WO2012109975A1 - 聚乙二醇化犬源尿酸氧化酶类似物蛋白及其制备方法和用途 - Google Patents

聚乙二醇化犬源尿酸氧化酶类似物蛋白及其制备方法和用途 Download PDF

Info

Publication number
WO2012109975A1
WO2012109975A1 PCT/CN2012/071106 CN2012071106W WO2012109975A1 WO 2012109975 A1 WO2012109975 A1 WO 2012109975A1 CN 2012071106 W CN2012071106 W CN 2012071106W WO 2012109975 A1 WO2012109975 A1 WO 2012109975A1
Authority
WO
WIPO (PCT)
Prior art keywords
urate oxidase
canine
protein
group
polyethylene glycol
Prior art date
Application number
PCT/CN2012/071106
Other languages
English (en)
French (fr)
Inventor
张淳
范开
马雪丰
杨黎
胡春兰
罗华
梅翔
Original Assignee
重庆富进生物医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆富进生物医药有限公司 filed Critical 重庆富进生物医药有限公司
Priority to EP12747724.8A priority Critical patent/EP2684950A4/en
Priority to US13/985,273 priority patent/US9193967B2/en
Publication of WO2012109975A1 publication Critical patent/WO2012109975A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0044Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7)
    • C12N9/0046Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7) with oxygen as acceptor (1.7.3)
    • C12N9/0048Uricase (1.7.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y107/00Oxidoreductases acting on other nitrogenous compounds as donors (1.7)
    • C12Y107/03Oxidoreductases acting on other nitrogenous compounds as donors (1.7) with oxygen as acceptor (1.7.3)
    • C12Y107/03003Factor-independent urate hydroxylase (1.7.3.3), i.e. uricase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • hyperuricemia is the result of a mutation in the urate oxidase gene during human evolution, and the mutation introduces a premature stop codon in the human urate oxidase gene coding sequence (Wu X, Lee CC, Muzny DM, Caskey).
  • Wu X, Lee CC, Muzny DM, Caskey C T. Proc Natl Acad Sci USA. 1989.86:9412-9416
  • humans are therefore unable to synthesize active urate oxidase by themselves, thereby causing sputum catabolism to end in uric acid (Wu X, Muzny DM, Lee CC, Caskey C T. J Mol Evol. 1992.34:78-84).
  • the reaction can be either N-terminal or C-terminal, but It is most common to react with lysine and N-terminal groups.
  • the canine urate oxidase analog protein may be a canine urate oxidase protein, or a chimeric protein comprising a partial canine urate oxidase amino acid sequence and a partial human urate oxidase amino acid sequence, or a mutant protein thereof.
  • the polyethylene glycol has an average molecular weight of about 1 kD to 40 kD, and each urate oxidase monomer is coupled with an average of 2 to 15 polyethylene glycol molecules.
  • Another object of the present invention is to provide a process for the preparation of the above PEGylated canine uric acid oxidase analog protein.
  • the method comprises: preparing a tetrameric urate oxidase protein content greater than 95.0% of a canine urate oxidase analog protein; PEG modifying the canine urate oxidase analog protein; and purifying the modified protein.
  • the PEGylated canine urate oxidase analog protein comprises: an unmutated canine uric acid oxidase protein (SEQ ID No: 1); or an amino acid sequence comprising a part of canine urate oxidase and A chimeric protein of a partial human urate oxidase amino acid sequence; or a mutant protein comprising the same.
  • the mutant protein comprising a chimeric protein having a partial canine urate oxidase amino acid sequence and a partial human urate oxidase amino acid sequence includes, but is not limited to, the following mutant proteins having 2 to 5 mutations (three mutations for each mutation) Body representation: letter-number-letter, where the number indicates the position of the mutated amino acid, the letter before the number corresponds to the amino acid of the mutation design, and the letter after the number indicates the amino acid used to replace the amino acid before the number): S246T-S248G-R249Q ( SEQ ID No: 3), L245H-A252E-I253M (SEQ ID No: 4 above canine urate oxidase protein and chimeric protein containing amino acid sequence of partial canine urate oxidase and partial human urate oxidase amino acid sequence and mutation thereof
  • the N-terminus of the body protein can be reduced by 1 to 9 amino acid sequences (such as SEQ ID No
  • the method for preparing the uric acid oxidase analog protein before PEG modification in the step a comprises molecular sieve chromatography, ion exchange chromatography, preferably using anion exchange chromatography to prepare the canine uric acid oxidase analog. protein.
  • the carbonate buffer has a pH in the range of 9.5 to 10.5 and an ionic strength in the range of 50 to 150 mmol/L.
  • the PEGylated canine urate oxidase analog protein is separated and purified by chromatography and/or ultrafiltration, and the separation and purification methods include, but are not limited to, molecular sieve chromatography, Ion exchange chromatography, hydrophobic chromatography, tangential flow ultrafiltration, preferably, the method for separating and purifying the PEGylated canine urate oxidase analog protein is molecular sieve chromatography.
  • the invention provides a pharmaceutical composition for pegylated canine urate oxidase analog protein.
  • the pharmaceutical composition comprises an effective dosage range of a pegylated canine urate oxidase analog protein as an active ingredient, and which further comprises a pharmaceutically acceptable carrier and an adjuvant, which can be used for the prevention and/or treatment of hematological chemotherapy Hyperuricemia and chronic gout caused by acute hyperuricemia and metabolic disorders.
  • the blood tumors include, but are not limited to, leukemia, multiple myeloma, and malignant lymphoma.
  • the main symptoms of hyperuricemia and chronic gout include, but are not limited to, uric acid nephropathy and gouty arthritis.
  • the present inventors have found that the uric acid oxidase having a tetramer urate oxidase content higher than 95.0% is modified by 5 kDa PEG, and the enzyme activity retention rate is higher than 85%.
  • the present inventors compared the retention of enzymes after modification of tetramers with different multimer contents, and modified the urate oxidase protein with a tetrameric urate oxidase content of 10.8%.
  • PEG is a ring-opening polymerization of ethylene oxide by electrophilic attack of hydroxide ions on the epoxide ring (Roberts MJ, Bentley MD, Harris J M. Adv Drug Deliv Rev. 2002.54:459 -476.), this anion-mediated polymerization will leave a hydroxyl group at both ends. If one end is not blocked, in the next activation process, the hydroxyl groups at both ends can be coupled to the reactive group, thereby forming a bifunctional modifier, resulting in cross-linking of two or more proteins to form a larger molecular weight conjugate. Additional immunogenicity (Veronese F M. Biomaterials. 2001. 22:405-417).
  • the molar ratio of canine urate oxidase analog protein to polyethylene glycol modifier in the coupling reaction available is 1:40 ⁇ 1: 160. More preferably, the molar ratio of the canine urate oxidase analog protein to the polyethylene glycol modifier in the coupling reaction is 1:120 to 1:160.
  • the effective dose of the active ingredient refers to an effective therapeutic or prophylactic dose in consideration of apparent molecular weight, patient weight, age, and the like.
  • the diluent used in the preparation is 10 to 20 mM, pH 7.4 to 9.0; the dissolving agent is 0.004% to 0.04% Tween -20; and the filling agent is 4% to 5% of nectar. alcohol.
  • a 5 kDa PEG-modified canine urate oxidase analog protein is used to reduce blood uric acid in a normal chicken lacking uric acid oxidase in the same manner as uric acid as a final product.
  • the results showed that the blood uric acid concentration in the normal chicken control group was stable at 220 ⁇ .
  • the blood uric acid concentration in the chicken could be stabilized below 50 ⁇ within 3 to 5 days, while the unmodified PEG was modified.
  • Uric acid nephropathy is a common condition of hyperuricemia.
  • an animal model of uric acid nephropathy is successfully constructed in rats by using a method of freely feeding yeast powder and injecting a low concentration of sodium urate.
  • the preventive effect of 5kDa PEG modified canine urate oxidase analog protein on uric acid nephropathy was evaluated.
  • the results showed that the uric acid concentration in the drug-administered group was stable within 80 ⁇ , and creatinine was significantly decreased ( ⁇ 0.05), indicating that the test article had a protective effect on renal damage caused by hyperuricemia.
  • FIG. 1 is a SEC-HPLC analysis of the canine urate oxidase analog protein before modification, wherein FIG. A is a fraction of tetramer of the eluted fraction of 0.1 mmol/L NaCl higher than 95.0%, FIG. The tetramer urate oxidase protein content in the 0.3 mmol/L NaCl elution fraction was 14.5%; in the figure, a is a tetrameric protein, b is an octameric protein, and c is a multimeric protein.
  • Figure 6 Analysis of PEGylated canine urate oxidase analog protein to reduce blood uric acid in normal chickens. Its control group in China is referred to as unmodified canine urate oxidase analog protein group. Ethylene glycolated canine urate oxidase analog protein group.
  • Pegylated dog urate oxidase analog protein reduces normal blood uric acid test
  • the elimination half-lives after subcutaneous and intravenous administration after single administration were 187.8 and 137.6 hours, respectively, indicating PEGylation.
  • the half-life of canine urate oxidase analog protein can also be greater than 1 week after injection into the human body, which can be expected to be injected once every 1 ⁇ 2 weeks.
  • AUC area under the curve
  • the bioavailability after subcutaneous administration was 76.3%, which indicates that subcutaneous injection can be used as a human test in human body.
  • Alternative injection routes which will improve patient compliance during long-term treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Pain & Pain Management (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

聚乙二醇化犬源尿酸氧化酶类似物蛋白及其制备方法和用途 技术领域
本发明属于生物技术及制药领域。更具体而言, 本发明涉及一种 酶活保留率高、免疫原性低、半衰期长并可多次反复用药的聚乙二醇 化犬源尿酸氧化酶类似物蛋白及其制备方法和用途。
本发明要求享有于 2011年 2月 14日向中国国家知识产权局提交 的申请号为 201110037301.8 的发明专利申请的优先权, 其公开的全 部内容通过引用的方式并入本申请。 背景技术 高尿酸血症是一种因嘌吟代谢过多而引起的疾病。人体内的嘌吟 经过一系列代谢, 最终形成的产物为尿酸。 当血液尿酸浓度超过 70mg/L 时, 便可引起高尿酸血症, 根据其发病机理及持续时间的不 同, 它又可被细分为急性高尿酸血症和慢性高尿酸血症。急性高尿酸 血症是血液肿瘤及其治疗中的一种常见并发症。血液肿瘤放化疗后可 引起由细胞溶解增多和嘌吟代谢物释放而导致的体内尿酸浓度急剧 升高, 从而引起急性高尿酸血症, 严重时可导致急性肾衰竭
(Hershfield M S. Cecil Textbook of Medicine (20 th) .1508-1515· )。 血液肿瘤是严重危害人类健康的疾病之一,常见的血液肿瘤主要包括 各类白血病、多发性骨髓瘤以及恶性淋巴瘤。慢性高尿酸血症是人体 内嘌吟代谢紊乱导致的慢性代谢类疾病,而痛风则是一种由慢性高尿 酸血症进一歩发展而形成的疾病,并因尿酸结晶沉积到软组织导致急 性或慢性病变。痛风的主要临床表现是反复发作的关节炎和(或)肾 病变; 同时血尿酸水平长期增高可使尿酸以结晶形式沉积于结缔组 织, 先形成肉芽肿, 后逐渐形成痛风石(Nancy J G, Susan J K, Edna S, John S S et al. Arthritis Res Ther.2005.8(l):R12)。 近 20余年来, 随着 人类生活水平的提高, 慢性高尿酸血症 /痛风的患病率不断攀升。 英 国流行病学调查显示, 痛风患病率从 1990 年的 1.19%增至 1999 年 的 1 ·4% ( Wallace Κ, Riedel A, Joseph-Ridge N, Wortmann R. J Rheumatol. 2004.31 : 1582-1587. )。 2008年我国山东沿海的调查结果显 示:高尿酸血症患者占总人口的 13.19%,而痛风的患病率高达 1.14% (Miao Z, Li C, Chen Y, et al. J Rheumatol. 2008; 35: 1859-1864)。 该类 疾病已成为危害人类健康的重要疾病。
本质上,高尿酸血症是人在进化过程中尿酸氧化酶的基因突变失 活的结果,突变在人尿酸氧化酶基因编码序列中引入提前终止密码子 (Wu X, Lee C C , Muzny D M, Caskey C T. Proc Natl Acad Sci USA. 1989.86:9412-9416) , 人类因此而不能自身合成活性尿酸氧化酶, 从 而导致嘌吟分解代谢终止于尿酸 (Wu X, Muzny D M, Lee C C, Caskey C T. J Mol Evol. 1992.34:78-84)。 在非人类灵长目动物和其他 哺乳动物的肝过氧化物酶体中的活性尿酸氧化酶可将溶解性低的尿 酸盐(〜l lmg/dl)转变为易溶的尿囊素(〜147mg/dl)后, 由肾脏更 有效的排泄 (Wortmann R L, Kelley W N. Kelley, s textbook of rheumatology(6 th). 2001. 1339-1376)。 目前国际上已上市的尿酸氧化 酶类药物有 2002 年 FDA批准上市的由法国 Sanofi公司生产的重组 黄曲霉来源尿酸氧化酶(Rasburicase)(Bosly A, Sonet A, Pinkerton C R, McCowage G, Bron D, Sanz M A, Van den Berg H. Cancer. 2003. 98: 1048-54)。 由啤酒酵母发酵纯化的重组黄曲霉尿酸氧化酶药物 Rasburicase可用于由肿瘤化疗引起的严重高尿酸血症的短期治疗,其 治疗高尿酸血症疗效较别嘌醇显著。然而, 由于黄曲霉来源的尿酸氧 化酶与推测出的无活性人源尿酸氧化酶的同源性低于 40 % (Lee C C, Wu X, Gibbs R A, Cook R G, Muzny D M, Caskey C T. Science. 1988.239: 1288-1291), 多次给药后 70%病人体内产生抗体, 在产生抗 尿酸氧化酶抗体的患者体内, 黄曲霉尿酸氧化酶的功效迅速减小, 并 且发生了严重变应性反应 (Navolanic P M, Pui C-H, Larson R A, et al. Leukemia. 2003. 17: 499-514)。
用聚乙二醇(PEG)对蛋白进行共价修饰, 证明能用来降低蛋白 免疫原性、增加蛋白溶解度并延长蛋白的半衰期 (Veronese FM, Pasut G. Drug Discov Today. 2005; 10: 1451-458)。 目前 FDA 已批准了多种 PEG修饰的重组蛋白药物上市。 PEG要和目标分子结合,需对 PEG分 子一端或两端进行活化,根据要连接分子的特性来选择活化所需的功 能基团。 用于 PEG共价修饰蛋白质的连接基团可以是任何生物相容 的连接基团。 常见的生物相容的连接基团包括酯基、 酰胺基、 酰亚胺 基、氨基甲酸酯基、琥珀酰亚胺基(例如琥珀酰亚胺基琥珀酰酯(SS)、 琥珀酰亚胺基丙酸酯 (SPA)、 琥珀酰亚胺基羧甲基化物 (SCM)、 琥 珀酰亚胺基琥珀酰胺 (SSA) 或 N—羟基一琥珀酰亚胺 (NHS:)、 环氧 基、 氧羰基咪唑基、 硝基苯基团 (例如硝基苯碳酸盐 (NPC)或三氯 苯碳酸盐 (TPC))、 组氨酸基团或伯胺。 活化后的 PEG理论上可以 和蛋白质中主要的氨基酸(如赖氨酸、半胱氨酸、组氨酸、天冬氨酸、 谷氨酸、 丝氨酸、 苏氨酸等) 反应, 反应可以在 N端, 也可以在 C 端, 但以和赖氨酸和 N端的基团反应最常见。
研究人员自 19世纪 70年代末即开始了 PEG修饰尿酸氧化酶的 研究, Nihimura和 Tsuji等人分别用氰尿酰氯活化的 5 kDa PEG修饰 剂对单假丝酵母来源的尿酸氧化酶进行修饰, 但是当修饰率达到 20%〜30%时, 酶活保留率均降低至 50%以下, 均无法在充分保留酶 活的情况下进一歩降低其免疫原性 (Nishimura H, Ashihara Y, Matsushima A,Inada Y. Enzyme.1979.24:261-264. Tsuji J-l, Hirose K, Kashara E, Naitoh M, Yamamoto I. Int J Immunopharmacol. 1985.7:725-730. )。 先前的研究人员还研究了 PEG化的尿酸氧化酶在 人体内的反应。 Davis等人将来源于单假丝酵母的尿酸氧化酶与分子 量为 5 kDa的 PEG结合, 偶联物注射到五名试验者身上后, 试验者 血清中的尿酸氧化酶浓度降低到了检测不出的水平,四星期后再次注 射后,用灵敏度相对不高的凝胶扩散方法没有检测到尿酸氧化酶的抗 体 ( Davis F F, Abuchowshi A, Karp D. J Pharmacol Exp Ther. l981.219:352-354. )。 由上可知, PEG化的尿酸氧化酶在人体内 是安全的, 并且具备一定的效果, 但是由于他们使用的尿酸氧化酶的 高抗原性, 以及当时使用的 PEG试剂本身存在不足, 使得这些制备 物在长期安全性和有效性方面存在隐患。
随着第二代高分子量分枝状 PEG 的出现,人们对 PEG修饰尿酸 氧化酶进行了新的探索。 美国 Duke大学和 Savient公司在得到重组 猪-狒狒尿酸氧化酶以后,用 lOkDa mPEG-NPC 对尿酸氧化酶的赖氨 酸残基进行修饰 ( Pegloticase ) (Michael H, Susan J.K. 2006.US7056713B1 ) ,当每个亚基偶联 9条 PEG后,酶活能保持 75% 以上, 而且动物实验表明其已基本消除了免疫原性 (Sherman MR, Saifer MG, Perez-Ruiz F. Adv Drug Deliv Rev. 2008. 60:59-68 )。 Pegloticase已于 2010年 9月 14日得到 FDA批准正式上市, 可用于 难治性痛风的长期治疗(6个月)。但是, 90%的临床试验者产生了抗 -Pegloticase抗体,而且该药只能用于静脉推注。潜在的免疫原性和给 药途径的不便, 降低了慢性痛风患者长期治疗的依从性。
美国的 Phoenix药物公司同样进行了 PEG修饰尿酸氧化酶的药 物开发研究 (Ensor C M, Clark M A, Holtsberg F W. 2005. US 6913915B2), 他们修饰的尿酸氧化酶为单假丝酵母尿酸氧化酶; 优选 的 PEG材料是 mPEG-SC和 mPEG-SPA, 平均分子量为 20KD; 修饰 的位点同样是赖氨酸残基, 每个蛋白偶联 18〜22个 PEG链, 修饰后 的尿酸氧化酶保持了 75% 的活性,在小鼠体内的半衰期达到了 3天, 远长于未修饰尿酸氧化酶的 4小时 (Bomalaski J S, Holtsberg F W, Ensor C M, Clark M A. J Rheumatol. 2002, 29: 1942-1949)。 该 PEG修 饰的尿酸氧化酶于 2001年开始临床研究, 但 I期临床结果显示给药 后体内药效减弱,因此终止于 I期临床 ( Bolmalaski J S, Goddard D H Grezlak D, et al. Arthritis Rheum. 2002, 46: S141)。
到目前为止, 在世界范围内, 还没有商业化的具有适当长的半衰 期, 并能在长期治疗中安全使用而无免疫原性的尿酸氧化酶产品。人 源尿酸氧化酶基因因突变而失去活性, 成为假基因。 如果将其改造, 恢复其降解尿酸的酶活性,必能降低外源尿酸氧化酶在人体中的免疫 原性。但人源尿酸氧化酶基因在进化过程中, 由于缺乏选择压力, 累 积了部分有害错义突变,很难找出并更正所有突变以恢复其尿酸氧化 酶活性。微生物尿酸氧化酶的高活性和哺乳动物尿酸氧化酶的低免疫 原性,使得这两大来源的尿酸氧化酶成了目前开发应用的长效尿酸氧 化酶的研究热点。 PEG 修饰虽然可以降低微生物来源的尿酸氧化酶 的免疫原性, 但是仍然未能有效消除在人体内的免疫反应, 国外开发 的 PEG 修饰重组微生物尿酸氧化酶(如 Phenix lnc.和 Enzon lnc. )均 终止了长期治疗慢性痛风的临床研究。相反的, 在哺乳动物尿酸氧化 酶研究方面, 杜克大学(Duke University)和山景公司 ( Savient Inc. ) 开发的 PEG修饰类似猪源尿酸氧化酶研究已成功上市。 这表明尿酸 氧化酶蛋白同源性仍然是影响 PEG修饰后蛋白免疫原性的重要因素。 为了进一歩提高尿酸氧化酶蛋白同源性,本发明人以与人源化尿酸氧 化酶同源性更高、酶比活性更高的犬源尿酸氧化酶为基础进行了人犬 嵌合尿酸氧化酶研究, 已经分别申报国家专利 (申请号: 200910191240.3 )与国际专利 (申请号: PCT/CN2010/071020)。 本发 明在上述专利设计的犬源尿酸氧化酶类似物的基础之上进行了 PEG 修饰研究, 旨在提供新一代长效重组尿酸氧化酶, 在保留高酶活的同 时, 能延长体内半衰期、 降低免疫原性, 适用于肿瘤化疗引起的急性 高尿酸血症和代谢紊乱导致的高尿酸血症及慢性痛风的治疗。 发明内容 本发明的一个目的是提供一种新型的聚乙二醇化犬源尿酸氧化 酶类似物蛋白。所述的犬源尿酸氧化酶类似物蛋白可为犬源尿酸氧化 酶蛋白,或者含有部分犬源尿酸氧化酶氨基酸序列和部分人源尿酸氧 化酶氨基酸序列的嵌合蛋白, 或者其突变体蛋白。所述聚乙二醇的平 均分子量约为 1 kD〜40 kD, 每个尿酸氧化酶单体平均偶联 2〜15个 聚乙二醇分子。
本发明的另一个目的是提供一种制备上述聚乙二醇化犬源尿酸 氧化酶类似物蛋白的方法。该方法包括: 制备四聚体尿酸氧化酶蛋白 含量高于 95.0%的犬源尿酸氧化酶类似物蛋白; PEG修饰所述犬源尿 酸氧化酶类似物蛋白; 以及纯化修饰后的所述蛋白。
本发明的又一个目的是提供一种用于预防和 /或治疗血液肿瘤化 疗导致的急性高尿酸血症和代谢紊乱导致的高尿酸血症及慢性痛风 的聚乙二醇化犬源尿酸氧化酶类似物蛋白的药物组合物,其包含有效 剂量范围的聚乙二醇化犬源尿酸氧化酶类似物蛋白作为有效成分,并 且其可进一歩含有药学上可接受的载体及辅料。
本发明的再一个目的是提供上述聚乙二醇化犬源尿酸氧化酶类 似物蛋白的应用。 该蛋白可用于预防和 /或治疗血液肿瘤化疗导致的 急性高尿酸血症和代谢紊乱导致的高尿酸血症及慢性痛风。 因此, 在本发明的第一方面, 本发明提供了一种聚乙二醇化犬源 尿酸氧化酶类似物蛋白(本发明所述的犬源尿酸氧化酶类似物蛋白均 来源于申请号为 200910191240.3的中国发明专利), 所述聚乙二醇化 犬源尿酸氧化酶类似物蛋白包括: 未突变的犬源尿酸氧化酶蛋白 ( SEQ ID No:l );或者包括含有部分犬源尿酸氧化酶氨基酸序列和部 分人源尿酸氧化酶氨基酸序列的嵌合蛋白;或者包括它们的突变体蛋 白。其中, 所述含有部分犬源尿酸氧化酶氨基酸序列和部分人源尿酸 氧化酶氨基酸序列的嵌合蛋白的 N端的前 240个氨基酸可为犬源尿 酸氧化酶蛋白的第 1〜240位氨基酸,剩下的 64个氨基酸为人源尿酸 氧化酶的第 241〜304位氨基酸 (SEQ ID No:2)。 本发明的聚乙二醇 化犬源尿酸氧化酶类似物蛋白可为将犬源尿酸氧化酶和上述的嵌合 蛋白经一个或几个氨基酸残基的取代、缺失或添加且具有相同活性的 突变体蛋白。所述含有部分犬源尿酸氧化酶氨基酸序列和部分人源尿 酸氧化酶氨基酸序列的嵌合蛋白的突变体蛋白包括但不局限于下述 具有 2〜5 种突变的突变体蛋白 (各突变用三联体表示: 字母-数字- 字母, 其中的数字表示突变氨基酸的位置, 数字前的字母对应突变设 计的氨基酸, 数字后的字母表示用于置换数字前氨基酸的氨基酸): S246T-S248G-R249Q ( SEQ ID No:3 )、 L245H-A252E-I253M ( SEQ ID No:4 上述犬源尿酸氧化酶蛋白以及含有部分犬源尿酸氧化酶氨基 酸序列和部分人源尿酸氧化酶氨基酸序列的嵌合蛋白以及其突变体 蛋白的 N端可减少 1至 9个氨基酸序列 (如 SEQ ID No:5), C端可 减少 1至 3个氨基酸序列 (如 SEQ ID No:6
本发明中, 用于对所述犬源尿酸氧化酶类似物蛋白进行 PEG修 饰的位点包括但不局限于尿酸氧化酶蛋白中 N端的 α氨基和 /或赖氨 酸残基的 ε氨基。优选地, PEG修饰位点为赖氨酸残基的 ε氨基。所 述犬源尿酸氧化酶类似物蛋白通过氨酯键、 仲胺键或酰胺键与 PEG 的活性基团进行共价连接, 优选地, 所述犬源尿酸氧化酶类似物蛋白 通过酰胺键与 PEG的活性基团进行共价连接。 在对所述犬源尿酸氧 化酶类似物蛋白进行 PEG修饰前, 需对 PEG进行活化。 对 PEG进 行活化时一端连接的活性基团包括但不局限于琥珀酰亚胺基、 硝基 苯、酰胺基、酰胺亚基、胺基甲酸酯基、 醛基、 组氨酸基团, 优选地, 连接的活性基团为琥珀酰亚胺基基团和硝基苯基团, 更优选地, 连接 的活性基团为琥珀酰亚胺基丙酸酯 (SPA ) 基团和硝基苯碳酸酯 (NPC) 基团, 也就是说通过琥珀酰亚胺基丙酸酯 (SPA) 基团将所 述犬源尿酸氧化酶类似物蛋白与 PEG进行共价连接; 对 PEG进行活 化时另一端连接的封闭基团包括但不限于单甲氧基、乙氧基、丙氧基、 丁氧基、 半乳糖或葡萄糖等, 优选地, 连接的封闭基团为单甲氧基。 上述聚乙二醇 (PEG) 可以是支链的或直链的, 优选地, 聚乙二醇为 直链。聚乙二醇的平均分子量约为 lkDa〜40kDa, 优选地, 聚乙二醇 的平均分子量为 5kDa〜20kDa,更优选地,聚乙二醇的平均分子量为 5kDa。 每个犬源尿酸氧化酶类似物蛋白单体平均偶联 2〜15 个聚乙 二醇分子, 优选地, 每个犬源尿酸氧化酶类似物蛋白单体上偶联的聚 乙二醇链的数量为 4〜12个, 更优选地, 每个犬源尿酸氧化酶类似物 蛋白单体上偶联的聚乙二醇链的数量为 6〜11个。
在本发明的第二方面,本发明提供了一种制备上述聚乙二醇化犬 源尿酸氧化酶类似物蛋白的方法。 该方法包括:
a. 制备 PEG修饰前的四聚体尿酸氧化酶蛋白含量高于 95.0%的 犬源尿酸氧化酶类似物蛋白;
b. 用 PEG修饰所述犬源尿酸氧化酶类似物蛋白; 以及
c 分离纯化修饰后的所述蛋白。
其中, 所述歩骤 a中制备 PEG修饰前的犬源尿酸氧化酶类似物 蛋白的方法包括分子筛层析、离子交换层析, 优选采用阴离子交换层 析制备所述的犬源尿酸氧化酶类似物蛋白。
所述歩骤 b 中, 在对所述犬源尿酸氧化酶类似物蛋白进行 PEG 修饰时, §Ρ, 使 PEG与犬源尿酸氧化酶类似物蛋白进行偶联反应, 其中,所述犬源尿酸氧化酶类似物蛋白与聚乙二醇修饰剂的摩尔比为 1: 40〜1: 200, 优选地, 所述犬源尿酸氧化酶类似物蛋白与聚乙二 醇修饰剂的摩尔比为 1: 120〜1: 160。 所述偶联反应的体系采用碳 酸盐缓冲液, 其 pH 范围为 8.0〜11.0, 离子强度范围为 10〜 200mmol/L。 优选地, 所述碳酸盐缓冲的 pH范围为 9.5〜10.5, 离子 强度范围为 50〜150mmol/L。 所述歩骤 C 中, 采用色谱层析法和 /或超滤法来分离纯化所述聚 乙二醇化犬源尿酸氧化酶类似物蛋白,所述分离纯化的方法包括而不 限于分子筛层析、 离子交换层析、 疏水层析、 切向流超滤, 优选地, 所述分离纯化聚乙二醇化犬源尿酸氧化酶类似物蛋白的方法为分子 筛层析。
在本发明的第三方面,本发明提供了一种聚乙二醇化犬源尿酸氧 化酶类似物蛋白的药物组合物。该药物组合物包含有效剂量范围的聚 乙二醇化犬源尿酸氧化酶类似物蛋白作为有效成分,并且其可进一歩 含有药学上可接受的载体及辅料, 可用于预防和 /或治疗血液肿瘤化 疗导致的急性高尿酸血症和代谢紊乱导致的高尿酸血症及慢性痛风。 所述血液肿瘤包括但不局限于白血病、 多发性骨髓瘤以及恶性淋巴 瘤。所述高尿酸血症及慢性痛风的主要症状包括但不局限于尿酸性肾 病和痛风性关节炎。所述药物组合物的给药途径包括但不局限于静脉 注射、 皮下注射、 肌肉注射和腹腔注射或吸入雾状制剂, 优选地, 所 述药物组合物的给药途径为静脉注射和皮下注射。
在本发明的第四方面,本发明提供了一种上述聚乙二醇化犬源尿 酸氧化酶类似物蛋白在制备预防和 /或治疗血液肿瘤化疗导致的急性 高尿酸血症和代谢紊乱导致的高尿酸血症及慢性痛风的药物中的用 途。
本发明中, 未进行 PEG修饰的四聚体尿酸氧化酶蛋白的分子量 一般为 140 kDa, 而分子量大于 100 kDa的蛋白分子即可有效的激活 体内免疫系统。 Phenix公司研发的 20 kDa的 mPEG修饰单假丝酵母 来源的尿酸氧化酶在 2000年 I期临床时由于高免疫原性而终止了其 临床研究( Bolmalaski J S, Goddard D H, Grezlak D, et al. Arthritis Rheum. 2002, 46: S141)。 目前已上市的 Pegloticase为 10 kDa mPEG 修饰, 修饰后蛋白的分子量为 540 kDa ( Sherman MR, Saifer MG, Perez-Ruiz F. Adv Drug Deliv Rev. 2008. 60:59-68), 这可能导致了 Pegloticase 在临床阶段仍然显示出了高免疫原性。 而且, 注射 Pegloticase后产生的抗体主要是针对 Pegloticase的 PEG部分, 因此, 利用更小分子量的 5 kDa mPEG进行修饰可能会降低针对 PEG的抗 体的产生进而降低整个 PEG修饰尿酸氧化酶的免疫原性。 Pegloticase 在 I期临床时曾进行了皮下注射的研究,但是由于其在注射部位释放 缓慢并产生了注射部位刺激反应,因此 Savient公司终止了 Pegloticase 皮下注射的研究 (Ganson N J, Kelly S J, Scarlett E, Sundy J S, Hershfield M S. Arthritis Res Ther. 2006. 8:R12)。 利用更小的 5 kDa mPEG进行修饰可能会增加药物在注射部位的吸收速度,减少注射部 位的刺激反应, 并提高皮下注射的生物利用度。 因此, 在本发明的具 体实施方式中, 利用已经被用在多个已上市 PEG修饰蛋白药物的 5 kDa mPEG而进行的犬源尿酸氧化酶类似物的修饰研究。
活性尿酸氧化酶是四聚体蛋白,尿酸氧化酶蛋白家族中大约三分 之一的氨基酸是强疏水性氨基酸 (Colloc'h N, Poupon A, Momon J P. Proteins. 2000. 39:142-154) , 因此理论上讲四聚体蛋白间容易聚集形 成八聚体及更大的聚合体。目前已经公开的微生物来源的尿酸氧化酶 晶体 X 衍射实验中已经证实了八聚体形式尿酸氧化酶的存在 (Retailleau P, Colloc'h N, Civares D, et al. Acta Crystallogr., Sect.D. 2005. 61 :218-229.)。 美国 FDA的专家认为分子量超过 100kDa的分子即可 有效诱导机体产生免疫反应 (Rosenberg, A S. AAPS J. 2006.8: E501 -507.), 而四聚体尿酸氧化酶蛋白的分子量已经达到 140kDa, 未修饰的尿酸氧化酶多聚体将具有更高的免疫原性。 本发 明人曾尝试苯基(Phenyl)或丁基(Butyl)等疏水相互作用层析和黄 嘌吟亲和层析等方法,但均无法有效分离不同聚集形式的犬源尿酸氧 化酶类似物蛋白,这说明活性尿酸氧化酶四聚体及多聚体的疏水性质 无明显差异, 这种聚集并非疏水聚合所致, 且上述多聚体均为活性尿 酸氧化酶形式。本发明人试验了离子相互作用层析, 在本发明的一个 优选实施方式中, 利用高分辨率的 Source 15Q填料可有效分离不同 聚集形式的犬源尿酸氧化酶类似物蛋白:洗脱四聚体尿酸氧化酶蛋白 所需的离子强度低于洗脱多聚体所需的离子强度,这表明在相同缓冲 条件下,多聚体犬源尿酸氧化酶类似物蛋白聚集后掩盖了部分碱性氨 基酸, 进而使其等电点下移, 在相同碱性环境下负电荷带电量高于四 聚体蛋白。更优选地, 根据未修饰的四聚体和多聚体尿酸氧化酶之间 离子性质的差异,利用阴离子交换层析的方法制备的四聚体尿酸氧化 酶含量高于 95.0%。 5 kDa PEG修饰尿酸氧化酶研发的最大瓶颈问题为对蛋白进行 充分修饰时酶活损失过快, 进而失去了其有效性 (Chen R H, Abuchowski A, Van Es T, Palczuk N C, Davis F F. Biocheim Biophys Acta. 1981. 660:293-298)。 本发明人发现, 四聚体尿酸氧化酶含量高 于 95.0%的尿酸氧化酶经 5 kDa PEG饱和修饰后, 酶活保留率高于 85%。 在本发明的一个具体实施方式中, 本发明人比较了不同多聚体 含量的四聚体修饰后的酶活保留情况, 将四聚体尿酸氧化酶含量为 10.8%的尿酸氧化酶蛋白进行修饰后, 酶活保留率仅为 71.7%, 将四 聚体尿酸氧化酶含量高于 95.0%的尿酸氧化酶蛋白进行修饰后, 酶活 保留率高于 85.0%,这表明多聚体尿酸氧化酶蛋白含量的增加是 5kDa PEG修饰的尿酸氧化酶活性损失过大的原因。除去多聚体尿酸氧化酶 不仅可消除产生潜在免疫原性的隐患,还可增加 5 kDa PEG修饰后的 酶活保留率, 克服了 5 kDa PEG修饰尿酸氧化酶研发的最大瓶颈问 题。
常用的蛋白 PEG修饰位点包括 N末端 α-氨基修饰、 赖氨酸 ε - 氨基修饰、 半胱氨酸巯基修饰、 C末端羧基修饰等。 由于活性四聚体 尿酸氧化酶蛋白分子量高达 140kDa,其他激素和细胞因子常用的 N、 C末端定点修饰无法降低其免疫原性,而犬源尿酸氧化酶类似物蛋白 中仅含有 4个游离巯基, 每个单体理论上最多仅能偶联 4个 PEG分 子, 仍然无法达到上述要求, 因此仅能对犬源尿酸氧化酶类似物蛋白 的 Lys进行非定点修饰。 由于尿酸氧化酶分子较大, 在本发明该方面 的一个实施方式中,用不同修饰比例的犬源尿酸氧化酶类似物免疫小 鼠, 发现只有当每个单体偶联 6个以上的 PEG才能充分降低未修饰 蛋白免疫原性。更优选地, 每个尿酸氧化酶单体上偶联的聚乙二醇链 的数量为 6〜11个。
PEG—般通过氨酯键、仲胺键或酰胺键与尿酸氧化酶蛋白中赖氨 酸残基的氨基连接。 更优选地 PEG通过琥珀酰亚胺基与蛋白进行共 价连接。 所述的琥珀酰亚胺基包括但不限于琥珀酰亚胺基琥珀酸酯
( SS)、 琥珀酰亚胺基碳酸酯 (SC)、 琥珀酰亚胺基丙酸酯 (SPA)、 琥珀酰亚胺基丁酸酯(SBA)、 琥珀酰亚胺基甲酸酯(SCM)、 琥珀酰 亚胺基琥珀酰胺 (SSA) 或 N-羟基一琥珀酰亚胺 (NHS)。 琥珀酰亚 胺基丙酸酯 (SPA) 与琥珀酰亚胺基碳酸酯 (SC)、 琥珀酰亚胺基琥 珀酰胺(SSA)和 N-羟基一琥珀酰亚胺(NHS )等相比, 在水溶液中 的稳定性更强, 连接效率更高。 也就是说, 对 PEG进行活化时形成 活性基团琥珀酰亚胺基丙酸酯。在本发明的一个优选实施方式中, 利 用琥珀酰亚胺基丙酸酯将犬源尿酸氧化酶类似物蛋白赖氨酸残基的 ε-氨基与 5 kDa PEG进行共价连接。
PEG 是通过环氧化物环上的氢氧根离子的亲电进攻引发的环氧 乙烷的负离子开环聚合而成的 (Roberts M J, Bentley M D, Harris J M. Adv Drug Deliv Rev. 2002.54:459-476.), 这种阴离子介导的聚合反应 在两端均会残余一个羟基。如不对其一端进行封闭, 在下一歩活化过 程中, 两端羟基均可偶联活性基团, 进而形成双功能修饰剂, 导致两 个或多个蛋白发生交联形成更大分子量偶联物,带来额外的免疫原性 (Veronese F M. Biomaterials. 2001. 22:405-417)。 如将一端的羟基进行 封闭, 即可得到蛋白质修饰时最常用的单甲氧基聚乙二醇 (Monomethoxy PEG ) mPEG; 另一端未封闭的羟基可以跟不同的 活性基团反应, 进而对蛋白质分子中不同的基团进行修饰。在本发明 的具体实施方式中, PEG试剂均为一端封闭的单功能试剂。聚乙二醇 上连接的封闭基团包括但不限于单甲氧基、乙氧基、丙氧基、丁氧基、 半乳糖或葡萄糖等。在本发明该方面的一个优选实施方式中, 聚乙二 醇的封闭基团为已经被成功用在多个已上市 PEG修饰蛋白药物的安 全性得到充分证明的单甲氧基。
活性基团为琥珀酰亚胺基丙酸酯的 PEG修饰剂与蛋白偶联的常 规 pH范围为 7·0〜9·0 (Roberts M J, Bentley M D, Harris J M. Adv Drug Deliv Rev. 2002.54:459-476.)。为了进一歩提高犬源尿酸氧化酶类似物 的溶解性、增加可用的犬源尿酸氧化酶类似物蛋白赖氨酸残基修饰位 点和修饰的专一性, 在本发明的一个优选实施方式中, 将 pH调整至 9.0〜11.0可使 PEG试剂充分专一的与犬源尿酸氧化酶类似物蛋白赖 氨酸残基的 ε-氨基偶联,而不与犬源尿酸氧化酶类似物蛋白 N端的 α- 氨基反应。 更优选地, 修饰的 pH范围为 9.5〜10.5。 在该 pH范围内 常用的偶联反应缓冲体系包括但不局限于磷酸盐缓冲液、 Tris-HCl缓 冲液和碳酸盐缓冲液的缓冲体系,为了进一歩维持犬源尿酸氧化酶类 似物蛋白的溶解性, 在本发明的一个优选实施方式中, 选用碳酸盐作 为偶联反应的缓冲体系。 常用的碳酸盐缓冲液的浓度范围为 10〜 200mmol/L, 为了增加 5kDa修饰剂的修饰效率, 在本发明的一个优 选实施方式中, 选用 50〜150mmol/L作为碳酸盐缓冲的工作浓度。 为了进一歩增加犬源尿酸氧化酶类似物蛋白偶联的 PEG的数量, 可 用的偶联反应中犬源尿酸氧化酶类似物蛋白与聚乙二醇修饰剂的摩 尔比为 1: 40〜1: 160。 更优选地, 偶联反应中犬源尿酸氧化酶类似 物蛋白与聚乙二醇修饰剂的摩尔比为 1: 120〜1: 160。
本发明中, 修饰后蛋白常用的纯化方法包括而不限于分子筛层 析、 离子交换层析、 疏水层析、 切向流超滤。 本发明人经过系统的研 究发现, 与未修饰蛋白相比, 经多位点 5kD PEG修饰后不仅免疫原 性充分降低, 而且充分覆盖了犬源尿酸氧化酶类似物蛋白的离子性 质、 疏水性质等, 因此很难与常规的离子交换层析填料、 疏水层析填 料及反相作用填料结合。在本发明该方面的一个优选实施方式中, 利 用分子筛层析可有效将修饰后蛋白与未修饰蛋白及修饰过程中副产 物分离。 经该方法纯化的修饰后的犬源尿酸氧化酶类似物蛋白经 RP-HPLC和 SEC-HPLC检测后, 纯度均高于 99.0%。
本发明所述的 PEG修饰犬源尿酸氧化酶类似物蛋白作为临床药 用制剂的有效成分时, 该制剂包括但不限于: 稀释剂、 稳定剂、 防腐 剂、 溶解剂、 乳化剂、 佐剂和载体等。 1 ) 稀释液: 磷酸盐、 醋酸盐 Tris-Hcl等缓冲液; 2 ) pH值和离子强度; 3 )去污剂和溶解剂: 山梨 醇、 Tween -20、 Tween-80; 4) 充填剂: 乳糖、 葡萄糖、 蔗糖、 甘露 醇。有效成分的有效剂量是指考虑到表观分子量和病人体重、年龄等 因素的有效治疗或预防剂量。在本发明的一个优选实施方式中, 制剂 中用到的稀释液为 10〜20mM,pH7.4〜9.0;溶解剂为 0.004%〜0.04% Tween -20; 充填剂为 4%〜5%的甘露醇。
本发明所述的聚乙二醇化犬源尿酸氧化酶类似物蛋白的药物组 合物的给药方式包括但不局限于静脉注射、皮下注射、肌肉注射和腹 腔注射或吸入雾状制剂。在本发明的一个优选的实施方式中, 在与人 同源性更高的食蟹猴体内注射 5kDa PEG修饰犬源尿酸氧化酶类似物 蛋白后清除半衰期可达到 134.3h, 这表明 PEG修饰犬源尿酸氧化酶 类似物蛋白注射到人体内后半衰期同样可大于 1周, 可实现 1〜2周 注射一次的预期。而且, 皮下注射的生物利用度高于 60%, 这表明在 人体试验时可将皮下注射作为一个备选注射途径,这将提高病人长期 治疗时的依从度。
本发明所述的包含有 PEG修饰 PEG修饰犬源尿酸氧化酶类似物 蛋白作为有效成分的药物组合物可用于预防和 /或治疗血液肿瘤化疗 导致的急性高尿酸血症和代谢紊乱导致的高尿酸血症及慢性痛风。血 液肿瘤包括但不局限于白血病、多发性骨髓瘤以及恶性淋巴瘤。高尿 酸血症及慢性痛风的主要症状包括但不局限于尿酸性肾病和痛风性 关节炎。血液尿酸浓度升高是高尿酸血症最基本的诊断特征。在本发 明的一个优选实施方式中,选用体内缺乏尿酸氧化酶同样以尿酸为最 终产物的正常鸡作为实验动物评价了 5kDa PEG修饰犬源尿酸氧化酶 类似物蛋白降低血液尿酸作用。结果表明, 正常鸡对照组血液尿酸浓 度一直稳定在 220μΜ;注射 5kDa PEG修饰犬源尿酸氧化酶类似物蛋 白后, 鸡体内血液尿酸浓度可在 3〜5天内稳定在 50μΜ以下, 而未 修饰 PEG修饰犬源尿酸氧化酶类似物蛋白注射 1天内, 血液尿酸浓 度仅降至 130μΜ左右, 其后逐渐恢复正常。 5kDa PEG修饰犬源尿酸 氧化酶类似物蛋白显示了良好的降低血液尿酸浓度的效果。
尿酸性肾病是高尿酸血症的常见病症,在本发明的一个优选实施 方式中,利用自由喂食酵母粉与注射低浓度尿酸钠结晶的方法成功在 大鼠体内构造了尿酸性肾病动物模型, 并评价了 5kDa PEG修饰犬源 尿酸氧化酶类似物蛋白对尿酸性肾病的预防作用。结果显示, 给药组 体内尿酸浓度可稳定在 80μΜ 以内, 肌酐明显降低 (ρ<0.05), 表明 供试品对高尿酸血症造成的肾脏损伤有一定保护作用。组织病理结果 显示, 与模型对照组比较, 5kDa PEG修饰犬源尿酸氧化酶类似物蛋 白组综合评分均明显降低 (p<0.001 ), 表明给药后动物肾脏损害明显 减轻, 提示 5kDa PEG修饰犬源尿酸氧化酶类似物蛋白对高尿酸引起 的大鼠肾脏损伤有较好的预防作用。
痛风性关节炎是高尿酸血症导致的另一常见病症,但是到目前为 止, 还没有准确评价痛风药物对痛风性关节炎治疗作用的动物模型。 在本发明的一个优选实施方式中,利用向家兔膝关节周径注射尿酸钠 结晶混悬液的方法成功构造了痛风性关节炎模型, 并评价了 5kDa 5kDa PEG修饰犬源尿酸氧化酶类似物蛋白对痛风性关节炎的治疗作 用。 实验结果证明, 模型组动物注射尿酸钠结晶后, 关节肿胀明显, 6h时达到高峰; 给药后 24h, 肿胀度可恢复至与空白组类似, 提示注 射 5kDa 5kDa PEG修饰犬源尿酸氧化酶类似物蛋白可明显降低尿酸 钠结晶导致的关节肿胀。
本发明的 5kDa PEG修饰犬源尿酸氧化酶类似物蛋白与未修饰尿 酸氧化酶蛋白相比具有更低的免疫原性和更好的稳定性; 与 PEG修 饰微生物来源的尿酸氧化酶蛋白相比具有更低的潜在的免疫原性;与 其他 10〜20kDa PEG修饰犬源尿酸氧化酶类似物蛋白相比具有更高 的皮下注射生物利用度和更低的免疫原性。 本发明提供的 PEG制备 方法可进一歩提高修饰后尿酸氧化酶蛋白酶活保留率,提高修饰位点 的专一性和均一性, 提高修饰蛋白的纯度。本发明提供的药物组合物 可有效降低血液尿酸浓度、 预防尿酸性肾病、 治疗痛风性关节炎, 可 用于预防和 /或治疗血液肿瘤化疗导致的急性高尿酸血症和代谢紊乱 导致的高尿酸血症及慢性痛风。
至此已对本发明进行了详细描述,参照以下实施例能够对之有更 清楚的理解, 所述实施例仅为说明目的而并不旨在对本发明进行限 制。 附图说明 附图 1:修饰前的犬源尿酸氧化酶类似物蛋白 SEC-HPLC分析图, 其中图 A为 O. lmmol/L NaCl洗脱组分中四聚体含量高于 95.0%,图 B 为 0.3mmol/L NaCl洗脱组分中四聚体尿酸氧化酶蛋白含量为 14.5%; 图中 a为四聚体蛋白, b为八聚体蛋白, c为多聚体蛋白。
附图 2: 不同比例的 PEG修饰的犬源尿酸氧化酶类似物蛋白的 SDS-PAGE电泳图, 其中泳道 1为未修饰蛋白, 泳道 2为 1: 40比例 的修饰蛋白, 泳道 3为 1: 80比例的修饰蛋白, 泳道 4为 1: 120比 例的修饰蛋白, 泳道 5 为 1: 160 比例的修饰蛋白, 泳道 6为蛋白 marker; 图中 PEG修饰的犬源尿酸氧化酶类似物蛋白因迁移率变慢 而比理论值偏大。 附图 3 : 聚乙二醇化犬源尿酸氧化酶类似物蛋白的纯度分析图, 其中图 A为 RP-HPLC色谱图, 图 B为 SEC-HPLC分析图。
附图 4: 聚乙二醇化犬源尿酸氧化酶类似物蛋白的 N端测序图。 附图 5:聚乙二醇化犬源尿酸氧化酶类似物蛋白的 Maldi-tof分析 图。
附图 6: 聚乙二醇化犬源尿酸氧化酶类似物蛋白降低正常鸡血尿 酸作用的分析图, 其中國为对照组, 參为未修饰的犬源尿酸氧化酶类 似物蛋白组, ▼为聚乙二醇化犬源尿酸氧化酶类似物蛋白组。
附图 7: 聚乙二醇化犬源尿酸氧化酶类似物蛋白对家兔急性痛风 性关节炎治疗作用的分析图,其中國为空白对照组,參为模型对照组, A为聚乙二醇化犬源尿酸氧化酶类似物蛋白组。
附图 8: 聚乙二醇化犬源犬源尿酸氧化酶类似物蛋白的食蟹猴药 代动力学曲线图, 其中國为静脉给药, 參为皮下给药。 具体实施方式
实施例 1.聚乙二醇化犬源尿酸氧化酶类似物蛋白的修饰条件 本实施例所涉及的犬源尿酸氧化酶类似物蛋白是采用基因工程 技术根据专利申请: 200910191240.3获得的含有部分犬源尿酸氧化酶 氨基酸序列和部分人源尿酸氧化酶氨基酸序列的嵌合蛋白的突变体 蛋白 (SEQ ID NO:5, 以下实施例中的聚乙二醇化犬源尿酸氧化酶类 似物蛋白均指此序列编码蛋白), SDS-PAGE纯度及 RP-HPLC纯度均 高于 95.0%。
取 S0Urcel5Q阴离子交换层析填料,装入层析柱,用洗脱液(2M NaCl、 0.2mol/L Na2CO3-NaHCO3缓冲液、 pH =10.3 )冲洗 5个柱体积 再生后, 用平衡液(0.2mol/L Na2CO3-NaHCO3缓冲液、 pH =10.3 )平 衡。将上述纯化后样品匀速上样, 上样结束后再用平衡液平衡至电导 稳定。 用含有 0.1mmol/L、 0.2mmol/L、 0.3mmol/L NaCl的洗脱液进 行梯度洗脱,根据 280nm吸收值强弱收集吸收峰,并进行 SEC-HPLC 检测。如附图 1所示, O. lmmol/L NaCl洗脱组分中四聚体尿酸氧化酶 蛋白含量高于 95.0%, 0.3mmol/L NaCl洗脱组分中四聚体尿酸氧化酶 蛋白含量为 14.5%。 将上述纯化后的四聚体犬源尿酸氧化酶类似物蛋白超滤浓缩至
4.0mg/ml,在 pH =10.3的 0.1mol/LNa2CO3-NaHCO3缓冲液中按照摩 尔比 1: 40、 1: 80、 1: 120和 1: 160补入干粉 5kDa mPEG-SPA (单 甲氧基聚乙二醇琥珀酰亚胺基丙酸酯,购自北京键凯科技有限公司), 4°C反应 4h。 反应结束后分别取样进行 SDS-PAGE电泳, 确定聚乙二 醇化犬源尿酸氧化酶类似物蛋白的修饰率。 实验结果表明 (附图 2): 修饰比例为 1: 40〜1: 80 可使每个尿酸氧化酶单体偶联 2〜6 个 5kDa mPEG; 修饰比例为 1: 120〜1: 160可使每个尿酸氧化酶单体 偶联 6〜11个 5kDa mPEG。
将四聚体尿酸氧化酶蛋白含量分别高于 95.0%和 14.5%的犬源尿 酸氧化酶类似物蛋白超滤浓缩至 4.0mg/ml, 在 pH =10.3的 0.1mol/L Na2C03-NaHC03缓冲液中按照摩尔比 1 : 120, 补入干粉 5kDa mPEG-SPA, 4°C反应 4h。反应结束后分别取样进行酶活保留率测定, 确定未修饰的尿酸氧化酶多聚体蛋白对酶活保留率的影响。由于尿酸 在 292nm处有特征吸收峰, 产物在此波长范围内无吸收峰, 而不同 的尿酸浓度对应不同的吸光值, 并且呈线性变化。随着尿酸被尿酸氧 化酶降解, 定时检测 292 nm处吸光度的减少量确定酶活: 在比色杯 中加入 3mL 37°C预热的溶于 pH=8.6硼酸缓冲液的 ΙΟΟμιη尿酸溶液; 再加入 ΙΟμΙ适度稀释的酶液并混匀, 连续测定 292nm处吸光度的变 化; 根据公式: C=A/sL (其中 C为尿酸浓度, A为反应体系 292nm 处吸光值, ε为尿酸的摩尔消光系数, L为比色杯光程) 计算尿酸降 解浓度, 并计算酶活。在 37°C、 pH8.6时, 每分钟转化 Ιμιηοΐ尿酸为 尿囊素的酶量定义为一个活性单位 (U)。 如表 1 所示, 四聚体尿酸 氧化酶蛋白含量高于 95.0%的犬源尿酸氧化酶类似物蛋白修饰后的 酶活保留率为 87.7%, 而四聚体尿酸氧化酶蛋白含量为 14.5%的犬源 尿酸氧化酶类似物蛋白修饰后的酶活保留率仅为 71.7%。 也就是说, 未修饰的尿酸氧化酶多聚体可显著降低 5 kDa PEG修饰后的蛋白的 酶活保留率, 而将该多聚体除去后, 酶活保留率可高于 85.0%。
¾j
PEG修饰的犬源尿酸 PEG修饰的犬源尿酸 氧化酶类似物蛋白 -1 氧化酶类似物蛋白 -2 四聚体含量 >95.0% 14.5% 未修饰蛋白的比活 11.3 9.2
PEG修饰后蛋白的比活 9.9 6.6
PEG修饰后的酶活保留率 87.7% 71.7% 实施例 2.聚乙二醇化犬源尿酸氧化酶类似物蛋白的分离纯化 将上述修饰后的犬源尿酸氧化酶类似物蛋白样品用 20mM PB、 pH8.0透析过夜, 透析后的样品经超滤 (50KD的 Saturous切向流模 块)浓缩后上 Sephacryl S300分子筛层析柱(美国 GE公司), 平衡缓 冲为 20mM PB, pH8.0, 流速为 7.0ml/min, 上样后同时检测 254nm 和 280nm吸收值, 第一个峰为目标蛋白峰, 所得到的聚乙二醇化犬 源尿酸氧化酶类似物蛋白经 RP-HPLC和 SEC-HPLC检测后纯度高于 98.0% (附图 3 )。 实施例 3.不同修饰比例纯化后蛋白体内免疫原性测定
将采用 1: 40、 1: 80、 1: 120、 1: 160等四个不同修饰比例修 饰后的犬源尿酸氧化酶类似物蛋白按实施例 2 所述方法纯化后注射 小鼠检测其 IgG抗体滴度。取 24只昆明种大鼠(购自第三军医大学), 随机分为 4组 =6),每组分别注射上述不同修饰比例的犬源尿酸氧 化酶类似物蛋白, 注射剂量 1.0mg/kg。 每五天注射 1次, 连续注射 6 次。 末次注射后 96h从眼静脉丛由毛细血管取血 0.5ml, 3000rpm离 心 15min分离血清, 利用常规 ELISA方法检测针对未修饰犬源尿酸 氧化酶类似物蛋白的 IgG抗体滴度。 结果显示: 1 : 40修饰后的针对 犬源尿酸氧化酶类似物蛋白的 IgG抗体滴度为 1: 500, 1: 80修饰后 的针对犬源尿酸氧化酶类似物蛋白的 IgG抗体滴度为 1: 300, 1: 120 修饰后的针对犬源尿酸氧化酶类似物蛋白的 IgG抗体滴度为 1: 120; 1: 160修饰后的针对犬源尿酸氧化酶类似物蛋白的 IgG抗体滴度为 1 : 80。 修饰比例 1: 120〜1: 160时抗体滴度差异减少, 综合平均修 饰度检测结果, 设定 1: 120〜1: 160为最优修饰比例。 实施例 4.聚乙二醇化犬源尿酸氧化酶类似物蛋白的理化性质 将冻干除盐后的犬源尿酸氧化酶类似物蛋白和聚乙二醇化犬源 尿酸氧化酶类似物蛋白的样品分别用超纯水稀释至 0.2 mg/ml、 0.4 mg/ml、 0.6 mg/ml、 0.8 mg/ml、 lmg/ml, 耳又上述蛋白样品 0.5ml, 同 时取 0.5ml超纯水作为对照, 加入 0.5ml 4%碳酸氢钠溶液, 混匀后加 入 0.5ml 0.1% TNBS , 再次震荡混匀。将样品放入 40°C水浴孵育 2小 时, 取出样品后再加入 0.5ml 10% SDS, 接着加入 0.25ml IN HC1, 震荡混匀。 以超纯水作为对照, 在 335nm处对紫外分光光度计 (型 号 TU-1810PC, 购自北京普析通用仪器有限责任公司)调零, 测量各 样品在 335nm处的紫外吸收值。 将上述样品在 335nm处的紫外吸收 值, 以浓度为横坐标, 吸光值为纵坐标作图, 进行线形回归以确定直 线斜率 k。 聚乙二醇化犬源尿酸氧化酶类似物蛋白的修饰度 (%) =
( l-kj/ko) X 100%, 其中: 为聚乙二醇化犬源尿酸氧化酶类似物蛋 白的直线斜率, ko为犬源尿酸氧化酶类似物蛋白的直线斜率。
结果显示 1: 80 比例修饰后每个蛋白平均偶联 5.7 个 mPEG 5kDa; 1: 120比例修饰后每个蛋白平均偶联 7.9个 mPEG 5kDa; 1
: 160比例修饰后每个蛋白平均偶联 9.6个 mPEG 5kDa。
2. 修饰专一性检测:
将冻干除盐后的 1: 160比例修饰后的聚乙二醇化犬源尿酸氧化 酶类似物蛋白的样品进行 N端 30位氨基酸序列测定, 修饰前序列为 MYKNDEVEFVRTGYGKDMVKVLHIQRDGKY, 修饰后序列为 MYxNDEVEFVRTGYGKDMVKVLHIQRDGxY , 其中 x为该循环无 氨基酸特征吸收峰出现, 该位置对应的氨基酸为赖氨酸, 表明赖氨酸 残基的 ε氨基被修饰, 而 Ν端甲硫氨酸残基仍可清晰测出, 表明 Ν 端甲硫氨酸残基未被修饰,证明本发明设计的修饰方法可专一性偶联 至赖氨酸残基的 ε氨基 (附图 4)。
3. 聚乙二醇化犬源尿酸氧化酶类似物蛋白的分子量测定: 将冻干除盐后的 1: 160比例修饰后聚乙二醇化犬源尿酸氧化酶 类似物蛋白样品进行 Maldi-tof (高端基质辅助激光解析串联飞行时间 质谱仪, BrukerAutoflex II )测定分子量, 如附图 5所示, 修饰后蛋 白分子量为 93488.5, 与平均修饰度推算的分子量相比略高。 实施例 5、聚乙二醇化犬源尿酸氧化酶类似物蛋白的体内药效学 研究
1. 聚乙二醇化犬源尿酸氧化酶类似物蛋白降低正常鸡血尿酸作 用试验
取 30只正常鸡(购自成都德阳温氏养鸡场), 按性别及给药前血 尿酸值进行排序, 随机分为 3组, 即未修饰的犬源尿酸氧化酶类似物 蛋白组、 聚乙二醇化犬源尿酸氧化酶类似物蛋白组和对照组, 每组 10只, 雌雄各半。 修饰前后犬源尿酸氧化酶类似物蛋白的剂量为 1.0 mg/kgo 分组给药前以及单次给药后 1、 3、 5、 6、 7、 9天, 禁食不禁 水 16h, 从鸡翅静脉取血, 3000rpm/min离心分离血浆, 利用 HPLC 方法测定血清尿酸值。 结果表明 (附图 6), 正常鸡对照组血液尿酸 浓度一直稳定在 220μΜ;注射 5kDa PEG修饰的犬源尿酸氧化酶类似 物蛋白后, 鸡体内血液尿酸浓度可在 3〜5天内稳定在 50μΜ以下, 而未修饰的犬源尿酸氧化酶类似物蛋白注射 1天内,血液尿酸浓度仅 降至 130μΜ左右, 其后逐渐恢复正常。 5kDa PEG修饰犬源尿酸氧化 酶类似物蛋白显示了良好的降低血液尿酸浓度的效果。
2. 聚乙二醇化犬源尿酸氧化酶类似物蛋白对大鼠原发性尿酸性 肾病预防作用
取 30只雄性 SD大鼠 (购自第三军医大学), 按体重随机法分为 空白对照组、 模型对照组、 聚乙二醇化犬源尿酸氧化酶类似物蛋白
( 1.0mg/kg) 组共 3组, 每组 6只。 除空白组外, 每组每日腹腔注射 尿酸钠 1次, 注射剂量为 100mg/10ml/kg, 同时拌食法给予酵母粉; 空白组仅给予普通鼠料饲养。从造模第 1天开始, 各组每周分别给予 受试药 1次, 连续静脉给药 5周。 第五次给药前 24h、 第五次给药后 24h,每组动物均眼静脉丛取血 0.5ml, 3000rpm离心 15min分离血清, 用 HPLC法检测血清尿酸值; 第五次给药后 24h所取血液, 同时在日 本 TMS-1024i 型全自动生化分析仪上测定血清尿素氮和肌酐浓度。 末次取血后放血处死大鼠, 取一侧肾脏组织进行病理组织学检查。结 果显示, 给药组体内尿酸浓度可稳定在 80μΜ 以内, 肌酐明显降低
(ρ<0.05 ), 表明供试品对高尿酸血症造成的肾脏损伤有一定保护作 用。 组织病理结果显示, 与模型对照组比较, 聚乙二醇化犬源尿酸氧 化酶类似物蛋白组综合评分均明显降低 (p<0.001 ), 表明给药后动物 肾脏损害明显减轻,提示聚乙二醇化犬源尿酸氧化酶类似物蛋白对高 尿酸引起的大鼠肾脏损伤有较好的预防作用 (表 2)。
表 2
第 5次给药前 第 5次给药后 肌酐 尿素氮 组别
(μΜ) (μΜ) (μηιοΙ/L) (μηιοΙ/L)
69.56士
空白对照组 40·70±7· 18 43.21 ± 13.69 8.49 ± 1.75
14.76
99.77士
模型对照组 154.79 ±40.25 124.1 ±74.10 8.98 ± 1.99
18.47
聚乙二醇化犬
81.67士
源尿酸氧化酶 76.03 ±26.96 14.82 ± 14.32 9·56±4·36
10.74
类似物蛋白组
3. 聚乙二醇化犬源尿酸氧化酶类似物蛋白对家兔急性痛风性关 节炎的治疗作用
取家兔 (购自第三军医大学动物实验中心) 18 只, 全雄, 随机 分为空白组、 模型组、 聚乙二醇化犬源尿酸氧化酶类似物蛋白组 ( 1.0mg/kg) , 每组 6只。采用尿酸盐结晶 (MSU) (购自 Sigma公司) 诱导兔急性关节炎模型方法, 除空白组外, 于各组给药后 5分钟内, 每只家兔膝关节脱毛消毒, 于膝关节腔内注射无菌 0.3ml(100mg/ml)MSU混悬液致炎。 造模同时给予受试药 1次, 致炎 前及致炎后 3、 6、 12、 24、 48、 72h, 用软尺测量致炎侧关节周长, 计算肿胀度(=致炎后关节周长-致炎前关节周长)。实验结果证明(附 图 7), 模型组动物注射尿酸钠结晶后, 关节肿胀明显, 6h时达到高 峰; 给药后 24h后, 肿胀度可恢复至与空白组类似, 提示注射 5kDa PEG 修饰犬源尿酸氧化酶类似物蛋白可明显降低尿酸钠结晶导致的 关节肿胀。
实施例 6、聚乙二醇化犬源尿酸氧化酶类似物蛋白的药代动力学 和皮下注射生物利用度的测定 本发明初歩设想的临床拟用剂量为 12mg/人,即 0.17mg/kg (人以 70kg 体重计), 按体表面积公式计算本品大鼠等效剂量 dB=dA X kB/kA=0.17mg/kg X 0.71/0.11 1.Omg/kg,以此剂量进行食蟹猴的药代 动力学和皮下注射生物利用度测定。每组食蟹猴(购自苏州药物安全 性评价研究中心) 4 只, 雌雄各半。 皮下和静脉给药后即时 (0h)、 10min、 lh、 6h、 ld、 2d、 3d、 6d、 8d、 10d、 12d、 15d、 18d和 21d; 经上肢肘静脉取血 1.5ml, 置肝素化试管中, 3000rpm离心 10 min, 分离血浆于 - 80°C冰箱中冷冻保存待测。血液尿酸浓度利用实施例 1 中尿酸氧化酶活性法测定 (附图 8)。 将每个点实验数据用 DAS 2.0 药代计算程序进行拟合, 符合而房室模型, 单次给药后皮下和静脉给 药后的清除半衰期分别为 187.8和 137.6小时, 这表明聚乙二醇化犬 源尿酸氧化酶类似物蛋白注射到人体内后半衰期同样可大于 1周,可 实现 1〜2周注射一次的预期。用统计矩法计算皮下给药 AUC (曲线 下面积) 后, 与同剂量静脉给药的 AUC进行比较, 皮下给药后生物 利用度为 76.3%, 这表明在人体试验时可将皮下注射作为一个备选注 射途径, 这将提高病人长期治疗时的依从度。

Claims

权利要求
1、 一种聚乙二醇化犬源尿酸氧化酶类似物蛋白, 其中, 所述的犬源尿酸氧化酶类似物蛋白为犬源尿酸氧化酶蛋白,或者 含有部分犬源尿酸氧化酶氨基酸序列和部分人源尿酸氧化酶氨基酸 序列的嵌合蛋白, 或者其突变体蛋白;
所述聚乙二醇的平均分子量为 l kD〜40 kD, 每个所述的尿酸氧 化酶类似物蛋白的单体平均偶联 2〜15个聚乙二醇分子。
2、 根据权利要求 1所述的聚乙二醇化犬源尿酸氧化酶类似物蛋 白, 其中,
所述犬源尿酸氧化酶蛋白的序列如 SEQ ID No:l所述;
所述嵌合蛋白的序列如 SEQ ID No:2所述;
所述突变体蛋白选自 SEQ ID No:3、 SEQ ID No:4、 SEQ ID No:5 和 SEQ ID No:6中。
3、 根据权利要求 1所述的聚乙二醇化犬源尿酸氧化酶类似物蛋 白, 其中, 用于对所述犬源尿酸氧化酶类似物蛋白进行聚乙二醇修饰 的位点包括尿酸氧化酶蛋白中 N端的 α氨基和 /或赖氨酸残基的 ε氨 基, 优选地, 聚乙二醇修饰位点为赖氨酸残基的 ε氨基。
4、 根据权利要求 1所述的聚乙二醇化犬源尿酸氧化酶类似物蛋 白, 其中, 所述犬源尿酸氧化酶类似物蛋白通过氨酯键、 仲胺键或酰 胺键与聚乙二醇的活性基团进行共价连接, 优选地, 所述犬源尿酸氧 化酶类似物蛋白通过酰胺键与聚乙二醇的活性基团进行共价连接。
5、 根据权利要求 1所述的聚乙二醇化犬源尿酸氧化酶类似物蛋 白,其中,在对所述犬源尿酸氧化酶类似物蛋白进行聚乙二醇修饰前, 需对聚乙二醇进行活化, 其中, 对聚乙二醇进行活化时一端连接的活 性基团包括琥珀酰亚胺基、 硝基苯、 酰胺基、 酰胺亚基、 胺基甲酸酯 基、 醛基或组氨酸基团, 优选地, 连接的活性基团为琥珀酰亚胺基基 团或硝基苯基团, 更优选地, 连接的活性基团为琥珀酰亚胺基丙酸酯
( SPA) 基团或硝基苯碳酸酯 (NPC) 基团;
对聚乙二醇进行活化时另一端连接的封闭基团包括单甲氧基、乙 氧基、 丙氧基、 丁氧基、 半乳糖或葡萄糖, 优选地, 连接的封闭基团 为单甲氧基。
6、 根据权利要求 5所述的聚乙二醇化犬源尿酸氧化酶类似物蛋 白, 其中,
所述聚乙二醇是支链的或直链的, 优选地, 聚乙二醇为直链的; 所述聚乙二醇的平均分子量为 5kDa〜20kDa,更优选地,所述聚 乙二醇的平均分子量为 5kDa;
每个所述的犬源尿酸氧化酶类似物蛋白的单体平均偶联 4〜12 个聚乙二醇分子, 优选地, 每个所述的犬源尿酸氧化酶类似物蛋白的 单体平均偶联的 6〜11个聚乙二醇分子。
7、 一种制备如权利要求 1所述的聚乙二醇化犬源尿酸氧化酶类 似物蛋白的方法, 包括:
a. 制备聚乙二醇修饰前的四聚体尿酸氧化酶蛋白含量高于 95.0%的犬源尿酸氧化酶类似物蛋白;
b. 用聚乙二醇修饰所述犬源尿酸氧化酶类似物蛋白; 以及 c 分离纯化修饰后的所述蛋白。
8、 根据权利要求 7所述的方法, 其中,
所述歩骤 a 中制备聚乙二醇修饰前的犬源尿酸氧化酶类似物蛋 白的方法包括分子筛层析、离子交换层析, 优选采用阴离子交换层析 制备所述的犬源尿酸氧化酶类似物蛋白; 和 /或
所述歩骤 b中,在对所述犬源尿酸氧化酶类似物蛋白进行聚乙二 醇修饰时,所述犬源尿酸氧化酶类似物蛋白与聚乙二醇修饰剂的摩尔 比为 1: 40〜1: 200, 优选地, 所述犬源尿酸氧化酶类似物蛋白与聚 乙二醇修饰剂的摩尔比为 1: 120〜1: 160; 所述偶联反应的体系采 用碳酸盐缓冲液, 其 pH 范围为 8.0〜11.0, 离子强度范围为 10〜 200mmol/L, 优选地, 所述碳酸盐缓冲的 pH范围为 9.5〜10.5, 离子 强度范围为 50〜150mmol/L; 和 /或
所述歩骤 c 中, 采用色谱层析法和 /或超滤法来分离纯化所述聚 乙二醇化犬源尿酸氧化酶类似物蛋白,所述分离纯化的方法包括分子 筛层析、 离子交换层析、 疏水层析或切向流超滤, 优选地, 所述分离 纯化聚乙二醇化犬源尿酸氧化酶类似物蛋白的方法为分子筛层析。
9、 一种药物组合物, 包含治疗有效量的根据权利要求 1-6 中任 一项所述的聚乙二醇化犬源尿酸氧化酶类似物蛋白作为有效成分,并 且优选地, 进一歩含有药学上可接受的载体及辅料。
10、 根据权利要求 1-6中任一项所述的聚乙二醇化犬源尿酸氧化 酶类似物蛋白在制备预防和 /或治疗血液肿瘤化疗导致的急性高尿酸 血症和代谢紊乱导致的高尿酸血症及慢性痛风的药物中的用途。
PCT/CN2012/071106 2011-02-14 2012-02-14 聚乙二醇化犬源尿酸氧化酶类似物蛋白及其制备方法和用途 WO2012109975A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12747724.8A EP2684950A4 (en) 2011-02-14 2012-02-14 PEG-SUBSTITUTED PROTEIN ANALOGY OF CANINE URATE OXIDASE, PREPARATION METHOD AND USE THEREOF
US13/985,273 US9193967B2 (en) 2011-02-14 2012-02-14 Pegylated analogue protein or canine urate oxidase, preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110037301.8A CN102634492B (zh) 2011-02-14 2011-02-14 聚乙二醇化犬源尿酸氧化酶类似物及其制备方法和应用
CN201110037301.8 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012109975A1 true WO2012109975A1 (zh) 2012-08-23

Family

ID=46619071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071106 WO2012109975A1 (zh) 2011-02-14 2012-02-14 聚乙二醇化犬源尿酸氧化酶类似物蛋白及其制备方法和用途

Country Status (4)

Country Link
US (1) US9193967B2 (zh)
EP (1) EP2684950A4 (zh)
CN (1) CN102634492B (zh)
WO (1) WO2012109975A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758802B2 (en) 2009-12-14 2014-06-24 University Of Massachusetts Methods of inhibiting cataracts and presbyopia
US9675589B2 (en) 2013-03-14 2017-06-13 University Of Massachusetts Methods of inhibiting cataracts and presbyopia
US10736863B2 (en) 2015-11-13 2020-08-11 University Of Massachusetts Methods of inhibiting cataracts and presbyopia

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506897B2 (en) * 2012-11-16 2016-11-29 Agilent Technologies, Inc. Methods and compositions for improved ion-exchange chromatography
CN106632588A (zh) * 2015-08-27 2017-05-10 江苏众红生物工程创药研究院有限公司 一种聚乙二醇修饰蛋白的纯化工艺
CN107469073A (zh) * 2017-07-05 2017-12-15 上海交通大学 一种基于尿酸氧化酶和多糖材料的降低尿酸组合物
CN109852623B (zh) * 2019-02-15 2022-03-15 张文宇 一种peg修饰的重组人源化尿酸氧化酶的制备方法、纯化方法及其用途
CN111751358A (zh) * 2019-03-26 2020-10-09 修正生物医药(杭州)研究院有限公司 一种检测血清中尿酸氧化酶含量的方法
CN111909906B (zh) * 2019-05-10 2024-04-19 重庆派金生物科技有限公司 聚乙二醇修饰的尿酸氧化酶
CA3161863A1 (en) * 2020-01-12 2021-07-15 Christoph Geisler Therapeutic engineered microbial cell systems and methods for treating hyperuricemia and gout
CN111269899B (zh) * 2020-02-17 2023-01-31 郑州大学 具有催化活性的人源尿酸氧化酶及其应用
CN113995718A (zh) * 2020-07-28 2022-02-01 鲁南制药集团股份有限公司 一种聚乙二醇化重组犬人尿酸酶注射液制剂
KR20230110281A (ko) * 2020-11-03 2023-07-21 프로탈릭스 리미티드 변형된 유리카제(uricase) 및 이의 용도
CN114438048A (zh) * 2020-11-05 2022-05-06 重庆派金生物科技有限公司 尿酸氧化酶制剂及其应用
CN114438047A (zh) * 2020-11-05 2022-05-06 重庆派金生物科技有限公司 制备聚乙二醇修饰的尿酸氧化酶的方法
CN117327673A (zh) * 2023-10-16 2024-01-02 临沂大学 一种高活性哺乳动物尿酸氧化酶突变体
CN117230034A (zh) * 2023-10-16 2023-12-15 临沂大学 一种高稳定性哺乳动物尿酸氧化酶突变体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322141A (zh) * 1998-08-06 2001-11-14 山景药品公司 聚乙二醇或聚环氧乙烷-尿酸氧化酶结合物及其应用
US6913915B2 (en) 2001-08-02 2005-07-05 Phoenix Pharmacologics, Inc. PEG-modified uricase
US7056713B1 (en) 1998-08-06 2006-06-06 Duke University Urate oxidase
CN102260653A (zh) * 2011-06-30 2011-11-30 北京盛宏生物技术有限公司 一种peg化重组猪-人尿酸氧化酶融合蛋白的制备及应用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183836B2 (ja) 1998-08-06 2013-04-17 マウンテン ビュー ファーマシューティカルズ,インコーポレイテッド Peg−尿酸酸化酵素結合体およびその使用
PL3321359T3 (pl) 2005-04-11 2021-06-28 Horizon Pharma Rheumatology Llc Wariantowe postacie oksydazy moczanowej i ich zastosowanie
RU2435847C2 (ru) 2005-04-11 2011-12-10 Савиент Фармасьютикалз, Инк. Вариантная форма урат-оксидазы и ее использование
CN102051348B (zh) 2009-10-27 2012-10-03 重庆富进生物医药有限公司 人源化重组尿酸酶及其突变体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322141A (zh) * 1998-08-06 2001-11-14 山景药品公司 聚乙二醇或聚环氧乙烷-尿酸氧化酶结合物及其应用
US7056713B1 (en) 1998-08-06 2006-06-06 Duke University Urate oxidase
US6913915B2 (en) 2001-08-02 2005-07-05 Phoenix Pharmacologics, Inc. PEG-modified uricase
CN102260653A (zh) * 2011-06-30 2011-11-30 北京盛宏生物技术有限公司 一种peg化重组猪-人尿酸氧化酶融合蛋白的制备及应用方法

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
BOLMALASKI J S; GODDARD D H; GREZLAK D ET AL., ARTHRITIS RHEUM., vol. 46, 2002, pages S141
BOMALASKI J S; HOLTSBERG F W; ENSOR C M; CLARK M A., J RHEUMATOL., vol. 29, 2002, pages 1942 - 1949
BOSLY A; SONET A; PINKERTON C R; MCCOWAGE G; BRON D; SANZ M A; VAN DEN BERG H., CANCER, vol. 98, 2003, pages 1048 - 54
CHEN R H; ABUCHOWSKI A; VAN ES T; PALCZUK N C; DAVIS F F., BIOCHEIM BIOPHYS ACTA, vol. 660, 1981, pages 293 - 298
COLLOC'H N; POUPON A; MORNON J P., PROTEINS, vol. 39, 2000, pages 142 - 154
DAVIS F F; ABUCHOWSHI A; KARP D., J PHARMACOL EXP THER., vol. 219, 1981, pages 352 - 354
GANSON N J; KELLY S J; SCARLETT E; SUNDY J S; HERSHFIELD M S., ARTHRITIS RES THER., vol. 8, 2006, pages R12
HERSHFIELD M S.: "Cecil Textbook of Medicine", pages: 1508 - 1515
LEE C C; WU X; GIBBS R A; COOK R G; MUZNY D M; CASKEY C T., SCIENCE, vol. 239, 1988, pages 1288 - 1291
MIAO Z; LI C; CHEN Y ET AL., J RHEUMATOL., vol. 35, 2008, pages 1859 - 1864
NANCY J G; SUSAN J K; EDNA S; JOHN S S ET AL., ARTHRITIS RES THER., vol. 8, no. 1, 2005, pages R12
NAVOLANIC P M; PUI C-H; LARSON R A ET AL., LEUKEMIA, vol. 17, 2003, pages 499 - 514
NISHIMURA H; ASHIHARA Y; MATSUSHIMA A; INADA Y., ENZYME, vol. 24, 1979, pages 261 - 264
RETAILLEAU P; COLLOC'H N; CIVARES D ET AL., ACTA CRYSTALLOGR., SECT. D., vol. 61, 2005, pages 218 - 229
ROBERTS M J; BENTLEY M D; HARRIS J M., ADV DRUG DELIV REV., vol. 54, 2002, pages 459 - 476
ROSENBERG, A S., AAPS J., vol. 8, 2006, pages E501 - 507
See also references of EP2684950A4
SHERMAN MR; SAIFER MG; PEREZ-RUIZ F., ADV DRUG DELIV REV., vol. 60, 2008, pages 59 - 68
TSUJI J-1; HIROSE K; KASHARA E; NAITOH M; YAMAMOTO I., INT J IMMUNOPHARMACOL., vol. 7, 1985, pages 725 - 730
VERONESE F M., BIOMATERIALS, vol. 22, 2001, pages 405 - 417
VERONESE FM; PASUT G., DRUG DISCOV. TODAY, vol. 10, 2005, pages 1451 - 458
WALLACE K; RIEDEL A; JOSEPH-RIDGE N; WORTMANN R., J RHEUMATOL., vol. 31, 2004, pages 1582 - 1587
WORTMANN R L; KELLEY W N: "Kelley's Textbook of Rheumatology (6th", 2001, pages: 1339 - 1376
WU X; LEE C C; MUZNY D M; CASKEY C T., PROC NATL ACAD SCI USA, vol. 86, 1989, pages 9412 - 9416
WU X; MUZNY D M; LEE C C; CASKEY C T., J MOL EVOL., vol. 34, 1992, pages 78 - 84
YUE, JUNJIE ET AL.: "Homology modeling and bioinformatics analysis of three-dimensional structure of human urate oxidase", COMPUTERS AND APPLIED CHEMISTRY, vol. 24, no. 12, 28 December 2007 (2007-12-28), pages 1643 - 1646, XP008157797 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758802B2 (en) 2009-12-14 2014-06-24 University Of Massachusetts Methods of inhibiting cataracts and presbyopia
US9283237B2 (en) 2009-12-14 2016-03-15 University Of Massachusetts Methods of inhibiting presbyopia
US9675589B2 (en) 2013-03-14 2017-06-13 University Of Massachusetts Methods of inhibiting cataracts and presbyopia
US9789091B2 (en) 2013-03-14 2017-10-17 University Of Massachusetts Methods of inhibiting cataracts and presbyopia
US10413529B2 (en) 2013-03-14 2019-09-17 University Of Massachusetts Methods of inhibiting cataracts and presbyopia
US10736863B2 (en) 2015-11-13 2020-08-11 University Of Massachusetts Methods of inhibiting cataracts and presbyopia

Also Published As

Publication number Publication date
EP2684950A1 (en) 2014-01-15
US9193967B2 (en) 2015-11-24
US20140065123A1 (en) 2014-03-06
EP2684950A4 (en) 2015-01-07
CN102634492B (zh) 2015-06-10
CN102634492A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2012109975A1 (zh) 聚乙二醇化犬源尿酸氧化酶类似物蛋白及其制备方法和用途
USRE49736E1 (en) Pegylated L-asparaginase
KR101304289B1 (ko) 유레이트 옥시다아제의 변이형 및 이의 용도
BRPI0407882B1 (pt) Composição compreendendo conjugados de polímero-porção de fator viii e seu método de fabricação
KR20080009111A (ko) 유레이트 옥시다아제의 변이형 및 이의 용도
KR20090102785A (ko) 제거될 수 있는 결합을 지니는 인자 ⅸ 부분­중합체 컨주게이트
WO2011146518A9 (en) Pegylated c-peptide
JP6626045B2 (ja) コリンエステラーゼ部分とポリマーとのコンジュゲート
EP2451486B2 (en) Pegylated l-asparaginase
US10406235B2 (en) Use of multi-arm polyethylene glycol modifier and application of multi-arm polyethylene glycol modifier in L-asparaginasum modification
WO2020228618A1 (zh) 聚乙二醇修饰的尿酸氧化酶
WO2009086656A1 (zh) Y型聚乙二醇修饰的g-csf及其制备方法和应用
JP5458416B2 (ja) 二本鎖ポリエチレングリコール化成長ホルモン、その製造方法およびその使用
WO2022095973A1 (zh) 尿酸氧化酶制剂及其应用
JP6255348B2 (ja) 甲状腺刺激ホルモン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012747724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13985273

Country of ref document: US