に、それぞれおきかえても、同様にマトリクス光スイッチ全体における交差の数を削減することができることは明らかである。
 上記の例では、簡単の為、4入力4出力のマトリクス光スイッチについて説明したが、N入力N出力のマトリクス光スイッチについても本実施形態の技術的特徴を適用できることは、当業者にとって自明であろう。
(第二の実施形態)
 図3は、本発明の第二の実施形態を示す説明図であり、8入力8出力のマトリクス光スイッチを構成した例を示す。
 図3に示すマトリクス光スイッチは、64個の1入力2出力の単位光スイッチ素子(3511~3518、3521~3528、3531~3538、3541~3548、3551~3558、3561~3568、3571~3578、3581~3588)と、64個の1入力1出力のゲート光スイッチ素子(3711~3718、3721~3728、3731~3738、3741~3748、3751~3758、3761~3768、3771~3778、3781~3788)と、56個の2入力1出力の単位光合流素子(3611~3617、3621~3627、3631~3637、3641~3647、3651~3657、3661~3667、3671~3677、3681~3687)からなる。8個の単位光スイッチ素子3511、3512、3513、3514、3515、3516、3517、3518は縦列に接続され、さらに、各単位光スイッチ素子の出力ポートに消光比を向上させるためのゲート光スイッチ素子3711~3718が接続されて、1入力8出力の光スイッチ311(符号は図示せず)を構成する。同様に、単位光スイッチ素子3521~3528、3531~3538、3541~3548、3551~3558、3561~3568、3571~3578、3581~3588は各々縦列に接続され、さらに、各単位光スイッチ素子の出力ポートにゲート光スイッチ素子3721~3728、3731~3738、3741~3748、3751~3758、3761~3768、3771~3778、3781~3788が接続されて、1入力8出力の光スイッチ312、313、314、315、316、317、318(符号は図示せず)を構成する。
 7個の単位光合流素子3611、3612、3613、3614、3615、3616、3617は縦列に接続されて、8入力1出力の光合流器331(符号は図示せず)を構成する。同様に、単位光合流素子3621~3627、3631~3637、3641~3647、3651~3657、3661~3667、3671~3677、3681~3687は各々縦列に接続されて、8入力1出力の光合流器332、333、334、335、336、337、338を構成する。
 ここで、光合流器331の8本の各入力ポートから1本の出力ポートへ合流される光パワーの比が等しくなるようにするため、単位光合流素子3611、3612、3613、3614、3615、3616、3617の合流光パワー比は、それぞれ、1:1、2:1、3:1、4:1、5:1、6:1、7:1に設定される。この合流光パワー比は、マトリクス光スイッチの入力に近い単位光合流素子から順番に、1:1、2:1、・・・、(N-1):1となることは明らかである。このような合流光パワー比を得るために、単位光合流素子として、方向性結合器や非対称Y分岐などを用いることができる。単位光合流素子3612の2つの入力ポートのうち、合流光パワー比が大きい側が単位光合流素子3611の出力ポートに接続される。単位光合流素子3613の2つの入力ポートのうち、合流光パワー比が大きい側が単位光合流素子3612の出力ポートに接続される。以下、同様に、単位光合流素子3614、3615、3616、3617の2つの入力ポートのうち、合流光パワー比が大きい側がそれぞれ、単位光合流素子3613、3614、3615、3616の出力ポートに接続される。
 光合流器332~338を構成する単位光合流素子3621~3627、3631~3637、3641~3647、3651~3657、3661~3667、3671~3677、3681~3687についても同様である。
 光スイッチ311~318の各入力は8本の外部入力ポート301~308に接続され、光合流器331~338の各出力は外部出力ポート341~348に接続される。
 図3に示すマトリクス光スイッチにおいて、光スイッチ311に含まれるゲート光スイッチ素子3711の出力ポートは、単位光合流素子3621の入力ポートに接続されている。また、ゲート光スイッチ素子3712は、その直後に単位光合流素子3641が配置されており、ゲート光スイッチ素子3712の出力ポートと単位光合流素子3641の入力ポートは、他の経路と交差することなく接続されている。同様に、ゲート光スイッチ素子3713の出力ポートと単位光合流素子3662の入力ポート、ゲート光スイッチ素子3714の出力ポートと単位光合流素子3683の入力ポート、ゲート光スイッチ素子3715の出力ポートと単位光合流素子3674の入力ポート、ゲート光スイッチ素子3716の出力ポートと単位光合流素子3655の入力ポート、ゲート光スイッチ素子3717の出力ポートと単位光合流素子3636の入力ポート、及びゲート光スイッチ素子3718の出力ポートと単位光合流素子3617の入力ポートは、いずれも他の経路と交差することなく接続されている。
 光スイッチ312に含まれるゲート光スイッチ素子3721の出力ポートは、単位光合流素子3611の入力ポートに接続されている。また、ゲート光スイッチ素子3722は、その直後に単位光合流素子3621が配置されており、ゲート光スイッチ素子3722の出力ポートと単位光合流素子3621の入力ポートは、他の経路と交差することなく接続されている。同様に、ゲート光スイッチ素子3723の出力ポートと単位光合流素子3642の入力ポート、ゲート光スイッチ素子3724の出力ポートと単位光合流素子3663の入力ポート、ゲート光スイッチ素子3725の出力ポートと単位光合流素子3684の入力ポート、ゲート光スイッチ素子3726の出力ポートと単位光合流素子3675の入力ポート、ゲート光スイッチ素子3727の出力ポートと単位光合流素子3656の入力ポート、及びゲート光スイッチ素子3728の出力ポートと単位光合流素子3637の入力ポートは、いずれも他の経路と交差することなく接続されている。
 以下、光スイッチ313~318の各8本の出力ポートは、同様に、単位光合流素子と接続される。
 このような構成により、各光スイッチの出力ポートは、交差した後に光合流器で合流するのではなく、単位光合流素子で合流した後に交差することになるので、マトリクス光スイッチ全体における交差の数を削減することができる。実際、図3の光スイッチにおいて、1つの経路における交差は高々13ヶ所である。
 なお、図3において、1個の出力が省略された1入力1出力の単位光スイッチ素子として図示されている、1入力2出力の3518、3528、3538、3548、3558、3568、3578、3588、及び、ゲート光スイッチ素子は、消光比を高めるために配しているものであり、これらがなくても、本願発明は基本的な動作をすることが可能である。これらの単位光スイッチ素子及びゲート光スイッチ素子は、1入力2出力の単位光スイッチ素子の消光比が不十分であっても、マトリクス光スイッチの消光比を高める効果がある。
 また、第二の実施形態において、マトリクス光スイッチの外部入力ポートを外部出力ポートに、外部出力ポートを外部入力ポートに、光合流器を光分岐器に、単位光合流素子を単位光分岐素子に、それぞれおきかえても、同様にマトリクス光スイッチ全体における交差の数を削減することができることは明らかである。
 図3に示す回路構成に基づく8入力8出力のマトリクス光スイッチを以下のような光回路により作製した。
 厚さ1mm、直径6インチのシリコン基板上に石英系ガラスによって形成されるクラッド層及び埋め込み型コア部を有する単一モード光導波路を、SiClやGeClなどの原料ガスの火炎加水分解反応を利用した石英形ガラス膜の堆積技術と反応性イオンエッチング技術の組合せにより作製し、薄膜ヒータ及び給電のための電極をクラッド層の表面上に真空蒸着及びパターン化により作製した。作製した光導波路のコア寸法は6μm×6μmであり、クラッド層との比屈折率差は1.5%とした。本実施形態における導波路型光スイッチは、この光導波路を用い、直線導波路及び曲線導波路を組み合わせることによって形成した。光スイッチ素子は、図4A及び図4Bに示すような、アーム導波路の実効光路長差が信号光波長の1/2のマッハ-ツェンダー干渉計回路である。本実施形態では、信号光波長は1.55μmであり、石英系ガラスの屈折率は1.45であるので、実際のアーム光導波路長の差は0.534μmとした。熱光学効果による位相シフタとしてクラッド層(42)の表面上に厚さ0.3μm、幅20μm、長さ2mmの薄膜ヒータ(441、442)を形成した。さらに薄膜ヒータ(441、442)に沿ってシリコン基板(41)が露出するまでの深さの断熱溝(451、452、453)を形成した。図4A及び図4Bに示すようなマッハ-ツェンダー干渉計回路によって構成される光スイッチ素子の長さは5.5mmであった。この光スイッチ素子及びY分岐型光合流回路を最小曲げ半径R=2mmの曲線導波路で接続し、図3に示す回路構成に基づく8入力8出力のマトリクス光スイッチを1チップに配置した。チップサイズは110mm×15mmであった。
 上記の方法により作製した8入力8出力のマトリクス光スイッチチップの外部入力ポート及び外部出力ポートに光ファイバを接続して光学特性を測定したところ、挿入損失は合流による原理損失9dBを含んで12dB以下、消光比45dB以上であった。また、入力と出力を入れ替えて、外部出力ポート側から光を入力し、外部入力ポートへ出力される光の光学特性を測定したところ、挿入損失や消光比は同じ特性であった。
(第三の実施形態)
 上記の第一の実施形態・第二の実施形態では、M=N=4、ならびに、M=N=8の場合の(即ち、M=Nの場合)、M入力N出力のマトリクス光スイッチの形態の導波路型光スイッチついて説明した。しかし、M,Nが相異なる3以上の整数であれば、本願発明の構成は実施可能である。即ち、少なくとも以下の特徴を備えていれば、本願発明の導波路型光スイッチを実施することができる。
[1]導波路型光スイッチは、M個の1入力N出力の光スイッチと、N個のM入力1出力の光合流器から構成されるマトリクス光スイッチである。マトリクス光スイッチのa番目(aは1以上M以下の整数)の入力は、a番目の1入力N出力の光スイッチの入力から構成されている。マトリクススイッチのb番目(bは1以上N以下の整数)の出力は、b番目のM入力1出力の光合流器の出力から構成されている。
[2]光スイッチの各々は、(N-1)個の1入力2出力の単位光スイッチ素子から構成されており、光合流器の各々は、(M-1)個の2入力1出力の単位光合流素子から構成されている。
[3]光スイッチにおいて、1番目の単位光スイッチ素子の入力が光スイッチの入力を構成している。また、i番目(iは1以上(N-2)以下の整数)の単位光スイッチ素子の出力の内の一方が(i+1)番目の単位光スイッチ素子の入力に接続し、i番目の単位光スイッチ素子の出力の内の他方が光スイッチのi番目の出力を構成している。(N-1)番目の単位光スイッチ素子の2つの出力が光スイッチの(N-1)番目の出力ならびにN番目の出力を構成している。
[4]光合流器において、1番目の単位光合流素子の2つの入力が光合流器の1番目の入力ならびに2番目の入力を構成している。j番目(jは2以上(M-1)以下の整数)の単位光合流素子の入力の内の一方が(j-1)番目の単位光合流素子の出力に接続し、j番目の単位光合流素子の入力の内の他方が光合流器の(j+1)番目の入力を構成している。(M-1)番目の単位光合流素子の出力が光合流器の出力を構成している。
[5]マトリクス光スイッチにおいて、光スイッチのうちp番目の光スイッチ(pは1以上M以下の整数)と光合流器のうちq番目の光合流器(qは1以上N以下の整数)が、p番目の光スイッチのいずれかの出力とq番目の光合流器のいずれかの入力の間で接続される構成である。上述の接続において、p番目の光スイッチのいずれかの出力がk番目(kは1以上N以下の整数)の出力である場合、q番目の光合流器のいずれかの入力がk番目の入力である。上述の接続において、kが2以上(N-1)以下の場合、p番目の光スイッチのk番目の出力を構成する単位光スイッチ素子の出力と、q番目の光合流器のk番目の入力を構成する単位光合流素子の入力との間の接続に、導波路交差が含まれない。
 以上の特徴を備えたことにより、交差の数を削減することで損失を減らしたマトリクス光スイッチを、製作工程が安価で大量生産に向く導波路型光スイッチで実現することが可能となる。
 本願発明の更なる特徴は、上記の光合流器における1番目の単位光合流素子の2つの入力端子の合流光パワー比を1:1とし、j番目(jは2以上(M-1)以下)の単位光合流素子の光スイッチの入力につながる入力端子と他の単位光合流素子につながる入力端子の合流光パワー比を1:jとすることである。これにより、光信号が単位光合流素子をいくつ透過しても(1個以上(M-1)個のいくつでも)、導波路型光スイッチの出力において、合流回数による光強度のばらつきは抑圧できることとなる。
 なお、第三の実施形態においても、第一の実施形態・第二の実施形態と同様に、1入力1出力の単位光スイッチ素子、及び、ゲート光スイッチ素子を、消光比を高めるために配してもよい。ただし、これらがなくても、本願発明は基本的な動作をすることが可能である。これらの1入力1出力の単位光スイッチ素子及びゲート光スイッチ素子は、1入力2出力の単位光スイッチ素子の消光比が不十分であっても、マトリクス光スイッチの消光比を高める効果がある。
(第四の実施形態)
 第三の実施形態において、マトリクス光スイッチの外部入力ポートを外部出力ポートに、外部出力ポートを外部入力ポートに、光合流器を光分岐器に、単位光合流素子を単位光分岐素子に、それぞれおきかえても、同様にマトリクス光スイッチ全体における交差の数を削減することができることは明らかである。
 入力と出力をおきかえる際、出力に近いほど単位光合流素子の合流光パワー比が大きくなるように、入力に近いほど単位光分岐素子の分岐光パワー比も大きくなることに注意されたい。即ち、光分岐器における(M-1)番目の単位光分岐素子の2つの出力端子の分岐光パワー比は、1:1とし、i番目(iは1以上(M-2)以下)の単位光分岐素子の光スイッチの出力につながる出力端子と他の単位光分岐素子につながる出力端子の分岐光パワー比は、1:(M-i)とすることである。これにより、光信号が単位光分岐素子をいくつ透過しても(1個以上(M-1)個のいくつでも)、導波路型光スイッチの出力に
おいて、分岐回数による光強度のばらつきは抑圧できることとなる。
(第五の実施形態)
 図5は、本発明の第五の実施形態を示す説明図であり、6入力8出力のマトリクス光スイッチを構成した例を示す。
 図5に示すマトリクス光スイッチは、48個の1入力2出力の単位光スイッチ素子(5511~5518、5521~5528、5531~5538、5541~5548、5551~5558、5561~5568)と、48個の1入力1出力のゲート光スイッチ素子(5711~5718、5721~5728、5731~5738、5741~5748、5751~5758、5761~5768)と、40個の2入力1出力の単位光合流素子(5611~5615、5621~5625、5631~5635、5641~5645、5651~5655、5661~5665、5671~5675、5681~5685)からなる。8個の単位光スイッチ素子5511、5512、5513、5514、5515、5516、5517、5518は縦列に接続され、さらに、各単位光スイッチ素子の出力ポートに消光比を向上させるためのゲート光スイッチ素子5711~5718が接続されて、1入力8出力の光スイッチ511(符号は図示せず)を構成する。同様に、単位光スイッチ素子5521~5528、5531~5538、5541~5548、5551~5558、5561~5568は各々縦列に接続され、さらに、各単位光スイッチ素子の出力ポートにゲート光スイッチ素子5721~5728、5731~5738、5741~5748、5751~5758、5761~5768が接続されて、1入力8出力の光スイッチ512、513、514、515、516(符号は図示せず)を構成する。
 5個の単位光合流素子5611、5612、5613、5614、5615は縦列に接続されて、6入力1出力の光合流器531(符号は図示せず)を構成する。同様に、単位光合流素子5621~5625、5631~5635、5641~5645、5651~5655、5661~5665、5671~5675、5681~5685は各々縦列に接続されて、6入力1出力の光合流器532、533、534、535、536、537、538を構成する。
 ここで、光合流器531の6本の各入力ポートから1本の出力ポートへ合流される光パワーの比が等しくなるようにするため、単位光合流素子5611、5612、5613、5614、5615の合流光パワー比は、それぞれ、1:1、2:1、3:1、4:1、5:1に設定される。この合流光パワー比は、マトリクス光スイッチの入力に近い単位光合流素子から順番に、1:1、2:1、・・・、(M-1):1となることは明らかである。このような合流光パワー比を得るために、単位光合流素子として、方向性結合器や非対称Y分岐などを用いることができる。単位光合流素子5612の2つの入力ポートのうち、合流光パワー比が大きい側が単位光合流素子5611の出力ポートに接続される。単位光合流素子5613の2つの入力ポートのうち、合流光パワー比が大きい側が単位光合流素子5612の出力ポートに接続される。以下、同様に、単位光合流素子5614、5615の2つの入力ポートのうち、合流光パワー比が大きい側がそれぞれ、単位光合流素子5613、5614の出力ポートに接続される。
 光合流器532~538を構成する単位光合流素子5621~5625、5631~5635、5641~5645、5651~5655、5661~5665、5671~5675、3681~3685についても同様である。
 光スイッチ511~516の各入力は6本の外部入力ポート501~506に接続され、光合流器531~538の各出力は外部出力ポート541~548に接続される。
 図5に示すマトリクス光スイッチにおいて、光スイッチ511に含まれるゲート光スイッチ素子5711の出力ポートは、単位光合流素子5621の入力ポートに接続されている。また、ゲート光スイッチ素子5712は、その直後に単位光合流素子5641が配置されており、ゲート光スイッチ素子5712の出力ポートと単位光合流素子5641の入力ポートは、他の経路と交差することなく接続されている。同様に、ゲート光スイッチ素子5713の出力ポートと単位光合流素子5662の入力ポート、ゲート光スイッチ素子5714の出力ポートと単位光合流素子5682の入力ポート、ゲート光スイッチ素子5715の出力ポートと単位光合流素子5672の入力ポート、ゲート光スイッチ素子5716の出力ポートと単位光合流素子5653の入力ポート、ゲート光スイッチ素子5717の出力ポートと単位光合流素子5634の入力ポート、及びゲート光スイッチ素子5718の出力ポートと単位光合流素子5615の入力ポートは、いずれも他の経路と交差することなく接続されている。
 光スイッチ512に含まれるゲート光スイッチ素子5721の出力ポートは、単位光合流素子5611の入力ポートに接続されている。また、ゲート光スイッチ素子5722は、その直後に単位光合流素子5621が配置されており、ゲート光スイッチ素子5722の出力ポートと単位光合流素子5621の入力ポートは、他の経路と交差することなく接続されている。同様に、ゲート光スイッチ素子5723の出力ポートと単位光合流素子5642の入力ポート、ゲート光スイッチ素子5724の出力ポートと単位光合流素子5663の入力ポート、ゲート光スイッチ素子5725の出力ポートと単位光合流素子5683の入力ポート、ゲート光スイッチ素子5726の出力ポートと単位光合流素子5673の入力ポート、ゲート光スイッチ素子5727の出力ポートと単位光合流素子5654の入力ポート、及びゲート光スイッチ素子5728の出力ポートと単位光合流素子5635の入力ポートは、いずれも他の経路と交差することなく接続されている。
 以下、光スイッチ513~516の各8本の出力ポートは、同様に、単位光合流素子と接続される。
 このような構成により、各光スイッチの出力ポートは、交差した後に光合流器で合流するのではなく、単位光合流素子で合流した後に交差することになるので、マトリクス光スイッチ全体における交差の数を削減することができる。実際、図5の光スイッチにおいて、1つの経路における交差は高々11ヶ所である。
 なお、図5において、1個の出力が省略された1入力1出力の単位光スイッチ素子として図示されている、1入力2出力の5518、5528、5538、5548、5558、5568、及び、ゲート光スイッチ素子は、消光比を高めるために配しているものであり、これらがなくても、本願発明は基本的な動作をすることが可能である。これらの単位光スイッチ素子及びゲート光スイッチ素子は、1入力2出力の単位光スイッチ素子の消光比が不十分であっても、マトリクス光スイッチの消光比を高める効果がある。
 また、第五の実施形態において、マトリクス光スイッチの外部入力ポートを外部出力ポートに、外部出力ポートを外部入力ポートに、光合流器を光分岐器に、単位光合流素子を単位光分岐素子に、それぞれおきかえても、同様にマトリクス光スイッチ全体における交差の数を削減することができることは明らかである。
(第六の実施形態)
 本発明にかかるマトリクス光スイッチは、上記に説明したように単独で用いることもできるが、複数のマトリクス光スイッチを組み合わせて構成することもできる。
 図6は、本発明の第六の実施形態を示す説明図であり、本発明の第五の実施形態による6入力8出力のマトリクス光スイッチ2個を組み合わせて、12入力8出力のマトリクス光スイッチを構成した例を示す。
 図6に示すマトリクス光スイッチは、2個の6入力8出力のマトリクス光スイッチ(611、612)と、8個の2入力1出力の光合流器621~628からなり、光合流器621~628の合流光パワー比は1:1である。
 1番目の光合流器621の2本の入力ポートのうちの一方には、マトリクス光スイッチ611の8本の出力ポートのうち1番目の出力ポートが接続されており、また光合流器621の2本の入力ポートのうちの他方には、マトリクス光スイッチ612の8本の出力ポートのうち1番目の出力ポートが接続されている。
 また、2番目の光合流器622の2本の入力ポートのうちの一方には、マトリクス光スイッチ611の8本の出力ポートのうち2番目の出力ポートが接続されており、また光合流器622の2本の入力ポートのうちの他方には、マトリクス光スイッチ612の8本の出力ポートのうち2番目の出力ポートが接続されている。
 以下、同様に、3~8番目の光合流器623~628の2本の入力ポートのうちの一方には、各々、マトリクス光スイッチ611の8本の出力ポートのうち3~8番目の出力ポートが接続されており、また光合流器623~628の2本の入力ポートのうちの他方には、各々、マトリクス光スイッチ612の8本の出力ポートのうち3~8番目の出力ポートが接続されている。
 図6のように6入力8出力のマトリクス光スイッチを2個組み合わせて構成した場合、12入力8出力のマトリクス光スイッチを単独で構成した場合に比べて、マトリクス光スイッチ611、612と、2入力1出力の光合流器621~628との間に多数の交差が生じるものの、光合流器の種類が増加するのを抑制できるという利点がある。12入力8出力のマトリクス光スイッチを単独で構成した場合には、合流光パワー比が1:1、1:2、...、1:11の11種類の光合流器が必要となるが、図6のように6入力8出力のマトリクス光スイッチを2個組み合わせて構成した場合は、必要な光合流器の種類は、合流光パワー比が1:1、1:2、...、1:5の5種類のみである。
101~104:外部入力ポート
111~114:1入力4出力の光スイッチ
121:交差部
131~134:4入力1出力の光合流器
141~144:外部出力ポート
201~204:外部入力ポート
211~214:1入力4出力の光スイッチ
231~234:4入力1出力の光合流器
241~244:外部出力ポート
2511~2514、2521~2524、2531~2534、2541~2544:1入力2出力の単位光スイッチ素子
2611~2613、2621~2623、2631~2633、2641~2643:2入力1出力の単位光合流素子
301~308:外部入力ポート
311~318:1入力8出力の光スイッチ
331~338:8入力1出力の光合流器
341~348:外部出力ポート
3511~3518、3521~3528、3531~3538、3541~3548、3551~3558、3561~3568、3571~3578、3581~3588:1入力2出力の単位光スイッチ素子
3611~3617、3621~3627、3631~3637、3641~3647、3651~3657、3661~3667、3671~3677、3681~3687:2入力1出力の単位光合流素子
3711~3718、3721~3728、3731~3738、3741~3748、3751~3758、3761~3768、3771~3778、3781~3788:1入力1出力のゲート光スイッチ素子
401、402:入力ポート
411、412:出力ポート
41:シリコン基板
42:クラッド層
431、432:埋め込みコア部
441、442:薄膜ヒータ
451、452、453:断熱溝
461、462:方向性結合器
501~506:外部入力ポート
511~516:1入力8出力の光スイッチ
531~538:6入力1出力の光合流器
541~548:外部出力ポート
5511~5518、5521~5528、5531~5538、5541~5548、5551~5558、5561~5568:1入力2出力の単位光スイッチ素子
5611~5615、5621~5625、5631~5635、5641~5645、5651~5655、5661~5665、5671~5675、5681~5685:2入力1出力の単位光合流素子
5711~5718、5721~5728、5731~5738、5741~5748、5751~5758、5761~5768:1入力1出力のゲート光スイッチ素子
601~612:外部入力ポート
611、612:6入力8出力の光スイッチ
621~628:2入力1出力の光合流器
631~638:外部出力ポート

Claims (4)

  1.  単一の基板上に形成された、M入力N出力のマトリクス光スイッチ(M,Nは3以上の整数)の形態の導波路型光スイッチであって、
     前記マトリクス光スイッチは、M個の1入力N出力の光スイッチと、N個のM入力1出力の光合流器とから構成されており、
     前記マトリクス光スイッチのa番目(aは1以上M以下の整数)の入力は、a番目の前記1入力N出力の光スイッチの入力から構成されており、
     前記マトリクス光スイッチのb番目(bは1以上N以下の整数)の出力は、b番目の前記M入力1出力の光合流器の出力から構成されており、
     前記光スイッチの各々は、(N-1)個の1入力2出力の単位光スイッチ素子から構成されており、
     前記光合流器の各々は、(M-1)個の2入力1出力の単位光合流素子から構成されており、
     前記光スイッチにおいて、
      1番目の前記単位光スイッチ素子の入力は、前記光スイッチの入力を構成し、
      i番目(iは1以上(N-2)以下の整数)の前記単位光スイッチ素子の出力の内の一方は(i+1)番目の前記単位光スイッチ素子の入力に接続し、i番目の前記単位光スイッチ素子の出力の内の他方は前記光スイッチのi番目の出力を構成し、且つ
      (N-1)番目の前記単位光スイッチ素子の2つの出力は、前記光スイッチの(N-1)番目の出力及びN番目の出力を構成し、
     前記光合流器において、
      1番目の前記単位光合流素子の2つの入力は、前記光合流器の1番目の入力及び2番目の入力を構成し、
      j番目(jは2以上(M-1)以下の整数)の前記単位光合流素子の入力の内の一方は(j-1)番目の前記単位光合流素子の出力に接続し、j番目の前記単位光合流素子の入力の内の他方は前記光合流器の(j+1)番目の入力を構成し、且つ
      (M-1)番目の前記単位光合流素子の出力は、前記光合流器の出力を構成し、
     前記マトリクス光スイッチにおいて、
      前記光スイッチのうちp番目の光スイッチ(pは1以上M以下の整数)と前記光合流器のうちq番目の光合流器(qは1以上N以下の整数)とは、前記p番目の光スイッチのいずれかの出力と前記q番目の光合流器のいずれかの入力との間で接続され、
      前記接続において、前記p番目の光スイッチのいずれかの出力がk番目(kは1以上N以下の整数)の出力である場合、前記q番目の光合流器のいずれかの入力がk番目の入力であり、且つ
      前記接続において、kが2以上(N-1)以下の場合、前記p番目の光スイッチのk番目の出力を構成する前記単位光スイッチ素子の出力と、前記q番目の光合流器のk番目の入力を構成する前記単位光合流素子の入力との間の接続に、導波路交差が含まれない、
     ことを特徴とする導波路型光スイッチ。
  2.  前記光合流器における1番目の前記単位光合流素子の2つの入力端子の合流光パワー比は、1:1であり、
     j番目(jは2以上(M-1)以下の整数)の前記単位光合流素子の光スイッチの入力につながる入力端子と他の前記単位光合流素子につながる入力端子の合流光パワー比は、1:jである
     ことを特徴とする、請求項1に記載の導波路型光スイッチ。
  3.  単一の基板上に形成された、N入力M出力のマトリクス光スイッチ(M,Nは3以上の整数)の形態の導波路型光スイッチであって、
     前記マトリクス光スイッチは、N個の1入力M出力の光分岐器と、M個のN入力1出力の光スイッチとから構成されており、
     前記マトリクス光スイッチのa番目(aは1以上N以下の整数)の入力は、a番目の前記1入力M出力の光分岐器の入力から構成されており、
     前記マトリクス光スイッチのb番目(bは1以上M以下の整数)の出力は、b番目の前記N入力1出力の光スイッチの出力から構成されており、
     前記光分岐器の各々は、(M-1)個の1入力2出力の単位光分岐素子から構成されており、
     前記光スイッチの各々は、(N-1)個の2入力1出力の単位光スイッチ素子から構成されており、
     前記光分岐器において、
      1番目の前記単位光分岐素子の入力は、前記光分岐器の入力を構成し、
      i番目(iは1以上(M-2)以下の整数)の前記単位光分岐素子の出力の内の一方は(i+1)番目の前記単位光分岐素子の入力に接続し、i番目の前記単位光分岐素子の出力の内の他方は前記光分岐器のi番目の出力を構成し、且つ
      (M-1)番目の前記単位光分岐素子の2つの出力は、前記光分岐器の(M-1)番目の出力及びM番目の出力を構成し、
     前記光スイッチにおいて、
      1番目の前記単位光スイッチ素子の2つの入力は、前記光スイッチの1番目の入力及び2番目の入力を構成し、
      j番目(jは2以上(N-1)以下の整数)の前記単位光スイッチ素子の入力の内の一方は(j-1)番目の前記単位光スイッチ素子の出力に接続し、j番目の前記単位光スイッチ素子の入力の内の他方は前記光スイッチの(j+1)番目の入力を構成し、且つ
      (N-1)番目の前記単位光スイッチ素子の出力は、前記光スイッチの出力を構成し、
     前記マトリクス光スイッチにおいて、
      前記光分岐器のうちp番目の光分岐器(pは1以上N以下の整数)と前記光スイッチのうちq番目の光スイッチ(qは1以上M以下の整数)とは、前記p番目の光分岐器のいずれかの出力と前記q番目の光スイッチのいずれかの入力との間で接続され、
      前記接続において、前記p番目の光分岐器のいずれかの出力がk番目(kは1以上M以下の整数)の出力である場合、前記q番目の光スイッチのいずれかの入力がk番目の入力であり、且つ
      前記接続において、kが2以上(M-1)以下の場合、前記p番目の光分岐器のk番目の出力を構成する前記単位光分岐素子の出力と、前記q番目の光スイッチのk番目の入力を構成する前記単位光スイッチ素子の入力との間の接続に、導波路交差が含まれない
     ことを特徴とする導波路型光スイッチ。
  4.  前記光分岐器における(M-1)番目の前記単位光分岐素子の2つの出力端子の分岐光パワー比は、1:1であり、
     i番目(iは1以上(M-2)以下の整数)の前記単位光分岐素子の光スイッチの出力につながる出力端子と他の前記単位光分岐素子につながる出力端子の分岐光パワー比は、1:(M-i)である
     ことを特徴とする、請求項3に記載の導波路型光スイッチ。
PCT/JP2012/000970 2011-02-15 2012-02-14 導波路型光スイッチ WO2012111316A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/984,282 US9360629B2 (en) 2011-02-15 2012-02-14 Waveguide type optical switch
JP2012557830A JP5913139B2 (ja) 2011-02-15 2012-02-14 導波路型光スイッチ
CN201280008701.9A CN103370650B (zh) 2011-02-15 2012-02-14 波导型光开关

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011029919 2011-02-15
JP2011-029919 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111316A1 true WO2012111316A1 (ja) 2012-08-23

Family

ID=46672260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000970 WO2012111316A1 (ja) 2011-02-15 2012-02-14 導波路型光スイッチ

Country Status (4)

Country Link
US (1) US9360629B2 (ja)
JP (1) JP5913139B2 (ja)
CN (1) CN103370650B (ja)
WO (1) WO2012111316A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161604A (ja) * 2015-02-27 2016-09-05 日本電信電話株式会社 光スイッチ装置
WO2016157819A1 (ja) * 2015-03-30 2016-10-06 日本電気株式会社 光回路、およびそれを用いた光スイッチ
JP2019159016A (ja) * 2018-03-09 2019-09-19 日本電信電話株式会社 光入出力装置およびその作製方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760642B (zh) * 2014-01-15 2015-11-18 中国科学院半导体研究所 一种基于马赫曾德光开关的五端口光学路由器
CN103941349B (zh) * 2014-04-24 2016-08-24 中国科学院半导体研究所 一种基于马赫曾德光开关的n端口光学路由器
CN105353471B (zh) * 2015-10-15 2019-03-08 华中科技大学 一种光开关矩阵及其路由控制方法
CN107346064A (zh) * 2017-06-16 2017-11-14 中国电子科技集团公司第二十三研究所 一种电光开关的光学双稳态控制系统、控制方法及芯片
JP6927323B2 (ja) * 2017-12-01 2021-08-25 日本電信電話株式会社 平面光波路型光デバイス
JP7015717B2 (ja) * 2018-03-29 2022-02-03 Nttエレクトロニクス株式会社 マルチキャストスイッチ
NL2024752A (en) * 2019-02-08 2020-08-19 Asml Netherlands Bv Component for use in a Lithographic Apparatus, Method of Manufacturing a Component and Method of Protecting Tables in a Lithographic Apparatus
JP7244165B2 (ja) 2019-03-08 2023-03-22 株式会社エクセディ プーリ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933740A (ja) * 1995-07-20 1997-02-07 Hitachi Cable Ltd Y分岐導波路型光タップ
JP2002006347A (ja) * 2000-04-07 2002-01-09 Lynx Photonic Networks Inc 集積光学スイッチ・アレイ
WO2005101075A1 (ja) * 2004-04-12 2005-10-27 Hitachi Chemical Company, Ltd. 光導波路構造
JP2006292872A (ja) * 2005-04-07 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> マトリクス光スイッチ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU87165A1 (de) * 1987-08-20 1988-08-23 Siemens Ag Mehrstufige koppelanordnung
EP1098219A4 (en) * 1998-07-01 2005-02-09 Nec Corp MATRIX OPTICAL SWITCH AND OPTICAL MULTIPLEXER WITH INSERTION-EXTRACTION
US6445843B1 (en) * 2000-12-20 2002-09-03 Lynx Photonic Networks Inc. Optical switching system with power balancing
US6999652B2 (en) * 2002-11-06 2006-02-14 Nippon Telegraph And Telephone Corporation Optical module and optical switch constituting the same
JP2007232991A (ja) 2006-02-28 2007-09-13 Fujitsu Ltd 光モジュールおよび光スイッチ装置
JP2012028929A (ja) 2010-07-21 2012-02-09 Sun Tec Kk 波長選択光クロスコネクト装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933740A (ja) * 1995-07-20 1997-02-07 Hitachi Cable Ltd Y分岐導波路型光タップ
JP2002006347A (ja) * 2000-04-07 2002-01-09 Lynx Photonic Networks Inc 集積光学スイッチ・アレイ
WO2005101075A1 (ja) * 2004-04-12 2005-10-27 Hitachi Chemical Company, Ltd. 光導波路構造
JP2006292872A (ja) * 2005-04-07 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> マトリクス光スイッチ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161604A (ja) * 2015-02-27 2016-09-05 日本電信電話株式会社 光スイッチ装置
WO2016157819A1 (ja) * 2015-03-30 2016-10-06 日本電気株式会社 光回路、およびそれを用いた光スイッチ
US10248002B2 (en) 2015-03-30 2019-04-02 Nec Corporation Optical circuit, and optical switch using same
JP2019159016A (ja) * 2018-03-09 2019-09-19 日本電信電話株式会社 光入出力装置およびその作製方法

Also Published As

Publication number Publication date
US20130322815A1 (en) 2013-12-05
US9360629B2 (en) 2016-06-07
CN103370650B (zh) 2016-01-06
JP5913139B2 (ja) 2016-04-27
CN103370650A (zh) 2013-10-23
JPWO2012111316A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5913139B2 (ja) 導波路型光スイッチ
CN107329209B (zh) M×n多播传送光开关
JP5222083B2 (ja) 多方路光スイッチ
WO2018040549A1 (zh) 光开关矩阵及其控制方法
JP4727279B2 (ja) マトリクス光スイッチ
JP2001083443A (ja) マルチステージ光学スイッチ及びそれに使用される接続方法
US6396972B1 (en) Thermally actuated optical add/drop switch
US6768830B1 (en) Optical add/drop switch utilizing a minimal number of switching crosspoints
JP6420715B2 (ja) 光信号処理装置
JP2006038897A (ja) 導波路型光スイッチ単位素子および導波路型マトリクス光スイッチ
JP4803746B2 (ja) 導波路型光スイッチ
CN114924357B (zh) 一种基于级联马赫-曾德干涉仪结构的波分复用光延时线
JP4146211B2 (ja) 光モジュール、およびそれを構成する光スイッチ、並びに光マトリクススイッチ
WO2012137555A1 (ja) 導波路型光スイッチ
US11287578B2 (en) Multicast switch
US6459828B1 (en) Rearrangeable optical add/drop multiplexor switch with low loss
JP2003005231A (ja) 光マトリクススイッチ
JP5168905B2 (ja) 光スイッチ及び経路切り替え方法
US9638865B2 (en) Switch device
Takahashi et al. High performance 8-arrayed 1× 8 optical switch based on planar lightwave circuit for photonic networks
WO2024186937A1 (en) Polarization-diverse integrated photonic switch with multi-layer waveguides
WO2018198927A1 (ja) N×n光スイッチ
JP3868431B2 (ja) 干渉計型光スイッチ
WO2013055846A2 (en) An optical switch
JP2020112666A (ja) 光信号処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008701.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557830

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13984282

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746956

Country of ref document: EP

Kind code of ref document: A1