WO2012111083A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2012111083A1
WO2012111083A1 PCT/JP2011/053099 JP2011053099W WO2012111083A1 WO 2012111083 A1 WO2012111083 A1 WO 2012111083A1 JP 2011053099 W JP2011053099 W JP 2011053099W WO 2012111083 A1 WO2012111083 A1 WO 2012111083A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
regenerative braking
braking force
target driving
motor
Prior art date
Application number
PCT/JP2011/053099
Other languages
English (en)
French (fr)
Inventor
正和 齋藤
伊藤 芳輝
雅章 田川
仁 大熊
幸弘 細江
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to CN201180070102.5A priority Critical patent/CN103492217B/zh
Priority to PCT/JP2011/053099 priority patent/WO2012111083A1/ja
Priority to JP2012557691A priority patent/JP5672565B2/ja
Publication of WO2012111083A1 publication Critical patent/WO2012111083A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control device, and more particularly to a vehicle control device that generates a vehicle braking force using a regenerative braking force by a motor in an electric vehicle using a motor as a power source.
  • Vehicles include an engine as a drive source and a motor (electric motor) in addition to the engine, and there are so-called hybrid vehicles as electric vehicles for improving fuel consumption.
  • this hybrid vehicle as a method for controlling the vehicle braking force, control is performed in which the regenerative braking force is added to a target driving force set in advance using the accelerator operation amount and the vehicle speed as parameters.
  • the motor is controlled by limiting at a predetermined rate of change after adding the regenerative braking force to the target driving force for the purpose of reducing driving discomfort due to a sudden change in driving torque. It is common. That is, as shown in FIG.
  • a basic target driving force calculation having a basic target driving force table M in contact with the accelerator operation amount detecting means and the vehicle speed detecting means.
  • a driving force calculating unit 117D and a change rate limiting unit 117E that communicates with the target driving force calculating unit 117D, and the basic target driving force is obtained from a basic target driving force table M that is set in advance according to the accelerator operation amount and the vehicle speed.
  • the electric vehicle and the electric vehicle regeneration control method according to Patent Document 1 correct the target torque of the motor when the vehicle is traveling on a downhill road by correcting the basic target torque by at least the downhill road regeneration correction amount.
  • the energization of the motor is controlled so that the output torque is generated in the motor.
  • the motor output value output by the processing in FIG. 5 is shown in FIG.
  • the target driving force determined by the accelerator opening and the braking request is indicated by a solid line P
  • the motor output value limited by the change rate limiting process is indicated by an alternate long and short dash line Q.
  • the final drive torque is output with the rate of change being limited, so when the accelerator is turned off (the accelerator pedal is not depressed) and the brake is turned on (the brake pedal is depressed), the braking torque from the motor is reduced. Immediately after the brake was turned on (the brake pedal was depressed), the speed did not increase and the feeling of speed was delayed, giving the driver an uncomfortable feeling. In addition, when the brake is turned off (the brake pedal is not depressed), the braking torque by the motor does not decrease immediately after the brake is turned off (the brake pedal is not depressed), and a feeling of deceleration remains to the driver. Improvement was desired because it gives a sense of incongruity.
  • the present invention provides a vehicle control device including a motor that drives a wheel and generates a regenerative braking force, and includes an accelerator operation amount detection unit that detects an accelerator operation amount, a vehicle speed detection unit that detects a vehicle speed, and a brake Brake operation amount detection means for detecting an operation amount is provided, and basic target drive for calculating basic target drive force based on the accelerator operation amount detected by the accelerator operation amount detection means and the vehicle speed detected by the vehicle speed detection means Force calculation means, regenerative braking force calculation means for calculating regenerative braking force based on the brake operation amount detected by the brake operation amount detection means, and basic target driving force calculated by the basic target driving force calculation means.
  • Driving force limiting means for limiting at the first rate of change and regenerative braking force calculated by the regenerative braking force calculating means at the second rate of change Regenerative braking force limiting means, and the basic target driving force limited by the driving force limiting means and the regenerative braking force limited by the regenerative braking force limiting means are added to obtain a target driving force generated from the motor.
  • Control means comprising target driving force calculation means is provided.
  • the vehicle control device of the present invention can prevent the occurrence of a shock or the like due to a sudden change in braking force / driving force while ensuring responsiveness according to a driver's braking request / driving request.
  • FIG. 1 is a system configuration diagram of a vehicle control device.
  • FIG. 2 is a control block diagram of the vehicle control device.
  • FIG. 3 is a flowchart of motor control.
  • FIG. 4 is a diagram showing motor output values.
  • FIG. 5 is a control block diagram of a conventional vehicle control apparatus.
  • FIG. 6 is a diagram showing a conventional motor output value.
  • the present invention aims to prevent shocks due to sudden changes in braking force / driving force while ensuring responsiveness in response to a driver's braking request / driving request, with a limited basic target driving force and a limited regeneration. This is realized as a target driving force generated from the motor by adding the braking force.
  • reference numeral 1 denotes a vehicle control device for a hybrid vehicle as an electric vehicle.
  • the vehicle control device 1 transmits output to an output shaft 3 of an engine 2 that is a drive source for outputting torque, a first motor 4 and a second motor 5 as a plurality of motors, and a drive wheel 6 as wheels.
  • a transmission mechanism (differential gear mechanism) 9 is provided.
  • the first motor 4 and the second motor 5 drive the drive wheels 6 on the output side of the power transmission mechanism 9 and generate a regenerative braking force.
  • a one-way clutch 10 is provided in the middle of the output shaft 3 of the engine 2 on the engine 2 side.
  • the one-way clutch 10 prevents the engine 2 from rotating in the reverse direction, and receives the torque reaction force of the second motor 5 during EV (electric vehicle) traveling.
  • the first motor 4 includes a first rotor 11 and a first stator 12.
  • the second motor 5 includes a second rotor 13 and a second stator 14.
  • the vehicle control device 1 includes a first inverter 15 that controls the operation of the first motor 4, a second inverter 16 that controls the operation of the second motor 5, the first inverter 15, and the second inverter Control means (ECU) 17 communicated with the inverter 16 is provided.
  • the first inverter 15 is connected to the first stator 12 of the first motor 4.
  • the second inverter 16 is connected to the second stator 14 of the second motor 5.
  • Each power supply terminal of the first inverter 15 and the second inverter 16 is connected to a battery (driving high voltage battery) 18.
  • the battery 18 can exchange power with the first motor 4 and the second motor 5.
  • the first motor 4 and the second motor 5 have the first inverter 15 and the second motor 15 in the power running (accelerating power to the wheels (drive wheels) and accelerating or maintaining a balanced speed with an upward gradient). Electric power is supplied from the battery 18 via the inverter 16. On the other hand, the first motor 4 and the second motor 5 charge the battery 18 via the first inverter 15 and the second inverter 16 during regeneration. In the vehicle control device 1, the hybrid vehicle is driven and controlled using outputs from the engine 2, the first motor 4, and the second motor 5.
  • the power transmission mechanism 9 is a so-called four-shaft power input / output device, which includes an output shaft 3 and a drive shaft 8 of the engine 2, and a first motor 4 on the engine 2 side and a drive shaft 8 side.
  • the second motor 5 is arranged, the power of the engine 2, the power of the first motor 4 and the power of the second motor 5 are combined and output to the drive shaft 8, and the engine 2 and the first motor 4 are combined. Power is exchanged between the second motor 5 and the drive shaft 8.
  • the power transmission mechanism 9 is configured by arranging a first planetary gear mechanism 19 and a second planetary gear mechanism 20 in which two rotation elements are connected to each other.
  • the first planetary gear mechanism 19 includes a first sun gear 21, a first pinion gear 22 meshed with the first sun gear 21, and a first ring gear 23 meshed with the first pinion gear 22.
  • the first carrier 24 connected to the first pinion gear 22 and the output gear 25 connected to the first ring gear 23 are provided.
  • the second planetary gear mechanism 20 includes a second sun gear 26, a second pinion gear 27 meshed with the second sun gear 26, and a second ring gear 28 meshed with the second pinion gear 27. And a second carrier 29 connected to the second pinion gear 27.
  • the first carrier 24 of the first planetary gear mechanism 19 is connected to the output shaft 3 of the engine 2.
  • the second carrier 29 of the second planetary gear mechanism 20 is connected to the first ring gear 23 and the output gear 25 of the first planetary gear mechanism 19.
  • the first rotor 11 of the first motor 4 is connected to the first sun gear 21 via the first motor output shaft 30.
  • the output shaft 3 of the engine 2 is connected to the first carrier 24 and the second sun gear 26.
  • the drive shaft 8 is connected to the first ring gear 23 and the second carrier 29 via the output gear 25 and the output transmission mechanism 7.
  • the second rotor 13 of the second motor 5 is connected to the second ring gear 28 via the second motor output shaft 31.
  • the second motor 5 is connected to the second motor output shaft 31, the second ring gear 28, the second carrier 29, the first ring gear 23, the output gear 25, the output transmission mechanism 7, and the drive shaft 8.
  • the vehicle can be directly connected to the drive wheels 6 and the vehicle is driven only by a single output. That is, in the power transmission mechanism 9, the first carrier 24 of the first planetary gear mechanism 19 and the second sun gear 26 of the second planetary gear mechanism 20 are coupled and connected to the output shaft 3 of the engine 2.
  • the first ring gear 23 of the first planetary gear mechanism 19 and the second carrier 29 of the second planetary gear mechanism 20 are coupled and connected to the drive shaft 8, and the first planetary gear mechanism 19
  • the first motor 4 is connected to one sun gear 21, the second motor 5 is connected to the second ring gear 28 of the second planetary gear mechanism 20, and the engine 2, the first motor 4, the second Power is exchanged between the motor 5 and the drive shaft 8.
  • the control means 17 includes an accelerator operation amount detection means 32 for detecting an accelerator pedal depression amount as an accelerator operation amount, a vehicle speed detection means 33 for detecting a vehicle speed, and a brake operation for detecting a brake pedal depression amount as a brake operation amount.
  • the quantity detection means 34 is in communication.
  • an air amount adjustment mechanism 35, a fuel supply mechanism 36, and an ignition timing adjustment mechanism 37 communicate with the control means 17 so as to control the engine 2.
  • the control unit 17 includes a basic target driving force calculation unit 17 ⁇ / b> A that communicates with the accelerator operation amount detection unit 32 and the vehicle speed detection unit 33, and a regenerative braking force that communicates with the brake operation amount detection unit 34.
  • Addition means 17E that communicates with 17D and target drive force calculation means 17F that communicate with the addition means 17E and the first motor 4 and the second motor 5 are provided.
  • the basic target driving force calculation means 17A includes a preset basic target driving force map M, and is based on the accelerator operation amount detected by the accelerator operation amount detection means 32 and the vehicle speed detected by the vehicle speed detection means 33. A target driving force is calculated.
  • the regenerative braking force calculation unit 17B calculates the regenerative braking force based on the brake operation amount detected by the brake operation amount detection unit 34.
  • the driving force limiting unit 17C limits the basic target driving force calculated by the basic target driving force calculating unit 17A at the first change rate ( ⁇ ).
  • the regenerative braking force limiting means 17D limits the regenerative braking force calculated by the regenerative braking force calculating means 17B with the second rate of change ( ⁇ ).
  • the regenerative braking force limiting means 17D sets the second change rate ( ⁇ ) to be larger than the first change rate ( ⁇ ) in the driving force limiting means 17C ( ⁇ ⁇ ).
  • the second rate of change ( ⁇ ) is 100% and does not substantially limit the regenerative braking force.
  • the adding unit 17E adds the limited basic target driving force from the driving force limiting unit 17C and the limited regenerative braking force from the regenerative braking force limiting unit 17D.
  • the target driving force calculation means 17F calculates the target driving force and sends it to the first motor 4 and the second motor 5 as output values.
  • a basic value set in advance using the accelerator operation amount and the vehicle speed as parameters is calculated from the target driving force map M, the regenerative braking force increases or decreases in response to the driver's braking request, and the rate of change is set to suppress the behavior of the basic target driving force caused by a sudden change in the driving force.
  • the regenerative braking force with the change rate restriction added to the limited basic target driving force is used as the target driving force, and the target driving force is generated by the first motor 4 and the second motor 5.
  • step 101 when the program of the control means 17 is started (step 101), first, a basic target driving force is calculated from a preset basic target driving force map M (step 102), and the driver's braking request is calculated. (Step 103), the basic target driving force is limited by the first rate of change ( ⁇ ) (step 104), and the regenerative braking force is set at the second rate of change ( ⁇ ).
  • step 105 add the limited basic target driving force and the limited regenerative braking force to calculate the target driving force (step 106), and execute motor control according to the target driving force (Step 107), and the program is returned (Step 108).
  • the basic target driving force and the regenerative braking force Is added to perform motor output as the target driving force.
  • the motor output value output by the processing in FIG. 3 is shown in FIG.
  • the accelerator operation amount and the target driving force determined by the braking request are indicated by a solid line P
  • the motor output values limited by the change rate limiting process are indicated by broken lines R1 and R2
  • the conventional case is indicated by a one-dot chain line Q. It shows with.
  • the target driving force becomes a predetermined first value G1
  • the accelerator is off (the accelerator pedal is not depressed) and the brake is off (the brake pedal is not depressed) (time t2)
  • the braking force is applied and the target driving force becomes the predetermined second value G2
  • the accelerator is turned off (the accelerator pedal is not depressed) and the brake is turned on (the brake pedal is depressed) (time t3)
  • the braking force is further applied and the target driving force becomes the predetermined third value G3.
  • the second rate of change ( ⁇ ) that limits the change in the regenerative braking force that is the basis for calculating the target driving force is the first change that limits the change in the basic driving force that is the basis for calculating the target driving force. Since it is larger than the rate ( ⁇ ) (see the broken line R1), the responsiveness is improved as compared with the conventional one (dashed line Q). After that, even when the accelerator is turned off (the accelerator pedal is not depressed) and the brake is turned off (the brake pedal is not depressed), and the target driving force returns to the second value G2 (time t4), the target driving is performed.
  • the second rate of change ( ⁇ ) that limits the change in the regenerative braking force that is the basis for calculating the force is greater than the first rate of change ( ⁇ ) that limits the change in the basic driving force that is the basis for calculating the target driving force.
  • the responsiveness is improved compared to the conventional one (dashed line Q).
  • the target driving force returns to the first value G1. That is, after the accelerator is turned off (the accelerator pedal is not depressed), the brake is turned on (the brake pedal is depressed), or the brake is turned off (the brake pedal is depressed) or the brake is off (the brake pedal is not depressed). In both cases, it is clear that the responsiveness is improved with respect to the conventional method.
  • the control means 17 calculates the basic target driving force based on the accelerator operation amount detected by the accelerator operation amount detection means 32 and the vehicle speed detected by the vehicle speed detection means 33.
  • the power limiting unit 17D, the basic target driving force limited by the driving force limiting unit 17C, and the regenerative braking force limited by the regenerative braking force limiting unit 17D are added to obtain the first And a target driving force calculating means 17F which is a target driving force generated from the motor 4 and the second motor 5.
  • the regenerative braking force limiting means 17D sets the second change rate ( ⁇ ) to be larger than the first change rate ( ⁇ ).
  • the vehicle control device is not limited to a hybrid vehicle but can be applied to other electric vehicles such as an electric vehicle.
  • Vehicle control device 1
  • Engine 4
  • First motor 5
  • Second motor 6
  • Drive wheels (wheels) 8
  • Drive shaft 9
  • Power transmission mechanism 15
  • Second inverter 17 Control means 17A
  • Basic target driving force calculation means 17B
  • Regenerative braking force calculation means 17C
  • Driving force limiting means 17D
  • Regenerative braking force limiting means 17E
  • Target driving force calculation means 32
  • Accelerator operation amount detection means 33
  • Vehicle speed detection means 34
  • Brake operation amount detection means 34

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 制御手段(17)は、アクセル操作量と車速とに基づいて基本目標駆動力を算出する基本目標駆動力算出手段(17A)と、ブレーキ操作量に基づいて回生制動力を算出する回生制動力算出手段(17B)と、基本目標駆動力を第1の変化率(α)で制限する駆動力制限手段(17C)と、回生制動力を第2の変化率(β)で制限する回生制動力制限手段(17D)と、駆動力制限手段(17C)により制限された基本目標駆動力と回生制動力制限手段(17D)により制限された回生制動力とを加算してモータ(4、5)から発生させる目標駆動力とする目標駆動力算出手段(17F)とを備えている。 これにより、運転者の制動要求・駆動要求に応じた応答性を確保しつつ、制動力・駆動力の急変によるショック等の発生を防止できる。 

Description

車両用制御装置
 この発明は、車両用制御装置に係り、特にモータを動力源とした電動車両においてモータによる回生制動力を用いて車両制動力を発生させる車両用制御装置に関する。
 車両には、駆動源として、エンジンとこのエンジン以外にモータ(電動機)を備え、燃費を向上するための電動車両として、いわゆるハイブリッド車両がある。
 このハイブリッド車両においては、車両制動力の制御方法として、アクセル操作量と車速とをパラメータとして予め設定した目標駆動力に回生制動力を加算する制御を行っていた。この場合、駆動トルクの急な変化による運転の違和感を低減することを目的として、目標駆動力に回生制動力を加算した後で、予め定めた変化率で制限することによってモーターを制御するのが一般的である。
 即ち、図5に示すように、車両用制御装置の制御手段117においては、一般的に、アクセル操作量検出手段及び車速検出手段に連絡して基本目標駆動力テーブルMを有する基本目標駆動力算出手段117Aと、ブレーキ操作量検出手段に連絡する回生制動力算出手段117Bと、基本目標駆動力算出手段117A及び回生制動力算出手段117Bに連絡する加算手段117Cと、この加算手段117Cに連絡する目標駆動力算出手段117Dと、この目標駆動力算出手段117Dに連絡する変化率制限手段117Eとを備え、そして、アクセル操作量と車速とによって予め設定した基本目標駆動力テーブルMから基本目標駆動力を算出し、制動要求の有無により回生制動力を算出し、基本目標駆動力に回生制動力を加算したのち、モータの駆動力が急変した場合の車両挙動を考慮した変化率制限処理をし、モータ出力を行っている。
特開2009-106130号公報
 特許文献1に係る電動車両、および電動車両の回生制御方法は、降坂路での車両の走行時におけるモータの目標トルクを、基本目標トルクを少なくとも降坂路回生補正量によって補正し、その目標トルクの出力トルクをモータに発生させるように、モータの通電を制御するものである。
 ところで、上記の図5における処理によって出力されるモータ出力値は、図6に示されている。この図6においては、アクセル開度と制動要求とによって求められる目標駆動力を実線Pで示し、変化率制限処理によって制限したモータ出力値を一点鎖線Qで示す。この場合、アクセルオフ(アクセルペダルを踏み込んでいない状態)後において、ブレーキオン(ブレーキペダルを踏み込んだ状態)した場合では(図6のA参照)、制動要求に対して遅れが大きくなり、また、ブレーキオフ(ブレーキペダルを踏み込んでいない状態)の場合では(図6のB参照)、駆動要求に対して遅れが大きくなる。
 このように、最終的な駆動トルクを変化率制限して出力させるので、アクセルオフ(アクセルペダルを踏み込んでいない状態)してブレーキオン(ブレーキペダルを踏み込んだ状態)した場合、モータによる制動トルクがブレーキオン(ブレーキペダルを踏み込んだ状態)した直後には増加せず、速感が遅れて発生するため、運転者へ違和感を与えていた。また、ブレーキオフ(ブレーキペダルを踏み込んでいない状態)とした場合に、モータによる制動トルクがブレーキオフ(ブレーキペダルを踏み込んでいない状態)した直後には減少せず、減速感が残って運転者へ違和感を与えるので、改善が望まれていた。
 そこで、この発明は、運転者の制動要求・駆動要求に応じた応答性を確保しつつ、制動力・駆動力の急変によるショック等の発生を防止できる車両用制御装置を提供することにある。
 この発明は、車輪を駆動するとともに回生制動力を発生するモータを備えた車両用制御装置において、アクセル操作量を検出するアクセル操作量検出手段を設け、車速を検出する車速検出手段を設け、ブレーキ操作量を検出するブレーキ操作量検出手段を設け、前記アクセル操作量検出手段により検出されたアクセル操作量と前記車速検出手段により検出された車速とに基づいて基本目標駆動力を算出する基本目標駆動力算出手段と、前記ブレーキ操作量検出手段により検出されたブレーキ操作量に基づいて回生制動力を算出する回生制動力算出手段と、前記基本目標駆動力算出手段により算出された基本目標駆動力を第1の変化率で制限する駆動力制限手段と、前記回生制動力算出手段により算出された回生制動力を第2の変化率で制限する回生制動力制限手段と、前記駆動力制限手段により制限された基本目標駆動力と前記回生制動力制限手段により制限された回生制動力とを加算して前記モータから発生させる目標駆動力とする目標駆動力算出手段とを備える制御手段を設けたことを特徴とする。
 この発明の車両用制御装置は、運転者の制動要求・駆動要求に応じた応答性を確保しつつ、制動力・駆動力の急変によるショック等の発生を防止できる。
図1は車両用制御装置のシステム構成図である。(実施例) 図2は車両用制御装置の制御ブロック図である。(実施例) 図3はモータ制御のフローチャートである。(実施例) 図4はモータ出力値を示す図である。(実施例) 図5は従来における車両用制御装置の制御ブロック図である。(従来例) 図6は従来においてモータ出力値を示す図である。(従来例)
 この発明は、運転者の制動要求・駆動要求に応じた応答性を確保しつつ、制動力・駆動力の急変によるショック等を防止する目的を、制限された基本目標駆動力と制限された回生制動力とを加算してモータから発生させる目標駆動力として実現するものである。
 図1~図4は、この発明の実施例を示すものである。 
 図1において、1は電動車両としてのハイブリッド車両の車両用制御装置である。 
 車両用制御装置1は、トルクを出力する駆動源であるエンジン2の出力軸3と、複数のモータとしての第一のモータ4及び第二のモータ5と、車輪としての駆動輪6に出力伝達機構7を介して接続される駆動軸8と、エンジン2の出力軸3と複数のモータ(電動機)としての第一のモータ4と第二のモータ5と駆動軸8とに夫々連結された動力伝達機構(差動歯車機構)9とを備えている。第一のモータ4・第二のモータ5は、動力伝達機構9の出力側となる駆動輪6を駆動するとともに、回生制動力を発生する。
 エンジン2の出力軸3の途中には、エンジン2側で、ワンウェイクラッチ10が備えられている。このワンウェイクラッチ10は、エンジン2が逆回転しないようにするものであり、また、EV(電気車両)走行時には第二のモータ5のトルク反力を受けるものである。
 第一のモータ4は、第一のロータ11と第一のステータ12とからなる。第二のモータ5は、第二のロータ13と第二のステータ14とからなる。
 また、車両用制御装置1は、第一のモータ4を作動制御する第一のインバータ15と、第二のモータ5を作動制御する第二のインバータ16と、第一のインバータ15と第二のインバータ16とに連絡した制御手段(ECU)17とを備えている。
 第一のインバータ15は、第一のモータ4の第一のステータ12に接続している。第二のインバータ16は、第二のモータ5の第二のステータ14に接続している。
 第一のインバータ15と第二のインバータ16の各電源端子は、バッテリ(駆動用高電圧バッテリ)18に接続している。このバッテリ18は、第一のモータ4及び第二のモータ5と電力のやり取りが可能なものである。すなわち、第一のモータ4及び第二のモータ5は、力行(動力を車輪(駆動輪)に伝えて加速、又は上り勾配で均衡速度を保つこと)時には、第一のインバータ15及び第二のインバータ16を介してバッテリ18から電力を供給される。一方、第一のモータ4及び第二のモータ5は、回生時には、第一のインバータ15及び第二のインバータ16を介してバッテリ18を充電する。
 この車両用制御装置1においては、エンジン2と第一のモータ4・第二のモータ5とからの出力を用いて、ハイブリッド車両を駆動制御する。
 動力伝達機構9は、いわゆる4軸式の動力入出力装置であり、エンジン2の出力軸3と駆動軸8とを配置し、また、エンジン2側の第一のモータ4と駆動軸8側の第二のモータ5とを配置し、エンジン2の動力と第一のモータ4の動力と第二のモータ5の動力とを合成して駆動軸8に出力し、エンジン2と第一のモータ4と第二のモータ5と駆動軸8との間で動力の授受を行う。
 動力伝達機構9は、互いの2つの回転要素が連結された第一の遊星歯車機構19と第二の遊星歯車機構20とを並設して構成される。
 第一の遊星歯車機構19は、第一のサンギア21と、この第一のサンギア21に噛み合った第一のピニオンギア22と、この第一のピニオンギア22に噛み合った第一のリングギア23と、第一のピニオンギア22に連結した第一のキャリア24と、第一のリングギア23に連結した出力ギア25とを備えている。
 第二の遊星歯車機構20は、第二のサンギア26と、この第二のサンギア26に噛み合った第二のピニオンギア27と、この第二のピニオンギア27に噛み合った第二のリングギア28と、第二のピニオンギア27に連結した第二のキャリア29とを備えている。
 動力伝達機構9において、第一の遊星歯車機構19の第一のキャリア24は、エンジン2の出力軸3に連結している。また、第二の遊星歯車機構20の第二のキャリア29は、第一の遊星歯車機構19の第一のリングギア23及び出力ギア25に連結している。
 第一のサンギア21には、第一のモータ出力軸30を介して第一のモータ4の第一のロータ11が接続する。第一のキャリア24・第二のサンギア26には、エンジン2の出力軸3が接続する。第一のリングギア23・第二のキャリア29には、出力ギア25及び出力伝達機構7を介して駆動軸8が接続する。第二のリングギア28には、第二のモータ出力軸31を介して第二のモータ5の第二のロータ13が接続する。
 第二のモータ5は、第二のモータ出力軸31と第二のリングギア28と第二のキャリア29と第一のリングギア23と出力ギア25と出力伝達機構7と駆動軸8とを介して駆動輪6に直接連結可能となり、単独出力のみで車両を走行させる。
 つまり、動力伝達機構9においては、第一の遊星歯車機構19の第一のキャリア24と第二の遊星歯車機構20の第二のサンギア26とを結合してエンジン2の出力軸3に接続し、第一の遊星歯車機構19の第一のリングギア23と第二の遊星歯車機構20の第二のキャリア29とを結合して駆動軸8に接続し、第一の遊星歯車機構19の第一のサンギア21に第一のモータ4を接続し、第二の遊星歯車機構20の第二のリングギア28に第二のモータ5を接続し、エンジン2、第一のモータ4、第二のモータ5、及び駆動軸8との間で動力の授受を行っている。
 制御手段17には、アクセルペダルの踏み込み量をアクセル操作量として検出するアクセル操作量検出手段32と、車速を検出する車速検出手段33と、ブレーキペダルの踏み込み量をブレーキ操作量として検出するブレーキ操作量検出手段34とが連絡している。
 また、制御手段17には、エンジン2を制御するように、空気量調整機構35と、燃料供給機構36と、点火時期調整機構37とが連絡している。
 制御手段17は、図1、図2に示すように、アクセル操作量検出手段32及び車速検出手段33に連絡する基本目標駆動力算出手段17Aと、ブレーキ操作量検出手段34に連絡する回生制動力算出手段17Bと、基本目標駆動力算出手段17Aに連絡する駆動力制限手段17Cと、回生制動力算出手段17Bに連絡する回生制動力制限手段17Dと、駆動力制限手段17C及び回生制動力制限手段17Dに連絡する加算手段17Eと、この加算手段17E及び第一のモータ4・第二のモータ5に連絡する目標駆動力算出手段17Fとを備えている。
 基本目標駆動力算出手段17Aは、予め設定された基本目標駆動力マップMを備え、アクセル操作量検出手段32により検出されたアクセル操作量と車速検出手段33により検出された車速とに基づいて基本目標駆動力を算出する。
 回生制動力算出手段17Bは、ブレーキ操作量検出手段34により検出されたブレーキ操作量に基づいて回生制動力を算出する。 
 駆動力制限手段17Cは、基本目標駆動力算出手段17Aにより算出された基本目標駆動力を第1の変化率(α)で制限する。 
 回生制動力制限手段17Dは、回生制動力算出手段17Bにより算出された回生制動力を第2の変化率(β)で制限する。この場合、回生制動力制限手段17Dは、前記第2の変化率(β)を、駆動力制限手段17Cでの第1の変化率(α)よりも大きく設定する(α<β)。また、第2の変化率(β)は、100%で、実質的に回生制動力を制限しない。
 加算手段17Eは、駆動力制限手段17Cからの制限済みの基本目標駆動力と回生制動力制限手段17Dからの制限済みの回生制動力とを加算する。
 目標駆動力算出手段17Fは、目標駆動力を算出して第一のモータ4・第二のモータ5へ出力値として送る。 
 即ち、この実施例では、車両制動力の一部を第一のモータ4・第二のモータ5による回生制動力で補うハイブリッド車両において、アクセル操作量と車速とをパラメータとして、予め設定された基本目標駆動力マップMから基本目標駆動力を算出し、運転者の制動要求に応じて回生制動力が増減し、基本目標駆動力が駆動力の急変により招かれる挙動を抑制するために変化率を制限し、回生制動力が制動力の急変により招かれる挙動を抑制するために予め設定した変化率を制限し、基本目標駆動力の変化率より回生制動力の変化率を大きく設定し、変化率制限をかけた基本目標駆動力に変化率制限をかけた回生制動力を加算して目標駆動力とし目標駆動力を第一のモータ4・第二のモータ5で発生させる
 次に、この実施例のモータ制御を、図3のフローチャートに基づいて説明する。 
 この図3におけるルーチンは、周期的に実行される。 
 図3に示すように、制御手段17のプログラムがスタートすると(ステップ101)、先ず、予め設定された基本目標駆動力マップMから基本目標駆動力を算出し(ステップ102)、運転者の制動要求に応じた回生制動力を算出し(ステップ103)、基本目標駆動力を第1の変化率(α)で制限し(ステップ104)、また、回生制動力を第2の変化率(β)で制限し(ステップ105)、制限済みの基本目標駆動力と制限済みの回生制動力とを加算して目標駆動力を算出し(ステップ106)、そして、この目標駆動力に応じたモータ制御を実行し(ステップ107)、プログラムをリターンする(ステップ108)。
 この図3のフローチャートでは、基本目標駆動力と回生制動力とを加算する前に、各々の駆動力の変化に合わせた変化率制限処理を行った後で、基本目標駆動力と回生制動力とを加算して目標駆動力としてモータ出力を行う。
 上記の図3における処理によって出力されるモータ出力値は、図4に示されている。 
 この図4においては、アクセル操作量と制動要求によって求められる目標駆動力とを実線Pで示し、変化率制限処理によって制限したモータ出力値を破線R1、R2で示し、従来の場合を一点鎖線Qで示す。
 図4に示すように、アクセルオン(アクセルペダルを踏み込んだ状態)且つブレーキオフ(ブレーキペダルを踏み込んでいない状態)の場合(時間t1)、目標駆動力が所定の第1値G1とになり、そして、アクセルオフ(アクセルペダルを踏み込んでいない状態)且つブレーキオフ(ブレーキペダルを踏み込んでいない状態)になると(時間t2)、制動力が働いて目標駆動力が所定の第2値G2となり、そして、アクセルオフ(アクセルペダルを踏み込んでいない状態)且つブレーキオン(ブレーキペダルを踏み込んだ状態)になると(時間t3)、さらに、制動力が働いて目標駆動力が所定の第3値G3となる。この場合、目標駆動力の算出の基となる回生制動力の変化を制限する第2の変化率(β)は目標駆動力の算出の基となる基本駆動力の変化を制限する第1の変化率(α)よりも大きいので(破線R1参照)、従来(一点鎖線Q)と比較して、応答性が良くなっている。
 その後、再度、アクセルオフ(アクセルペダルを踏み込んでいない状態)且つブレーキオフ(ブレーキペダルを踏み込んでいない状態)になり、目標駆動力が第2値G2に戻った場合でも(時間t4)、目標駆動力の算出の基となる回生制動力の変化を制限する第2の変化率(β)は目標駆動力の算出の基となる基本駆動力の変化を制限する第1の変化率(α)よりも大きいので(破線R2参照)、従来(一点鎖線Q)と比較して、応答性が良くなっている。
 そして、アクセルオン(アクセルペダルを踏み込んだ状態)且つブレーキオフ(ブレーキペダルを踏み込んでいない状態)に戻ると(時間t5)、目標駆動力が第1値G1に戻る。
 即ち、アクセルオフ(アクセルペダルを踏み込んでいない状態)とした後でブレーキオン(ブレーキペダルを踏み込んだ状態)、又はブレーキオン(ブレーキペダルを踏み込んだ状態)からブレーキオフ(ブレーキペダルを踏み込んでいない状態)とした場合のどちらでも、従来の方法に対して応答性が良くなっていることが明白である。
 以上、この発明の実施例について説明してきたが、上述の実施例の構成を請求項毎に当てはめて説明する。 
 先ず、請求項1に記載の発明において、制御手段17は、アクセル操作量検出手段32により検出されたアクセル操作量と車速検出手段33により検出された車速とに基づいて基本目標駆動力を算出する基本目標駆動力算出手段17Aと、ブレーキ操作量検出手段34により検出されたブレーキ操作量に基づいて回生制動力を算出する回生制動力算出手段17Bと、基本目標駆動力算出手段17Aにより算出された基本目標駆動力を第1の変化率(α)で制限する駆動力制限手段17Cと、回生制動力算出手段17Bにより算出された回生制動力を第2の変化率(β)で制限する回生制動力制限手段17Dと、駆動力制限手段17Cにより制限された基本目標駆動力と回生制動力制限手段17Dにより制限された回生制動力とを加算して第一のモータ4・第二のモータ5から発生させる目標駆動力とする目標駆動力算出手段17Fとを備えている。
 これにより、運転者の制動要求に応じた応答性を確保しつつ、制動力の急変によるショック等の発生を防ぐことができる。また、運転者の駆動要求に応じた応答性を確保しつつ、駆動力の急変によるショック等の発生を防ぐことができる。
 請求項1に記載の発明において、回生制動力制限手段17Dは、前記第2の変化率(β)を、前記第1の変化率(α)よりも大きく設定する。
 これにより、アクセルオフした後でブレーキオンした場合に、減速感が遅れて発生することによる違和感を解消することができる。また、ブレーキオフした場合、減速感が残ることによる違和感を解消することができる。
 この発明に係る車両用制御装置を、ハイブリッド車両に限らず、電気自動車等の他の電気車両に適用可能である。 
 1 車両用制御装置 
 2 エンジン 
 4 第一のモータ 
 5 第二のモータ 
 6 駆動輪(車輪) 
 8 駆動軸 
 9 動力伝達機構 
 15 第一のインバータ 
 16 第二のインバータ 
 17 制御手段 
 17A 基本目標駆動力算出手段 
 17B 回生制動力算出手段 
 17C 駆動力制限手段 
 17D 回生制動力制限手段 
 17E 加算手段 
 17F 目標駆動力算出手段 
 32 アクセル操作量検出手段 
 33 車速検出手段 
 34 ブレーキ操作量検出手段 
  

Claims (2)

  1.  車輪を駆動するとともに回生制動力を発生するモータを備えた車両用制御装置において、 
     アクセル操作量を検出するアクセル操作量検出手段を設け、 
     車速を検出する車速検出手段を設け、 
     ブレーキ操作量を検出するブレーキ操作量検出手段を設け、 
     前記アクセル操作量検出手段により検出されたアクセル操作量と前記車速検出手段により検出された車速とに基づいて基本目標駆動力を算出する基本目標駆動力算出手段と、
     前記ブレーキ操作量検出手段により検出されたブレーキ操作量に基づいて回生制動力を算出する回生制動力算出手段と、 
     前記基本目標駆動力算出手段により算出された基本目標駆動力を第1の変化率で制限する駆動力制限手段と、 
     前記回生制動力算出手段により算出された回生制動力を第2の変化率で制限する回生制動力制限手段と、 
     前記駆動力制限手段により制限された基本目標駆動力と前記回生制動力制限手段により制限された回生制動力とを加算して前記モータから発生させる目標駆動力とする目標駆動力算出手段とを備える制御手段を設けたことを特徴とする車両用制御装置。
  2.  前記回生制動力制限手段は、前記第2の変化率を前記第1の変化率よりも大きく設定することを特徴とする請求項1に記載の車両用制御装置。
PCT/JP2011/053099 2011-02-15 2011-02-15 車両用制御装置 WO2012111083A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180070102.5A CN103492217B (zh) 2011-02-15 2011-02-15 车辆用控制装置
PCT/JP2011/053099 WO2012111083A1 (ja) 2011-02-15 2011-02-15 車両用制御装置
JP2012557691A JP5672565B2 (ja) 2011-02-15 2011-02-15 車両用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053099 WO2012111083A1 (ja) 2011-02-15 2011-02-15 車両用制御装置

Publications (1)

Publication Number Publication Date
WO2012111083A1 true WO2012111083A1 (ja) 2012-08-23

Family

ID=46672048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053099 WO2012111083A1 (ja) 2011-02-15 2011-02-15 車両用制御装置

Country Status (3)

Country Link
JP (1) JP5672565B2 (ja)
CN (1) CN103492217B (ja)
WO (1) WO2012111083A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072974A (ja) * 2012-09-28 2014-04-21 Mazda Motor Corp 車両用制御装置
CN105083027A (zh) * 2014-05-12 2015-11-25 现代自动车株式会社 用于控制混合动力电动车的再生制动的方法和装置
WO2016103486A1 (ja) * 2014-12-26 2016-06-30 株式会社安川電機 ブレーキ制御システム、ブレーキ制御方法、モータ、車両
EP3074255A4 (en) * 2013-11-28 2017-11-08 Scania CV AB Method for braking a vehicle with a hybrid powertrain by controlled use of an electric machine
JP2018011430A (ja) * 2016-07-13 2018-01-18 トヨタ自動車株式会社 自動車
WO2022024770A1 (ja) * 2020-07-31 2022-02-03 三菱自動車工業株式会社 車両の走行制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394111B2 (ja) * 2014-06-25 2018-09-26 トヨタ自動車株式会社 車両制御装置
JP2020114173A (ja) * 2019-01-16 2020-07-27 ハーレー−ダビッドソン・モーター・カンパニー・グループ・エルエルシー 仮想ブレーキ及び仮想クラッチを備える二輪車
US11866117B2 (en) 2019-01-16 2024-01-09 Livewire Ev, Llc Motorcycle with virtual braking and virtual clutch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118214A (ja) * 1997-06-20 1999-01-22 Hiroshi Shimizu 電気自動車の制御装置
JP2002101693A (ja) * 2000-09-25 2002-04-05 Aisin Seiki Co Ltd 電動モータの制御装置
JP2009106130A (ja) * 2007-10-25 2009-05-14 Honda Motor Co Ltd 電動車両、および電動車両の回生制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3407057B2 (ja) * 1996-12-05 2003-05-19 三菱ふそうトラック・バス株式会社 電気自動車の回生ブレーキ制御装置
JP3985766B2 (ja) * 2003-10-15 2007-10-03 日産自動車株式会社 車両の駆動力制御装置
JP4127310B2 (ja) * 2006-12-27 2008-07-30 トヨタ自動車株式会社 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP4979639B2 (ja) * 2008-06-11 2012-07-18 本田技研工業株式会社 電動車両、および電動車両の制御方法
CN101722950B (zh) * 2008-10-10 2015-04-01 通用汽车环球科技运作公司 用于控制动力系统的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118214A (ja) * 1997-06-20 1999-01-22 Hiroshi Shimizu 電気自動車の制御装置
JP2002101693A (ja) * 2000-09-25 2002-04-05 Aisin Seiki Co Ltd 電動モータの制御装置
JP2009106130A (ja) * 2007-10-25 2009-05-14 Honda Motor Co Ltd 電動車両、および電動車両の回生制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072974A (ja) * 2012-09-28 2014-04-21 Mazda Motor Corp 車両用制御装置
EP3074255A4 (en) * 2013-11-28 2017-11-08 Scania CV AB Method for braking a vehicle with a hybrid powertrain by controlled use of an electric machine
CN105083027A (zh) * 2014-05-12 2015-11-25 现代自动车株式会社 用于控制混合动力电动车的再生制动的方法和装置
WO2016103486A1 (ja) * 2014-12-26 2016-06-30 株式会社安川電機 ブレーキ制御システム、ブレーキ制御方法、モータ、車両
JP2018011430A (ja) * 2016-07-13 2018-01-18 トヨタ自動車株式会社 自動車
WO2022024770A1 (ja) * 2020-07-31 2022-02-03 三菱自動車工業株式会社 車両の走行制御装置
JPWO2022024770A1 (ja) * 2020-07-31 2022-02-03
JP7311050B2 (ja) 2020-07-31 2023-07-19 三菱自動車工業株式会社 車両の走行制御装置

Also Published As

Publication number Publication date
CN103492217B (zh) 2016-04-27
JPWO2012111083A1 (ja) 2014-07-03
JP5672565B2 (ja) 2015-02-18
CN103492217A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5672565B2 (ja) 車両用制御装置
JP4197013B2 (ja) ハイブリッド車両の制御装置
US9242640B2 (en) Hybrid vehicle control device
JP5709093B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP5709092B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP2010284991A (ja) 車両の制御装置
JP5668946B2 (ja) 車両用制御装置
JP5610090B1 (ja) ハイブリッド車両の制御装置
JP5668863B2 (ja) ハイブリッド車両の制御装置
JP2011097666A (ja) 自動車およびその制御方法
JP2018033290A (ja) 電気自動車
JP2015160462A (ja) ハイブリッド自動車の変速制御方法
WO2012104963A1 (ja) ハイブリッド車両
KR20120059262A (ko) 하이브리드 자동차의 운전점 제어장치 및 방법
JP2012171521A (ja) ハイブリッド車両の駆動制御装置
US20140179488A1 (en) Control apparatus and control method for hybrid vehicle
WO2022024753A1 (ja) 電動車両の駆動制御装置
JP3894049B2 (ja) ハイブリッド車両とその制御装置
JP2017007616A (ja) ハイブリッド車両の制御装置
JP6071954B2 (ja) ハイブリッド車両の制御装置
JP2023137317A (ja) 電動車両の動力配分装置
JP2012250626A (ja) ハイブリッド車両の制御装置
JP2012240654A (ja) ハイブリッド車両のエンジン制御装置
JP2008038966A (ja) 走行装置
JP2006174576A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180070102.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012557691

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11858700

Country of ref document: EP

Kind code of ref document: A1