WO2012111306A1 - カールフィッシャー滴定装置およびカールフィッシャー滴定方法 - Google Patents
カールフィッシャー滴定装置およびカールフィッシャー滴定方法 Download PDFInfo
- Publication number
- WO2012111306A1 WO2012111306A1 PCT/JP2012/000946 JP2012000946W WO2012111306A1 WO 2012111306 A1 WO2012111306 A1 WO 2012111306A1 JP 2012000946 W JP2012000946 W JP 2012000946W WO 2012111306 A1 WO2012111306 A1 WO 2012111306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titration
- karl fischer
- coulometric
- iodine
- reverse
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000003109 Karl Fischer titration Methods 0.000 title claims description 22
- 238000005443 coulometric titration Methods 0.000 claims abstract description 143
- 239000011630 iodine Substances 0.000 claims abstract description 118
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 118
- 238000004448 titration Methods 0.000 claims abstract description 112
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims abstract description 81
- 238000003221 volumetric titration Methods 0.000 claims abstract description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 57
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims abstract description 55
- -1 iodine ions Chemical class 0.000 claims abstract description 37
- 239000002904 solvent Substances 0.000 claims abstract description 27
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 22
- 230000005611 electricity Effects 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000000243 solution Substances 0.000 claims description 23
- 238000002347 injection Methods 0.000 claims description 21
- 239000007924 injection Substances 0.000 claims description 21
- 238000005868 electrolysis reaction Methods 0.000 claims description 16
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 4
- 238000003869 coulometry Methods 0.000 abstract description 10
- 238000001514 detection method Methods 0.000 description 42
- 238000005259 measurement Methods 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000012086 standard solution Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- FGJLAJMGHXGFDE-UHFFFAOYSA-L disodium;2,3-dihydroxybutanedioate;dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C(O)C(O)C([O-])=O FGJLAJMGHXGFDE-UHFFFAOYSA-L 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 229940092162 sodium tartrate dihydrate Drugs 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/423—Coulometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/44—Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte using electrolysis to generate a reagent, e.g. for titration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/16—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
- G01N31/168—Determining water content by using Karl Fischer reagent
Definitions
- the present invention relates to a Karl Fischer titration method using a Karl Fischer titration apparatus, and more particularly, to a Karl Fischer titration method using a Karl Fischer titration apparatus capable of measuring titer in coulometric titration and back titration.
- volumetric titration method and a coulometric titration method as methods for measuring the water content by the Karl Fischer titration method, and there are apparatuses corresponding to each.
- the volumetric titration apparatus basically has a configuration in which the titration flask 1 includes an injection nozzle 90 for titrating a Karl Fischer reagent and a detection electrode 80 for detecting a polarization state.
- a dehydrated solvent is put into the titration flask 1 and preliminarily titrated with a Karl Fischer reagent to dehydrate the inside of the titration flask.
- a sample is put into the titration flask 1 and Karl Fischer reagent is further added dropwise. As a result, the water contained in the sample reacts with the reagent iodine.
- the end point is the time when the detection voltage reaches a predetermined value.
- the amount of reagent added dropwise and the amount of water react quantitatively, and the amount of water contained in the sample is obtained from the amount of reagent added dropwise.
- titer the amount of water (referred to as titer) that reacts with a predetermined amount (for example, 1 ml) of Karl Fischer reagent is known, and the titer is measured in advance for the reagent to be used. I will keep it.
- a standard solution such as a standard solution is used. That is, a standard solution (water prepared as a standard solution, sodium tartrate dihydrate, pure water) is added to a titration flask 1 containing a dehydrated solvent, and Karl Fischer reagent is added dropwise to react with the standard solution. Is a titer.
- the coulometric titration apparatus basically includes, in the titration flask 1, an electrolytic electrode 95 that electrolyzes the generated liquid and a detection electrode 80 that detects the polarization state.
- a generation solution (a solution containing iodine ions) is placed in the titration flask 1, and a counter electrode solution is placed in the electrolytic electrode 95.
- electrolytic treatment preliminary titration
- the electrolytic electrode 95 is performed with the electrolytic electrode 95 to generate iodine, and the generated liquid is dehydrated.
- the sample is put into the generation solution, and electrolytic treatment is performed by the electrolytic electrode 95 to generate iodine from iodine ions and to react with moisture in the sample (hereinafter, titration for generating iodine from iodine ions is performed using a coulometer. This is called titration.)
- the end point is the time when the detection voltage reaches a predetermined value.
- the amount of water can be determined from the amount of electricity that has flowed at this time.
- the coulometric titration used here is a current control method that controls the voltage so that the current is constant. As long as iodine is generated from iodine ions, the results of the current control method are in good agreement with the theoretical values. Is removed.
- the above-described volumetric titration apparatus can perform back titration as described below.
- iodine in the Karl Fischer reagent reacts with moisture in the sample.
- Karl Fischer reagent water equivalent x
- the amount of the standard water / methanol added (water equivalent y) and the Karl Fischer reagent amount (water equivalent x) is expressed as xy.
- the amount of water contained in the sample can be calculated.
- the titration for generating iodine ions from iodine is limited to volumetric titration, and this type of titration is not possible with a coulometric titration apparatus for the reason described later. Can not.
- the coulometric titration apparatus does not include a burette for adding standard water / methanol and an injection nozzle 90, the above-described reverse titration cannot be performed.
- a Karl Fischer titration apparatus is commercially available in which both volumetric titration apparatus and coulometric titration apparatus are integrated into one apparatus.
- the operation unit such as the display and the keyboard is shared by both, and the measurement unit (injection nozzle + detection electrode or electrolytic electrode + detection electrode: However, the detection electrode can be shared) has a dedicated configuration. Yes.
- the measurement unit injection nozzle + detection electrode or electrolytic electrode + detection electrode:
- the detection electrode can be shared
- it is only an apparatus that executes the two independent methods by a common operation unit, and does not have a function specific to the present invention as described below.
- Patent Document 1 discloses a combined titration apparatus that performs volumetric analysis or coulometric analysis
- Patent Document 2 discloses a combined titration apparatus that performs volumetric analysis or coulometric analysis
- Patent Document 3 discloses a combined titration apparatus that performs volumetric analysis or coulometric analysis
- Patent Document 3 discloses a combined titration apparatus that performs volumetric analysis or coulometric analysis
- Patent Document 3 discloses a combined titration apparatus that performs volumetric analysis or coulometric analysis
- Patent Document 2 discloses a moisture meter that measures the amount of water in a sample by volumetric titration or coulometric titration.
- the above titer refers to the amount of water that reacts with iodine contained in a predetermined amount of Karl Fischer reagent.
- the amount of water that reacts with the Karl Fischer reagent is specified and used as a titer by using a reference liquid (standard solution) as water.
- this should be equivalent to determining the amount of electricity when the predetermined amount of Karl Fischer reagent is subjected to electrolytic treatment to generate iodine ions from iodine contained in the Karl Fischer reagent.
- electrolytic treatment for generating iodine ions from iodine is referred to as reverse coulometric titration.
- the electrolytic electrode provided in the coulometric titration device when the amount of iodine is calculated based on the amount of electricity passed by the current control method currently used, it matches the amount of iodine actually contained. I can't take it.
- the reverse coulometric titration means generation of iodine ions from iodine. Therefore, even a conventional coulometric titration apparatus should be capable of reverse titration, in which iodine is generated by coulometric titration, and the remaining iodine is returned to iodine ions by reverse coulometric titration.
- the present invention has been proposed in view of the above-described conventional circumstances, and provides a method capable of accurately performing titration by back-coulometric titration, and enabling back-titration using a coulometric method and measurement of titer.
- An object of the present invention is to provide a Karl Fischer titration apparatus capable of switching between coulometric titration and reverse coulometric titration, and switching between coulometric method and volumetric method.
- the present invention is premised on a titration method using a Karl Fischer titrator equipped with an electrolytic electrode in a titration flask.
- Iodine is present in the solution filled in the titration flask, and iodine ions are generated from the iodine at the working electrode of the electrolytic electrode by reverse coulometric titration using the electrolytic electrode.
- the reverse coulometric titration is performed when determining the titer of the Karl Fischer reagent, and the force from the electric quantity required for the reverse coulometric titration is determined. The price is determined.
- the solution is a generation liquid in which iodine remains as a result of coulometric titration in the coulometric titration method using the electrolytic electrode
- the reverse coulometric titration is performed on the generation liquid in which the iodine remains, and the coulometry
- the amount of water contained in the sample put in the titration flask is determined from the amount of electricity by titration and the amount of electricity by reverse coulometric titration.
- the reverse coulometric titration is performed on the dehydrated solvent in which the iodine remains, and the volumetric titration is performed.
- the amount of water contained in the sample put in the titration flask is determined from the titration amount of the Karl Fischer reagent and the amount of electricity by the reverse coulometric titration.
- the titration flask is provided with an injection nozzle for volumetric titration in addition to the electrolytic electrode.
- an electrolysis control means is provided in order to switch between the coulometric titration and the reverse coulometric titration. Further, in order to switch between the volumetric titration and the reverse coulometric titration, a switching control means is provided.
- volumetric titration is used until the amount of water contained in the sample put in the titration flask reaches a predetermined value.
- it can be configured to switch to coulometric titration.
- the switching control means is used for switching between the basic titration and the coulometric titration.
- the present invention can be configured to regenerate the Karl Fischer reagent in a reduced state by performing coulometric titration on the dehydrated solvent of the Karl Fischer reagent containing iodine ions that has been used by volumetric titration. .
- the titer of the reagent can be determined from the amount of electricity required to generate iodine ions from iodine in the reverse coulometric titration with respect to the dehydrated solvent containing the Karl Fischer reagent used for volumetric titration.
- the standard solution used is no longer necessary.
- volumetric titration or coulometric titration a certain amount of iodine is present in a sample put into a predetermined solution (dehydrated solvent in the case of volumetric titration, or generation liquid in the case of coulometric titration),
- a predetermined solution dehydrated solvent in the case of volumetric titration, or generation liquid in the case of coulometric titration
- iodine ions can be generated from excess iodine that has not contributed to the reaction with the moisture in the sample by performing the reverse coulometric titration.
- reverse titration which was conventionally possible only with volumetric titration, is also possible with coulometric titration.
- the above-described various titrations are used alone or while switching as necessary. Can be used.
- a switching control means that can switch between volumetric titration and coulometric titration
- the titration is initially performed using volumetric titration (or volumetric titration and coulometric titration are used in combination).
- coulometric titration in the vicinity of the end point, the titration work can be performed in a short time.
- the electrolytic electrode can be used at all times, in the dehydrated solvent containing the Karl Fischer reagent used for volumetric titration, the above-described reagent can be regenerated by excessively performing an electrolytic treatment for returning iodine ions to iodine. In other words, the Karl Fischer reagent that has been discarded can be reused.
- FIG. 1 is a perspective view showing an apparatus of the present invention.
- FIG. 2 is a cross-sectional view of the device of the present invention.
- FIG. 3 is a graph showing the principle of the present invention.
- FIG. 4 is a graph showing the state of titer measurement according to the present invention.
- FIG. 5 is a diagram showing a change in voltage at the detection electrode from coulometric titration to reverse coulometric titration.
- FIG. 6 is a diagram showing a change in voltage at the detection electrode when switching from capacitive titration to coulometric titration.
- FIG. 7 is a graph of measurement time and measurement error for each water content in Example 1 and Comparative Examples 1 and 2.
- FIG. 8 shows a conventional volumetric titration apparatus.
- FIG. 9 shows a conventional coulometric titration apparatus.
- the generating liquid side is the working electrode
- the counter electrode liquid side is the counter electrode across the diaphragm
- a positive voltage is applied to the working electrode and a negative voltage is applied to the counter electrode.
- the amount of generated iodine can be calculated from the amount of electricity obtained by appropriate current control.
- FIG. 3 shows a current-potential iodine in a case where a predetermined solution (generated solution or dehydrated solvent) having a known iodine amount is measured while changing the potential between the electrodes in the reverse coulometric titration.
- the current is the current flowing between the counter electrode (see FIG. 2, reference numeral 12k) and the working electrode (see FIG. 2, reference numeral 12a), and the potential is the potential between the reference electrode (see FIG. 2, reference numeral 17) and the working electrode. It is.
- the value of the constant current increases in the negative direction as the iodine concentration increases, but the potential range corresponding to the constant current does not change with the iodine concentration.
- the potential region where the current becomes constant is a potential region where iodine reacts at a constant speed depending on the amount of electricity applied and changes to iodine ions, and the region where the current changes rapidly with respect to the potential is This is considered to be a region where anions other than iodine ions are generated.
- a potential control method using a region where the current is constant with respect to the change in the potential (the current is controlled so that the potential is constant or the potential is within the region). It can be judged that it is appropriate to apply Actually, when the potential control method is applied to the titer specification and back titration described below, it is possible to ensure consistency in the relationship between the amount of iodine ions generated and the amount of electricity provided.
- the present invention has the configuration shown in FIG.
- FIG. 1 is a perspective view of a Karl Fischer titration apparatus devised based on the above fact
- FIG. 2 is a sectional view thereof.
- the titration flask 1 is equipped with an injection nozzle 11 for volumetric titration, an electrolysis electrode 12 for coulometric titration, a detection electrode 13 for detecting a polarization state and an end point, a reference electrode 17 for controlling a potential, and a sample injection port 14. (Not shown in FIG. 2).
- the reagent supplied from the burette 15 is injected into the titration flask 1 from the injection nozzle 11, and the reagent is supplied to the burette 15 from a reagent bottle (not shown).
- a switching cock 16 is provided to switch the path from the reagent bottle to the burette 15 and the path from the burette 15 to the injection nozzle 11, and further, the reagent supply amount from the burette 15 through the injection nozzle 11 is reduced.
- the bullet control part 10 is provided.
- the working electrode 12a and the counter electrode 12k are arranged to face each other with the diaphragm 12m interposed therebetween.
- the working electrode 12a is opened to the titration flask 1, and the counter electrode 12k side is in contact with the counter electrode liquid. ing.
- the detection electrode 13 and the reference electrode 17 are integrally formed. However, in FIG. 2, both are shown separately to facilitate understanding, and the relationship between the various electrodes described above is clarified. I made it.
- the detection electrode 13 detects the iodine concentration in the titration flask 1. That is, when a sample containing water is put into the solution filled in the titration flask 1 (volumetric titration: dehydrated solvent, coulometric titration: generated solution), the iodine concentration decreases and the voltage of the detection electrode 13 increases. Conversely, when the iodine concentration in the solution is increased by titration, the voltage of the detection electrode 13 is decreased.
- the titration status can be determined based on the voltage indicated by the detection electrode 13, and when the voltage indicated by the detection electrode 13 reaches a value indicating the end point of the titration, the bullet control means 10 or the electrolysis control means 20 determines the titration.
- the voltage or the final voltage of the detection electrode 13 during titration is displayed on the display 50 or printed by the printer 60.
- volumetric titration and coulometric titration can be performed using the apparatus of this configuration as in the conventional case, and further, as will be described below, processing unique to the present invention can be performed.
- volumetric titration The volumetric titration method is processed in the following procedure.
- a dehydrated solvent is injected into the titration flask 1. If the solvent itself contains water, the water contained in the sample (described later) cannot be measured accurately, so titration with a Karl Fischer reagent through the injection nozzle 11 is performed. Then, the dehydrated solvent is dehydrated (the voltage of the detection electrode 13 becomes a predetermined value or less). Next, the sample is introduced, and the Karl Fischer reagent is added dropwise while controlling the titration amount from the injection nozzle 11 by the bullet control means 10. As a result, iodine of the Karl Fischer reagent reacts with moisture contained in the sample to generate iodine ions, and the detection voltage of the detection electrode 13 decreases.
- the injection of Karl Fischer reagent is continued, and the end point is the time when the detection voltage falls to the predetermined value.
- iodine and water in the Karl Fischer reagent react with each other in 1: 1 (molar unit), so that the calculation means 40 has a voltage when the voltage indicating the polarization state obtained from the detection means 30 reaches a predetermined value.
- the moisture contained in the sample can be calculated from the added amount of reagent obtained from the bullet control means 10. This result is displayed on the display 50.
- Karl Fischer reagent has the property of causing a decrease in titer during storage. Therefore, as described above, it is necessary to measure in advance the amount of water (referred to as titer) that reacts with a predetermined amount (for example, 1 ml) of Karl Fischer reagent before the titration.
- titer the amount of water that reacts with a predetermined amount (for example, 1 ml) of Karl Fischer reagent before the titration.
- this operation is conventionally performed using a standard solution, but here, the above-described reverse coulometric titration with the electrolytic electrode 12 is used. That is, when a negative voltage is applied to the working electrode 12a of the electrolytic electrode 12 and a positive voltage is applied to the counter electrode 12k to advance the reverse coulometric titration, iodine in the Karl Fischer reagent becomes iodine ions.
- the calculation means 40 can calculate the titer from the amount of electricity obtained from the electrolysis control means 20 until the voltage indicated by the detection electrode 13 reaches the predetermined value XmV.
- the potential control method is used here, and the potential of the reference electrode 17 is within a predetermined range (for example, ⁇ 0.5 to ⁇ 0.1 V as shown in FIG. 3).
- a predetermined range for example, ⁇ 0.5 to ⁇ 0.1 V as shown in FIG. 3.
- Table 1 shows the results of measuring the titer by reverse coulometric titration of the present invention.
- Karl Fischer reagent with a titer of 3.0 H 2 Omg / mL
- Karl Fischer reagent with a titer of 1.0 the titer is measured in advance using a conventional method (using a standard solution), This is set as a reaction amount of 100.
- the reagent is then placed in the titration flask 1 (0.3 mL, 0.2 mL for titer 3.0, 1.0 mL, 0.5 mL for titer 1.0) and from iodine using reverse coulometric titration. Iodine ions were generated.
- Table 1 it can be understood that the titer measurement by the potential control method is in good agreement with the case of using the conventional standard solution, and that the potential control method is correct.
- the above-mentioned predetermined amount of the Karl Fischer reagent to be measured is put into a titration flask in which a dehydrated solvent dehydrated in advance is placed.
- coulometric titration using the apparatus of the present invention is the same as the conventional procedure. That is, the generated solution and the counter electrode solution are placed in the titration flask 1, and the water contained in the titration flask 1 is removed (dehydrated) by coulometric titration with the electrolysis electrode 12. In this state, a sample is put into the generated liquid, positive voltage is applied to the working electrode 12a and negative voltage is applied to the counter electrode 12k to conduct coulometric titration, and iodine is generated from iodine ions in the generated liquid by a current control method. The generated iodine reacts with moisture in the sample. The generated iodine concentration can be detected by the detection electrode 13, and when the voltage indicated by the detection electrode 13 indicates the end point, the titration is completed.
- iodine ions are generated from iodine, the iodine concentration gradually decreases, and the voltage of the detection electrode 13 increases.
- XmV end point voltage
- Table 2 shows the electric quantity of the reverse coulometric titration when the electric quantity of coulometric titration (iodine ion ⁇ iodine) for a predetermined time in coulometric titration (current control method) is 100. According to Table 2, it can be understood that the electric quantity of coulometric titration and reverse coulometric titration are consistent.
- This titration by reverse coulometric titration can also be applied when a volumetric titration method is used when a certain amount of iodine is present in a sample. That is, a certain amount of Karl Fischer reagent is introduced into the titration flask 1 in which the dehydrated solvent and the sample are placed, and a state in which a certain amount of iodine is present in the sample in the dehydrated solvent is formed (FIG. 5, time t 4 ). Then, when the reverse coulometric titration is performed using the electrolytic electrode 12 using the potential control method and iodine ions are generated from iodine, the voltage of the detection electrode 13 increases. When this detected voltage reaches a predetermined end point value (time t 5 ), the titration is finished. This eliminates the need for standard water / methanol.
- volumetric titration may be executed instead of coulometric titration before reverse coulometric titration.
- the Karl Fischer reagent used for volumetric titration can be regenerated. That is, the Karl Fischer reagent used for volumetric titration is in a state where iodine ions are generated from iodine.
- a titration flask 1 is provided with an injection nozzle 11 for volumetric titration and an electrolytic electrode 12 for coulometric titration. Therefore, iodine is generated from iodine ions by regenerating the dehydrated solvent containing the Karl Fischer reagent after the volumetric titration in the titration flask 1 by the current control method, and the reagent is regenerated. .
- the regenerated Karl Fischer reagent in the titration flask 1 is transferred to a closed container such as a reagent bottle and reinjected into the injection nozzle 11, and the Karl Fischer reagent is reused.
- the operation board 80 may be provided to "back-titration" key by coulometric titration, the corresponding key is pressed, the electrolysis control means 20, to a predetermined voltage which exceeds the end point (corresponding to time t 4) coulometric The titration is executed, and thereafter, the configuration is switched to reverse coulometric titration.
- the means 10 and the electrolysis control means 20 are activated to start volumetric titration (or volumetric titration and coulometric titration simultaneously), and the detection voltage of the detection electrode 13 is a predetermined value ⁇ a voltage slightly higher than the end point voltage in FIG. when it is slightly earlier point in time) ⁇ than the time t 4, and starts the electrolysis control means 20 (by operating only the electrolysis control means 20) can also be a coulometric titration.
- FIG. 6 when a sample is first put into the titration flask 1 filled with a dehydrated dehydrated solvent (or generated liquid) and a volumetric titration start instruction is issued from the operation board 80, the bullet control means 10 starts to operate (FIG. 6, time t 11 ), and the introduction of the Karl Fischer reagent is started via the injection nozzle 11 for volumetric titration.
- the switching control means 70 is connected to the burette.
- the operation of the control means 10 is stopped, the electrolysis control means 20 is operated, and the mode is switched to coulometric titration.
- the coulometric titration is continued until the time when the voltage of the detection electrode 13 reaches a predetermined value (XmV) corresponding to the end point of titration (time t 13 in FIG. 6). Obviously, the coulometric titration is continued until the time when the voltage of the detection electrode 13 reaches a predetermined value (XmV) corresponding to the end point of titration (time t 13 in FIG. 6). Become.
- volumetric titration has the characteristic that the reaction rate with moisture is large but the accuracy is inferior. By using it at the beginning of titration where accuracy is not required, the characteristics are utilized.
- coulometric titration is excellent in accuracy but has a characteristic that the titration speed is inferior. By using it when the titration approaches the end point, the characteristic can be utilized.
- the switching voltage (VcmV) that defines the timing for switching from the volumetric titration to the coulometric titration may be any value as long as the voltage value is equal to or higher than the titration end point.
- the switching voltage (VcmV) is preferably set to a voltage value of 50% -90% with respect to the initial detection voltage detected at the time of starting the titration, A voltage value of 80% is more preferable.
- FIG. 7 shows the results regarding the measurement time and accuracy when the above procedure is executed using a water standard product.
- the sample used here is a water standard product 1.0 (titer 1: 1 mgH 2 O / ml) obtained by adding a predetermined amount of water to propylene carbonate in advance.
- the water standard is usually used for confirming the accuracy of the moisture meter.
- There are three types: 1 ml 0.1 mg H 2 O.
- FIG. 7 shows an average value when three measurements are performed for each sample. Furthermore, the results of using volumetric titration at the beginning of the titration of the present invention and coulometric titration near the end point were set as Example 1, the results using only volumetric titration were set as Comparative Example 1, and the results using only coulometric titration were set as Comparative Example 2. .
- Example 2 As shown in FIG. 7, in the coulometric titration (Comparative Example 2), when the amount of water in the sample increases (especially when it exceeds 1 mg), the increase rate of the measurement time increases more than the increase rate of the water amount. Thus, in the measurement time in Example 1 of the present invention, the rate of increase in water content and the rate of increase in time are almost linear, as in volumetric titration (Comparative Example 1). Therefore, in Example 1, even if the amount of water increases, measurement can be performed in a measurement time equivalent to that of volumetric titration.
- Example 1 volumetric titration
- Example 2 coulometric titration
- volumetric titration was adopted at the beginning of titration, and coulometric titration was adopted near the end point.
- volumetric titration and coulometric titration were used together, and only coulometric titration was adopted near the end point.
- the present invention is capable of measuring titer and back titration in electrolytic treatment in a Karl Fischer titrator, and regenerating the Karl Fischer reagent. high.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
図9に示したように、通常のカールフィッシャーの電量滴定装置での電量滴定は、発生液側が作用極となり、隔膜を挟んで対極液側が対極となり、作用極に正、対極に負電圧を印加して電量滴定をする限りにおいては、すなわち、ヨウ素イオンからヨウ素を発生する限りにおいては適切な電流制御で得られる電気量から発生ヨウ素量を計算することができる。
本発明は上記確認に基づいて、図1の構成とした。
容量滴定法は以下の手順で処理される。
ところで、カールフィッシャー試薬は保存中に力価低下をきたす性質がある。従って、上記したように上記滴定前に、所定量(例えば1ml)のカールフィッシャー試薬と反応する水分量(力価という)を予め測定しておく必要がある。
次いで、本発明の装置を用いて電量滴定するには、従来の手順と同じ手順となる。即ち、滴定フラスコ1内に発生液、電解電極12内に対極液を入れ、電解電極12による電量滴定によって、当該滴定フラスコ1内に含む水分を除去(無水化)する。この状態で発生液中に試料を投入し、作用極12aに正、対極12kに負電圧を印加して電量滴定をし、電流制御法で発生液中のヨウ素イオンからにヨウ素を発生させる。発生したヨウ素は試料中の水分と反応する。上記発生したにヨウ素濃度は検出電極13で検出することができ、検出電極13の示す電圧が終点を示すと、滴定は終了したことになる。
以上の方法は従来の電量滴定法と全く同じであるが、本願発明の装置では、更に、電解電極12を用いて逆滴定をすることが可能となる。
更に、本発明の装置を用いると容量滴定に用いたカールフィッシャー試薬の再生をすることができる。即ち、容量滴定に使用されたカールフィッシャー試薬は、ヨウ素からヨウ素イオンが発生した状態となっている。
以上のように本発明の装置では電解電極12を用いて、電量滴定と逆電量滴定をすることが可能になる。従って、電解制御手段20は必要に応じて、電解電極の極性を切り替える必要がある。例えば、操作ボード80に「電量滴定」、「力価」、「再生」、「容量滴定」等のキーを設けておき、「電量滴定」又は「再生」のキーが押されると、作用極12aに正、対極12kに負の電圧を印加して電量滴定を実行し、「力価」のキーが押されると、作用極12aに負、対極12kに正の電圧を印加して逆電量滴定をするように制御する。
操作ボード80より「容量滴定」のキーが押されたときはビュレット制御部10が稼動し、従来と同様の容量滴定がなされる構成とするが、初期的には容量滴定(または容量滴定と電量滴定の併用)を利用し、終点付近で電量滴定を利用することもできる。すなわち、検出電極13が検出する電圧が高いとき、水分濃度が大きいことを意味するので、検出電極13の検出電圧が所定値以上であるときには、切替制御手段70がビュレット制御手段10(またはビュレット制御手段10と電解制御手段20)を起動させて、容量滴定(または容量滴定と電量滴定を同時に)を開始し、検出電極13の検出電圧が所定の値{図5の終点電圧より少し高い電圧(時間t4より少し早い時点)}になったときに、電解制御手段20を起動して(電解制御手段20のみを作動させて)電量滴定にすることもできる。
図6に示すように、先ず、無水化された脱水溶剤(又は発生液)が充填された滴定フラスコ1内に試料を投入し、操作ボード80から容量滴定開始の指示を出すと、ビュレット制御手段10が作動を開始(図6、時刻t11)し、容量滴定用の注入ノズル11を介してカールフィッシャー試薬の投入を始める。
11・・・注入ノズル
12・・・電解電極
13・・・検出電極
14・・・電解制御手段
17・・・参照電極
Claims (12)
- 滴定フラスコに電解電極を備えたカールフィッシャー滴定装置を用いた滴定方法において、
滴定フラスコに充填した溶液にヨウ素を存在させ、
電解電極の作用極において、ヨウ素からヨウ素イオンを発生させる逆電量滴定を行う
ことを特徴とするカールフィッシャー滴定方法。 - 容量滴定に用いられるカールフィッシャー試薬を含む脱水溶剤に対して上記逆電量滴定がなされ、当該逆電量滴定に要した電気量から力価を決定する
請求項1に記載のカールフィッシャー滴定方法。 - 電解電極の作用極において、発生液中にヨウ素イオンからヨウ素を発生させる電量滴定によって、上記発生液に投入された試料に含まれる水分と上記ヨウ素を反応させ、
上記ヨウ素が残存する発生液に対して、上記逆電量滴定が施され、
上記電量滴定による電気量と上記逆電量滴定による電気量より、上記試料に含まれる水分量を求める
請求項1に記載のカールフィッシャー滴定方法。 - カールフィッシャー試薬の滴加によって、脱水溶剤中に投入された試料に含まれる水分とカールフィッシャー試薬に含まれるヨウ素を反応させ、
上記ヨウ素が残存する脱水溶剤に対して、上記逆電量滴定が施され、
上記カールフィッシャー試薬の滴加量と逆電量滴定による電気量より、上記試料に含まれる水分量を求める
請求項1に記載のカールフィッシャー滴定方法。 - カールフィッシャー滴定装置において、
発生溶剤または脱水溶剤に対して電解処理する電解電極と、
上記電解電極を用いて、ヨウ素イオンからヨウ素を発生する電量滴定と、ヨウ素からヨウ素イオンを発生する逆電量滴定を必要に応じて切替えできる電解制御手段と
を備えたことを特徴とするカールフィッシャー滴定装置。 - 更に、上記滴定フラスコに容量滴定に用いる注入ノズルが備えられ、
上記注入ノズルによる容量滴定と上記電解電極による電量滴定または逆電量滴定を必要に応じて切り替える切替制御手段と
を備えた請求項5に記載のカールフィッシャー滴定装置。 - 請求項6に記載のカールフィッシャー滴定装置を用いた滴定方法において、
滴定フラスコに投入された試料に含まれる水分量が所定値までは容量滴定を用い、
上記水分量が所定値以下になったとき、電量滴定に切り替える
カールフィッシャー滴定方法。 - 請求項6に記載のカールフィッシャー滴定装置を用いた滴定方法において、
滴定フラスコに投入された試料に含まれる水分量が所定値までは容量滴定と電量滴定を併用し、
上記水分量が所定値以下になったとき、電量滴定に切り替える
カールフィッシャー滴定方法。 - 請求項5または請求項6に記載のカールフィッシャー滴定装置を用いて、
容量滴定に用いるカールフィッシャー試薬に対して、上記逆容量滴定を施し、当該試薬の力価を測定するカールフィッシャー滴定方法。 - 請求項5または請求項6に記載のカールフィッシャー滴定装置を用いて、容量滴定に用いたカールフィッシャー試薬に対して、電量滴定を施して、当該試薬の回復をするカールフィッシャー滴定方法。
- 請求項5に記載のカールフィッシャー滴定装置を用いて、
電量滴定を行うことによって発生液中にヨウ素を残存させ、
電解制御手段によって、逆電量滴定に切り替え、
滴定終点に至るまで当該逆電量滴定を継続する
カールフィッシャー滴定方法。 - 請求項6に記載のカールフィッシャー滴定装置を用いて、
容量滴定を行うことによって脱水溶剤中にヨウ素を残存させ、
切り替え制御手段によって、逆電量滴定に切り替え、
滴定終点に至るまで当該逆電量滴定を継続するに切り替えるカールフィッシャー滴定方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12746665.4A EP2677310B1 (en) | 2011-02-18 | 2012-02-14 | Karl fischer titrator and karl fischer titration method |
JP2012557824A JP5433918B2 (ja) | 2011-02-18 | 2012-02-14 | カールフィッシャー滴定装置およびカールフィッシャー滴定方法 |
CN201280009474.1A CN103380370B (zh) | 2011-02-18 | 2012-02-14 | 卡尔费休滴定装置和卡尔费休滴定方法 |
US13/979,734 US8858769B2 (en) | 2011-02-18 | 2012-02-14 | Karl fischer titrator and karl fischer titration method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-033621 | 2011-02-18 | ||
JP2011033621 | 2011-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012111306A1 true WO2012111306A1 (ja) | 2012-08-23 |
Family
ID=46672250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/000946 WO2012111306A1 (ja) | 2011-02-18 | 2012-02-14 | カールフィッシャー滴定装置およびカールフィッシャー滴定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8858769B2 (ja) |
EP (3) | EP2995941B1 (ja) |
JP (1) | JP5433918B2 (ja) |
CN (1) | CN103380370B (ja) |
WO (1) | WO2012111306A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015179057A (ja) * | 2014-03-18 | 2015-10-08 | 平沼産業株式会社 | カールフィッシャー試薬を使用した水分測定方法と水分測定装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105181889B (zh) * | 2015-09-30 | 2017-08-01 | 王竞 | 一种采用电位滴定法的液体分析方法和装置 |
CN105223256A (zh) * | 2015-10-29 | 2016-01-06 | 大庆市日上仪器制造有限公司 | 一种卡尔·费休库仑法原油、焦油含水测量装置 |
CN105929008B (zh) * | 2016-04-19 | 2018-06-22 | 浙江圣兆药物科技股份有限公司 | 一种检测注射用利培酮微球水分的方法 |
CN105954462B (zh) * | 2016-05-06 | 2018-02-27 | 中国计量科学研究院 | 固体水分标准物质及其制备方法 |
CN106066352A (zh) * | 2016-05-26 | 2016-11-02 | 国网四川省电力公司电力科学研究院 | 一种六氟化硫气体微量水分含量测定装置及其方法 |
US10067091B2 (en) | 2016-07-29 | 2018-09-04 | Saudi Arabian Oil Company | Integrated sediment and water analysis device and method |
JP2019113327A (ja) * | 2017-12-21 | 2019-07-11 | 株式会社三菱ケミカルアナリテック | 水分測定方法および水分測定装置 |
US11714072B2 (en) * | 2019-03-28 | 2023-08-01 | Honeywell International Inc. | Reagent compositions and method for Karl Fischer titration |
CN113624910B (zh) * | 2020-05-09 | 2023-08-08 | 北京航天试验技术研究所 | 一种甲基肼中水含量测定方法 |
CN115615181A (zh) * | 2022-09-30 | 2023-01-17 | 广东利元亨智能装备股份有限公司 | 一种水分检测方法及烘烤装置 |
CN117147761A (zh) * | 2023-08-30 | 2023-12-01 | 金宏气体股份有限公司 | 超纯teos的水分杂质测试方法及检测设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5524652A (en) * | 1978-08-11 | 1980-02-21 | Hiranuma Sangyo Kk | Karl fischersigma electric titration using single electrolytic cell |
JPH01260362A (ja) * | 1988-04-11 | 1989-10-17 | Sumitomo Metal Ind Ltd | 溶融塩中酸素イオン濃度測定方法および装置 |
JPH06308113A (ja) | 1993-04-07 | 1994-11-04 | Deutsche Metrohm Gmbh & Co Elektronische Messgeraete | 組合せ型滴定装置 |
JP2000356621A (ja) * | 1999-06-11 | 2000-12-26 | Mitsubishi Chemicals Corp | カールフィッシャー水分測定用の逆滴定法用滴定剤 |
JP2007278919A (ja) | 2006-04-10 | 2007-10-25 | Dia Instr:Kk | カールフィッシャー滴定法を利用した分析装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4211614A (en) | 1978-05-30 | 1980-07-08 | Photovolt Corporation | Endpoint drift correction for automatic titrations |
JPS56112641A (en) * | 1980-02-12 | 1981-09-05 | Mitsubishi Chem Ind Ltd | Electrolytic solution for coulometric titration by karl fischer method |
SE507338C2 (sv) * | 1996-12-23 | 1998-05-18 | Anders Cedergren | Förfarande och anordning vid coulometrisk bestämning av vatten medelst Karl Fischerreaktion i en diafragmafri cell |
-
2012
- 2012-02-14 EP EP15002854.6A patent/EP2995941B1/en active Active
- 2012-02-14 EP EP15002853.8A patent/EP2995940B1/en active Active
- 2012-02-14 EP EP12746665.4A patent/EP2677310B1/en active Active
- 2012-02-14 US US13/979,734 patent/US8858769B2/en active Active
- 2012-02-14 WO PCT/JP2012/000946 patent/WO2012111306A1/ja active Application Filing
- 2012-02-14 JP JP2012557824A patent/JP5433918B2/ja active Active
- 2012-02-14 CN CN201280009474.1A patent/CN103380370B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5524652A (en) * | 1978-08-11 | 1980-02-21 | Hiranuma Sangyo Kk | Karl fischersigma electric titration using single electrolytic cell |
JPH01260362A (ja) * | 1988-04-11 | 1989-10-17 | Sumitomo Metal Ind Ltd | 溶融塩中酸素イオン濃度測定方法および装置 |
JPH06308113A (ja) | 1993-04-07 | 1994-11-04 | Deutsche Metrohm Gmbh & Co Elektronische Messgeraete | 組合せ型滴定装置 |
JP2000356621A (ja) * | 1999-06-11 | 2000-12-26 | Mitsubishi Chemicals Corp | カールフィッシャー水分測定用の逆滴定法用滴定剤 |
JP2007278919A (ja) | 2006-04-10 | 2007-10-25 | Dia Instr:Kk | カールフィッシャー滴定法を利用した分析装置 |
Non-Patent Citations (2)
Title |
---|
HIROMASA KATO ET AL.: "Determination of Water in Pharmaceuticals by Back-Titration of the Karl Fischer Volumetric Titration", STUDY OF MEDICAL SUPPLIES, vol. 30, no. 6, 20 June 1999 (1999-06-20), pages 285 - 288 * |
See also references of EP2677310A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015179057A (ja) * | 2014-03-18 | 2015-10-08 | 平沼産業株式会社 | カールフィッシャー試薬を使用した水分測定方法と水分測定装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103380370B (zh) | 2015-09-09 |
CN103380370A (zh) | 2013-10-30 |
JP5433918B2 (ja) | 2014-03-05 |
JPWO2012111306A1 (ja) | 2014-07-03 |
US8858769B2 (en) | 2014-10-14 |
EP2677310A1 (en) | 2013-12-25 |
EP2677310B1 (en) | 2016-06-29 |
EP2995940B1 (en) | 2017-06-14 |
EP2995941A1 (en) | 2016-03-16 |
EP2995940A1 (en) | 2016-03-16 |
EP2677310A4 (en) | 2014-05-07 |
US20140001057A1 (en) | 2014-01-02 |
EP2995941B1 (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5433918B2 (ja) | カールフィッシャー滴定装置およびカールフィッシャー滴定方法 | |
CN103033550A (zh) | 一种联合测定脱硫灰中全钙、硫酸钙、亚硫酸钙的方法 | |
JP5550364B2 (ja) | 試薬調製装置 | |
TWI585388B (zh) | 總氧化性物質濃度的測定方法、基板洗淨方法及基板洗淨系統 | |
WO2015025724A1 (ja) | 溶存酸素計測システム及び溶存酸素計の校正方法 | |
JP5309617B2 (ja) | イオンクロマトグラフ法による陽イオンの高精度分析方法 | |
CN103048219B (zh) | 一种含碘氢碘酸浓度的分析方法 | |
CN106932458A (zh) | 一种硝酸体系高浓度铀溶液中酸度的分析检测方法 | |
CN104062395A (zh) | 一种测定含钒电解液中低价钒浓度的方法 | |
CN103293195A (zh) | 一种水质暂时硬度的检测方法 | |
CN102901764B (zh) | 一种测试二甲基亚砜中微量水分的方法 | |
JP6179727B2 (ja) | カールフィッシャー試薬を使用した水分測定方法 | |
US8888989B2 (en) | Method and apparatus for electrolyte measurements | |
Ossadnik et al. | Comparative study of the determination of peroxomonosulfate, in the presence of other oxidants, by capillary zone electrophoresis, ion chromatography, and photometry | |
JP2018004611A (ja) | カールフィッシャー試薬を使用した水分測定方法 | |
CN110082419A (zh) | 一种快速检测纳米颗粒表面配体含量的方法 | |
JP2019113327A (ja) | 水分測定方法および水分測定装置 | |
JPH0616027B2 (ja) | カ−ルフイツシヤ−水分計における電極電位検出方法 | |
EP4357774A1 (en) | Electrolytic device noise reduction and lifetime improvement using modulated driver | |
JP2014186016A (ja) | カールフィッシャー容量滴定装置と滴定方法 | |
RU2498288C2 (ru) | Способ контроля заполнения сорбентом кулонометрического чувствительного элемента | |
JPWO2021106124A1 (ja) | 調製器具、検出システム、及び検出方法 | |
TW201509379A (zh) | 血比容檢測方法及使用該方法的檢測裝置 | |
Janata et al. | Electrochemical acidity functions | |
JPH0244208Y2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12746665 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13979734 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2012557824 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012746665 Country of ref document: EP |