WO2012111284A1 - 圧電駆動式パーツフィーダ - Google Patents

圧電駆動式パーツフィーダ Download PDF

Info

Publication number
WO2012111284A1
WO2012111284A1 PCT/JP2012/000861 JP2012000861W WO2012111284A1 WO 2012111284 A1 WO2012111284 A1 WO 2012111284A1 JP 2012000861 W JP2012000861 W JP 2012000861W WO 2012111284 A1 WO2012111284 A1 WO 2012111284A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
drive block
top plate
vibration generator
drive
Prior art date
Application number
PCT/JP2012/000861
Other languages
English (en)
French (fr)
Inventor
博修 野中
野中 英明
卓也 西川
Original Assignee
株式会社 Bfc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Bfc filed Critical 株式会社 Bfc
Priority to CN201290000196.9U priority Critical patent/CN203411018U/zh
Publication of WO2012111284A1 publication Critical patent/WO2012111284A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/08Supports or mountings for load-carriers, e.g. framework, bases, spring arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • B65G27/24Electromagnetic devices

Definitions

  • the present invention relates to a parts feeder that aligns and conveys parts by a vibration generator using a piezoelectric element.
  • the one shown in FIG. 8 is known. This is because the amplifying spring 36 is connected to a vibration generator in which the piezoelectric element 33 is fixed to the elastic plate 34 and the upper end thereof is fixed to a top plate 32 on which a component is placed, and the lower end is connected to a drive block 37 having a large mass. Screwed into a parallelogram shape.
  • the drive block 37 is connected to the base 31 by a joint spring 35 (Patent Document 1).
  • an excitation voltage is applied to the piezoelectric element 33, so that the vibration generator causes a flexural vibration with the connecting portion with the drive block 37 as a fulcrum, and is amplified by the amplifying spring 36. It is to be vibrated diagonally up and down. The vibration of the drive block 37 is suppressed from being transmitted to the base 31 by the joint spring 35.
  • the parts feeder is widely used as an automatic part supply device in an assembly line or the like because it can take out workpieces of various shapes stacked in a certain posture.
  • the natural frequency of the mechanical system is made to resonate with the frequency of the vibration generator, and the optimum vibration can be obtained in consideration of the shape, weight, installation space, etc. of the parts. Designed each time.
  • the drive in the resonance state is maintained. Difficult to do. For this reason, it is necessary to perform troublesome adjustment of the parts feeder on a daily basis, and it must be done by an expert. Also, in the case of micro parts such as LEDs and electronic parts, it is difficult to convey smoothly, but the inclination of the vibration generator and the amplification spring is made closer to the vertical direction (5 to 10 degrees), and the resonance frequency is increased (180 Hz or more). ) Is possible.
  • the state in which the trough is attached to the top plate is required to maintain the balance between the front and rear and the left and right.
  • the dance may increase at the tip, or conversely, the transported object may not be sent.
  • a balance weight is attached to the trough to adjust the position of the center of gravity and the amplification spring is changed, but adjustment is difficult and requires considerable skill.
  • a step-up transformer for supplying power to a vibration generator is mounted with an extended base, but the entire apparatus becomes large and it is often difficult to secure an installation space. For this reason, some of them are mounted on the top of the drive block, but they are attached to the vibrating drive block, so there is a problem in durability.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a compact parts feeder that can be easily adjusted even by a non-expert and can smoothly transport micro parts.
  • the piezoelectric drive type parts feeder of the present invention is configured as follows.
  • an amplification spring is connected to the upper end of a vibration generator having a piezoelectric element fixed to an elastic plate, tilted with respect to the vertical direction and screwed to the drive block at the lower end, and a trough is attached to the upper end of the amplification spring.
  • the joint spring is long and the lower end is screwed to the base and the
  • the drive block is screwed on the same axis as the lower end of the vibration generator, the upper end is screwed on the top plate coaxially with the screw on the amplification spring, and the adjustment is made between the top plate and the drive block. It is characterized in that a spring is provided on the joint spring.
  • This parts feeder has an amplifying spring connected to the upper end of the vibration generator and tilted so that the upper end is screwed to the front end and the rear end of the top plate, and the lower end is screwed to the drive block. It has a shape. Since the drive block receives a reaction force of vibration, the mass should be as large as possible, and the side cover covering the side surface should be supported by the drive block as having a large plate thickness. Preferably, as described in claim 3, the side cover portion is integrally formed of the drive block and the casting so as to cover the left and right side surfaces. And it is good to form a cavity in the lower center part of a drive block so that a step-up transformer can be mounted in the center part of a base.
  • the splice spring is preferably located outside the vibration generator and the amplification spring, that is, in front of the front vibration generator and the amplification spring and behind the rear vibration generator and the amplification spring. You may make it reverse (a joint spring is an inside of a vibration generator and an amplification spring).
  • the joint spring connects the base and the drive block and also connects to the top plate.
  • the connection of the joint spring to the top plate and the drive block is screwed coaxially with the screwing of the upper end of the amplification spring and the lower end of the vibration generator.
  • the vibration generator and the splice spring are attached in parallel to each other so as not to interfere with each other.
  • the connecting position of the splice spring to the drive block may be selected on the lower side of the drive block so as to be 2: 1 to 3: 1 between the top plate and the base.
  • the vibration is adjusted by changing the thickness of the amplification spring and by appropriately selecting an adjustment spring provided between the top plate and the drive block.
  • the inclination of the vibration generator and the amplification spring should be 12 to 20 degrees with respect to the vertical direction, and the resonance frequency should be 60 to 200 Hz.
  • the inclination of the vibration generator and the amplification spring is 5 to 10 degrees with respect to the vertical direction and the resonance frequency is 200 to 300 Hz as described in claim 2. .
  • the piezoelectric drive type parts feeder of the present invention has a long splice spring, the lower end is screwed to the base, the drive block is screwed coaxially with the lower end of the vibration generator, and the upper end is attached to the top plate.
  • the top plate, drive block, and base are joined together by a joint spring, so that the movement of the top plate is integrated with the amplification spring, and the vibration of the top plate does not change due to changes in the weight of parts or changes in the surrounding temperature.
  • the number of parts and screw members are small, so that it is compact and less troublesome and economical.
  • the adjustment spring is provided on the joint spring between the top plate and the drive block, the adjustment work is simple.
  • the conventional conveyance state is unstable and difficult to implement. It is possible to smoothly transport minute parts such as electronic parts.
  • the top plate on the upper surface and the front and rear ends of the drive block on the lower surface are connected by the joint spring to form a parallelogram, and the side cover portion is driven so as to cover the left and right side surfaces. If a hollow is formed in the lower central part of the drive block so that a step-up transformer can be mounted in the central part of the base, it is compact and requires less processing, and there are problems such as loosening of screw members. Less.
  • FIG. FIG. 6 is a front view showing a state where the top plate is moving back and forth and vibrating, (a) is neutral, (b) is bent backward, and (c) is bent forward. . It is the fluctuation state diagram of the resonant frequency by the fluctuation
  • FIG. 2 is a perspective view of the drive block 20. It is a front view of the conventional piezoelectric drive type parts feeder.
  • FIG. 6 is a front view showing a state where the top plate is moving back and forth and vibrating, (a) is neutral, (b) is bent backward, and (c) is bent forward. . It is the fluctuation state diagram of the resonant frequency by the fluctuation
  • FIG. 1 is a front view showing the entirety of a piezoelectric drive type part feeder
  • FIG. 2 is a side view
  • FIG. 3 is a perspective view.
  • an amplifying spring 5 is fixed to the vibration generator 4 and the upper end side thereof is fixed to the front end and the rear end of the top plate 1 respectively, and the lower end side of the vibration generator 4 is connected to the drive block 2. These are fixed to the front end and the rear end respectively to form a parallelogram.
  • the vibration generator 4 is obtained by fixing the piezoelectric element 4 a to the elastic body 4 b, and the amplification spring 5 is connected by a connecting screw 8.
  • the top plate 1 is provided with a vertical screw hole 1c, and a trough is attached to the top plate (not shown).
  • Inclined portions 1a and 1b are formed at the front and rear ends of the top plate 1, and screw holes 1d and 1e are formed.
  • inclined portions 2a and 2b are formed on the front end side and the rear end side of the drive block 2, and screw holes 2d and 2e are formed.
  • a base 3 is provided below the drive block 2, inclined portions 3 a and 3 b are formed on the front end side and the rear end side, and screw holes 3 d and 3 e are formed.
  • the inclined portions 1a and 1b, the inclined portions 2a and 2b, and the inclined portions 3a and 3b are the same, and are determined to be 5 to 20 degrees with respect to the vertical direction depending on the parts to be conveyed.
  • the screw hole 1d, 1e of the top plate 1 is screwed coaxially with the bolt 16 in the vicinity of the upper end of the amplification spring 5 and the upper end of the joint spring 6, and in the screw holes 2d, 2e of the drive block 2, Near the lower end of the vibration generator 4 and the joint spring 6 are screwed coaxially. Further, the vicinity of the lower end of the joint spring 6 is screwed into the screw holes 3d and 3e.
  • the amplifying spring 5 and the joint spring 6 are screwed together via a distance gold 11 and 13, respectively, and the elastic body 4 b and the joint spring 6 are screwed together via a distance gold 12 and 14, respectively. Further, an adjustment spring 7 is provided between the top plate 1 of the joint spring 6 and the drive block 2 so as to overlap the joint spring 6.
  • Reference numeral 15 denotes a presser plate.
  • a step-up transformer 10 is attached to the upper surface of the drive block 2. Further, screw holes 2 c are formed on both side surfaces of the drive block 2, and a side cover 17 covering the entire side surface is screwed with bolts 18.
  • the side cover 17 uses a steel material having a thickness of 8 mm, and this weight is added to the drive block 2.
  • the overall size of the parts feeder is assumed to be 170 mm in length, 65 mm in width, and 120 mm in height.
  • the vibration generator 4, the amplification spring 5, the joint spring 6, and the adjustment spring 7 are appropriately selected according to the weight, size, trough weight, etc. of the parts to be conveyed, and are determined so as to obtain an optimum resonance frequency. Yes.
  • this piezoelectric drive type part feeder is configured as described above, when an electric charge is applied to the piezoelectric element 4a through the transformer 10, the elastic body 4b vibrates and is amplified by the amplification spring 5 to be amplified by the top plate. 1 is vibrated and the parts are sent automatically. Since the drive block 2 is sufficiently large in weight so that vibration is reliably transmitted to the top plate 1, the drive block 2 vibrates using the screwed portion of the bolt 16 at the lower end of the vibration generator 4 as a fulcrum. The drive block 2 receives a reaction force and vibrates slightly, but is suppressed to the base 3 by the joint spring 6. The vibration amplified by the amplification spring 5 is close to the resonance frequency (100 to 130 Hz).
  • the vibration of the top plate 1 is as shown in FIG. 4 because the joint spring 6 not only connects the base 3 and the drive block 2 but is also connected to the top plate 1. That is, when the top plate 1 in FIG. 4A is in the neutral position, the top plate 1 is moved to the base 3 when moved forward in FIG. 4B and moved backward in FIG. However, the joint spring 6 connecting the base 3, the drive block 2, and the top plate 1 acts to suppress the vibration of the amplification spring 5 and is stable with little unevenness.
  • the fluctuation state of the resonance frequency with respect to the supply voltage and the frequency in the parts feeder according to this embodiment is almost sinusoidal, and even if the resonance frequency changes due to a change in ambient temperature or load, etc. There is little change in speed, and management of the transport state is easy.
  • the conventional piezoelectric driven parts feeder in which the splice spring is not connected to the top plate is in the state shown in FIG. That is, the vibration of the vibration generator 33 is amplified by the amplification spring 36 to vibrate the top plate 32.
  • the vibration of the amplification spring 36 is caused by changes in the weight applied to the top plate 32, the position of the center of gravity, and the vibration of the drive block 37. It is easy to change, and it may happen that the conveyed product does not move at a constant speed. In order to smoothly convey the parts, it is necessary to make fine adjustments frequently.
  • the vibration varies depending on the temperature, but at the beginning of operation, it takes time to stabilize the conveyance and frequent adjustment is required.
  • the resonance frequency supply voltage and the fluctuation state with respect to the frequency become a waveform inclined to the right as compared with FIG. 5, and the resonance frequency changes to the lower side due to a change in ambient temperature or load. Then, since a conveyance speed falls rapidly, you have to monitor enough. Furthermore, in the state shown in FIG. 9, a load is applied to the amplification spring, and damage due to fatigue tends to occur at the mounting portion.
  • the drive block 2 and the side cover 17 are integrated and the step-up transformer 10 is attached to the base 3. That is, the drive block 20 has a block portion 20a at the center, and side portions 20b and 20c are erected on both the left and right sides. A hollow 20d for accommodating the step-up transformer 10 is formed in the lower center portion.
  • Inclined portions 20e and 20f to which the lower end side of the vibration generator 4 is attached are provided at the front end side lower portion and the rear end side lower portion of the block portion 20a, respectively, and screw holes 20g and 20h are formed.
  • an opening 20j for passing an electric wire from the step-up transformer 10 is provided in the upper center of the block portion 20a.
  • the drive block 20 is integrally formed of a casting, and each dimension is determined so as to have a required weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Jigging Conveyors (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

本発明の圧電駆動式パーツフィーダは、振動発生器(4)の上端に増幅バネ(5)を連結し、垂直方向に対して傾斜させた状態で振動発生器(4)の下端をドライブブロック(2)に螺着し、増幅バネ(5)の上端をトラフが取付けられたトッププレート(1)に螺着し、ドライブブロック(2)をベース(3)に弾性支持するための長尺状の継ぎバネ(6)の下端をベース(3)に対して螺着し、継ぎバネ(6)の中間部をドライブブロック(2)に対して振動発生器(4)の下端の螺着と同軸に螺着し、継ぎバネ(6)の上端をトッププレート(1)に対して増幅バネ(5)の螺着と同軸に螺着し、さらに、トッププレート(1)とドライブブロック(2)間に調整バネ(7)を継ぎバネ(6)に重ねて構成したものである。かかる構成を有することにより、本発明は、トッププレートの振動状態が部品の重量変化や周辺の温度変化などによって変わらず、また、熟練者でなくても調整作業を簡便とし、ひいては、微小部品であってもスムーズに搬送可能な圧電式パーツフィーダを提供可能となる。

Description

圧電駆動式パーツフィーダ
 本発明は圧電素子を用いた振動発生器により部品を整列搬送するパーツフィーダに関する。
 圧電駆動式パーツフィーダの代表的なものとして図8に示すものが知られている。
 これは、弾性板34に圧電素子33を固着した振動発生器に増幅バネ36を連結してその上端を部品を載せるトラフが固設されたトッププレート32に、下端を質量の大きなドライブブロック37に平行四辺形状に螺着している。そして、ドライブブロック37は継ぎバネ35でベース31に連結している(特許文献1)。
  このパーツフィーダは、加振電圧を圧電素子33に印加することにより、振動発生器が、ドライブブロック37との連結部を支点として、たわみ振動をおこし、増幅バネ36によって増幅されてトッププレート32を斜め上下方向に加振させるものである。なお、ドライブブロック37の振動は継ぎバネ35によってベース31への伝動を抑制している。
実公平5-44328号公報
 パーツフィーダは、バラ積みされた様々な形状のワークを一定の姿勢で取り出すことが可能なことから、組立ラインなどで部品の自動供給装置として広く用いられている。
 ところで、パーツフィーダを効率的に駆動するには機械系の固有振動数を振動発生器の周波数と共振するようにし、部品の形状や重量、設置スペースなどを考慮して、最適な振動が得られるようにその都度設計されている。
 しかしながら、増幅バネのバネ定数やドライブブロックの重量およびバランス、トラフの取付状態などのほか、部品の重量変化、周辺の温度変化などによっても固有振動数が変動するので、共振状態での駆動を持続することが難しい。
 このため、日常的に何度も面倒なパーツフィーダの調整を行う必要があり、しかも、熟練者によらなければならない。
 また、LEDや電子部品などの微小部品の場合は、スムーズに搬送させることが難しいが、振動発生器および増幅バネの傾斜を垂直方向に近づけ(5~10度)、共振周波数を大きく(180Hz以上)することによって可能ではある。しかし、増幅バネの傾斜を起すと、トッププレートの先端部と後端部とで部品の搬送速度に差ができ、不安定な動きとなり、また、共振周波数を大きくすると共振状態での駆動を持続することが難しくなり、部品が踊ってスムーズに送られ難いということがしばしば生ずる。
 また、トラフのトッププレートへの取付状態は、前後および左右のバランスが損なわれないことが必要とされるが、現実の現場においては、次工程やスペースの関係から困難な場合が少なくない。
 前後方向のバランスが悪い場合は、その先端で踊りが大きくなったり、逆に搬送物が送られないといったことが生ずる。これを防止するため、トラフにバランスウェイトをつけて重心位置を調整したり、増幅バネを変更することも行われているが、調整が難しくかなりの熟練を必要とする。
 また、振動発生器へ電力の供給をするための昇圧トランスは一般的にベースを延長させて搭載しているが、装置全体が大きくなり設置スペースの確保が難しい場合が多い。
 このため、ドライブブロックの上部に載置したものもあるが、振動するドライブブロックに取付けるので、耐久性に難点がある。
 本発明は上記の問題点に鑑み、熟練者でなくても調整が簡便にでき、微小部品をスムーズに搬送できるコンパクトなパーツフィーダを提供することを目的としている。
 上記の目的を達成するため、本発明の圧電駆動式パーツフィーダは、次のように構成した。すなわち、弾性板に圧電素子が固着された振動発生器の上端に増幅バネを連結し、垂直方向に対して傾斜させて下端をドライブブロックに螺着するとともに、増幅バネの上端をトラフが取付けられたトッププレートに螺着し、該ドライブブロックをベースに継ぎバネで弾性支持した平行四辺形状の圧電駆動式パーツフィーダにおいて、該継ぎバネは長尺のものとし、下端をベースに螺着するとともに該ドライブブロックに該振動発生器の下端の螺着と同軸に螺着し、上端を該トッププレートに該増幅バネの螺着と同軸に螺着し、さらに、該トッププレートと該ドライブブロック間に調整バネを該継ぎバネに重ねて設けたことを特徴としている。
 このパーツフィーダは、振動発生器の上端に増幅バネを連結して傾斜させてトッププレートの前端と後端にそれぞれ上端を螺着するとともに、下端を、ドライブブロックにそれぞれ螺着して、平行四辺形状としている。
 ドライブブロックは、振動の反力を受けるので、質量をできるだけ大きくするのがよく、側面を覆うサイドカバーを板厚の大きなものとしてドライブブロックに支持させるとよい。
 望ましくは、請求項3に記載のように、左右の側面を覆うようにサイドカバー部をドライブブロックと鋳物で一体形成する。そして、ベースの中央部に昇圧トランスを搭載できるようにドライブブロックの下部中央部に空洞を形成するとよい。
 継ぎバネは、振動発生器と増幅バネの外側、すなわち、前側の振動発生器および増幅バネの前方と、後側の振動発生器および増幅バネの後方に配置するのが、望ましいが、場合によっては逆(継ぎバネを振動発生器と増幅バネの内側)にしてもよい。
 継ぎバネは、ベースとドライブブロックを連結するとともにトッププレートとも連結している。しかも、継ぎバネのトッププレートとドライブブロックへの連結は、増幅バネの上端と振動発生器の下端の螺着と同軸に螺着する。なお、振動発生器と継ぎバネは、干渉しないように互いに平行な状態に取付ける。また、継ぎバネのドライブブロックへの連結位置は、ドライブブロックの下部側とし、トッププレートとベースの、2対1~3対1になるように選択するとよい。
 振動の調整は、増幅バネの厚さを変更させることのほか、トッププレートとドライブブロック間に設ける調整バネを適宜選択することによって行う。
 通常の部品では振動発生器および増幅バネの傾斜を垂直方向に対し12~20度とし、共振周波数を60~200Hzとすればよい。しかし、微小部品を対象とする場合は、請求項2に記載のように、振動発生器および増幅バネの傾斜を垂直方向に対し5~10度とし、共振周波数を200~300Hzとするのが望ましい。
 本発明の圧電駆動式パーツフィーダは、継ぎバネを長尺のものとし、下端をベースに螺着するとともにドライブブロックに振動発生器の下端の螺着と同軸に螺着し、上端をトッププレートに増幅バネの螺着と同軸に螺着したことにより、トッププレートとドライブブロックとベースが継ぎバネによって、動きが一体的となり、トッププレートの振動が部品の重量変化や周辺の温度変化などによって変わらず、安定したスムーズなものとなった。しかも、部品点数およびネジ部材が少なく、コンパクトにまとまり、故障が少なく経済的なものとなった。
 さらに、トッププレートとドライブブロック間に調整バネを継ぎバネに重ねて設けたので調整作業が簡便である。
 また、請求項2に記載のように、振動発生器および増幅バネの傾斜を垂直方向に対し5~10度とし、共振周波数を200~300Hzとすれば、従来搬送状態が不安定で実施が困難であった電子部品などの微小部品をスムーズに搬送させることができる。
 さらに、請求項3に記載のように、上面のトッププレートと下面のドライブブロックの前後端を前記継ぎバネで連結して平行四辺形状に形成し、左右の側面を覆うようにサイドカバー部をドライブブロックと鋳物で一体形成するとともに、ベースの中央部に昇圧トランスを搭載できるようにドライブブロックの下部中央部に空洞を形成すれば、コンパクトで、加工も少なくなり、ネジ部材の緩みなどの問題も少なくなる。
本発明の圧電駆動式パーツフィーダの実施の形態を示す正面図である。 同、側面図である。 同、斜視図である。 同、トッププレートが前後に動いて振動している状態を示す正面図で、(a)は、ニュートラル、(b)は後方へ撓んだ状態、(c)は前方へ撓んだ状態を示す。 同、電圧および周波数の変動による共振周波数の変動状態線図である。 同、圧電駆動式パーツフィーダの別の実施の形態を示す正面図である。 同、ドライブブロック20の斜視図である。 従来の圧電駆動式パーツフィーダの正面図である。 同、トッププレートが前後に動いて振動している状態を示す正面図で、(a)は、ニュートラル、(b)は後方へ撓んだ状態、(c)は前方へ撓んだ状態を示す。 同、電圧および周波数の変動による共振周波数の変動状態線図である。
 本発明の圧電駆動式パーツフィーダの実施の形態を図面に基づいて説明する。
 図1は、圧電駆動式パーツフィーダの全体を示す正面図であり、図2は側面図である。また、図3は、斜視図である。
 この圧電駆動式パーツフィーダは、振動発生器4に増幅バネ5を固設しその上端側をトッププレート1の前端と後端にそれぞれ固設するとともに、振動発生器4の下端側をドライブブロック2の前端と後端にそれぞれ固設して平行四辺形状に形成している。
 振動発生器4は弾性体4bに圧電素子4aを固着したもので、増幅バネ5は連結ネジ8で連結されている。
 トッププレート1には、垂直なねじ穴1cが穿設されており、図示していないが、上部にトラフが取付けられる。トッププレート1の前端と後端には、傾斜部1a、1bが形成されており、ねじ穴1d、1eが穿設されている。
 一方、ドライブブロック2の前端側と後端側には、傾斜部2a、2bが形成されており、ねじ穴2d、2eが穿設されている。また、ドライブブロック2の下方には、ベース3が設けられ、その前端側と後端側に、傾斜部3a,3bが形成され、ねじ穴3d、3eが穿設されている。傾斜部1a,1b、傾斜部2a,2b、および傾斜部3a,3bは、同一であり、搬送する部品によって、垂直方向に対して5~20度に決められる。
 そして、トッププレート1のねじ穴1d,1eには、ボルト16によって増幅バネ5の上端付近と、継ぎバネ6の上端付近が同軸に螺着され、ドライブブロック2のねじ穴2d,2eには、振動発生器4の下端付近と継ぎバネ6が同軸で螺着されている。また、ねじ穴3d,3eには、継ぎバネ6の下端付近が螺着されている。
 増幅バネ5と継ぎバネ6とは、距て金11,13を介してそれぞれ螺着され、弾性体4bと継ぎバネ6とは、距て金12,14を介してそれぞれ螺着されている。
 さらに、継ぎバネ6のトッププレート1とドライブブロック2との間には、継ぎバネ6に重ねて調整バネ7が設けられている。なお、15は押え板である。
 ドライブブロック2の上面には昇圧トランス10が取付けられている。また、ドライブブロック2の両側面には、ねじ穴2cが穿設されており、側面全体を覆うサイドカバー17がボルト18で螺着されている。サイドカバー17は、ここでは、厚さ8mmの鋼材を使用しており、この重量はドライブブロック2に付加される。
 なお、パーツフィーダ全体の概略の大きさは、ここでは、長さが170mm、幅が65mm、高さは120mmとしている。また、振動発生器4並びに増幅バネ5、継ぎバネ6、調整バネ7は、搬送する部品の重量、大きさおよびトラフの重量などによって適宜選定され、最適な共振周波数が得られるように決められている。
 この圧電駆動式パーツフィーダは、上記のように構成されているので、トランス10を介して圧電素子4aに電荷を付与することにより、弾性体4bが振動し、増幅バネ5によって増幅されてトッププレート1を振動させ、部品が自動的に送られる。
 ドライブブロック2は、トッププレート1へ振動が確実に伝達されるように重量を十分大きくしているので、振動発生器4の下端部のボルト16の螺着部を支点として振動する。なお、ドライブブロック2は反力を受け、若干振動するが、ベース3へは、継ぎバネ6によって抑制される。
 増幅バネ5によって増幅される振動は、共振周波数の近く(100~130Hz)である。
 トッププレート1の振動は、継ぎバネ6がベース3とドライブブロック2とを繋ぐのみならずトッププレート1とも連結されているので、図4に示すような状態となる。
 すなわち、図4(a)のトッププレート1がニュートラル位置にあるときから、(b)の前方へ移動した場合と、(c)の後方へ移動した場合の状態は、トッププレート1がベース3に対して移動するが、ベース3とドライブブロック2とトッププレート1とを連結した継ぎバネ6によって、増幅バネ5の振動を抑制するように作用し、ムラの少ない安定したものとなる。
 この実施の形態によるパーツフィーダにおける供給電圧と周波数に対する共振周波数の変動状態は、図5に示すように、ほぼ正弦波形となり、周辺の温度変化や負荷の変化などによって共振周波数が変化しても搬送速度の変化が少なく、搬送状態の管理が容易である。
 これに対し、継ぎバネをトッププレートへ連結していない従来の圧電駆動式パーツフィーダは、図9に示す状態となる。すなわち、振動発生器33の振動が増幅バネ36によって増幅されトッププレート32を振動させるが、トッププレート32にかかる重量や重心位置の変化およびドライブブロック37の振動の変化などによって増幅バネ36の振動が変化し易く、搬送物が一定の速度で移動しないことが生じ、部品をスムーズに搬送させるためには、微調整を頻繁に行う必要がある。また、振動は気温によっても変動するが、稼働始めの時は、搬送が安定するまでに、時間を要し、調整を頻繁に行う必要がある。
 また、共振周波数の供給電圧と周波数に対する変動状態は、図10に示すように、図5に比べ、右へ傾いた波形となり、周辺の温度変化や負荷の変化などによって共振周波数が低い方に変化すると、搬送速度が急激に低下するので、十分監視しなければならない。
 さらに、図9に示す状態では、増幅バネに負担がかかり、取付部分で疲労による損傷が起こりやすい。
 次に、本発明の別の実施の形態について、図6および図7に基づいて説明する。
 上記の実施の形態との相違点は、ドライブブロック2とサイドカバー17を一体とし、かつ、昇圧トランス10をベース3に取付ける構造としたことである。
 すなわち、ドライブブロック20は、中央部にブロック部20aが形成され、左右両側にサイド部20b、20cが立設されている。そして、中央下部には、昇圧トランス10を収納するための空洞20dが形成されている。
 ブロック部20aの前端側下部と、後端側下部には振動発生器4の下端側が取付られる傾斜部20e、20fがそれぞれ設けられ、ねじ穴20g、20hが穿設されている。また、ブロック部20aの上部中央には昇圧トランス10からの電線を通すための開口20jが設けられている。
 なお、このドライブブロック20は、鋳物で一体に造られており、必要とする重量になるように、各寸法が決められている。
1 トッププレート
1a 傾斜部
1b 傾斜部
1c ねじ穴
1d ねじ穴
1e ねじ穴
2 ドライブブロック
2a 傾斜部
2b 傾斜部
2c ねじ穴
2d ねじ穴
2e ねじ穴
3 ベース
3a 傾斜部
3b 傾斜部
3d ねじ穴
3e ねじ穴
4 振動発生器
4a 圧電素子
4b 弾性体
5 増幅バネ
6 継ぎバネ
7 調整バネ
8 連結ネジ
10 昇圧トランス
11 距て金
12 距て金
13 距て金
14 距て金
15 押へ材
16 ボルト
17 ウエイトカバー
18 ボルト
20 ドライブブロック
20a ブロック部
20b サイド部
20c サイド部
20d 空洞
20e 傾斜部
20f 傾斜部
20g ねじ穴
20h ねじ穴
20j 開口
31 ベース
32 トッププレート
33 圧電素子
34 弾性板
35 継ぎバネ
36 増幅バネ
37 ドライブブロック
38 ネジ

Claims (3)

  1.  弾性板に圧電素子が固着された振動発生器の上端に増幅バネを連結し、垂直方向に対して傾斜させて下端をドライブブロックに螺着するとともに、増幅バネの上端をトラフが取付けられたトッププレートに螺着し、該ドライブブロックをベースに継ぎバネで弾性支持した平行四辺形状の圧電駆動式パーツフィーダにおいて、該継ぎバネは長尺のものとし、下端をベースに螺着するとともに該ドライブブロックに該振動発生器の下端の螺着と同軸に螺着し、上端を該トッププレートに該増幅バネの螺着と同軸に螺着し、さらに、該トッププレートと該ドライブブロック間に調整バネを該継ぎバネに重ねて設けたことを特徴とする圧電駆動式パーツフィーダ。
  2.  前記振動発生器および増幅バネの傾斜を垂直方向に対し5~10度とし、共振周波数を200~300Hzとして半導体部品など微小部品を搬送させることを特徴とする請求項1に記載の圧電駆動式パーツフィーダ。
  3.  上面のトッププレートと下面のドライブブロックの前後端を前記継ぎバネで連結して平行四辺形状に形成し、左右の側面を覆うようにサイドカバー部をドライブブロックと鋳物で一体形成するとともに、ベースの中央部に昇圧トランスを搭載できるようにドライブブロックの下部中央部に空洞を形成したことを特徴とする請求項1または請求項2に記載の圧電駆動式パーツフィーダ。
PCT/JP2012/000861 2011-02-17 2012-02-09 圧電駆動式パーツフィーダ WO2012111284A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201290000196.9U CN203411018U (zh) 2011-02-17 2012-02-09 压电驱动式零件供给器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011000816U JP3167576U (ja) 2011-02-17 2011-02-17 圧電駆動式パーツフィーダ
JP2011-000816U 2011-02-17

Publications (1)

Publication Number Publication Date
WO2012111284A1 true WO2012111284A1 (ja) 2012-08-23

Family

ID=46672231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000861 WO2012111284A1 (ja) 2011-02-17 2012-02-09 圧電駆動式パーツフィーダ

Country Status (3)

Country Link
JP (1) JP3167576U (ja)
CN (1) CN203411018U (ja)
WO (1) WO2012111284A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104029990A (zh) * 2013-03-08 2014-09-10 株式会社大伸 振动式输送装置
TWI777836B (zh) * 2021-10-29 2022-09-11 產台股份有限公司 小型物料振動送料裝置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227449B2 (ja) * 2011-11-02 2013-07-03 株式会社ダイシン 振動式搬送装置
US10000343B2 (en) * 2014-09-19 2018-06-19 Ishida Co., Ltd. Vibratory conveying apparatus comprising trough attachment/detachment mechanism, and combination weighing apparatus
CN107884714A (zh) * 2017-11-09 2018-04-06 奥士康科技股份有限公司 一种pcb龙门电镀设备振动马达检测仪
CN110255092B (zh) * 2019-06-06 2021-06-18 株式会社Bfc 一种圆振式输送装置
CN110255093B (zh) * 2019-06-11 2021-06-18 株式会社Bfc 一种稳定送料的高速直振

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124919U (ja) * 1989-03-23 1990-10-15
JPH0351210A (ja) * 1989-07-20 1991-03-05 Toshiba Corp 圧電駆動形搬送装置
JP2002302232A (ja) * 2001-04-09 2002-10-18 Shinko Electric Co Ltd 圧電素子駆動型フィーダ
JP2006248727A (ja) * 2005-03-11 2006-09-21 Shinko Electric Co Ltd 部品搬送装置
JP2008265899A (ja) * 2007-04-17 2008-11-06 Shinko Electric Co Ltd 部品搬送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124919U (ja) * 1989-03-23 1990-10-15
JPH0351210A (ja) * 1989-07-20 1991-03-05 Toshiba Corp 圧電駆動形搬送装置
JP2002302232A (ja) * 2001-04-09 2002-10-18 Shinko Electric Co Ltd 圧電素子駆動型フィーダ
JP2006248727A (ja) * 2005-03-11 2006-09-21 Shinko Electric Co Ltd 部品搬送装置
JP2008265899A (ja) * 2007-04-17 2008-11-06 Shinko Electric Co Ltd 部品搬送装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104029990A (zh) * 2013-03-08 2014-09-10 株式会社大伸 振动式输送装置
TWI777836B (zh) * 2021-10-29 2022-09-11 產台股份有限公司 小型物料振動送料裝置

Also Published As

Publication number Publication date
JP3167576U (ja) 2011-04-28
CN203411018U (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2012111284A1 (ja) 圧電駆動式パーツフィーダ
KR101231776B1 (ko) 진동 부품 공급기용 수평 이송 장치
JP4303258B2 (ja) 振動式搬送装置
JP5677783B2 (ja) 振動式部品搬送装置
CN106516588B (zh) 直线送料器
JP3848950B2 (ja) 振動式部品搬送装置
JP2015147632A (ja) 電磁フィーダ
KR101877578B1 (ko) 진동식 부품 반송 장치
JP2018052636A (ja) 振動式部品搬送装置およびその調整方法
KR101233151B1 (ko) 진동 부품 공급기용 수평 이송 및 반송 장치
JP6344858B2 (ja) 振動式直線搬送装置
JP3185146U (ja) 直線搬送フィーダ
JPH01203112A (ja) 圧電型加振体とそれを備える圧電駆動型搬送装置
WO2016043332A1 (ja) トラフ着脱機構を備える振動搬送装置ならびに組合せ計量装置
CN107380923B (zh) 零件供料机
JP2008214011A (ja) パーツフィーダ
JP2011088707A (ja) 電磁方式フィーダー
KR20080042611A (ko) 양방향 인라인 부품 공급장치
JP2013047132A (ja) 振動フィーダ、振動フィーダ駆動装置および振動フィーダ駆動装置の製造方法
JP4464445B2 (ja) 振動式搬送装置
JP5082270B2 (ja) 部品供給装置
JP2009035412A (ja) 振動式部品搬送装置
JP2005029326A (ja) 振動式部品搬送装置
JP2007161459A (ja) 部品供給装置
JPH08244945A (ja) 圧電駆動型搬送装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000196.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747485

Country of ref document: EP

Kind code of ref document: A1